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Abstract: Leaf area index (LAI) and height are two critical measures of maize crops that are used
in ecophysiological and morphological studies for growth evaluation, health assessment, and yield
prediction. However, mapping spatial and temporal variability of LAI in fields using handheld tools
and traditional techniques is a tedious and costly pointwise operation that provides information
only within limited areas. The objective of this study was to evaluate the reliability of mapping LAI
and height of maize canopy from 3D point clouds generated from UAV oblique imagery with the
adaptive micro-terrain model. The experiment was carried out in a field planted with three cultivars
having different canopy shapes and four replicates covering a total area of 48 × 36 m. RGB images
in nadir and oblique view were acquired from the maize field at six different time slots during the
growing season. Images were processed by Agisoft Metashape to generate 3D point clouds using
the structure from motion method and were later processed by MATLAB to obtain clean canopy
structure, including height and density. The LAI was estimated by a multivariate linear regression
model using crop canopy descriptors derived from the 3D point cloud, which account for height and
leaf density distribution along the canopy height. A simulation analysis based on the Sine function
effectively demonstrated the micro-terrain model from point clouds. For the ground truth data, a
randomized block design with 24 sample areas was used to manually measure LAI, height, N-pen
data, and yield during the growing season. It was found that canopy height data from the 3D point
clouds has a relatively strong correlation (R2 = 0.89, 0.86, 0.78) with the manual measurement for three
cultivars with CH90. The proposed methodology allows a cost-effective high-resolution mapping of
in-field LAI index extraction through UAV 3D data to be used as an alternative to the conventional
LAI assessments even in inaccessible regions.

Keywords: leaf area index (LAI); 3D point cloud from photogrammetry; UAV remote sensing; crop
phenotyping; precision agriculture; decision making in crop production

1. Introduction

Leaf area index (LAI) is an important ecophysiological parameter for farmers and
scientists for evaluating the health and growth of plants over time. It is defined as the
ratio of the leaf surface area to the unit ground cover [1]; it describes leaf gas exchange and
is used as an indication of the potential for growth development and yield. It is widely
employed in crop growth models for optimizing management decisions in order to respond
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to field uncertainties, such as terrain erosion [2], soil organic carbon problems [3], and
climate change effects [4]. Because LAI is an integrative measure of water and carbon
balance in plants, it is associated with evapotranspiration, surface energy, water balance [5],
light interception, and CO2 flows [6], which are of interest in studies related to maize
plants’ physiology, breeding, and vegetation structure [7–9]. Conventional methods for
collecting LAI data involve manual measurements using in-field portable instruments [5],
such as LI-3000C (LI-COR Biosciences GmbH, Homburg, Germany) or AccuPAR LP-80
(METER Group, Pullman, WA, USA). The former is used by measuring and recording
the area, length, average width, and maximum width of each leaf; the latter is frequently
used to measure the attenuation of photosynthetically active radiation (PAR) by the plant
canopy based on the Beer–Lambert Law [10]. However, each process is a tedious and
time-consuming pointwise operation, and each of the datum sources generally requires
experts or specific software to extract the relevant information only within limited areas;
therefore, new cost-effective and reliable methods for mapping the LAI within extended
areas to acknowledge the high temporal and spatial variabilities encountered in fields
are needed [11,12]. Various studies have proposed alternative methods for estimation of
LAI using ground-based [13,14] or aerial-based (Table 1) sensing platforms with different
imaging devices and data processing techniques.

Literature Review and Background Study

Unmanned aerial vehicles (UAVs) equipped with high-resolution imaging sensors,
LiDAR, multi-spectral, and hyperspectral cameras [15–21] have been widely used for
supporting precision agriculture and digital farming applications, such as plant pheno-
typing [22,23], leaf area density (LAD) [24,25], leaf chlorophyll content (LCC) [26], and
breeding [27] due to their versatility, flexibility, and low operational costs. A conceptual
illustration of a UAV-based image acquisition system for estimation of crop parameters
along with other in situ sensors and manual measurements is shown in Figure 1. With
the advances in sensing approaches, different methods, including 2D and 3D imaging
techniques, have been successfully used to identify crop size traits as well as unitless
indices, such as LAI for various crops, including maize [28], berries [29], almonds [30],
olives [31], grapes [32], apples [33], and pears [34]. UAV-photogrammetry has shown the
potential to estimate LAI and represents canopy coverage ratio at the plant and canopy
levels [1], which is a major component in the estimation of evapotranspiration, surface
energy, and water balance [5]. Concerning photogrammetry-based 3D imaging approaches
and techniques, such as structure from motion (SfM), a general trend can be observed in
the literature, indicating that the depth and quality of point cloud, which is influenced by
the sensing range determines the accuracy of crop size measurements. As an example, it
has been shown that although SfM is a low-cost (compared to LiDAR) and robust solution
for providing detailed point clouds from wheat fields depending on the camera angles, it
requires significant computational effort for 3D reconstruction [1,35]. In addition, illumina-
tions, ambient light conditions, and external disturbances, such as wind and occlusion, can
significantly affect the quality of the reconstructed point clouds. It has been concluded that
the main challenge with the SfM technique, especially in large field experiments consisting
of hundreds of plots, is the requirement for reference objects when accurate metric data are
not available [36–39].
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the structure from motion dataset. Li et al. [60] estimate leaf parameters for wheat by dif-
ferent single-view imagery with mono−camera system, and their results showed that a 
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Figure 1. Illustration of UAV-based photogrammetry for estimation of crop parameters via nadir and
oblique views.

Research works involving other common approaches for determining crop size traits,
such as descriptive and outline-based shape analysis methods [39], have incorporated
mathematical models, such as Fourier [40,41] and wavelet analysis [42], as well as artificial
intelligence techniques [43,44]. These studies show promising results in deriving height,
ratios, LAI, and angles for quantifying and describing object shapes in studies related to
maize [35,45], vineyard grape leaves [12], cotton leaves [46], and grapevine berries [47]. As
alternative solutions for UAV photogrammetry, 3D imaging and laser scanning instruments,
such as LiDAR, have also been used for rapid phenotyping [7,48,49], including estimation of
height and the volume of crops and plant canopy [50]; however, the main burden to employ
these devices is their high cost and unavailability. Although the performance of LiDAR
can also be affected by occlusions, they have been optimized for outdoor environments to
eliminate illumination disturbances and, therefore, are able to produce a high quality and
detailed 3D view of the plants [50,51].

Concerning satellite-based imaging, Tian et al. [52] compared UAV-based LAI estima-
tion with satellite-based data and found that the average normalized difference vegetation
index resulted in the highest accuracy (i.e., R2 = 0.817, RMSE = 0.423) for a plot level of
10 m2, between the UAV and WorldView-2 satellite-based LAI estimation for mangrove for-
est. Some of the studies that investigated the use of UAV for estimating LAI, leaf chlorophyll
content, and plants’ height include [32,53–60]. For example, Mathews et al. [32] quantified
the vineyard LAI using UAV based structure from motion (SfM) point cloud method,
showing a relatively low R2 = 0.56 with 6 predictor variables. Their study concluded that
3D point cloud datasets obtained with oblique imagery, integrating micro terrain data are
paramount for more accurate estimation of LAI and plant height, instead of the structure
from motion dataset. Li et al. [60] estimate leaf parameters for wheat by different single-
view imagery with mono−camera system, and their results showed that a direct viewing
angle of vertically at −45◦ and horizontally at 0◦ (VA −45, HA 0) would be the most
efficient viewing angle to detect leaf canopy variables of the crop canopy. Comba et al. [23]
measured LAI from 3D point clouds acquired in vineyards using UAV multispectral im-
agery and calculated through a multivariate linear regression model was shown in Figure 2.
The spatial distribution of the leaves along the canopy wall was extracted and graphically
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represented in the background of the vine canopy (Figure 2a) with a portion enlarged in
Figure 2b. The vineyard LAI estimation showed a good correlation with R2 of 0.82 compared
with the traditional method. Recent research of maize height estimation has implemented
by using 3D modeling and/or UAV imagery. Hämmerle and Höfle [61] used a low-cost
Kinect 2 camera gained correlation of R2 = 0.79 and RMSPE = 7.0%. Han et al. [28] studied
the difference of canopy dynamics among different cultivars with the height estimation.
Chu et al. [62] estimated maize canopy height using UAV 3D data combined with color
features to accurately identify corn lodging. Che et al. [35] estimated height using oblique
UAV imagery, and their results showed an improvement between nadir imagery(R2 = 0.90)
and oblique imagery(R2 = 0.91). A summary of the reviewed literature is provided in
Table 1.
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Table 1. Summary of the reviewed published research works related to the use of UAV-based
phenotyping.

Sensor Case Study Estimating Parameter Method and Core Findings (R2, RMSE) Ref.

RGB camera Maize LAI, height

3D point cloud from photogrammetry with a 3D
voxel method, LAI estimation by nadir
photography R2 = 0.56, LAI estimation by oblique
photography R2 = 0.67, height estimation R2 > 0.9.

[35]

RGB camera Maize LAI, canopy height,
green-canopy cover

Top-of-canopy RGB images with a ‘vertical, leaf
area distribution factor’ (VLADF), LAI R2 = 0.6 and
RMSE = 0.73.

[63]

RGB camera Soybean LAI

RGB photography, integrating the effects of
viewing geometry and gap fraction theory. LAI
estimation R2 = 0.92, RMSE = 0.42 compared with
gap fraction-based handheld device, R2 = 0.89,
RMSE = 0.41 compared with destructive LAI
measurements. Proved to be a reasonable
alternative to handheld and destructive LAI
measurements.

[64]

RGB camera,
Multispectral

camera
Barley LAI, dry biomass

Dry biomass and LAI were modeled using random
forest regression models with good accuracies (DM:
R2 = 0.62, nRMSEp = 14.9%, LAI: R2 = 0.92,
nRMSEp = 7.1%). Important variables for
prediction included normalized reflectance,
vegetation indices, texture and plant height.

[65]
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Table 1. Cont.

Sensor Case Study Estimating Parameter Method and Core Findings (R2, RMSE) Ref.

RGB camera,
Multispectral

camera
Sorghum LAI, biomass,

plant height

Image-based estimation with regression model.
LAI estimation R2 = 0.92, biomass estimation
R2 = 0.91, plant height estimation RMSE = 9.88 cm.

[66]

Multispectral
camera Vineyard

LAI, height canopy
thickness, leaf density

distribution

3D point cloud from photogrammetry. Correlation
between manual measurement of LAI and
estimated LAI using multivariate linear regression
resulted in R2 = 0.82.

[23]

Multispectral
camera Potato LAI, LCC

Multispectral 2D orthophoto with PROSAIL model.
LAI RMSE = 0.65, LCC RMSE = 17.29, huge
improvement was obtained by multi-angular
sampling configurations rather than by nadir
position.

[56]

Multispectral
camera Maize LAI, Chlorophyll

R2 increased from 0.2 to 0.77 with incorporation of
UAV-based LAI estimation in the empirical model
for chlorophyll.

[67]

Multispectral
camera Maize Yield

The best model for yield prediction was found
using maize plant development stage reproductive
2 (R2) for both maize grain yield and ear weight
(R2 = 0.73, R2 = 0.49, root mean square error of
validation (RMSEV) values RMSEV = 2.07,
RMSEV = 3.41 tons/ha using partial least squares
regression (PLSR) validation models).

[8]

LiDAR Maize LAI

UAV-based LiDAR mapping, 3D point cloud with
voxel-based method. LAI estimation NRMSE for
the upper, middle, and lower layers were 10.8%,
12.4%, 42.8%, for 27,495 plants/ha, respectively.
Different correlations were developed among
varying parameters including voxel size, UAV
route, point density, and plant densities.

[1]

LiDAR Blueberries
Height, width, crown

size, shape, bush
volume

3D point cloud with bush shape analysis.
One-dimensional traits (height, width, and crown
size) had high correlations (R2 = 0.88–0.95), bush
volume showed relatively lower correlations
(R2 = 0.78–0.85).

[14]

LiDAR Forest LAI, LAD
Counting method for multi-return LiDAR point
clouds. Method is suitable for estimating foliage
profiles in a complex tropical forest.

[68]

LiDAR Dense tropical
forest LAI, LAD

LiDAR point cloud with voxel-based approaches.
Authors recommend voxels with a small grain size
(<10 m) only when pulse density is greater than 15
pulses m−2.

[69]

LiDAR Coast live oak
Queen palm LAI

Two different methods: penetration metrics and
allometric method. LIDAR penetration method
resulted in the highest R2 = 0.82.

[70]

Near-infrared
laser Cotton LAI

3D point cloud-based estimation of LAI by height
of cotton crop. LAI separation in plants by height.
Irrigation, cotton cultivar, and stages of growth in
cotton impacted LAI by height. 3D point
cloud-based estimation may supplement measures
of spatial factors and radiation capture.

[71]

Satellite imagery
Dwarf shrub,
Graminoid,

Moss, Lichen
LAI

Quantification of NDVI and LAI using satellite
imagery at different phenological stages. Results
showed that LAI supported variation in NDVI with
R2 = 0.4 to 0.9.

[72]
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Table 1. Cont.

Sensor Case Study Estimating Parameter Method and Core Findings (R2, RMSE) Ref.

RGB camera and
Satellite imagery

Forest,
plantations,
croplands

LAI

Global estimation of LAI using NASA SeaWIFS
satellite data and more than 1000 published
estimation models. R2 = 0.87 between LAI from
database and mean LAI estimated using NASA
SeaWIFS satellite dataset repository.

[73]

RGB camera and
Satellite imagery Mangrove LAI

Comparison between UAV-based LAI estimation
and WorldView-2 LAI raster. LAI was estimated
using two different methods (i.e., UAV based LAI
estimation and satellite WorldView-2 based LAI
estimation). On an average, UAV based LAI
estimation was relatively more accurate as
compared to WorldView-2 due to high resolution.

[52]

The reviewed literature indicates that integration of micro-terrain model into the
estimation of LAI and plant height from UAV images has not been studied for maize field.
The presented paper therefore investigates the hypothesis that a set of 3D point clouds
generated by UAV oblique imagery can be used effectively to estimate the variability in
LAI and height of maize canopy. The ground for testing the hypothesis was motivated by
our background study that indicates a 3D representation of a complex maize canopy can
provide valuable information on the growth status. Our effort is to find strong evidence,
including a high correlation between estimated parameters from UAV images and the in
situ manual measurements with a low root mean square error to suggest the high accuracy
of the approach. We have shown that the estimation of LAI can be obtained by linearly
fitting the canopy descriptors (such as point density and average canopy height) of the
point cloud map. The present study also explores that by applying specific processing
algorithms and automatic processing to 3D point clouds, a cost-effective scheme in LAI
estimation is achievable and implementable, making the 3D point cloud canopy analysis an
alternative to conventional LAI assessment. The main objective of the study was to develop
a 3D imaging approach to measure the leaf area index and height of maize plants in the
field. Specific objectives were as follows: (i) to develop an adaptive micro-terrain model
with a sine function to effectively demonstrate the inclusion of the micro-terrain structure;
(ii) to estimate the canopy height from image-based point clouds for maize plants with three
different cultivars in field conditions; and (iii) to estimate LAI with descriptors (canopy
height and canopy density) of maize plants and evaluate the proposed method with the
ground-truth data from ground-based measurements. The outcome of this research can be
applied in a cost-effective high-resolution mapping of in-field LAI and height extraction
through UAV 3D data to be used as an alternative to the conventional LAI and height
assessments even in inaccessible regions.

2. Materials and Methods
2.1. Field Preparation

All experiments and data collections were carried out between June and September
of 2019, on a maize field at the Marquardt Digital Agriculture field of the Leibniz Insti-
tute for Agricultural Engineering and Bioeconomy, located in Potsdam, Germany (Lat:
52◦28′01.2′′N Lon: 12◦57′20.9′′E, Alt: 65–68 m). A map of the area is shown in Figure 3a.
The landscape of the field was dominated by small-sized experimental plots containing
other crops. The distribution of the maize field with 3 sub-plots is shown in Figure 3a.
The study characterized three cultivars of maize with different canopy architectures that
were cultivated in 12 plots over a total area of 48 by 36 m2. The maize field was seeded
on 3 May 2019, with two rows per bed using a precision seeder (Terradonis company, La
Jarrie, France) that was attached to a HEGE 76 farm-implement carrier (HEGE Maschinen,
Hohebuch, Germany), as shown in Figure 3b. The seeder had two independent seeding
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units that were mounted on a bar and were then adjusted for a row spacing of 0.75 m
spacing. The disk system was used to set a plant spacing of 0.25 m. The seed rate was
equal through the experimental plots. Cultivation practices including irrigation, nutrition,
fertilizer, and pesticide applications were performed by expert technicians. Figure 3c shows
a view of the field at 26 days after sowing (DAS). Maize reached the growth stage of 13–15
on the Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH)
scale code [74].
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Figure 3. Layout of the experimental plots and field preparation demonstrating (a) the geographical
location of the experimental site in Germany, (b) sowing the seeds of maize using precision seeders
with two rows per bed, and (c) the distribution of the maize in the field 26 after sowing.

2.2. UAV-Image Acquisition and Manual Measurements

A multi-rotor unmanned aerial vehicle model HP-X4-E1200 (HEXAPILOTS, Dresden,
Germany) equipped with a 2-axis gimbal, a Sony Alpha 6000 RGB camera (Sony Corpo-
ration, Tokyo, Japan), and a 16 mm lens were used to acquire RGB images in nadir and
oblique view from the maize field at six different time slots during the growing season. The
data collection setup and image acquisition hardware is shown in Figure 4. The camera
was equipped with a 16 mm f/2.8 pancake lens, which provided a field-of-view equivalent
to a classic 24 mm full format lens. The camera was mounted on the gimbal to provide
nadir (θ = 0

◦
) and oblique shooting angles (θ = −45

◦
). During the image acquisition,

the camera configuration mode was set to shutter 1/1000 s, ISO 100-200, F-stop auto, and
daylight mode. An overlapping setting rate of 80% for both sides was employed to satisfy
the Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia) recommendation. The UAV
and camera technical specifications used for this study of the crop estimation are listed
in Table 2. The instruments used for ground-truth data collections were (i) SunScan LAI
meter, (ii) ground control points (GCPs), and (iii) Topcon HiPer® Pro Differential Global
Positioning System (DGPS).

The details of the six UAV flight campaigns are summarized in Table 3. Each flight
task is labeled as AiN or AiO, where i is the index of the flight task, and N and O refers
to the nadir and oblique views, respectively. The flight objective, growth stages, wind
conditions, and the number of images collected during each flight are also given in Table 3.
The first flight campaign (i.e., tasks A1N and A1O) was performed as a pre-test for camera
calibration, and to simulate the reference ground model with micro-terrain. The total
of 2979 RGB images were collected in different wind speeds under clear sky conditions
during eight back-and-forth flight lines with 5.87 m distance between the lines to cover
the entire experimental plots in the maize field. The UAV was programmed to fly with
ground speed of approximately 3 m/s at the heights that are given in Table 3. Images were
collected continuously at an interval of 1 s, which resulted in a ground sampling distance
(GSD) of approximately 5 mm/pixel. All images were taken from an equal distance to the
surface of the canopy by applying different flight heights and flight route offset (FRO). The
flight duration to complete image acquisition for each flight campaign was approximately
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between 25 and 35 min. It should be noted that the growth stage data given in Table 3
are based on the standard BBCH-scale code [74]. In addition, the wind speed data were
provided by the Potsdam weather station located 11 km from the experimental site.
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Figure 4. Illustration of the UAV-based image acquisition and manual ground truth measurements.
The 2-axis gimbal was used to mount the camera sensor at −45◦ and nadir angles.

Table 2. UAV and camera technical specification.

Parameters Technical Specifications

Copter type HP-X4-E1200 (HEXAPILOTS, Dresden, Germany)
Propulsion Electric, DJI E1200 (DJI Innovation, Shenzhen, China)
Dimensions Wingspan 125 cm, height 57 cm
Endurance 12 min

Navigation support GPS, manual/autonomous
Flight control Pixhawk 2.1 (ProfiCNC, Black Hill, Australia)

Communication Micro Air Vehicle Link (MAVLink)
Radio remote control FlySky remote controller system

Mission Mission planner, open-source software
Battery type Lipo, 10000 mAh, voltage 22.2 V, continuous/peak C-rate of 25 C/50 C

Weight 4 kg (battery included)
Max. payload 1 kg

Parameters for crop estimation 80% overlap, flight speed of 3 m/s, height of 15 m in nadir, 21 m in oblique
Camera type Sony Alpha 6000, APS-C sensor, 24.3 megapixels, objective 16 mm, f/2.8.
Camera setup 1/1000 s, ISO 100-200, Auto f, daylight mode

Table 3. Flight campaigns objectives and wind conditions during overflight.

Flight
Task *

Flight Date Flight
Objective

Flight
Height (m)

FRO **
(m)

Growth Stage
(BBCH Scale)

No. of Collected
Images

Wind Speed (m/s)

(Avg.) (Max Gust)

A1, N 20 June 2019 Ground model 21 0 12–15 93 [2, 3] [5, 6]A1, O 15 14 459
B1, N 25 June 2019 Crop canopy 21 0 32 146 [3, 5] [7, 9]B1, O 15 14 470
B2, N 16 July 2019 Crop canopy 21 0 61–67 99 [5, 6] [8, 9]B2, O 15 14 471
B3, N 31 July 2019 Crop canopy 21 0 69 104 [2, 3] [4, 5]B3, O 15 14 469
B4, N 13 August 2019 Crop canopy 21 0 72 100 [5, 6] [9, 10]B4, O 15 14 461
A2, N 19 September 2019 Ground model 21 0 99 107 [3, 5] [7, 8]

* Flight task: each flight task is labeled as Ai, N, Ai, O, Bi, N, or Bi, O, where Ai and B i refers to flight campaigns,
A refers to the flight objective for ground model, B refers to the flight objective for crop canopy, i is the index
of the flight campaigns for the flight objectives, and N and O refer to the nadir and oblique views, respectively.
** FRO: Flight route offset.



Remote Sens. 2022, 14, 585 9 of 28

2.3. Ground-Truth Data Collection

Measurements of LAI and plants’ height were performed on the same day of the UAV
flight campaigns. A screenshot of the map of the actual flight route and the flight control
adjustments are shown in Figure 5. LAI was measured by a SunScan plant canopy analyzer
system (SS1-COM-R4, Peak Design Ltd., Winster, UK). The analyzer system included a BF5
Sunshine Sensor, RadioLink components, a Personal Digital Assistant (PDA), a SunScan
probe, and a tripod (shown earlier in Figure 4). The BF5 Sunshine Sensor was linked
with the RadioLink component and then leveled by the three-axis tripod to record the
above-canopy reference. The Handheld PDA is connected to the SunScan probe to collect
and analyze readings from measurements. The system was used to measure the averaged
LAI in sample areas for the canopy of different maize cultivars and growth variability. The
plant height (PHT) and yield data were also collected according to agronomic reference
measurements. Ground control points were designed to place in the field. They later
were determined using the differential GPS HiPer Pro system (Topcon Corporation, Tokyo,
Japan), having a relative horizontal and vertical accuracy of 3 and 5 mm (shown in Figure 5).
It should be mentioned that the measurements did not involve any destructive sampling
to record the lengths or the widths of the plants and leaves. In this study, the manually
measured LAI and plant heights are referred to as actual measurements, while those
extracted from UAV images are the estimated measurements.
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2.4. Experimental Design and Statistical Analysis

Randomized complete block design (RCBD) was applied with the one-factor treatment
and four replications, as shown in Figure 6. The factor is maize cultivar with three treat-
ments (αi) for the contrasting canopy structures. Figure 6a,b show the schematic view of
RCBD under study and the corresponding actual maize field layout. The field was split into
four blocks (bj). Each block was divided into three experimental plots of equal size with ten
rows. All three treatments were randomly assigned to the experimental plots in each block.
The one-way analysis of variance (ANOVA) model can be stated as: yij =µ + αi + bj + εij.
The maize cultivars are LG30222, LG31211, LG31256, respectively. Two cultivars, LG30222
and LG31211, have a reduced stature (not that high). Between the two of them, LG31211
has good development in the early growth stage and a leafier stature, and the third cultivar,
LG31256, has a normal stature (higher canopy shape). Contrasting canopy structures were
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established in this way by three cultivars with their contrasting canopy architectures shown
in Figure 6b. In addition, linear regression comparison analysis was performed to assess
the performance of the UAV-SfM based method in estimating plant height and LAI across
the maize field. The coefficients of determination (R2), root mean square error (RMSE), and
relative root mean square error (rRMSE) described by the following equations were used to
assess the degree of coincidence between ground truth and the estimated dataset. Here xi
represents the field-observed value for sample area i, yi represents estimated value from
image-based point clouds for sample area i, x and y are the average values, and n is the
number of observed or estimated values in each dataset. The comparison was carried out
for each growth stage separately and for all data pooled together.

R2 =
∑n

i = 1(xi − x)2(yi − y)2

n ∑n
i = 1(xi − x)2 ∑n

i = 1(yi − y)2 (1)

RMSE =

√
1
n

n

∑
i = 1

(yi − xi)
2 (2)

rRMSE =
RMSE

x
× 100% (3)
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Figure 6. Illustration of the randomized complete block design, showing (a) the schematic view and
(b) the actual view for a layout of one factor (maize) with three treatments for contrasting canopy
architectures. The field was split into four blocks. The gray, blue, and red colors of blocks refer to
cultivar LG30222, LG31256, and LG31211.

2.5. Generation and Pre-Processing of 3D Point Cloud

UAV images were processed using Agisoft Metashape Professional 1.7.3 (Agisoft LLC,
St. Petersburg, Russia). The software uses SfM photogrammetry for generating 3D point
clouds. For each growth stage, a 3D point cloud was generated from the nadir and oblique
view set of images. The pre-processing steps included manual removal of invalid images
(i.e., images that were acquired at the very beginning and end of the flight campaign, or
those that were taken outside the field). The valid images from the six flight campaigns
(A1–A2, B1–B4) were then imported to the Metashape, resulting in six individual image
sequences which were processed individually by the software. For each image, maize
canopy were separated from the soil and other undesired objects before modeling. This
mask was created by the standard workflow for generating a quick mesh in Metashape.
This step was required to improve the canopy model. Because most of the matching point
pairs were extracted from irrelevant soil background, it reduced the usage of matching
point pairs within the plant canopy. Prior to the image alignment, the mask was imported
with the following software settings: method: from model, operation: replacement, and
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tolerance: 10. This approach avoided repetitive creation of masks for each individual
image. The masks were then applied while generating the 3D point clouds using the
SfM approach, including alignment, GCP labeling, gradual selection, and optimization
procedure. Figure 7 illustrated the process of the generation of LAI from 3D point clouds
using UAV RGB imagery. Here, the image sequences were used to create masks before 3D
modeling and then the extracted masks of imagery were applied to generate the 3D point
clouds (A1–A2, B1–B4). The point clouds were transformed to local coordinates. In the next
step, the 3D point clouds A1–A2 were used for the derivation of the terrain model using
a space (compound) sine equation and a space plane equation for the base-plane model,
and the simulated micro-terrain. The terrain model was then merged with the 3D point
clouds B1–B4 to obtain combined point clouds. The height, point density descriptors were
calculated from the selected area of interest from the combined point clouds. The LAI were
then calculated through a multivariate linear regression using height and point density
descriptors in the select area of interest.
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Figure 7. Processing of UAV imagery for the generation of LAI. A1–A2 were generated from the
flight campaigns A1–A2, which were captured for the simulation of the terrain model. B1–B4 were
generated from the flight campaigns B1–B4, which were for the extraction of the crop canopies.

For quality optimization, 3D tie points were used from image alignment, which
matched specific features in overlapping images. For these point clouds, a gradual selec-
tion procedure was used to identify and filter out low-quality points with the following
user-defined criteria: reprojection error < 0.5 pixels, reconstruction uncertainty < 60, and
projection error < 15. The filtered tie points were used to optimize the positions of the
cameras using bundle adjustment. The resulting and optimized tie points were used as
sparse point clouds. The sparse point clouds were georeferenced into the coordinate ref-
erence system ETRS89 UTM zone 33N (EPSG: 25833) and exported to PLY format. For
further analysis in MATLAB, only the sparse point clouds were used as the 3D point clouds.
This technique caused the point clouds to have the highest validity to the image feature
matching [59]. Six individual point clouds, labeled as (A1–A2, B1–B4) were generated from
the flight campaigns. In this scheme, a point cloud, i.e., A1, is defined as:

PtCloud A1 =
{
[ϕi, λi, εi]

T ∈ R3; i = 1, . . . , NA1

}
(4)

where ϕi, λi, and εi are the value of eastings, northings, and altitude in meter of ith point
of the PtCloudA1 positioned in the UTM zone 33N, and NA1 is the cardinality of the point



Remote Sens. 2022, 14, 585 12 of 28

cloud. The point clouds were split into k = 3 superplots Sk each covering an area of 9
by 36 m. To accelerate the next steps involving point clouds processing, a coordinate
transformation was used to shift the superplots using Equation (5): x

y
z

 = T

 ϕ− x1
λ− y1

ε

 (5)

where T =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 is the rotation matrix, and α is the rotation angle.

The smallest value of ϕ and λ in the superplots was defined as (x1, y1, 0)T , which is the
translation vector to the origin (0, 0, 0). After the rotations, the maize row of each Sk is
now parallel to the X-axis and vertical to Y-axis. PtCloudSk As or PtCloudSk Bs represent the
superplots in local coordinates of each point cloud dataset and A1–A2 or B1–B4 are the
identifiers of the point clouds. The example of a subset point cloud S1 A1 is defined as:

PtCloudS1 A1
=
{
[xi, yi, zi]

T ∈ R3; i = 1, . . . , Ns1 A1

}
(6)

where xi, yi and zi are the value of X-axis, Y-axis, and altitude in meter of ith point of the
PtCloudS1 A1

in local coordinate transformation. NS1 A1 is the cardinality of the point cloud.

2.6. Derivation of Terrain Model

The terrain model was derived using a compound equation of two sine functions to
simulate a curved surface that was constrained to point cloud PtcloudA1 (early growth
stage) with additional information of point cloud PtcloudA2 (after tillage) for the base plane
parameters. In the field, there is a periodic nature in the terrain present due to ridges and
furrows that changes in the row direction. The difference of the peaks in a period is due
to the rollers of field vehicles. To obtain the characteristics of this periodicity, soil points
were extracted from PtcloudA1 . The soil point section was then projected on the YZ-plane,
and its characteristics were obtained through preliminary observations of the lower limit
of the section, which has two-dimensionality and periodicity. These characteristics were
used for defining the parameters A and B in Equation (7). Equation (7) describes the curve
that characterizes this micro-terrain pattern by using a combined periodic piecewise sine
function:

f (t) =

{
A× sin(2π× rem(t, T)) t ∈ (rem(t, T) ≤ 0.5, 0 ≤ t ≤ n )

B× sin(2π× (rem(t, T)− 0.5)) t ∈ (rem(t, T) > 0.5, 0 ≤ t ≤ n)
, (7)

where A = 1/17 and B = 1/8 are the amplitudes, t is the position, T = 1.5 [m] is the
period of the function representing two maize row spacing as one period, rem represents
the remainder function, and n = 36 m is the total length of all rows. The axis of f (t) is
defined as a tangent to the row direction and equal to the Y-axis. Then, based on the point
cloud dataset PtcloudA2 , the planar features of the superplots S1 − S3 were extracted by
estimating a plane from the point clouds using least squares approximation. The equation
is expressed as:

z0k = akx + bky + ck 0 ≤ x ≤ m, 0 ≤ y ≤ n (8)

where ak, bk, ck are defined as values of the planar features, k is the index of the superplot
(i.e., 1,2,3), x and y represent the point cloud positions, and m and n are the maximum
size of the superplots in X and Y-axis, which are defined as 9 and 36 m. Finally, the
parametrized plane curve f (t) (Equation (7)) was applied to the corresponding three planes



Remote Sens. 2022, 14, 585 13 of 28

z0k (Equation (8)). Consequently, the simulated terrain models were derived representing
the micro-pattern features within plots S1 − S3, as follows:

Zk = {zk = akx + bky + ck + f (y) + c|0 ≤ x ≤ m, 0 ≤ y ≤ n } (9)

where c is a constant to adjust the height difference caused by tillage. Henceforth, only
the simulated terrain model was used, and thus its explicit dependence on the ground
surface point cloud was omitted. A schematic and two actual views of the ground surface
are provided in Figure 8, showing ridges, row spacing and plant spacing of the ground
surface (Figure 8a), and the nadir and side view of the actual field (Figure 8b,c).
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Figure 8. Demonstration of the ground surface showing a schematic diagram (a) representing the
micro-terrain pattern and the actual view of the terrain surface in the field plots from nadir (b) and
side view (c).

2.7. Canopy Height Estimation

The following steps were used to estimate the canopy height from the point clouds.
First, the middle part of the point clouds ASk , Bs were extracted, which covered an area of 1
by 36 m along the middle line of superplot Sk. It should be noted that the point clouds of
the sample areas were included in the extraction. This resulted in three selections of points
pi extracted from four point clouds with respect to the corresponding superplots (Sk) and
growth stages (s). The sample selection of the points in AS1, B4 is given by Equation (10):

AS1, B4 =
{

pi = [xi, yi, zi]
T ∈ R3

∣∣∣∣∣∣m
2
− xi

∣∣∣ ≤ 0.5, 0 ≤ y ≤ n, ∀pi ∈ PtCloudS1, B4

}
(10)

where point pi are the selection of the subset points. The selection of point clouds is thus
constituted only by the points pi, representing maize canopy, from which the maize height
will be extracted with respect to the terrain. The second step was to find the local peaks of
the ridges from the simulated terrain model, which is a parametrized plane curve Zk. The
peaks Hk were detected by solving the local maximum problem:

Hk =
{

qi = [x, y, z]T ∈ Zk

∣∣∣∀c = [xc, yc, zc]
T ∈ Zk, c→ q, qi (x, y) ≥ zk(xc, yc),

}
(11)

where qi are the points on the ridges in the terrain model, point c ∈ Zk is the neighborhood
of a point qi ∈ Zk, represented by coordinate values xc, yc, and zc. The third step was to
obtain the height distribution of the canopy. For the sake of simplicity, 2D canopy maps
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A2D
Sk , Bs

were created with a dimensionality reduction of the subset 3D point clouds ASk , Bs

as given in Equation (12):

A2D
Sk , Bs

=
{

wi = [x, y]T ∈ R2
∣∣∣x = y, y = z, [x, y, z]T ∈ ASk , Bs

}
. (12)

In order to avoid different slopes between the A2D
Sk , Bs

, the points were rotated slightly
around the X-axis to match with the Y-axis. Figure 13d shows a sample of the resulting 2D
canopy map A2D

S1, B4
. Finally, the plant heights were calculated as the difference between

the peak points of the ridges Hk and the top percentiles of the point clouds (90% and
95%) in respect to the Z-axis. The two datasets were obtained from the field point clouds
representing 24 sample areas including three cultivars. The canopy height-based values for
sample areas were then used for estimating the crop height with a linear regression model.
In this model, the dependent variable was the extracted height from the point cloud and
the independent variable was the averaged plant height from field measurements.

2.8. Leaf Area Index Estimation

The following steps were used to estimate the LAI of the maize canopy from the point
clouds A2D

Sk , Bs
. First, rectangular grids with different sizes were integrated into the point

clouds A2D
Sk , Bs

to spatially divide the plant canopy and calculate the point density for each
grid cell. Because the leaves and stems within the plant canopy are randomly distributed,
the leaf area density of A2D

Sk , Bs
at the canopy level can be assumed as the point density of

the grid. The density grids were used with sizes of 8, 15, and 25 cm. Equation (13) shows a
matrix of the density grid distribution N 0.08

S1, B3
for the plant canopy with the grid size 8 cm

(Figure 15a):

N 0.08
S1, B3

=

{
( nu,v)u×v , ∀ wi ∈ A2D

S1, B3
, u =

xmax − xmin

0.08
, v =

ymax − ymin

0.08

}
(13)

where nu,v is the number of points measured in m2 per grid, u and v are the number of
grids in Y-axis and height directions, xmax, xmin, ymax, and ymin are the boundary values
of the point cloud, 0.08 is the density grid size. The matrices with different grid sizes are
represented as N 0.08

Sk , Bs
, N 0.15

Sk , Bs
, and N 0.25

Sk , Bs
. The second step was to obtain a descriptor for

the canopy density to describe the distribution for each sample area. For this purpose, a
ratio was calculated between the amount of grid greater than w and the total map grid.
The selected value of w was 0.2×WSk , Bs . Here,WSk , Bs relates to the average point cloud
density of the 2D canopy map obtained by dividing the total number of points by the area
of the valid grids. Grid cells, where the density fall below the threshold w, were not used
in the calculation of the descriptors. (Figure 14). Equation (14) refers to the descriptors for
the sample areas in S1, B3:

DS1, B3 =

{ [
d0.08

1,r , d0.15
2,r , d0.25

3,r

]
3×8

∣∣∣d0.08
1,r = f

(
N 0.08

S1, B3

)
, d0.15

2,r = f
(
N 0.15

S1, B3

)
, d0.25

3,r = f
(
N 0.25

S1, B3

) }
(14)

where function f
(
N 0.08

S1, B3

)
, f
(
N 0.15

S1, B3

)
and f

(
N 0.25

S1, B3

)
were used to calculate the ratios for

the sample areas. It varies between [0,1]. Finally, the LAI was calculated with respect to the
several growth stages and cultivars. The relationship between the defined maize canopy
descriptors and the LAI was described by a multivariate linear model as:

LAI =

(
2

∑
k = 1

ck.dk + q

)
.δ−1 (15)

where k is the set of selected descriptors dk, which is the height and canopy density
descriptor, ck is the coefficient of descriptor dk, q is the model intercept, and δ is the
maize sample width, which is equal to 1 here. The LAI model was compared with field
measurements to obtain the most reliable LAI descriptor.
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3. Results and Discussion
3.1. Reconstructed 3D Point Clouds

Reconstructed point clouds for the flight campaign of 31 July 2019, as well as camera
locations and image overlap, ground control point locations, and digital elevation map,
are shown in Figure 9. The 3D point cloud was processed by the SfM approach using
image sequences that are masked shown in Figure 9a. It should be noted that ground
pixels previously masked on the images were excluded from SfM procedures. A point
cloud covering three superplots was created and used to extract the height and LAI values.
Estimated camera locations are marked with a black dot, and numbers of the image overlap
are indicated by coloring the position of recovery (Figure 9b). The image overlap reached
10 or more within the reconstructed canopy areas, indicating that every three images
covered observed maize canopy effectively during the overflight. Figure 9c shows GCP
locations and georeferencing precision on a spatial scale after filtering low-quality points.
A total of 10 ellipses marked with dot points have been used to show the estimated GCP
locations. These ellipses indicate the X (longitude), Y (latitude) errors of a reference point
ranging between −1.9 and 4.6 cm. The estimated altitude accuracy (Z) is indicated by
different colors representing the range between −0.79 and 0.63 cm. Figure 9d shows the
reconstructed digital elevation. On this plot, the altitude ranges between 63.6 and 69.1 m,
indicating the slope of the experimental site as well as the canopy height difference. The
ground slope was considered in terrain model simulation after reconstruction.
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The details of the result from the four flight campaigns, including the number of
original images and aligned images after masking have been summarized in Table 4. These
flight campaigns were performed as related to parameter estimation. Preliminary results
showed that canopy pixels were prone to accurate reconstruction and georeferencing. The
numbers of final images that were aligned after masking were between 561 and 616 for the
four flight campaigns. The resulted ground sample distances (GSD) per campaign were
between 5.64 and 5.84 mm. Reconstruction precision with original images and images after
masking were found to be in the ranges of 1.5–2.0 mm and 1.7–2.0 mm, corresponding to
average values of 1.7 and 1.85 mm, respectively. The increase from 1.7 to 1.85 is because
of the exclusion of the soil ground pixels, which makes the image features more robust,
which in the end, eliminates the error of matching pairs. Analysis of the data with t-test
showed that the overall level of precision of point clouds resulted from original images,
and aligned images were not significantly different. Georeferencing accuracy of the four
campaigns resulted from the original images, and the aligned images were between 35.1
and 38.6 mm and 26.5–36.6 mm, respectively, showing a 21% (6.4 mm) improvement in the
mean spatial accuracy.

Table 4. Details of the flight campaigns, collected images, and aligned images after masking.

Date

Original Images Aligned Images after Masking

Number
GSD

(mm/pix)

Precision RMSE
Number

GSD
(mm/pix)

Precision RMSE

Point Cloud
(mm)

* GCPs XYZ
(mm, pix)

Point Cloud
(mm)

* GCPs XYZ
(mm, pix)

25 June 2019 633 5.7 2.0 38.6 (0.30) 616 5.84 1.7 36.6 (0.27)
16 July 2019 582 5.16 1.6 36.6 (0.45) 570 5.63 2.0 30.0(0.16)
31 July 2019 578 5.45 1.6 38.5 (0.75) 573 5.69 1.9 26.5 (0.37)

13 August 2019 581 6.06 1.5 35.1 (0.45) 561 5.84 1.8 30.2 (0.11)

Mean 593 5.60 1.7 37.2 (0.49) 580 5.75 1.85 30.8 (0.23)

* GCPs XYZ: spatial accuracy of ground control points, X, Y, Z are longitude, latitude, and altitude.

3.2. Terrain Models

Sample graphical results corresponding to the derivation of the terrain model, in-
cluding plots of the point cloud from the bare soil surface, the base-plane model, and the
simulated terrain, are shown in Figure 10. The reconstructed soil point cloud generated
from the tilled soil surface of superplot S1 (as shown in Figure 10a), contains the general pa-
rameters of the ground surface. The plane parameters were obtained from the soil ground
points within the corresponding area as a tilted space plane (Figure 10b). The simulated
micro-terrain structure was applied to improve the general plane model by the piecewise
Equation (7). It should be noted that the elevation of tilled soil decreases slightly than the
previous seeded ground regarding the effect of tillage treatment. The terrain model was
then generated from Equation (9), which included a factor to compensate for the difference
between the tilled plane and the seeded ground. The result is shown by the simulated
terrain of the field in Figure 10c.
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Figure 10. Demonstration of the simulated terrain model, showing (a) point cloud of bare soil ground,
(b) base-plane model, and (c) simulated terrain of the field.

Sample graphical results from the simulation of the micro-terrain structure are pro-
vided in Figure 11. It can be seen from the scatter plot of the terrain surface shown in
Figure 11a that the discrete point data display a visible portion of point cloud A1 in view of
the YZ-plane direction. While this sample of the reconstructed point cloud represented a
relatively smooth and bare soil surface, the 3D point clouds still contained errors and noise,
contributing to height differences that could reach 10 cm. This influenced the estimation of
the height and LAI. For the sake of better investigation of the structure, Figure 11b shows
the lower parts of the point cloud, which were more of interest by the simulation. By extract-
ing the points, micro structure features revealed two sub-sections showing a curved profile.
The extracted points were then used to fit the geometric characteristics using Equation (7)
corresponding to the micro-terrain so as to make use of internal information in the point
cloud. The simulated results of the micro-terrain structure were obtained and observed
using the set of points in Figure 11c,d. The residual between the observed value and the
simulated value is shown in Figure 11e. The results showed a high correlation between
the model and points with residuals less than 3 to 4 cm. The micro-terrain in the ground
surface corresponding to farm management can occur universally near the soil edges due
to the effect of field machinery or vehicle developed across the field [75,76]. Lei et al. [1]
obtained maize point cloud by LiDAR for LAI estimation, while ground point cloud was
removed by de-noising and filtering. Christiansen et al. [50] studied the winter wheat crop
and used only the pixel grid outside the plot to process a linear plane estimate for the
soil surface. Information existing in point clouds can be repurposed to serve better and
effective simulations and to support mining and use of internal information of point clouds
(Figure 11). The residuals indicate the simulated structure can represent micro-terrain
structure and proves effective at modeling the shape. Once the simulated ground surface
was established using Equation (9) for superplots, a point cloud was built by combining
the point simulated soil ground and the reconstructed maize canopy shown in Figure 12.
As the ground surface was covered by maize canopy when the plant structure grew, these
point clouds were used to the later canopy height estimation.



Remote Sens. 2022, 14, 585 18 of 28

Remote Sens. 2022, 13, x FOR PEER REVIEW 17 of 27 
 

 

Figure 11a that the discrete point data display a visible portion of point cloud A1 in view 
of the YZ-plane direction. While this sample of the reconstructed point cloud represented 
a relatively smooth and bare soil surface, the 3D point clouds still contained errors and 
noise, contributing to height differences that could reach 10 cm. This influenced the esti-
mation of the height and LAI. For the sake of better investigation of the structure, Figure 
11b shows the lower parts of the point cloud, which were more of interest by the simula-
tion. By extracting the points, micro structure features revealed two sub-sections showing 
a curved profile. The extracted points were then used to fit the geometric characteristics 
using Equation (7) corresponding to the micro-terrain so as to make use of internal infor-
mation in the point cloud. The simulated results of the micro-terrain structure were ob-
tained and observed using the set of points in Figure 11c,d. The residual between the ob-
served value and the simulated value is shown in Figure 11e. The results showed a high 
correlation between the model and points with residuals less than 3 to 4 cm. The micro-
terrain in the ground surface corresponding to farm management can occur universally 
near the soil edges due to the effect of field machinery or vehicle developed across the 
field [75,76]. Lei et al. [1] obtained maize point cloud by LiDAR for LAI estimation, while 
ground point cloud was removed by de-noising and filtering. Christiansen et al.[50] stud-
ied the winter wheat crop and used only the pixel grid outside the plot to process a linear 
plane estimate for the soil surface. Information existing in point clouds can be repurposed 
to serve better and effective simulations and to support mining and use of internal infor-
mation of point clouds (Figure 11). The residuals indicate the simulated structure can rep-
resent micro-terrain structure and proves effective at modeling the shape. Once the simu-
lated ground surface was established using Equation (9) for superplots, a point cloud was 
built by combining the point simulated soil ground and the reconstructed maize canopy 
shown in Figure 12. As the ground surface was covered by maize canopy when the plant 
structure grew, these point clouds were used to the later canopy height estimation. 

 
Figure 11. Demonstration of the surface model showing (a) scatter plot of the terrain surface, (b) 
extracted bottom edge points, (c) simulated periodic curve, (d) a superposition of points and curve, 
(e) residual map of the simulation. 

a

b

c

d

e

Figure 11. Demonstration of the surface model showing (a) scatter plot of the terrain surface,
(b) extracted bottom edge points, (c) simulated periodic curve, (d) a superposition of points and
curve, (e) residual map of the simulation.
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Figure 12. Representative point cloud combining the point simulated soil ground and the recon-
structed maize canopy.

3.3. Height Estimation

The representative point clouds of maize canopies were derived from raw images and
are demonstrated in Figure 13, showing the middle parts of the superplot S1 over each
growing season. The phenological stages of maize plants ranged from stem elongation with
two nodes detectable (Figure 13a), to anthesis (Figure 13b), to end of flowering (Figure 13c),
and to maturity (Figure 13d). It can be seen that the visualization of spatial arrangement
for the maize canopy of point clouds varies depending on the dynamics of canopy growth.
The differentiation of the canopy was structured according to plant coverage, leaf vitality,
and degree of senescence. At the specific dates, the point clouds varied across the fields
due to the difference in morphological performance between the three cultivars. Generally,
thicker dense points indicate denser crop canopy, tighter structure, and higher plant vitality,
whereas thinner sparser points are associated with sparser crop canopy. The differentiation
gradually increased at the later dates.
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Figure 13. Sample point clouds derived from middle parts of superplot S1 (from side view) during
growing season, showing collected data from flight campaigns of (a) B1 on 25 June 2019, (b) B2 on
16 July 2019, (c) B3 on 31 July 2019, (d) B4 on 13 August 2019. Coordinates system: local coordinate
system.

The details of the models for estimation of the heights of the maize plant for each
cultivar are given in Table 5. CH90 had a higher performance for the height estimation of
all cultivars with different regression coefficients demonstrating that the three cultivars
groups were statistically different in canopy shape. Except for the datasets corresponding to
LG30256-CH95 (R2 = 0.46), General-CH95 (R2 = 0.60), and LG31211-CH95 (R2 = 0.67), other
models showed a relatively high correlation between the actual (manual measurement) and
estimated height. The reason for the low R2 of the mentioned cultivars is due to the reduced
height of the structure of the samples. Plots of the correlation analysis between the actual
and estimated height for each cultivar are provided in Figure 14. General models were
provided by pooling all cultivars together and showed the model results and scatter plots.
The plot labeled by LG30256-CH95 clearly shows the scattered points confirming the low R2.
These plots also show the nature of the manual measurements that were carried out at four
different growth stages, justifying the gap between the cultivars. Han et al. [28] studied
canopy dynamics between different cultivars, and the results also supported the conclusion
of this study that there were differences in the canopy dynamics results of crops at different
growth stages. The bias between manually ruler measurement and point-derived plant
height characterized by the RMSE also can come from that the average plant height was
calculated to represent the height of the sample area.

Table 5. Details of the height estimation modes of the maize plant for each cultivar.

Cultivar Height Parameter R2 RMSE rRMSE
(%) Fitted Function

LG30222
CH90 0.89 0.14 8.67 y = 1.267x− 0.251
CH95 0.86 0.13 8.12 y = 1.220x− 0.256

LG30256
CH90 0.86 0.14 8.36 y = 1.132x− 0.214
CH95 0.47 0.27 16.47 y = 1.115x− 0.171

LG31211
CH90 0.78 0.13 8.52 y = 1.151x− 0.161
CH95 0.67 0.16 9.55 y = 0.759x− 0.350

General
CH90 0.80 0.15 9.71 y = 1.151x− 0.160
CH95 0.60 0.21 12.92 y = 0.976x− 0.060
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3.4. LAI Estimation

A comparison between three kinds of scales for density divisions in the point cloud rep-
resenting the maize crop superplot 1 acquired on 31 July 2019, is shown in Figure 15. These
grids are the small scale of 0.08 × 0.08 m (Figure 15a), the medium scale of 0.15 × 0.15 m
(Figure 15b), and the large scale of 0.25 × 0.25 m (Figure 15c), respectively. The color
classification of the density was based on HSV color space. White/blank area indicated
none of the points generated in this area, whereas varying color space indicated the varying
density and condition of the maize canopy. Density distribution maps allowed observation
of plant canopy and differentiation of canopy structure of varying density. The maize
formed a continuous canopy of varying density from the image-based point clouds. The
common characteristic was red profiles of grids scattered around the green core areas of
varying density. The canopy structure description from point clouds was most similar
to the map from the small-scale density grid. Additionally, the crop canopy rows, and
their gaps were well-distinguished, which can also be seen in the plots from the early
to maturity growth stages in Figure 15. However, two types of differences were found
between the density maps divided under the three tested grids cells. First, based on the
range of canopy densities, it was recognized that individual canopy density maps could
have extremely high point cloud density values locally, especially in the core of the canopy
in the small-scale grid division. The strong density can be explained by leaves, branches,
and other parts being significantly concentrated in these areas and therefore forming a more
robust occlusion. Second, along the maize rows, the density map showed a variation in
density, whereas the variation tends to be weaker in density maps of larger-scale gridding.
The loss of detail in larger grids can also be anticipated from the row spacing, which is
0.75 m. Moreover, in the small-scale canopy density map, it is possible to observe more
contours and gaps because of the good discrimination along crop rows and gaps and also
to identify the differences between varieties.
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Figure 15. Representative results of canopy density distribution over different scales of the grid:
three density maps under the same maize crop superplot S1 acquired on 31 July, 2019, divided by (a)
small-scale grid of 0.08 × 0.08 m, (b) medium-scale grid of 0.15 × 0.15 m, and (c) large-scale grid of
0.25 × 0.25 m.

A more detailed comparison of point density maps for maize (18 m long) canopy of
S1 over different growth stages is shown in Figure 16. As shown before, from the point
density maps and based on the UAV point clouds, it was possible to accurately map the
general structures, such as corn crop contours and gaps. Due to the heterogeneous point
distribution by the SfM method, it can be noticed that the point density showed variability
within structures even rendered core canopy structure of maize. In this set of examples,
the first density map (Figure 16a) showed canopy structures that were visually about the
internal and row gaps, as can be seen in the early growth stage. Subsequently, the gap was
gradually filled by both sides of the crop, and the core structures of the canopy gradually
expanded (Figure 16b,c). In the last growth stage shown in the plot of Figure 16d, the
gaps increased once more, whereas overall showed a more porous profile. In this scenario,
the mature canopy was estimated to be relatively small and therefore was the sparsest.
When comparing the height and LAI, the height difference between the third and fourth
growth stages was relatively small, but the difference in the measured LAI estimates had
a downward trend to some extent. In general, the point density values were compared
and estimated laterally within point clouds of the same growth stage for canopy structure.
When comparing two and more growth stages, point density values were, to some extent,
influenced by wind speed, ambient light, reconstruction effect, and other field disturbances.
Therefore, the average density values were used to unify the different point cloud images.
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Figure 16. Changes of the canopy density over different growth stages. The demonstration of density
map showing an enlargement of density map graphically present in the background of yz-plane,
which is a projection canopy density of (a) B1 on 25 June 2019, (b) B2 on 16 July 2019, (c) B3 on 31 July
2019, (d) B4 on 13 August 2019. The selected point cloud is the half of the middle part in superplot S1.

An example of the set of descriptors and calculated values for sample area 1 is given
in Table 6. In particular, a set of five descriptors was calculated for all sample areas, two of
which, CH95 and CH90, are related to the height of the canopy, and three of which, D0.08,
D0.15, and D0.25 are related to the density distribution of the sample areas. In the considered
sample areas, the canopy thickness is the width of the subset of the maize point cloud
in the X-axis, and the thickness is consistent among sample areas. Figure 17 shows the
measured and estimated LAI at four growth stages in an order of index of the sample area.
LAI values compared with traditional manual method. The reference manual measured
LAI (Figure 17a) was shown by scatter points and line graphs among the different growth
stages. Estimated LAI values were plotted in the relation to the manual-measured LAI
in Figure 17b. The LAI estimation of maize from sparse point cloud by the proposed
methodology was able to estimate the LAI from the dataset of descriptors. Based on the
multivariate linear regression model, CH90 was tested as the most effective descriptors
of height for all cultivars. D0.08 concluded as the best density descriptor among cultivar
LG30222 and LG31256 and D0.25 was the best density descriptor for LG31211. LAI for these
three cultivars are also different. Large-scale canopy density descriptors are suitable for
more sparer and/or higher canopy structures, while small-scale canopy density descriptors
are more effective with the leafy and reduced canopy structure which were extracted from
the 3D point clouds. The best correlation is R2 = 0.48 because of the missing of some
maize plants, which makes the reduced density of canopy for seven sample areas in four
plots, which at the end decreased the estimated LAI. Figure 18 shows actual and estimated
averaged LAI in each field plot and the corresponding estimated error (%). Figure 18a
shows some good agreement between the estimated averaged and averaged measured
LAI at plot-level over the 12 plots for all growth stages. The estimated averaged LAI
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was relatively similar to the actual averaged LAI in the plots with well-germinated seeds
that were not affected by lodging. In the plots where the corresponding sample areas
contained poorly germinated seeds or lodged plants, the canopy tended to be at least
partly reduced [77], whereas the separation for the partial point cloud regions of non-plant
objects was still difficult. Plant density descriptors in these sample areas can be smaller
compared to those sample areas that recorded non-missing plants. As a result, in the field
plots 3, 6, 9, and 12, it is possible to observe more significant estimated errors and lower
estimated LAI values due to the missing of some maize plants within the area (Figure 18a,b).
Point cloud density inside the canopy was a major factor causing the underestimation
of the LAI because the effect of the missing plants was underestimated. The result in
Figure 18 showed information about the crop regarding height, in particularly, canopy
density, canopy width, or inter-row space are of interest for the nondestructive assessments
of the vegetation biophysical parameters [23]. As an application of spatial point cloud
density-related parameter estimation, how to filter out the partial point cloud regions
of non-plant objects needs to be further considered in the calculation of spatial density
descriptors (D0.08, D0.15, D0.25) of different grid sizes.

Table 6. Descriptor set definition and computed values by sample area 1.

Parameters Descriptor Definition Value

Canopy height CH95 95 percentile 1.82 m
CH90 90 percentile 1.50 m

Point density distribution
D0.08 Area range 0.08 × 0.08 m 0.95
D0.15 Area range 0.15 × 0.15 m 0.92
D0.25 Area range 0.25 × 0.25 m 0.71
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4. Conclusions

LAI and height of maize were estimated in this study using canopy height and point
density descriptors processed through acquired UAV 3D data to investigate a cost-effective
and high-resolution alternative to the conventional in-field measurement. The study used
an unmanned aerial system to acquire nadir and oblique images of maize canopy from
approximately 20 m distance from the canopy surface for reconstructing 3D point clouds
using the SfM approach. The following conclusions can be drawn for the indirect 3D
imaging approach of the maize height and LAI.

1. Before the estimation, the reference ground model with micro-terrain was derived
and then simulated with a curved surface to be used to identify the canopy features.
Including the micro-terrain in the ground, the model was found suitable for extracting
the parameters of maize during the growing season in more detail.

2. Except for the datasets corresponding to LG30256-CH95 (R2 = 0.46) and LG31211-
CH95 (R2 = 0.67), the height estimation of maize achieved a relatively high correla-
tion (R2 = 0.89, 0.86, 0.78) for cultivar datasets LG30222-CH90, LG31256-CH90, and
LG31211-CH90 between the estimated and actual data, indicating effective modeling
by point cloud data. Additionally, a general model for height estimation was derived
for all three cultivar datasets with an R2 of 0.80 in CH90. This could be beneficial to
breeding experiments.

3. The correlation of LAI estimation was less desirable (R2 = 0.48) due to lower point
density values caused by the missing maize plants in the sample areas (i.e., lodging,
failure of seed germination), leading to a different and uneven number of maize in
the areas and thus inaccurate estimation of canopy density and LAI. This should also
be investigated further.

It is necessary to address the aforementioned issues and provide improved approaches
in both field data collection and data processing for labeling and filtering out the regions of
non-plant objects resulting in the error of spatial point cloud density-related parameters,
such as canopy density and LAI. Future studies will also focus on the development of the
approached methods with descriptors for further genotype differentiation in maize plants
within a largescale field. The approach of mapping the canopy height and LAI in a field
condition through the UAV platform would be particularly useful for supporting precision
agriculture and digital farming applications, such as fertilization, breeding project, and
yield prediction due to the versatility, flexibility, and low operational costs. The proposed
methodology allows automatic measurement of LAI with high resolution and fast intensive
mapping of in-field LAI index extraction from UAV 3D data of a field. Spatial and temporal
data with high resolution is therefore assessable at an affordable cost with respect to
conventional manual measurements.
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