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Abstract

We consider reaction-diffusion systems on a bounded domain with no-flux
boundary conditions. All reactions are given by the mass-action law and are
assumed to satisfy the complex-balance condition. In the case of a diagonal
diffusion matrix, the relative entropy is a Liapunov functional. We give an
elementary proof for the Liapunov property as well a few explicit examples for
the condition of complex or detailed balancing.

We discuss three methods to obtain energy-dissipation estimates, which guar-
antee exponential decay of the relative entropy, all of which rely on the log-
Sobolev estimate and suitable handling of the reaction terms as well as the
mass-conservation relations. The three methods are (i) a convexification ar-
gument based on the author’s joint work with Haskovec and Markowich, (ii)
a series of analytical estimates derived by Desvillettes, Fellner, and Tang, and
(iii) a compactness argument of developed by Glitzky and Hünlich.

1 Introduction

We consider reaction-diffusion system (RDS) for concentrations c = (c1, . . . , cI) ∈ [0,∞[I

of species A1, . . . ,AI that diffuse in a bounded Lipschitz domain Ω ⊂ Rd (with normalized
volume |Ω| = 1) and may react according to the mass-action law. Together with the no-
flux boundary condition the system under consideration reads

ċ = diag(δ1, ..., δI)∆c+R(c) in Ω, ν · ∇c = 0 on ∂Ω. (1.1)

Here δi > 0 are positive diffusion constants, and the reaction term R : [0,∞[I → RI will
be specified later.

A function F : [0,∞[I → R is a Liapunov function for the reaction-rate equation
(RRE) ċ = R(c) (which is a ODE) if DF (c) ·R(c) ≤ 0. It was already observed in [Ali79,
Lem. 4.1] that, if additionally the symmetric part of DD2F (c) is positive semidefinite for
all c, we obtain the Liapunov function

F(c(·)) :=

∫

Ω

F (c(x)) dx

for the RDS (1.1). Indeed, along solutions c(t) we have

d

dt
F(c(t)) =

∫

Ω

DF (c)·R(c) dx−
∫

Ω

∇c:
(
DD2F (c)

)
∇c dx =: −D(c),

with D := diag(δi), where the boundary terms disappear because of the no-flux boundary
conditions. Obviously, the first term is non-positive since F is a Liapunov function for
the RRE, and the second term is non-positive by the assumption on DD2F (c).

In [Ali79] there is also a general discussion about well-posedness and positivity of
solutions, which we do not address here. For general theory of existence we refer to
the survey [Pie10] and the very general, recent construction of renormalized solutions
in [Fis15]. The latter work as well as the existence results for an improved Nernst-
Planck-Poisson system in [DD∗16, Dru16] essentially use variants of the energy-dissipation
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estimates investigated here more quantitatively. We also refer to [FGZ14, GeZ10] for
existence results based on the logarithmic Sobolev inequality, which are close in spirit to
our methods discussed below.

We restrict our attention solely to the question of providing quantitative decay esti-
mates via energy-dissipation estimates of the form

D(c) ≥ KF(c) (1.2)

for some K > 0. Then, for sufficiently well-behaved solutions we have d
dt
F(c(t)) =

−D(c(t)) ≤ −KF(c(t)), which implies the exponential estimate F(c(t)) ≤ e−KtF(c(0))
for all c(0) and all t > 0. We will compare three methods and show that the methods
developed originally for RDS satisfying the detailed-balance condition immediately gen-
eralize to RDS satisfying the more general complex-balance condition. This condition
is consistent with damped oscillatory behavior which is common in many chemical sys-
tems and which may even lead to Hopf bifurcations when an originally closed system is
controlled by suitable boundary conditions, see [Fie83, Fie85].

First methods for obtaining exponential decay for RDS were developed in [Grö83,
Grö86], and a variant for semiconductor models was developed in [GGH94, GGH96,
GlH97]. There as well as in the series of papers [DeF06, DeF07, DFT16] (see also the
reference therein) and in [MHM15, HH∗16, MiM16] the essential structure arises from
the restriction to reaction terms in R(c) given in terms of the mass action law. More
precisely, we consider R reactions in the form

R(c) =
R∑

r=1

κrc
αSr (

αPr −αSr
)

with monomials cγ := cγ11 c
γ2
2 · · · cγII ,

where the stoichiometric vectors αSr ,αPr ∈ NI
0 for the rth reaction correspond to the

substrate (educt) complex and the product complex, respectively, see Section 2, where
we also discuss the conditions of detailed balancing and the weaker notion of complex
balancing with respect to a positive equilibrium concentration c∗ = (c∗1, ..., c

∗
I) ∈ ]0,∞[I ,

see Section 2.2. The surprising result, first established in [HoJ72, Thm. 6A], is that for
mass-action RRE satisfying the complex-balance condition, the relative entropy

F (c) = H(c|c∗) :=
I∑

i=1

c∗iλB(ci/c
∗
i ) with λB(z) := z log z − z + 1

is a Liapunov function. Indeed, we give a simple and self-contained proof of this fact in
Proposition 2.3. Moreover, F is convex and DD2F (c) is semidefinite, since D and D2F (c)
are diagonal, hence we have a positive dissipation functional D taking the form

D(c) = DD(c) +DR(c) :=

∫

Ω

I∑

i=1

δi
|∇ci|2
ci

dx+

∫

Ω

R(c)·
(

log(ci/c
∗
i )
)
i
dx.

In general an energy-dissipation estimate like (1.2) is not to be expected, since there are ad-
ditional conservation laws. Defining the stoichiometric subspace S := span{αSr−αPr |r =
1, .., R } ⊂ RI we can choose a matrix Q such that kernel(Q) = S and range(Q>) = S⊥.
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Then, for the RRE ċ = R(c) the value q = Qc(t) is constant along solutions, and more-
over the no-flux boundary conditions in the RDS (1.1) guarantee that q = Q(c(t)) =∫

Ω
Qc(t, x) dx is constant along solutions.
Thus, the correct adaptation of the energy-dissipation estimate (1.2) reads

∀ q ∃K(q) > 0 ∀ c ∈ L1
≥0(Ω) with Q(c) = q : D(c) ≥ K(q)Hq(c),

where Hq(c) :=

∫

Ω

H(c(x)|wq) dx.
(1.3)

Here wq is the unique minimizer of c 7→ H(c|c∗) under the constraint Qc = q, see Section
3.1 for more details.

Our first result shows that the convexity method introduced in [MHM15] can be
generalized from the case with detailed balancing to the case with complex balancing.
It is based on the scalar-valued logarithmic Sobolev inequality

∫

Ω

|∇u(x)|2
u(x)

dx ≥ ρlSo(Ω)

∫

Ω

H(u(x)|u) dx, where u =

∫

Ω

u(x) dx

(recall |Ω| = 1) and the nontrivial assumption that

∃µ1, . . . , µI ≥ 0 : c 7→
I∑

i=1

µiλB(ci) +R(c)·
(

log(cj/c
∗
j)
)
j

is convex.

Then, we obtain a simple lower bound for the decay rate K(q) in (1.3), namely

K(q) ≥ min
{
kR(q), δiρlSo(Ω)

kR(q)

µi+kR(q)

∣∣∣ i = 1, . . . , I
}
,

where kR(q) is the constant kR for R(c)·
(

log(ci/c
∗
i )
)
i
≥ kRH(c|wq) under the constraint

Qc = q. As observed in [MHM15, Sec. 4.2], the case µi = 0 is relevant for linear reactions,
which is the case for Markov processes; then the decay rate for the RDS is simply given
by the minimum of the reactive decay and the diffusive decays of the different species.

In Section 3.3 we consider the nonlinear two-species model

ċ1 = δ1∆c1 + κa
(
cb2 − ca1

)
, ċ2 = δ2∆c2 + κb

(
ca1 − cb2

)
in Ω, ν · ∇cj = 0 on ∂Ω,

and show that the convexity method is applicable in the case b = a ∈ [1, 2] (cf. Theorem
3.3) and in the case a = 1 and b ∈ [1,m∗[ with m∗ ≈ 22.06 by choosing µ2 = 0 and
µ1 = κµ̂(b) where µ̂(b) ≈ (b−1)/(1−b/m∗) (cf. Theorem 3.4).

In Section 3.4 we shortly summarize the general method of Desvillettes, Fellner, and
Tang which is based on a series of papers which started with [DeF06, DeF07] and first
studied complex-balanced RDS in [DFT16].

Finally, Section 4 is devoted to an even more general method that is based on a
compactness argument providing a positive constant K̃(q,M) such that

∀ q ∀M > 0 ∃ K̂(q,M) > 0 ∀ c ∈ L1
≥0(Ω) with Q(c) = q :

Hq(c) ≤M =⇒ D(c) ≥ K̃(q,M)Hq(c).
(1.4)
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The method is based on ideas first developed in [GGH94, GGH96] and explained in detail
in [GlH97]. Since that work is devoted to the more complicated case of electrically charged
particles interacting via the Poisson equation, the theory there is restricted to the two-
dimensional case Ω ⊂ R2. Here we show that this restriction is not necessary in the case
without charge interactions.

As an outlook, we mention that in this work the three methods are discussed for RDS
at constant temperature, however in recent work generalizations to the non-isothermal
case were developed, see [HH∗16, MiM16]. For this, it is advantageous to use the internal
energy u ∈ R as an additional variable rather than the more traditional choice of the
absolute temperature θ. The main point is to allow that in the so-called energy-reaction-
diffusion systems the equilibrium states c∗ = w(u) for the reactions depend on the internal
energy u in a suitable way, namely w′i(u) ≥ 0 and w′′i (u) ≤ 0.

2 Complex-based description of mass-action kinetics

2.1 Reaction complexes and stoichiometric subspaces

Each reaction is given in terms of stoichiometric coefficients in the form

α1A1 + · · ·+ αIAI ⇀ α̃1A1 + · · ·+ α̃IAI ,
where the vector α = (α1, ..., αI)

> ∈ NI
0 describes the reactant species (also called educts),

defining the substrate complex, and α̃ = (α̃1, ..., α̃I)
> ∈ NI

0 describes the product species,
defining the product complex. By

Cj = αj1A1 + αj2A2 + · · ·+ αjIAI with j = 1, ..., C,

we denote the set of all occurring complexes, either as substrate complex or product
complex. Thus, all the R reactions have the form

Cj kjl
⇀ Cl or CSr κr⇀ CPr .

In the first case we allow kjl = 0 if there is no reaction with substrate complex Cj and
product complex Cl. In the second case we impose κr > 0 and denote by Sr, Pr ∈ {1, ..., C}
the index of the substrate and product complex, respectively. By definition we have
κr = kSrPr , and we always assume kjl = 0 or Sr 6= Pr. Thus, the RRE of the associated
mass-action kinetics reads

ċ = R(c) =
C∑

j,l=1

kjlc
αj(
αl −αj

)
=

R∑

r=1

κrc
αSr (

αPr −αSr
)
. (2.1)

The stoichiometric subspace is defined via

S := span
{
αPr −αSr

∣∣∣ r = 1, ..., R
}
,

which implies that R(c) ∈ S for all c. Typically we have dim S < I, which means that
[0,∞]I decomposes into flow-invariant subset. To describe these sets we choose a matrix
Q ∈ RI×m with m = I − dimS such that

kernel(Q) = S and range
(
Q>
)

= S⊥ := { ξ ∈ RI | ξ·v = 0 for all v ∈ S }. (2.2)
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We now define the flow-invariant sets Cq ⊂ [0,∞[I , called stoichiometric compatibility
class, and the set Q of relevant q ∈ Rm via

Cq := { c ∈ [0,∞[I | Qc = q } and Q := { q ∈ Rm |Cq contains more than 2 points }.

Clearly, we see that for solutions c(·) of the RRE c(0) ∈ Cq implies c(t) ∈ Cq for all
t > 0, as long as the solution exists.

2.2 Complex and detailed balancing

The complex-balancing condition (CBC) asks that there is a positive state such that for
all complexes Cl the inflow into the complex (see left-hand side below) and the outflow
from the complex (see right-hand side below) are equal:

(CBC) ∃ c∗ ∈ RI
> ∀ l = 1, .., C :

C∑

j=1

kjlc
αj

∗ =
C∑

n=1

klnc
αl

∗ . (2.3)

The detailed-balance condition (DBC) is stronger, since it assumes that all reactions are
reversible, i.e. the number R of reactions is even with R = 2N , and, after a suitable
reordering, the reaction r′ = n+N is the reverse reaction of reaction r = n, more precisely
Sn+N = Pn and Pn+N = Sn for n = 1, .., N = R/2. The DBC now asks that there exists a
positive equilibrium c∗ such that each of the N reaction pairs is individually in balance:

(DBC) ∃ c∗ ∈ ]0,∞[ ∀n = 1, .., N = R/2 : κnc
αSn

∗ = κn+Nc
αPn

∗ . (2.4)

In this case the RRE (2.1) takes the simpler form

ċ =

R/2∑

n=1

κ̂n

(cαSn

cαSn

∗
− c

αPn

cαPn

∗

)(
αPn−αSn

)
with κ̂n := κnc

αSN

∗ . (2.5)

To highlight the difference between these two concepts we follow [vSRJ15] and employ
the graph-theoretic approach for the complex-based representation of the RRE, namely

ċ = ZDKExp
(
Z>Log(c)

)
, (2.6)

where
Log(c) :=

(
log ci

)
i=1,..,I

Exp(ζ) :=
(
eζr
)
r=1,..,R

and the matrices Z ∈ RI×C , D ∈ ZC×R are K ∈ RR×C defined via

Zij = αji , Djr =





1 for j = Pr,
−1 for j = Sr,
0 otherwise;

Krj =

{
κr for j = Sr,

0 otherwise.

In particular, we may define the matrix L = −DK ∈ RC×C , which takes the form

L =
R∑

r=1

κr

(
eCSr
⊗eCSr

− eCPr
⊗eCSr

)
∈ RC×C ,
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where eCj , j = 1, .., C, are the unit vectors in RC . Obviously, L satisfies

Ljj =
C∑

l=1

kjl ≥ 0, Ljl = −kjl ≤ 0 for l 6= j, and
L∑

j=1

Ljl = 0 for all l = 1, .., C. (2.7)

Thus, we can interprete −L as the generator of a Markov process on {1, ..., C}.
For a positive state c∗ we can introduce the complex vector ζ∗ = Exp

(
Z>Log(c∗)

)
,

then complex balancing can be characterized as follows:

c∗ satisfies (CBC) ⇐⇒ L ζ∗ = 0. (2.8)

For a similar characterization of detailed balancing we assume R = 2N and the numbering
such that Sn+N = Pn and Pn+N = Sn for n = 1, .., N = R/2, which simply means

D =
[
D

...−D
]

with D ∈ ZC×N and K =

[
Kforw

Kbackw

]
with Kforw, Kbackw ∈ RN×C .

Hence for a positive c∗ with complex vector ζ∗ = Exp
(
Z>Log(c∗)

)
we have

(DBC) ⇐⇒ Kforwζ∗ = Kbackwζ∗. (2.9)

This shows that (DBC) implies (CBC) since DKζ∗ = D
(
Kforw−Kbackw

)
ζ∗ = 0. However,

the condition ζ∗ ∈ kernel(Kforw−Kbackw) (typically N conditions) is generally stronger
than ζ∗ ∈ kernel(DK), since D ∈ ZC×N may have a non-trivial kernel.

Example 2.1 (Linear reaction = Markov processes) We consider a linear RRE c =
Ac ∈ RI , which can be written based on complexes by taking Cj = Aj. This gives Z = I
and Exp

(
Z>Log(c)) = c. Moreover, we simply have L = −DK = −A.

This leads us to the observation that every strictly positive equilibrium c∗ ∈ RI
> of the

Kolmogorov equation ċ = Ac = −Lc is already a complex-balanced equilibrium. Clearly,
detailed balance needs the additional relations Aijc

∗
j = Ajic

∗
i for all i, j = 1, .., I, which

are not satisfied in general. Markov processes with detailed balance are usually called
(microscopically) reversible Markov processes, see e.g. [MPR14].

Example 2.2 (A case with deficiency 1) We consider an example with two species
A1 and A2, three complexes, and 6 reactions, namely

C1 := 2A1

κ1⇀↽
κ2
C2 := 2A2

κ3⇀↽
κ4
C3 := A1+A2

κ5⇀↽
κ6
C1 (2.10)

All 6 reactions have a stoichiometric vector that is parallel to (1,−1)>, and the RRE reads

(
ċ1

ċ2

)
=
(
2κ1c

2
1 − 2κ2c

2
2 − κ3c

2
2 + κ4c1c2 − κ5c1c2 + κ6c

2
1

)(−1

+1

)
.

The deficiency δ is obtained from the formula δ = m − ` − dimS, where m = 3 is the
number of complexes, ` = 1 is the number of connected components of the complex graph,
and the stoichiometric subspace S has dimension 1. Hence, we conclude δ = 1.
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The matrices Z and D in [vSRJ15] for ċ = ZDKExp
(
Z>Log(c)

)
are given via

Z=

(
2 0 1

0 2 1

)
, D=



−1 1 0 0 1 −1

1 −1 −1 1 0 0

0 0 1 −1 −1 1


, K=




κ1 0 0
0 κ2 0
0 κ3 0
0 0 κ4
0 0 κ5
κ6 0 0



, L =



κ1+κ6 −κ2 −κ5

−κ1 κ2+κ3 −κ4

−κ6 −κ3 κ4+κ5




if all kj > 0, otherwise the corresponding columns in D and rows in K disappear. Clearly,
we have kernelZ = span(1, 1,−2)> and thus kernelZ ⊂ imD, if at least two of the three
values κi+κ3+i, i = 1, 2, 3, are positive. This confirms δ = dim

(
kerZ ∩ imD

)
= 1.

The system satisfies the detailed-balance condition if and only if the two Wegscheider
conditions

κ1κ
2
3 = κ2κ

2
4 and κ4κ5 = κ3κ6

hold. The exact conditions for the complex-balancing can be derived by the theory in
[vSRJ15, Sec. 3], which leads to one transcendental relation for (k1, . . . , k6).

We highlight the difference by considering the special case that c∗ = (1, 1)> is an
equilibrium. Then, Exp

(
Z>Log(c∗)) = (1, 1, 1)>. Defining the three relations

(R1) 2κ1+κ4+κ6 = 2κ2+κ3+κ5, (R2) κ3+κ6 = κ4+κ5, (R3) κ3 = κ4,

we obtain the following conditions for the different balancing conditions:
(A) c∗ = (1, 1)> is an equilibrium if and only if (R1) holds.

(B) c∗ = (1, 1)> is a complex-balanced equilibrium if and only if (R1) and (R2) hold.

(C) c∗ = (1, 1)> is a detailed-balanced equilibrium if and only if (R1)–(R3) hold.

Another important case of deficiency-1 systems arises in semiconductor physics, see
[MP∗16], where the three species are electrons, holes, and photons. The first reaction pair
is spontaneous emission and recombination, namely Xel + Xho 
 Xph; while the second
reaction pair is optical generation, namely Xel +Xho +Xph 
 2Xph, such that both vectors
γr = αr−βr = (1, 1,−1). We have m = 4 complexes, ` = 2 connected components, and
dimS = 1, hence δ = 1. In this system complex balance and detailed balance coincide.

2.3 Decay of relative entropy

We now discuss the decay of the relative entropy. First we give a short, self-contained
proof of the fact that for every complex-balanced RRE equation the relative entropy
c 7→ H(c|c∗) is a Liapunov function. This result was first obtained already in [HoJ72,
Thm. 6A]. The main ideas is to transfer the well-known decay result for the relative
entropy for linear Markov processes of the form ζ̇ = −Lζ from the level of complexes to
the concentrations c by exploiting the representation ċ = R(c) = Z(−L)Exp

(
Z>Log(c)

)
.

Proposition 2.3 (Complex balancing and relative entropy) Consider a RRE ċ =
R(c) of mass-action type with an equilibrium c∗ ∈ RI

> satisfying the complex-balance
condition (CBC), see (2.3). Then, the relative entropy

F (c) = H(c|c∗) =
I∑

i=1

c∗iλB

(
ci/c

∗
i

)
with λB(z) = z log z − z + 1
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is a Liapunov function, i.e. R(c) ·DF (c) ≤ 0 for all c ∈ RI
>.

Proof. Using the relation R(c) = −ZLExp
(
Z>Log(c)

)
, we obtain the identity

−R(c) ·DF (c) = LExp
(
Z>Log(c)

)
·
(
Z>Log(c)− Z>Log(c∗)

)
.

We introduce ζ = Exp
(
Z>Log(c)

)
and ζ∗ = Exp

(
Z>Log(c∗)

)
lying in RC

> and satisfying

Lζ∗ = 0 because of the CBC, see (2.8). Setting G(ζ) =
∑C

j=1 ζ
∗
j λB

(
ζj/ζ

∗
j

)
we find

−R(c) ·DF (c) = Lζ ·DG(ζ). (2.11)

Since −L ∈ RC×C is the generator of a Markov process, cf. (2.7), there is a t1 > 0
such that St := I−tL ∈ RC×C

≥ for all t ∈ ]0, t1[, i.e. all entries are non-negative and∑C
j=1 S

t
jl = 1 for all l. Note that G is again a relative entropy in the form

G(ζ) = H(ζ|ζ∗) :=
C∑

j=1

h(ζj, ζ
∗
j ) with h(a, b) = a log a− a log b− a+ b.

Since (a, b) 7→ h(a, b) is convex and 1-homogeneous on R2
≥, we can apply Jensen’s inequal-

ity for the probability distribution
(

1
σj
Sjl
)
l=1,..,C

with σl =
∑C

l=1 Sjl to obtain

h
(
(Stζ)j, (S

tξ)j
)

= h
( C∑

1

Stjl
(
ζl, ξl

)) 1-hom
= σj h

( C∑

1

Stjl
σj

(
ζl, ξl

))

Jensen

≤ σj

C∑

l=1

Stjl
σj
h
(
ζl, ξl

)
=

C∑

l=1

Stjlh
(
ζl, ξl

)
.

Adding over j = 1, .., C we can use
∑l

j=1 Sjl = 1 for all l and find H(Stζ|Stξ) ≤ H(ζ|ξ).
With Stζ∗ = ζ∗ we conclude

G(Stζ) = H(Stζ|ζ∗) = H(Stζ|Stζ∗) ≤ H(ζ|ζ∗) = G(ζ).

Hence, we have 1
t

(
G(ζ)−G(Stζ)

)
≥ 0 for all t ∈ ]0, t1]. Now 1

t
(St − I)→ −L yields

0 ≤ lim
t↘0

1

t

(
G(ζ)−G(Stζ)

)
= DG(ζ) · Lζ,

which gives the desired result after exploiting (2.11).

Note that in the above result the equilibrium c∗ does not have to lie in the same
stoichiometric compatibility class Cq as the solution. However, on each Cq the strictly
convex and coercive functional c 7→ H(c|c∗) attains its unique minimizer and we set

wq := argmin{H(c|c∗) | c ∈ Cq }.

By La Salle’s principle, wq is an equilibrium, i.e. R(wq) = 0. Vice versa any equilibrium
of c = R(c) must be a stationary point of H( · |c∗) on Cq, so it must coincide with wq

unless it is a boundary equilibrium. The minimizer property of wq implies that

DcH(wq|c∗) =
(

log
(
wq
i /c

∗
i

))
i=1,..,I

=: t(c∗,wq) ∈ S⊥,
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and, using (2.2) we find the explicit representation of all positive equilibria, viz.

wq = diag
(
Q>µq

)
c∗ for some µq ∈ Rm. (2.12)

¿From this we easily see that c 7→ H(c|wq) is a Liapunov function as well. Indeed, using

H(c|wq) = H(c|c∗) + c · t(c∗,wq) +
(
wq−c∗)

)
· (1, .., 1)>

implies that d
dt
H(c(t)|wq) = d

dt
H(c(t)|c∗) along solutions of the RRE.

Moreover, defining ζq = Exp
(
Z>Log(wq)

)
gives

ζq = Exp
(
Z>
(
Log(c∗) + t(c∗,wq)

))
= Exp

(
Z>Log(c∗)

)
=: ζ∗,

because t(c∗,wq) ∈ S⊥ implies Z>t(c∗,wq) = 0. Thus, we have Lζq = Lζ∗ = 0, which
means that wq also satisfies the CBC. This fact was already established in [Fei73].

For a quantitative decay argument we now assume that in each Cq there is exactly
one equilibrium, namely the unique equilibrium condition (UEC):

(UEC) ∀ q ∈ Q : { c ∈ Cq |R(c) = 0 } = {wq}, (2.13)

which follows e.g. from the assumptions that for all reactions we have αSr
i α

Pr
i = 0 for

i = 1, .., I (no autocatalytic species).
Now we can define the dissipation

DR(c) := R(c) ·DcH(c|c∗) = R(c) ·
(

log(ci/c
∗
i )
)
i=1,..,I

and note that in the above arguments we may replace c∗ by any wq, without changing
the value of DR. For the RRE we now define an energy-dissipation estimate depending
on q ∈ Q. By kR(q) ≥ 0 we denote the largest value such that the estimate

∀ c ∈ Cq : DR(c) ≥ kR(q)H(c|wq) (2.14)

holds. Further on, we are only interested in the case kR(q) > 0, which is easy to show
if Cq is compact, e.g. it is an implicit consequence of our compact argument in Section
4, see also [GlH97, MHM15]. We do not know whether positivity of kR(q) also holds for
non-compact Cq.

Of course, (2.14) provides a uniform quantitative decay estimate for c(t) to the solu-
tions namely

c(0) ∈ Cq ⇐⇒ H(c(t)|wq) ≤ exp
(
−kR(q)t

)
H(c(0)|wq) for all t > 0.

¿From the lower estimate λB(z) ≥ 4(
√
z−1)2 we obtain H(c|w) ≥ 4

∑I
i=1

(√
ci −
√
wi
)2

,
and the convergence of |c(t)−wq| ≤ C exp

(
−kR(q)t/2

)
follows.

3 Constructive methods

3.1 Basic observations for RDS

We now want to discuss some of the recently developed methods to show similar decay
estimates for RDS of the form

ċ = diag(δ1, ..., δI)∆c+R(c) in Ω, ν · ∇c = 0 on ∂Ω. (3.1)
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Having identified a Liapunov function Hq(c) = H(c|wq) for the RRE we can use the
argument in [Ali79] to define a Liapunov functional Hq for the RDS as well. For this we
note that the conserved quantities q still exist, but now in an averaged sense. Recalling
|Ω| = 1 we define

c =

∫

Ω

c(x) dx, Qc =

∫

Ω

Qc(x) dx = Qc.

Then, using the no-flux boundary conditions in (3.1) we easily obtain Qc(t) = Qc(0) for
all t > 0. Thus, for q ∈ Q we define the sets

S(q) :=
{
c ∈ L1(Ω)I

∣∣∣ c(x) ∈ [0,∞[I a.e. in Ω, Qc = q
}

and the adjusted Liapunov functions

Hq(c) :=

∫

Ω

H(c(x)|wq) dx.

Obviously, Hq(c) ≥ 0 for all c with equality if and only if c ≡ wq ∈ S(q). Taking
another q̃ ∈ Q, then for c ∈ S(q) we have Hq̃(c) = Hq(c) +Hq̃(wq), which implies that
all functionals Hq are Liapunov functions for (3.1) independent of q̃ = Qc(0). However,
only in the case q = q̃ we have the chance to show exponential decay of Hq(c(t)).

The dissipation generated by (3.1) and Hq is given by

D(c) =
d

d
Hq(c) = DD(c) +DR(c),

where DD(c) =

∫

Ω

I∑

i=1

δi
|∇ci|2
ci

dx and DR(c) =

∫

Ω

DR(c(x)) dx.

As in the case of the RRE the dissipation for Hq does not depend on the value of q.
Nevertheless the decay of Hq(c(t)) may depend on q = Qc(0), since the solutions are
confined to stay in S(q).

The aim of this paper is to establish energy-dissipation estimate in the form

∀ q ∈ Q ∃K(q) > 0 ∀ c ∈ S(q) : D(c) ≥ K(q)Hq(c). (3.2)

We see that the two dissipative parts DD and DR have to interact to generate the desired
estimate. The diffusion part DD controls the deviation of each individual ci from its mean
value ci, but generates not interaction between the species. The reactive part DR controls
at a fixed point x ∈ Ω the distance of c(x) from the set of equilibria of R(c).

3.2 The convexity method

For scalar drift-diffusion equations the log-Sobolev inequality plays a crucial role. For our
bounded, Lipschitz domain Ω ⊂ Rd we denote by ρlSo(Ω) the largest constant such that

∀u ∈W1,∞(Ω) :

∫

Ω

|∇u(x)|2
u(x)

dx ≥ ρlSo(Ω)u

∫

Ω

λB

(
u(x)/u

)
dx = ρlSoH(u|u).
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Further on, we will drop the argument Ω in the log-Sobolev constant ρlSo(Ω) for notational
convenience. The major result of the convexity method is given in the following theorem.
It relies on the first simple observation that

DR(c) =

∫

Ω

I∑

i=1

δi
|∇ci|2
ci

dx ≥ ρlSo

∫

Ω

I∑

i=1

δiH(ci(x)|ci) dx ≥ ρlSoδminH(c|c), (3.3)

where δmin = min{ δI | i = 1, .., I }. Second we use that for c ∈ S(q) we have the relation

H(c|c) = H(c|wq)−H(c|wq) = Hq(c)−Hq(c), (3.4)

where we use the definitions Hq(c) := H(c|wq) and Hq(c) := H(c|wq). Obviously, the
negative term Hq(c) must be controlled by the reactive dissipation as in (2.14). However,
the major point is to relate the pointwise reactive dissipation DR(c(x)) with that of the
average, namely DR(c). Following [MHM15] a suitable control of the difference between
DR(c) = DR(c) and DR(c) can be obtained through a convexity assumption exploiting
the strict convexity of c 7→ H(c|wq). In the following condition (3.5) we generalize the
condition in [MHM15, Thm. 3.1], where only the case µ1 = .. = µI = µ is considered.

Theorem 3.1 (Convexity method) Consider the setting of equation (3.1) with the
Liapunov functionals Hq and the dissipation D = DD + DR, where the pointwise dis-
sipation DR satisfies (2.14). Assume further that

∃µ1, ..., µI ≥ 0 : c 7→ DR(c) +
I∑

i=1

µiλB(ci) is convex, (3.5)

then we have the energy-dissipation estimate (3.2) with

K(q) ≥ min
{
kR(q) , ρlSoδi

kR(q)

µi+kR(q)

∣∣∣ i = 1, . . . , I
}
. (3.6)

Proof. For each i we set ri = δiρlSo(Ω) > 0 and choose θ ∈ ]0, 1[. Then, for all c ∈ S(q),
we have the estimate

D(c) ≥
∫

Ω

(
DR(c(x)) +

I∑

i=1

H(ci(x)|ci)
)

dx

=

∫

Ω

(
DR(c(x)) +

I∑

i=1

θiriH(ci(x)|ci) +
I∑

j=1

(1−θj)riH(ci(x)|cj)
)

dx

≥ ΘR

∫

Ω

(
DR(c(x)) +

I∑

i=1

µiH(ci(x)|ci)
)

dx + ΘDH(c(·)|c),

where ΘR := min
{

1 , θiri/µi
∣∣ i = 1, .., I

}
and ΘD := min

{
(1−θj)rj

∣∣ j = 1, .., I
}
.

For the first term we use the convexity (3.5) and Jensen’s inequality, and for the second
we use c ∈ S(q) and (3.4):

≥ ΘR

∫

Ω

(
µH(c|c) +DR(c)

)
dx+ ΘD

(
H(c|wq)−H(c|wq)

)

≥(2.14)

Qc=q
ΘRkR(q)Hq(c) + ΘD

(
Hq(c)−Hq(c)

)
≥ min

{
ΘR,ΘD

}
Hq(c).
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Using the optimal θi = µi/(µi+kR(q)) the desired estimate (3.2) with K(q) satisfying
(3.6) is established.

We emphasize that the convexity method described above does not depend on the
condition of detailed balance as used in [MHM15], but only used the reactive dissipation
DR(c) which has to be non-negative, satisfy the estimate (2.14), and must be convexifiable
by adding µH(c|c∗). Thus, it is ideally suited to handle the case of complex-balanced
reaction systems as well.

Of course, the above theorem is only the simplest form of the convexity method. We
refer to [MHM15] for generalizations involving more general relative entropies or cases
where δi = 0 for some i. In [HH∗16, MiM16] it is also shown that the method can
be adapted to the case of energy-reaction-diffusion systems where the equilibrium state
c∗ = w(u) may depend on the internal energy u ∈ [0,∞[.

Example 3.2 (Explicit bounds for A1 
 2A2) To highlight the usability of the ap-
proach we consider the system

ċ1 = div
(
δ1∇c1

)
+ κ(c2

2−c1), ċ2 = div
(
δ2∇c2

)
+ 2κ(c1−c2

2), (3.7)

for which we have Qc = 2c1 + c2 and c∗ = (1, 1)>. The reactive part of the dissipation is
DR(c) = κ(c2

2−c1) log
(
c2

2/c1

)
, which is clearly nonconvex, since DR(c) = 0 if and only if

c1 = c2
2. It was shown in [MHM15, Lem. 4.3] that the function

c 7→ µ1H(c1|1) +DR(c1, c2)

is convex for µ1 ≥ κµ∗ with µ∗ ≈ 1.1675. Based on this, and an analysis of the RRE it is
shown that (3.2) holds with

K(q) ≥ min
{1

4
δ1ρlSo(Ω), δ2ρlSo(Ω),

2

5
κ
}
.

Moreover, it could be shown that a suitable generalization of the convexity method allows
one to handle the case δ2 = 0 as well leading to a lower estimate of the form

K(q) ≥ min{δ1ρlSo(Ω), 2κ}min
{ q

10
,

7

100

}
.

3.3 Applicability of convexity method for aA1 
 bA2

Here we investigate the question to which two-species models with reaction pair aA1 

bA2 the convexity method can be applied. The RDS reads

ċ1 = δ1∆c1 + κa
(
cb2 − ca1

)
, ċ2 = δ2∆c2 + κb

(
ca1 − cb2

)
in Ω, ν · ∇cj = 0 on ∂Ω. (3.8)

Here δi, κ > 0 and the stoichiometric coefficients satisfy a, b ≥ 1. The stoichiometric
subspace is S = span(−a, b)>, and Q ∈ R1×2 is given via Qc = bc1+ac2,

The RRE reads ċ = −(ca1−cb2) (a,−b)>, and we need convexity of

Gµ(c1, c2) := µ1λB(c1) + µ2λB(c2) +DR(c1, c2) with DR(c1, c2) = (ca1−cb2) log(ca1/c
b
2)
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for some µ1, µ2 ≥ 0. Here and in the sequel we often set κ = 1, but recover the obvious
position of κ in the final result.

For joint convexity in both variables it is necessary to have separate convexity, namely
that of Gµ(·, c2) and Gµ(c1, ·) for all c2 and c1, respectively. Taking the second derivative
of Gµ(·, c2) we have to show that the infimum for c1, c2 > 0 is non-negative for some µ1.
From the explicit form

∂2
c1
Gµ(c1, c2) =

a

c1

(µ1

a
+
cb2
c1

+ ca−1
1

(
2a−1+(a−1) log(ca1/c

b
2)
))

we see that the infimum is −∞ for a < 1, by fixing c1 > 0 and considering c2 ↘ 0. For
a ≥ 1, we can minimize first with respect to c2, which is attained for cb2 = (a−1)ca1. Thus,
for a ≥ 1 we have

min
c2>0

∂2
c1
Gµ(c1, c2) =

a

c1

(
µ1 + f(a)ca−1

1

)
with f(a) := 3a−2−(a−1) log(a−1).

For a ∈ [1,m∗] with m∗ ≈ 22.06217 we have f(a) ≥ 0 such that the term is non-negative
for all µ1 ≥ 0, while for a > m∗ the infimum over c1 > 0 is −∞. In summary, we conclude
that Gµ is separately convex if and only if DR(c1, c2) is so, and this is the case if and only
if a, b ∈ [1,m∗], i.e. µ1 and µ2 cannot help for separate convexity.

It remains to find the subset where joint convexity holds. Using the diagonal matrix
K(c) := diag

(
(c1/a)1/2, (c2/b)

1/2
)

the Hessian gives

K(c)D2Gµ(c)K(c) =

( µ1
a

0

0 µ2
b

)
+ L(c) with

L(c) :=




cb2
c1

+ ca−1
1

(
2a−1+(a−1) log

ca1
cb2

)
−
(
ab
c1c2

)1/2(
ca1+cb2

)

−
(
ab
c1c2

)1/2(
ca1+cb2

) ca1
c2

+ cb−1
2

(
2b−1+(b−1) log

cb2
ca1

)




Thus, the existence of µ = (µ1, µ2) such that Gµ(·) is (jointly) convex, is equivalent to
showing that the eigenvalues of L(c) are bounded from below uniformly for c1, c2 > 0. By
our restriction a, b ∈ [1,m∗] we know that the diagonal terms are non-negative.

For a = b = 1 we obviously have L(c) ≥ 0, which is the convexity of c 7→ (c1−c2) log(c1/c2).
For b = a ∈ [1,m∗] we have

L(c) = ca−1
1

(
y−a+2a−1+a(a−1) log y −a√y(1+y−a)

−a√y(1+y−a) y+y1−a(2a−1−a(a−1) log y
)
)

with y = c1/c2.

Because y and c1 can be chosen independently, we have to show L(c) ≥ 0. Since the
diagonal elements are non-negative it suffices to make the determinant non-negative as
well. We have detL(c) = c2a−2

1 y `a(y) with

`a(y) :=
((
y−a+2a−1 + (a2−a) log y

)(
1 + y−a(2a−1−(a2−a) log y)

)
− a2(1+y−a)2

)
.

It is easily checked that `a(1) = `′a(1) = 0 and `′′a(1) = 4a2(a−1)(2−a). Thus, for a = b > 2
we have no lower bound for the eigenvalues of L(c). For a = b ∈ [1, 2] we summarize the
positive result as follows.
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Theorem 3.3 For a ∈ [1, 2] the function

(c1, c2) 7→ (ca1−ca2) log(ca1/c
a
2) is convex.

Consequently, for the two-species RDS (3.8) with b = a ∈ [1, 2] the convexity method
applies with µ = 0, and we obtain the lower estimate

K(q) = min
{

min{δ1, δ2}ρlSo , 4κqa−1
}
.

Proof. The first result follows from showing `a(y) ≥ 0. Setting z = y−a we need
(
z + 2a− 1− (a−1) log z

)(
1 + z(2a−1 + log z

)
≥ a2(1+z)2 for all z > 0,

but this can be checked easily by a numerical plot.
To obtain the lower bound for K(q) we need to estimate the reactive decay rate kR as

defined in (2.14). Using Qc = a(c1+c2) = q and w(q) = q
2a

(1, 1), we set c = q
2a

(s, 2−s)
with s ∈ [0, 2], then for a ∈ [1, 2] we have

kR(q) = inf
{ a(ca1−ca2) log(c1/c2)

H(c|w(q))

∣∣∣ Qc = q
}

= qa−1 inf
{ a(sa−(2−s)a) log(s/(2−s))

(2a)a−1
(
λB(s)+λB(2−s)

)
∣∣∣ s ∈ [0, 2]

}
≥ 4qa−1,

where the last estimate follows by inspecting the graph of the function in the infimum
numerically: the minimum is attained at (s, a) ∈ {(1, 1), (1, 2)}.

Now the lower estimate for K(q) follows from Theorem 3.1 with µ = 0.

For the general case 1 ≤ a < b we have

L(c) =
(y(a−1)b

ρb−1

)1/(b−a)
(

A1(ρ) −
√
yA2(ρ)

−
√
yA2(ρ) yA3(ρ)

)
with ρ = ca1/c

b
2 and y = c1/c2.

The coefficient functions are given by

A1(ρ) = 1 + ρ
(
2a−1+(a−1) log ρ

)
, A2(ρ) = ab(1+ρ)2, A3(ρ) = ρ+ 2b−1− (b−1) log ρ.

In the case a = 1 it suffices to show that L(c) + µ1

(
1 0
0 0

)
≥ 0 for some µ1 ≥ 0, which is

equivalent to

(A1(ρ)+ρµ1)A3(ρ) ≥ A2(ρ) ⇐⇒ µ1 ≥ µ̂(b) := sup
{ A2(ρ)−A1(ρ)A3(ρ)

ρA3(ρ)

∣∣∣ ρ > 0
}
.

Since the function in the supremum is continuous for b ∈ ]1,m∗[ and converges to b−1 for
ρ → ∞ and to −∞ for ρ → 0, the supremum M(b) exists for all b ∈ [1,m∗[. Of course,
µ̂(1) = 0 and µ̂(1) ≈ 1.1675, see Example 3.2. Numerically we find (b−1)/(1 − b/m∗) ≤
µ̂(b) ≤ 1.1(b−1)/(1− b/m∗) for b ∈ [1,m∗[. We summarize this positive result as follows:

Theorem 3.4 For a = 1 and b ∈ [1,m∗[ the convexity method is applicable to the two-
species RDS (3.8) with the choice µ = κµ̂(b) giving the lower bound

K(q) ≥ min
{
kR(q) , δ1ρlSo

kR(q)
κµ̂(b)+kR(q)

, δ2ρlSo

}
.
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In the case 1 < a < b, we can use that for fixed ρ > 0 the smaller eigenvalue of( A1(ρ) −(yA2)1/2

−(yA2)1/2 A3(ρ)

)
converges to n(ρ) := A1(ρ) − A2(ρ)/A3(ρ) for y → ∞. However, this

value is still multiplied by yc with a positive power c = (a−1)b/(b−a). Hence, if there is a
ρ with n(ρ) < 0, then the eigenvalues of L(c) cannot be bounded from below. An explicit
calculation gives n(1) = 0 and n′(1) = 2(a−b)/b < 0 such that ρ > 1 with n(ρ) < 0
always exists.

We conclude by stating our expectation that exploiting higher entropies (cf. [MHM15,
Sec. 3.4]) allows us to widen the applicability of the convexity method for a much larger
variety of cases.

3.4 The method of Desvillettes, Fellner, and Tang

In a series of papers starting with [DeF06, DeF07] and culminating with [DFT16] a more
general method for the derivation of explicity energy-dissipation estimates was derived.
We give a short overview of the Steps 1 to 4 in [FeT16, Sec. 2.2] to highlight the differ-
ences to the above convexity method. Of course, this general method avoids any convexity
assumption of the type (3.5), which is rather restrictive, but gives simpler and sharper re-
sults if it is applicable. The general method uses several explicit estimates from functional
analysis but needs to estimate some logarithmically growing terms from above.

For simplicity we restrict to the case with DBC (cf. (2.5)) and assume c∗ = (1, .., 1)>,
but emphasize that RRE with the CBC can be handled as in [DFT16]. The major idea is
to introduce the functions ai =

√
ci and the vector a = (a1, .., aI) such that the two parts

of the dissipation can be estimated via

DD(c) =

∫

Ω

I∑

i=1

δi

( |∇ci|2
2ci

+ 2|∇ai|2
)

dx ≥ δmin

(
ρlSo(Ω)H(c|c) + 2‖∇a‖2

L2

)
and

DR(c) =

∫

Ω

DR(c(x)) dx ≥
∫

Ω

R/2∑

n=1

4κ̂n
∣∣aαSn − aαPn

∣∣2 dx,

where we used the elementary inequality

∀ a, b > 0 : (a−b) log(a/b) ≥ 4
(√

a−
√
b
)2

(3.9)

to estimate the reactive part from below. As above, for c ∈ S(q) we have H(c|c) =
H(c|wq) +H(c|wq), and we have to control the second term. For this, one introduces the
continuous and increasing function

Φ(z) =
λB(z)

(
√
z−1)2

= log z +O(1)z→∞,

which provides the elementary estimate H(c|wq) = H(c|wq) =

I∑

i=1

H(ci|wq
i ) =

I∑

i=1

Φ(ci/w
q
i )
(
(ci)

1/2 − (wq
i )

1/2
)2 ≥ Φ(M)

I∑

i=1

(
(ci)

1/2 − (wq
i )

1/2
)2
,
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where the constant M is given by max{Φ(K0/w
q
i ) | i = 1, .., I } with K0 = max{ ci | i =

1, .., I }. Thus, one needs an upper bound for ci which follows from λB(z) ≥ z − 2 which
gives bλB(a/b) ≥ a− 2b and hence

Hq(c) = H(c|wq) ≥
∫

Ω

I∑

i=1

(
ci(x)− 2wq

i

)
dx =

I∑

i=1

ci −W with W = 2
∑

i=1

wq
i .

Since Hq is a Liapunov function solutions satisfy

ci(t) ≤ Hq(c(t)) +W ≤ Hq(c(0)) +W =: K0.

The most difficult part in this method is to find a constant K3(q) such that the estimate

‖∇a‖2
L2 +

∫

Ω

R/2∑

n=1

(
aα

Sn−aαPn)2
dx ≥ K3

(
‖∇a‖2

L2 +

R/2∑

n=1

(
aα

Sn−aαPn
)2)

(3.10)

holds. The constant K3 depends on the Poincare constant for Ω and polynomially on K0

from above, where the degree of the polynomial depends on the maximum of |αr|, since
one exploits the Lipschitz continuity of a 7→ aα

r
on large balls.

In the final step it remains to show that the term ‖∇a‖2
L2 can be used to control the

mismatch between
(
(ci)

1/2
)
i

and a such that the constraint q = Qc can be exploited. We
refer to [DFT16] for the full proof and conclude with some remarks of comparison.

Obviously, this method works in much more general cases than the convexity method.
In both cases it is possible to derive explicit constants, however in the general method
these constants are much more involved and cannot be interpreted as easily by the optimal
decay rates of the diffusion alone and of the reactions alone.

Nevertheless, the central idea is quite similar: in both cases it is crucial to estimate
suitable integral quantities by the corresponding averages, namely using Jensen’s inequal-
ity in the convexity method (cf. the proof of Theorem 3.1) and (3.10) for the general
method.

4 The Glitzky-Hünlich approach

In [GlH97] a general approach to derive global exponential decay rates was developed
for electro-reaction-diffusion systems with reaction systems satisfying a detailed balance
condition. The theory there is restricted to the two-dimensional case, but this restriction
is only needed because of the coupling of the charges via the Poisson equation. We repeat
the arguments and show how they simplify and generalize to arbitrary dimensions for
uncharged particles.

Throughout we consider functions

c ∈ S(q) :=
{
c ∈ L1(Ω)I

∣∣∣ ci ≥ 0, Qc = Qc = q
}
.

We recall the energy-dissipation balance d
dt
Hq(c(t)) = −D(c(t)) with Hq(c) = H(c|wq) =
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∫
Ω
H(c(x)|wq) dx, and the dissipation is estimated from below as follows:

D(c) ≥ δDD(c) + κDR(c) with δ, κ > 0 where

DD(c) =

∫

Ω

(
I∑

i=1

∣∣∇√ci
∣∣2
)

dx and DR(c) =

∫

Ω

DR(c(x)) d dx.

Obviously, all c ∈ S(q) satisfy the equivalences

Hq(c) = 0 ⇐⇒ c ≡ wq ⇐⇒ DD(c)+DR(c) = 0 ⇐⇒ D(c) = 0.

The following result is an adaptation of the results in [GlH97, Thm. 5.2], which rely
on a non-constructive compactness argument. There the theory was developed for a
semiconductor model involving a Poisson equation, which led to a restriction of the space
dimension, namely d ≤ 2. We will show that such a restriction is not necessary for pure
RDS. We refer to [MiM16] for a generalization to the non-isothermal case. Note that
this result is also somewhat weaker than the convexity method, since the decay constant
K(q, R) depends on R which is an upper bound for Hq(c)

Theorem 4.1 (General exponential decay) Let Ω ⊂ Rd with d ∈ N be a bounded do-
main with Lipschitz boundary. Furthermore assume that the unique-equilibrium condition
(2.13) holds. Then,

∀ q ∈ Q, R > 0 ∃K(q, R) > 0 ∀ c ∈ S(q) with Hq(c) ≤ R : D(c) ≥ K(q, R)Hq(c).
(4.1)

Proof. Throughout this proof we fix q ∈ Q and write for simplicity w = wq.
In order to produce a contradiction, we assume that for all n ∈ N there exist c(n) with

Q(c(n)) = q and R ≥ Hq(c(n)) ≥ nD(c(n)) 6= 0.

In particular, this implies DD(c(n)) + DR(c(n)) → 0. Moreover, the bound Hq(c(n)) ≤ R
and the standard estimate λB(z) ≥ (

√
z−1)2 provide the bounds

∥∥∥∇√c(n)i

∥∥∥
L2
→ 0 and

∥∥∥√c(n)i

∥∥∥
L2
≤ C.

Thus, we conclude ‖√c(n)i −
√
ai ‖H1 → 0 for a constant vector a = (a1, .., aI). By the

strong convergence and the strong lower semicontinuity we have

Qa = lim
n→∞

Qc(n) = q and 0 ≤ DR(a) = DR(a) ≤ lim inf
n→∞

DR(c(n)) = 0.

Hence, the UEC (2.13) implies a = w.
This in turn implies Hq(c(n))→ 0. To see this, we use that the convergence

√
c(n)i →√

wi in H1 implies the same convergence in L2p for some p > 1. Taking squares we find
c(n)i → wi in Lp. Now the estimate λB(z) ≤ Cp(1+z)p and the continuity of λB imply
the continuity of Hq on Lp(Ω)I by Lebesgue’s dominated convergence theorem. Hence,
we conclude Hq(c(n))→ Hq(w) = 0.
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Continuing in our task to produce a contradiction we set

λn :=
(
Hq(c(n))

)1/2 → 0 and b(n) := Ψ(λn, c(n)),

where the mapping Ψ(λ, ·) and its inverse Φ(λ, ·) are given by

Ψ(λ, c) :=
(1

λ
(c

1/2
i −w1/2

i )
)
i=1,..,I

and Φ(λ, b) :=
(
(w

1/2
i +λbi)

2
)
i=1,..,I

.

For b(n) we have the following two estimates

‖∇b(n)‖2
L2 =

1

λ2
N

DD(c(n)) ≤
1

nλ2
n

Hq(c(n)) =
1

n
→ 0.

λ2
n = Hq(c(n)) ≥

I∑

i=1

∥∥∥√c(n)i−
√
wi

∥∥∥
2

L2
≥ λ2

n

(
min
i
wi
)
‖b(n)‖2

L2 =⇒ ‖b(n)‖L2 ≤ C.

Thus, there exists a constant vector d such that b(n) → d strongly in H1(Ω;RI).
To analyze the limit of the sequence 1

λ2n
DR(c(n)) we use the function D : [0, 1]×RI →

[0,∞] via

D(λ, b) =





1
λ2
DR(Φ(λ, b)) for λ > 0 and (λ, b) ∈ dom(D),

A(b) for λ = 0,

∞ otherwise,

where dom(D) = { (λ, b) ∈ [0, 1]×RI | ∀ i : w
1/2
i +λbi ≥ 0 }

and A(b) = 2b ·W1/2HW1/2b.

Here W = diag(w1, .., wI) and H ≥ 0 is the Hessian D2DR(w). By construction the
function D is lower semi-continuous, since A is simply the limit of D(λ, ·) = DR(Φ(λ, ·)/λ2,
where we use the expansion Φ(λ, b) = w + 2λW1/2b+O(|λb|2).

Using b(n) → d in H1(Ω) provides a subsequence such that b(n)(x) → d a.e. in Ω.
Since by construction we have

∫
Ω
D(λn, b(n)) dx = DR(c(n))/λ

2
n, the lower semicontinuity

and positivity of D and Fatou’s lemma yield

A(d) =

∫

Ω

D(0,d) dx ≤ lim inf
k→∞

∫

Ω

D(λnk
, b(nk)) dx

= lim
k→∞

1

λ2
nk

DR(c(n)) = lim
k→∞

1

nkλ2
nk

Hq(c(n)) = 0.

The UEC (2.13) and the CBC for the mass-action structure imply that the Hessian
H = D2DR(w) has a well-defined kernel, namely exactly the one given by the linearization
at w of set of all equilibria wq̃ for q̃ ∈ Q. Thus, the explicit formula (2.12) shows
kernel(K) = WS⊥, such that A(d) = 0 implies W−1/2d ∈ S⊥.

Moreover, q = Qw = Q(c(n)) and the strong L2 convergence b(n) → d imply

0 =
1

λn

(
Q
(
Φ(λn, b(n))

)
− Qw

)
→ 2QW1/2d.
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This implies W1/2d ∈ S. Since we already know W−1/2d ∈ S⊥, we arrive at

0 = W−1/2d ·W1/2d = |d|2. (4.2)

To generate the desired contradiction we introduce the function

H̃(λ, b) =





1
λ2
λB((1+λb)2) for 1 + λb ≥ 0 and λ > 0,

2b2 for λ = 0,

∞ otherwise.

Note that H̃ is continuous on its domain dom(H̃) = { (λ, b) ∈ [0, 1]×R |1+λb ≥ 0 }, which

is closed. Moreover, using (
√
z−1)2 ≤ λB(z) ≤ Cp(

√
z−1)2(1+z)p we have b2 ≤ H̃(λ, b) ≤

b2Cp(3+2λ2b2)p on the domain. Thus,

1 =
1

λ2
n

Hq(c(n)) =
1

λ2
n

Hq

(
Φ(λn, b(n))

)

=

∫

Ω

( I∑

i=1

wiH̃
(
λn, b(n)i/w

1/2
i

))
dx

n→∞→
∫

Ω

( I∑

i=1

2d2
i

)
dx = 2|d|2,

(4.3)

where we used bn → d in H1(Ω)I and that the functional defined via H̃ is continuous on

H1(Ω)I ⊂ L2p(Ω)I because of the continuity of and the upper bound for H̃.
Thus, (4.2) and (4.3) provide the desired contradiction, and proof is finished.
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[GlH97] A. Glitzky and R. Hünlich. Energetic estimates and asymptotic for electro-reaction-diffusion
systems. Z. angew. Math. Mech. (ZAMM), 77(11), 823–832, 1997.
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