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Abstract

We consider regular polynomial interpolation algorithms on recursively defined
sets of interpolation points which approximate global solutions of arbitrary well-posed
systems of linear partial differential equations. Convergence of the ’limit’ of the re-
cursively constructed family of polynomials to the solution and error estimates are
obtained from a priori estimates for some standard classes of linear partial differential
equations, i.e. elliptic and hyperbolic equations. Another variation of the algorithm
allows to construct polynomial interpolations which preserve systems of linear partial
differential equations at the interpolation points. We show how this can be applied in
order to compute higher order terms of WKB-approximations of fundamental solutions
of a large class of linear parabolic equations. The error estimates are sensitive to the
regularity of the solution. Our method is compatible with recent developments for so-
lution of higher dimensional partial differential equations, i.e. (adaptive) sparse grids,
and weighted Monte-Carlo, and has obvious applications to mathematical finance and
physics.

1 Introduction

This work shows how multivariate interpolation techniques can be combined with analytic
information of linear partial differential equations (i.e. a priori estimates and/or WKB
representations of solutions) in order to design efficient and accurate numerical schemes
for solving (systems) of linear partial differential equations. These schemes are nothing
but sequences of multivariate polynomials which are constructed recursively such that
they solve a given linear system of partial differential equations on a finite discrete set of
interpolation points. However, additional information is needed in order to ensure that
the sequence of interpolation polynomials converges to a (or, if uniqueness is proved, the)
global solution of a given linear system of partial differential equations. As we shall see, this
information can be provided by a priori estimates which in turn lead us to error estimates
in regular norms dependent on the regularity of the solution. We examine the situation in
the case of linear elliptic equations with variable coefficients. Another possibility is that
(more or less) explicit representations of solutions are known which lead to problems which
are easier to solve. A prominent example is the WKB-expansion which was investigated
in [6]. The recursive structure of WKB coefficient functions and the error analysis lead us
to the problem of regular polynomial approximation. In this introductionary Section we
our method on an abstract level.

1. 1. Regular polynomial interpolation

Since we are interested in the relationship between multivariate polynomial interpolation
and approximation of solutions of partial differential equations, our focus will be on mul-
tivariate polynomial interpolation. However, in order to make basic ideas more accessible



we shall describe algorithms in the univariate case first and then generalize to the mul-
tivariate case. It is well known that polynomial interpolation in the multivariate case is
quite different from the univariate case in general. However, in our approach which aims
at solving linear systems of partial differential equations or aims at supplementing certain
strategies of solving partial differential equations many features are already present in the
univariate framework. In order to avoid misunderstandings, we dwell a little on this point.
Classically, the problem of multivariate interpolation can be stated as follows (cf. [11]):

Given a set of interpolation points © = {x1,--- ,xn} and an N-dimensional
space Pg of polynomaials find, for given values y1,--- ,yn, a unique polynomial f € P such
that

f(:z:j):yj, jEl,"' ,N. (1.1)

In this form it turns out that there is an intricate relation between sets of interpolation
points and interpolation spaces that must be satisfied in order that the problem can be
considered to be well-posed. Either we have to make some restrictions concerning the set
of interpolation points © (cf. [11]) or we consider © to be fixed and consider the problem
of constructing the polynomial space Py (cf.[1]). This amounts to a construction of the
map

0 — Py (1.2)

with additional constraints such as minimality of degree (cf. |11, 1|) or monotonicity (cf.
[1]). In this paper we are interested in interpolation algorithms with the following features

e there are no essential restriction on the discrete set © of interpolation points except
that © C D, where D is the domain of the function to be interpolated.

e the map © — Pg is monoton (indeed our basic algorithm is an extension of multi-
variate versions of Newton’s interpolation algorithm).

e the algorithm can be extended to vector valued interpolation functions g : D C
R" — R* and if ¢ satisfies a system of linear partial differential equations, then
the interpolation polynomial p solves the same system of linear partial differential
equations on the given set © of interpolation points.

e the algorithm is numerically stable and practical with respect to the problem that
the interpolation function f and arbitrary set of partial derivatives of f are to be
interpolated simultaneously. For the application of higher order approximation of
the fundamental solution of linear parabolic equations we comute accurate approx-
imations of derivatives of smooth functions up to order 10 in order to obtain an
approxmation of order 5 of the WKB-expansion of the fundamental solution.

e the algorithm can be refined in order to solve well-posed linear systems of partial
differential equations directly.

e the algorithm can be combined with collocation methods in an efficient way; it can
be partially parallelized.

e the algorithm allows for error estimates which depend on the regularity of the solution
such that the algorithm is compatible with methods for higher dimensional problems
of linear systems of partial differential equations such as sparse grids, adaptive sparse
grids, and weighted Monte-Carlo.



First we consider the problem of polynomial approximation p of a regular (i.e smooth or
finitely many times differentiable) function

f:DCR" >R (1.3)

defined on discrete subset of © C D where for m given linear partial differential operators

Li= Y a(2)0a, (1.4)

|| <B;

we require that
Lif(xj) = Lip(z;) for 1 <i<m (1.5)

for some finite set of points ; € © C D. As indicated above we shall allow that the inter-
polation set © can be constructed recursively (and, hence, extended arbitrarily within the
domain of the interpolation function). Investigations of specific instances of this problem
can be found in the literature on polynomial interpolation (cf. the survey paper of [10] for
the development up to the year 2001). Note that other algorithms of natural interpolation
of C*-functions have been proposed (cf.[5] for hints at the history and further references).

The paper is organized as follows. In Section 1.2 we introduce the partial differential equa-
tions for which we seek global regular interpolation polynomials of their global solutions.
All basic types of partial differential equations, i.e. elliptic equations, parabolic equations,
and hyperbolic equations are considered. While the basic algorithm is quite similar for
each type of partial differential equation, we shall see, however, that the convergence of
the scheme of recursively defined interpolation polynomials depends on very different a
priori estimates for different type of equations. In case of second order elliptic equations
classical Schauder boundary estimates can be used, while in the case of hyperbolic equa-
tions energy estimates are considered. In the case of parabolic equations we refer back
to Safanov-Krylov estimates considered in the context of the truncation error analysis of
WKB-expansions. In Section 2.1 we introduce first an extension of Newton’s polynomial
algorithm which interpolates a given function and its derivatives up to some given order
k simultaneously. Section 2.2. describes a variation of this algorithm which interpolates a
given function such that a given set of partial differential equations is preserved. Section
3 discusses the extension to the multvariate case. In Section 4 we refine the algorithm and
construct polynomials which satisfy a given linear (i.g. partial) differential equation on
a given set of interpolation points, i.e. there is no given function to be interpolated. In
Section 5 we consider refinements which show how polynomials constructed on disjoint sets
of interpolation points can be synthesized in order to get one polynomial which interpo-
lates on the union of sets of interpolation points. Naturally, parallelization is consideredin
this context. In Section 6 we show how a priori estimates of elliptic equations (standard
Schauder boundary estimates) and hyperbolic equations (energy estimates) lead to con-
vergent schemes implied by error estimates. Section 7 discusses a special use of regular
polynomial interpolation for parabolic equations where the global solution is given in the
form of a WKB- expansion. Section 8 provides a numerical example of global regular poly-
nomial interpolation of a locally analytic function up to the third derivative. In Section 9
we provide a summary and give an outlook on current research and research in the near
future. Before we start with the description of the algorithm, we state the typical linear
partial differential equations and indicate the different types of approximations and error
estimates which we aim at.



1. 2. Regular interpolation and partial differential equations

We consider the three standard types of linear partial differential equations, namely elliptic
equations, parabolic equations, and hyperbolic equations, and exemplify different types of
application and extension.

e The most popular examples of elliptic partial differential equations are of the second
order form, i.e.

& 02 0
Z];ajk<x>W§m + ; i) g + eleu = (@), (1.6)
]7

to be solved on a domain 2 C R™ with the boundary condition

ul = 1.7
=9 (17)
for some function f : 92 — R which is usually assumed to be Lipschitz continuous
at least. Here, aj;, are (at least) measurable coefficient functions satisfying for some
constant ¢, and ellipticity means that

Zajk(g;)gigj > ¢ > 0 (uniformly in z). (1.8)
ik

We construct an extension of the polynomial interpolation algorithm which produces
a multivariate polynomial solving this elliptic equation on an arbitrary grid of inter-
polation points. In order to obtain error estimates b standard boundary Schauder
estimates in this paper we shall make some regularity assumptions. We derive conver-
gence of the family of multivariate polynomials constructed by our our interpolation
scheme to the global solution of the linear elliptic equation on a bounded domain
and we derive error estimates from a priori estimates.

e Parabolic equations of the form

ou
— = 1.
5 Lu =0, (1.9)
on D:=Qx(0,7), (2 CR", with
u(0,2) = §y(x) :=d(z —y), y € R", (1.10)

where ¢ is the Dirac delta distribution, and where

1 0%u du
Lu= 5%:aij(x)7axiaxj +Zbi(;p)a—% (1.11)

7

is an elliptic operator. The solution of this equation is called fundamental solution,
because solutions of standard parabolic initial-value boundary problems can be rep-
resented by convolution integrals of data functions with the fundamental solution.
The standard assumptions for such a fundamental solution to exist are



(A) The operator L is uniformly parabolic in R", i.e. there exists 0 < A < A < o0
such that for all £ € R™\ {0}

n

0 < M2 < Z ai;(2)&& < AJ¢.

ij=1
(B) The coefficients of L are bounded functions in R™ which are uniformly Hélder

continuous of exponent a (v € (0,1)).

If some regularity assumptions on the coefficients hold in addition, then it can be
shown that the fundamental solution p is of the form

1 d*(z,y
p(t,z,y) = Nl exp —% + ch(%y)tk ; (1.12)
k>0

with some regular coefficient functions d? and ¢;. We shall show how our regular
polynomial interpolation algorithm can be used to compute the fundamental solution
in terms of this representation.

Remark 1.1 The algorithm designed in the case of elliptic equations can be applied
to the parabolic case directly, of course. However, it turns out that the convergence

is better if the special representation (1.12) is used.

e As an example of a hyperbolic equation we consider an equation of the form

Lu= fin Q, (1.13)
where 9 9
U
=N p <z 1.14
Lu %:hz] D0, + ZZ: oz, + c(x)u ( )

and (h;;) is a symmetric matrix of signature (n, 1), if dimQ = n + 1. We assume
that some O C € is bounded by two spacelike surfaces ¥; and ¥, and swept out by
a family of spacelike surfaces ¥.(s). We assume the initial conditions

u=gand du =w (1.15)

where ¢ is a function on 2 and  is a 1-form.

2 Interpolation algorithm (univariate case)

We start with the description of the algorithm which produces polynomials which satisfy
some given requirements on interpolation points. Our starting point is an extension of
Newton’s polynomial interpolation method such that the interpolation polynomial and its
derivatives up to a given order k (an integer) equal a given function and its derivatives
up to order k at the interpolation points. For simplicity of representation and since the
essential features of the algorithm can be demonstrated for one dimensional functions, we
describe our ideas first in the univariate case and then generalize to the multivariate case
in the next section.



2. 1. Extension of Newton’s method

Let us recall the Newtonian interpolation for an univariate function
f:la,b] CR—R. (2.1)

Given a discrete set of interpolation points D = {xg,z1 -+ ,xn} C [a,b] we want to
construct a polynomial
p:[a,b] C R — R such that
(2.2)
f(zi) = p(x;) for all z; € D.

The idea of the basic Newton interpolation algorithm is that instead of looking for some
polynomial of form ;" b;z’ for some constants b; we may write

N
Zalq’l(w) (2.3)
1=0

with
Do(x) =1 and ®;(z) = M_y(z — ;) for I > 1. (2.4)

In order to determine ag,---ay we then may solve the system

1 0 0 - 0 ag (o)
1 é1(z) 0o .- 0 a1 f(z1)

Roa:= | 1 o1(x2) ¢o(z2) -+ 0 az | = | flx2) (2.5)
1 gi(on) dalan) - onaw) 11 an 1L f(n) 1

This leads to an L2-approximation of the function f similar to the Gaussian algorithm.
Note however, that the matrix Ry is a lower diagonal. Hence the linear system can be
solved easily. Moreover the matrix condition number is much better than that of the
Vandermonde matrix used in the classical Gaussian interpolation. We extend this idea to
a C*-norm interpolation, i.e. we design an algorithm that approximates f up to the k-th
derivative, i.e. we construct a polynomial

q:[a,b] C R — R such that
(2.6)
fO(z;) = ¢V (x;) for all 2; € D and all I < k,

where for a function g : [a,b] € R — R g\ denotes the derivative of order [ while g = ¢°.

We consider the polynomial
(N+1)(k+1)—1

m=0
where 4 divie
i 1)-1
D) =(x -z, diV(k+1))m mo (k+1)lei0 V(k+1) (x — ), (2.8)

where, by convention, we understand

I, (2 — o)M= 1. (2.9)



For simplicity of notation we sometimes use the abbreviations

p(m) = mdiv(k 4+ 1) and g¢(m) = mmod(k + 1).

Next we define
@

@mk(:n) =

and for each k > 1 the linear system

ao
a
Ry az

L O(k+1)(N+1)—1 |

d

dz!

q>m,k(x)a

f (o)

0
f/(ﬂfo

f(k)(xo)
)

f($1

)

| O (@i (vey-1)

(2.10)

(2.11)

(2.12)

where Ry is a (N + 1)(k 4+ 1) x (N + 1)(k 4+ 1)-matrix determined by (k 4+ 1) x (k + 1)

matrices Aﬁtm as follows:

00
‘b,
‘b,
Rk = Ak

NO
Ak

with
(I)El;-i-l)p(i),k zj) @
AY = q’(k+1)p(z‘),k(33j) P
| (k)
| Plernpon(@) @
Note that

00 .__
AV =

Zy,
Al

Zy,
Zy;

Zy,
Zy;

AL A gz,

Ay
where Z, is the (k + 1) x (k 4 1) matrix with 0 entries, and
A} = Ay(=;)

0

O =

0

Ek+l)p(i)+1,k Zj
2)

(k—i—l)p(i)—i—l,k(xj)

(k+1)p(i)+1,k($j)

[en}

0

o

(k)
q)(k-i-l)p(i)—l—Z,k(xj)

[an}

0

AT

[an}

K

This leads to a system which can be solved row by row.
implement and numerically well-conditioned.

Remark 2.1 In order to avoid large entries in the matrices A%m one may consider basis

()

functions of form %q)(k—l-l)p(i),k’

here.

cI)Ek—i—l)p(i),k(xj) cI)Ek-i—l)p(i)—l—Lk(xj) D (e 1)p(i)+2,k (T5)
;. ) e ) (25)

k+1)p(i)+2,k
2)
(k4 Dp() 42, ()

Zy,
Zy,
Zy,

NN
Ak

It is therefore very easy to

o

e

o™

(2.13)

(2.14)

(I)Ek—f—l)p(z’)—i-k,k(xj)
k+1)p(¢)+k,k($j

(k—i—l)p(i)—i—k,k(xj)

(2.15)

(2.16)

but we do not deal with the peculiar niceties of computation

(k+1)p(z’)+k,k($j) i



2. 2. Interpolation preserving linear systems of differential equations

The preceding algorithm can be adapted it in order to construct a polynomial approxima-
tion p of f where the k differential operators

. d .
Lif(z) = Zaz(x)wf(x)ﬂzlw“ ok (2.17)
J<ai
are preserved on a discrete set of points © = {xg, - ,zy} in the sense that
Lif(x;) = Lip(z;) for z; € ©. (2.18)

At this point the linear system of the operators {L;|1 < i < k} is quite arbitrary; we just
assume that the operators are defined pointwise, i.e.  — a;'»(a;) are classical functions
which can be evaluated pointwise (at least on the set of interpolation points). Note that
we do not ask about convergence of a family of interpolation polynomials to at this point.
There are several possibilities to extend our preceding algorithm. One is the following. Let

Qi = {jla}; # 0} (2.19)
and define ,
L = ()L 2.20
JEQ:,j<m
We start with
Q1 = {1, i ), (2.21)
and assume that
111 < -0 <1y (2.22)

We consider first the interpolation point xg and start with the following ansatz for the
interpolation polynomial

pro(x) = Z bil;)(x — x0)", (2.23)

i1;€Q1

We assume f(z9) = pio(xro) = 0 w.l.o.g. ; we shall see later how we interpolate values

of f different from zero at the other interpolation points x1,--- ,xy. First we apply the
operator
i 1oy At
LY = a; (x) e (2.24)

to f and pig at xg. This leads to

. dilf 1 dijf
10 _ 1 10_ 11
ilby, = a;, (iﬂo)@(iﬂo) = by = 1% g (o) (2.25)

Inductively we assume that the coefficients b}jo have been defined up to the index %, for

some m < r; and that the operator L’i’" has been defined accordingly. We apply the

operator '
Lim+l = [im 1 dm
=Lt a;  (2)

Tm+1

i (2.26)



to f and pyg at xg. For an integer s with m + 1 < s < ry define

s

Pio(z) = Zblo(l’ — z0)". (2.27)

7j=1

Then we have

b, i i1
Ly pro(zo) = Ly"pro(zo) +aj ., (wo) Tmpro(zo) =
(2.28)
Ll plO (zo) + Zm+1'a2 +1( )b110+1 = Lzlerlf(xo)‘
This gives bi12+1- Next inductively assume that an interpolation polynomial p;; has been
constructed which interpolates f on the set of interpolation points {zg,--- ,x} for some
positive integer k with & < N subject to the condition
Lif(x;) = pig(a;) for 1 < i < k. (2.29)

First we extend that polynomial in order to interpolate f at the point xx11. We consider
the ansatz

E+1
p(l](k+1)($) = pix(x) + b L0+ )Hl ol —xp) ™. (2.30)
We then get bé(kﬂ) from the equation
Pl (@rr1) = fzra). (2.31)

The ansatz for py41) (i.e. the interpolation polynomial which preserves L f on the set
of interpolation points {x1,--- ,zky1}) is

1(k 1 'y
Pik+1)(®) = pl(k+1 E b ( * — Tpy1) ”Hfzo(x - l’l)QIH (2.32)
i;€Q1

and the determination of coefficient constants b; ( Y'is similar to the procedure for the
interpolation point xy described above. Proceedlng inductively, we are lead to the polyno-
mial p; which interpolates f at the interpolation points of © = {zg, - ,zx} such that

Lipi(z;) = L1 f(x;) for all z; € ©. (2.33)
Finally assuming that for some integer s < k the polynomial pg satisfies the condition that

ps(xj) = f(x;) for x; € ©

(2.34)
Lips(xj) = Lif(z;) for z; € © and i < s,
it is clear that we only need to consider the reduced operator
L = s+1 dij 9235
o+l = Z di; () drti (2.35)

ijjer+1\Uf:1Qi

and proceed analogously.



3 Extension to the multivariate case

Next we consider generalizations to the multivariate case. There are several possibilities
but the most simple seems to be the following. First we formulate the problem in a way
that will turn out to be useful in the context of polynomial interpolation of global solutions
of linear systems of partial differential equations. In its most simple form it is a form of
multivariate Newton interpolation: given a function

f:SCR"—=R (3.1)
we want to construct a polynomial

p: S CR"™— R such that

(3.2)
fx;) = p(a;) for all z; € D C S,
where D = {xg,21,--- ,2,} is some discrete sets of points in R™ whose coordinates will
be denoted by superscript indices as :173, j = 1,--- ,n. This is done then by recursive
definition of polynomials pg, p1,---. First, define
po(z) = f(xo). (3.3)
Next, ansatz and equation
p1(x) = f(wo) + ar Iy (z* — 2) = f(z1) (3.4)
leads to the determination of p; by
_ fl@)—f(=0)
a] = H?:l(wi—m(z)) (3.5)
Next assume that pg,p1,--- ,pq have been defined. Then ansatz and equation
Pg+1(Tq1) = p(Tg41) + aq+1HZ:0H?:1(xi —7}) = f(2g41) (3.6)
leads to the determination of p,y1 by
_ fmgr1)—pg(2g41)
Gt = I () (37)

3. 1. Extension of Newton’s method

Next we extend a multivariate version of Newton’s method, i.e. we design an algorithm
that approximates f up to the g-th derivative (8 = (51, , 5n) being some multiindex)
where we construct a polynomial

q:S CR — R such that
(3.8)
OL (2;) = 2L (x;) for all z; € D C S and all v < 8.

Y

where (3 is given (i.e. the multivariate substitute for k in the univariate case described
above), and ordering is in the following sense:

10



Definition 3.1 Let 2 and 2P be monomials in R[x1, -+ ,x,). We say that x* > 27 (
lezicographical order) if Y. o' > Y. " or >, a' = >, 3", and in the difference oo— 3 € Z"
the left-most non zero entity is positive.

- an enumeration of multiindices with respect to this ordering.

Now, let ag, a1, ,Qm, -

We define a sequence of polynomials Do, Pays " s Pams - - - recursively. First, let
Pao () = aag + Y aagy 1Ty (& — 2f, )0 (3.9)
v<p
If pags - ,Pa,,_, have been defined, then we define
pam (‘T) = pamfl (‘T)—i_
(3.10)

. . 7 _1 . . 5
nygg aanhl’yl_lglzl(xZ - xfxmfl)yznﬁo Hzf‘zl(;p’ - xg{j)ﬁl—i—l-

This leads to a linear system to be solved for a vector (aqg, - ,aqyg) of length (N +

1) (Zz B+ 1)
[ Gay ] [ f(Tae) ]
a . FP (24,)
Rg| ">F | = @0 3.11
p Qqy f(xou) ( )
Ganp L f(ﬁ)(xoczv) i
with ) 00 )
A Zs 7y 7 Zg
Ago Agl Zgﬁl Z3 Z3
Rg:=| A A5 Ay Zs Zg (3.12)
NO NI gNz N3 N
L A57 AT AT 4p A5
We abbreviate Y- 8= >".(8" + 1) and defining p(m) = m + Y B we have
[ (Sﬁp(z 5(x;) D3 p(0+1.0 8(z5)  Prap(iyts,6(Ts) D300+ 6(z;) ]
sle) @ () () (aj) - @ ()
;ﬁp(l ;ﬁp(l +61,8377 (k+1)P(Z)+ﬁ2,ﬁ ;ﬁp(l +8,8377
AL =1 Pxa ) zﬁp(wwl,ﬁ(%) i +04(7) O3 o0(i+,59)
(8) ‘ (B ‘ (8) (B ‘
I ‘I’Zﬁp(z‘m(%) P ap(o+1,8(%3) P gp(iy0a,6(%) 5 op(i+5,6(%) |
(3.13)
3. 2. Multivariate Interpolation preserving linear systems of PDEs

Similar to the univariate case one can adapt the preceding algorithm to the interpolation
of multivariate functions, i.e. interpolate f by a polynomial p such that f = p, and

Lif(z) = (3.14)

Lip(zx) for x € O©.

11



where © = {xg, -+ ,xn} is the set of interpolation points, and the partial differential
operators are defined by

Lif(x) = Y ai(x)0°f(x), =1,--- k. (3.15)

|| <g;

The procedure is analogue to that described in Section 2.2. (cf.also |7]).

4 Approximation of global solutions of linear partial differ-
ential equations

We refine the algorithm further in order to solve linear partial differential equations glob-
ally. In this case the function u to be approximated is not known. In this section we
shall simply describe an algorithm which constructs a polynomial which satifies a linear
system of partial differential equations on an arbitrary set of interpolation points. It is not
clear, however, if this polynomial approximation converges to the solution of the system.
To ensure that and in order to estimate the rate of convergence we shall need the a priori
estimates and regularity results. Note however, that the regularity constraints on the so-
lution maybe low for problems on compact domains as any continuous solution functions
u can be approximated by a families of polynomial functions approximating u. Therefore,
principally, the families of polynomial functions constructed here may approximate contin-
uous global solutions in viscosity sense. An investigation of this problem will be considered
elsewhere in a more general framework where we include some class of nonlinear problems.
In order to make the basic ideas transparent we consider first scalar linear problems. We
exemplify our algorithm first in the case of dimension n» = 1 and then generalize to the
case n > 2. What we have in mind here are elliptic equations but we need the ellipticity
condition only when we wan to prove that the family of polynomials construxted converges
to the global solutions. Then we exemplify our method in the case of a typical linear first
order system. It is then clear how to generalize to systems of linear equations of any order.

4. 1. The case scalar second order equations of dimension n =1

We consider the simple boundary value problem

Liu= a(:n)@ + b(m)d—u +c(z)u = f(x) on (d,e) CR (4.1)

dx? dx ’ ’ '
with the boundary condition u(d) = ¢4 and u(e) = ¢, (actually an ordinary differential
equation). If a(z) > A > 0 for all x € R, then we have an elliptic operator, but this is not
an assumption which we need to construct an univariate polynomial which satisfies the

boundary problem on the interpolation points.

We start with the point d. We construct a list of polynomial ¢,,, m > 0. We define the g,
in substeps. Let pg = ag. In order that pg satisfies the boundary condition at x = d we
impose
Po = ap = Cq (4.2)
Next we define
p1(z) = ap+ a1(z —d) (4.3)

12



In order to satisfy the second boundary condition we get

pi(e) =ap+ai(le—d)=cqg+ai(e—d)=c.= a1 = CZ : Zd. (4.4)

It is clear that p; preserves the boundary conditions, i.e. p(d) = u(d) = ¢4 and p(e) =
u(e) = ce. Next let zp be the first interpolation point (any point in the interval (d,e). We
want to ensure that

d2

 (20) + b(0) L (0) + e(z0)p(0) = f(zo). (45)

a(r0) 53 e

In order to ensure this, we define a polynomial which is an extension of pgy in three steps.
First, define
po(x) = ag + ai(x — d) + as(z — 20)*(x — d)(z — ) (4.6)

Plugging in and evaluating at z = 2o we get
a(zo)2a4(zo — d)(wo — €) + b(zo)ar + c(zo)(ao + ar(zo — d)) = f(xo) (4.7)
Since ag, a; are known we get (recall that xg # d and zo # e)

f(xo) — c(xo)(ao + a1 (zo — d)) — b(a:o)al.

aqs = 48
4 2a(x0)(xo — d)(zg — €) (48)
Next define
p3(x) = pa(x) + as(x — xo)(x — 24)(x — ). (4.9)
Plugging in and evaluating at x = xy we get (assuming that )
Lips(zo) = Lip2(wo) + alzo)as(2(zo — d)
(4.10)

+2(xg — xe)) + b(xo)ag(xo — d)(zo — €) = f(xo).
Hence, (provided that zg # d and xg # e),

- f(xo) = Lapa(o)
= a(wo) (20 — d) + 2(wo — €)) + b(z0) (o — d) (w0 — €) (4.11)

Finally, finishing the first inductive step of recursive definition of the polynomial family

(Qm)mEN
pa(z) = p3(x) + az(z — d)(z — ). (4.12)

Plugging in and evaluating at x = xg we get (assuming that )
Lipa(zo) = Lips(zo) + 2a(zo)az + b(zo)((zo — d) + (zo — €)) = f(z0). (4.13)
Hence, (recall again that xg # d and xg # e),

_ f(&o) = Lips(wo) — b(xo)((x0 — d) + (z0 —€))
2a(zo)((zo — d) + 2(x0 — €))

(4.14)

Now we can define
q1(z) = pa(x) (4.15)
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Next assume that the polynomials q1, - - - , g; have been defined. This means that we have
computed the polynomial coefficients ag, a1, -+ ,ao13;. Then giy is defined via

Grr1(2) = qr(7) + (z — d)*(z — )’ T (x — )%z (), (4.16)
where zj, is a polynomial function which will be defined in three substeps. First, let
1,1 (%) = qr() + ag 30041y (@ — 31) (2 — d)P (@ — &)’ T (x — 27)° (4.17)
Plugging in leads to

Ligrs11(Tes1) =  Liqe(2ig1) 4+ a(Tre1)2a0430041) (@rg1 — d)? %

(4.18)
(Th+1 — 6)3Hfzo(fﬂk+l —21)* = f(xpp1)-
Hence,
Jf(@ps1) — Lige(wpgr)
A243(k+1) = (4.19)
DT a(241)2(@ns1 — D3 (@41 — €I (@pg1 — 20)3
Next, let
Grr12(2) = Qer11(2) + agpsera(r — 1) (@ — ) (@ — ) T o (2 — 1)’ (4.20)
We define
R(z) = (z — d)3(z — e)*T}_o(z — 7). (4.21)
Plugging in leads to
LiGrs1,2(Tk+1) = LiGryr,1 (Tp41)+
(4.22)
2
a(wpi1)2021 364295 R(wei1) + b(wri1)agiser2 5 R(@ke) = f(zn).
Hence,
f(@r+1) — L1qrs1,1 (T4
(24342 = ng +1) +1.1( J; ) (4.23)
a(Try1) gz R(Tpg1) + 0(vrg1) 75 R(Try1)
Finally, let
G11,3(2) = Gh12(2) + azgzpr (@ — d)P (2 — )’ T (¢ — 27)?
(4.24)
= agy3p+1R(x)
Plugging in leads to
2
L1qrs13(@nt1) = Lia@rs1,2(Tes1) + a(Tha1) 043541 ooz R(Tg41)
(4.25)
+0(xh41)a24384+1 75 R(Trs1) + c(@ri1)agssr1 R(@pr1) = f(@h41)-
Hence,
f(@r+1) — L1qrs1,2(Tr41
a243k+2 = (@41) +1.2(Tk1) (4.26)

a(l’k+1)%3(l’k+1) + b(zh1) e R(2pt1) + clappr) R(zhan)

It is clear how to proceed inductively in order to get a family of interpolation polyno-
mials which satisfy the differential equation on an increasing set of interpolation points.
Note,however,that we have not used any structural information about the coefficients at
this point. This means that the equation may be ill-posed,and convergence cannot be
guaranteed.
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4. 2. The case of scalar linear partial differential equations

For a positive integer k consider an equation of form

0%u

Lyu= aa(x)% = g(), (4.27)
|| <k
to be solved on the domain € where
u‘ —f (4.28)

o0

What we have in mind is an elliptic equation f order k, but ellipticity is not required in
order to describe the algorithm which produces a family of multivariate polynomials which
satisfy the equation on a set of interpolation points in 2. Ellipticity becomes important
when we want to show that the family of polynomial converges to the solution of the
equation (assuming that there is an unique global solution). For simplicity of notation we
consider the case k = 2, i.e. the situation of (1.9). Assume that f € C* and choose a
discrete interpolation set @, C 9. Then we can apply the extended Newton algorithm of
Section 3 in order to produce a polynomial p; : R™ — R such that

pp(x) = f(z) for all x € O,

(4.29)
%:%fbrallawith la| <land z € ©
We assume that Oy = {zgp, -+, xpp} with x = ($Zlb, -+, af) and define
Py (z) = ILLG, I (a7 — ). (4.30)
Next let 6;,; C Q\ 9Q be a set of interpolation points in the interior of Q. Let
®int == {ZE(),"' ,iL‘N}. (4.31)
We enumerate (case k = 2) the q := W diffusion coefficients ay,,- -+, aq, (arbitrary
order), where we assume «; = (aq1, aq2) and define first ¢ polynomials pgiml(az),l =1,---,q.
Let
po ™ (@) = py(@) + Pp()ag, (@™ — 2§ (212 — 2(12). (4.32)
Then we have
szgiml(xO) = L2pb(x0) + (I)b(‘/EO)(l + 50{110412)&041 = f(ﬂ?o), (4'33)
which leads to I
- f(x0) — Laps(wo) (4.34)
(1 + 504110412)(I>b(330)
Having defined pgifﬂl(:ﬂ), e ,pgiﬂ’l(:n) (and therefore computed aq,, - ,aq,) we define
pgifﬂl-i—l(x) = Pgiﬁ’l(:v) + (I)b(iﬂ)aalﬂ (xa(lﬂ)l - ‘/Eg(lﬂ)l)(xa(l“)z - xgl(Hl)Z)’ (4'35)

and evaluation leads to

o f(zo) — L2P8iﬁ7l(17($0) (4:36)
o (1+ 50¢(z+1)1a(z+1)2)q)b(x0)
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Proceeding inductively we get a pgiﬂ’q(x) which equals together with its derivatives up to

order [ the function f and such that the diffusion part of the operator applied to pgimq(az)
equals g at zg. It is now clear how this procedure can be extended such that an extended
polynomial py(x) equals together with its derivatives up to order [ the function f and such
that the total operator applied to po(x) equals g at xg. As in Section 3 the ansatz for the
interpolation polynomial pg which satisfies the linear equation on the set of interpolation
points © = {zg, -+ ,zxN} then is

N
pe(z) = Zﬂézlﬂﬁzl(l‘k - l‘?_l)?’pi(aj), (4.37)
i=0
where p; for ¢ > 2 are then constructed as py above.

4. 3. The case of a linear hyperbolic equation

We consider the hyperbolic equation mentioned above of the form
Lu= fin Q, (4.38)

where 5 9
u

and (h;j) is a symmetric matrix of signature (n, 1), if dimQ = n+1. Note that the operator
L can be transformed into the form

Lu=0u+ Lyu, (4.40)
where Liu is some first order differential operator on €). We assume the initial conditions
u=gand du = w, (4.41)

where g and w (1 — form) are initial data. It is clear that the algorithm described in
the preceding section can be used in the present situation. Later we shall see that energy
estimates imply convergence of the scheme.

5 Further refinements: collocation and parallelization

Numerical experiments show that the coefficients of the recursively computed polynomials
have to be computed with increasing accuracy in order to control effects of the truncation
error of the coefficients of the polynomials. In the numerical example below, where we
computed a polynomial approximation of degree 74 of the locally analytic function

1
1+«

T —

(5.1)
and its derivatives up to order 3 on the interval [0, 5.4] such effects are not observed. How-

ever, if we increase the number of derivatives to be approximated up to order k = 10 and
increase the number of interpolation points, effects of truncation errors can be observed for
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polynomials of degrees larger than 200. The error increases as |z| becomes large and trun-
cation errors increase. This error can be reduced by a more precise representation of the
computational approximation of the real numbers involved in the computation However,
as we point out in this section, we can compute m polynomials p1®1,- . ,pmm of degree
Ny, No - -+ Ny, parallel which interpolate a given linear system of partial differential equa-
tions on some interpolation sets O1,--- , ©,, using our basic algorithm, and then compute
one polynomial ps~g which interpolates the same linear system of partial differential equa-
tions on the set Y © = ©1,U--- ,UB,,. It turns out that this can be in such a way that
the truncation error of the resulting polynomial py~g is much smaller than in case of a
direct extension of one polynomial peg, using the basic algorithm. We call this method the
collocation extension of our basic algorithm. We shall assume that the sets of interpolation
points are mutually disjunct, i.e.

0,N0; =0 iff i # j. (5.2)

It is clear that the computation of the polynomials p?l, ,pm can be done parallel and
only the step of synthesizing has to be done non-parallel. Next we describe that step in case
of two polynomials for simplicit of notation. Extension to m > 2 polynomials will be clear
from that description. So let ©1,09 C 2 C R™ be two discrete finite sets of interpolation
points of a linear system of partial differential equations Lu = f to be solved on a domain
Q and such that ©; N ©y = ©. We write down the polynomial in the univariate case
because this simplifies the notation, and the multivariate case is quite similar. Then we
define a regular polynomial interpolation formula on 01 U ©4 by

(S]
> AR VO e G A

j=1 Hk?ﬁj, (IQ1 _Z.(Ijl)k+1 z‘:l( o1 _ @2)k+1p®1
J J

@ .
- Zj Hpeq1,2) 125 (7 — Pykt ]1(33 - 333@ )!

©q
(e—ap YL oy (z—af?)R

+ZJ 1Hk7$y( o1 _ @1)k+1Hz 1( 1 _ @2)k+1p®2( )
J

Oy O9\i
= 3 Moeqn 0y 1@ — 2" )FHal (@ — 22

= Zj q1@j2,@1 (x)pQI(x) + h(f(l‘)

+ Zj qéjl,@g (@)pe, () + hs(z),

where the constants alp,p € {1,2} are computed recursively as follows For each j we can

define aO =0. If af P ,af 1 p Are determined, then compute a1 via
l _
> (1) Dien a0 ve, o) = Dhig(a) (5.4
1<r<i

for each j. Note that this 'synthesis of polynomials’ improves the computational power of
our method dramatically. In the example below, where we approximate a simple locally

analytic function
1

1+«

xXr —

(5.5)
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(with convergence radius 1) and its derivatives up to the third derivative on the interval
[0,5.4] with 19 interpolation points ©1 = {k0.3|k = 0,--- 18} we compute a polynomial of
degree 74 in half a minute on a modest laptop machine. If we want to compute a poly-
nomial which gives the same kind of approximation on the interval [0, 5836, 8] it will take
several weeks. However, using parallelization and synthesis, and using the rough estimate
that synthesis takes in average the same time as building the 1024 basis polynomials of
degree 74 on the intervals [0,5.4] and [k5.7, (k 4+ 1)5.7],k = 1, --- 1023 we need 10 steps of
parallel synthesis of pairs of polynomials of cost of a less than a minute to get a regular
approximation polynomial which is at least of degree 75776! It is clear fromthe preceding
remarks how to extend this to the multivariate case (cf. also [7]).

6 Convergence of polynomial approximations of global solu-
tions of linear elliptic PDE and error estimates by a priori
estimates

Up to now we just considered (regular) polynomial interpolation on given sets of interpo-
lation points. In this section we consider standard problems in the theory of linear partial
differential equations and derive the convergence of our algorithm and error estimates (as
the mesh size of the sets of interpolation points converges to zero). We start with ellip-
tic equations and then consider hyperbolic problems. Similar results can be obtained for
initial-value boundary problems for parabolic equations (since analogous error estimates
can be obtained). In this case, however, it turns out that (at least for regular data) a
WKB-expansion of the fundamental solution has better convergence properties and error
estimates can be obtained by Safanov a priori estimates (cf. [8] and [6]). We shall consider
application of our algorithm to this case in the next section. Note that Since to get an error
from simple Taylor expansion in genera, because the interpolated function is unknown.

6. 1. Convergence for elliptic equations with regular data

We consider the Dirichlet problem for elliptic equations, i.e. an equation of the form

Lu = Z aa(az)% = f(z) (6.1)

lo| <k
on a domain  C R"™. coefficient functions
x — aq(x), (6.2)
and where u is given on the boundary, i.e.

u|aﬂ =g. (6.3)

We consider the classical case where k = 2 and €0 is bounded. We assume uniform ellipticity,
i.e. there exists a constant K > 0 such that for all x €

Z aij(2)&&; > K¢ (6.4)

ij=1
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In the classical case Schauder boundary estimates are available. We cite them in the
context of a standard existence result. for a scalar function A in 2 we introduce the norms

k
IRl =" > 1Dkl (6.5)

where
|Allo := sup |h(z)], (6.6)
€N
and i
IRl = IRl + 32 S HE (D), (6.7)
3=0|é|=j

where HY(f) is the Holder coefficient of a given function f in . We assume that the
coefficient functions @ — a;j(x) (diffusion terms), x — b;(x) (drift terms), the potential
term (z — c(z)), and the right side x — f(x) are uniformly Holder continuous (exponent
«a) such that
bd bd bd bd
”aij”a <C, HbZHa <C, ”c”a <C, HfHa <C (68)

for some generic constant C.

Theorem 6.1 Assume that conditions (6.4) and (6.8) hold, and assume that ¢ < 0. Fur-
thermore, assume that O belongs to C*T and that g belongs to C’gad. Then the inequalities

Jullst, < C(llgll + llullo + [ F1127)
(6.9)

< C (||gll + supgq lg] + Csupg | f] + || £115)

hold. Furthermore there exist a unique solution u € C5% to the Dirichlet problem.

The interpolation polynomial pg described in the preceding section is by construction such
that

Liu—pe) = 3 an(r) P — A p(a), (6.10)
lal<k
and
u—p@‘(m:Ag. (6.11)

It follows that

Theorem 6.2 Assume the same conditions as in theorem 6.1.. Then

lu—poll5ia < C (I Agll + supgq [Agl + Csupq [Af] + | AF][27) (6.12)

Note that this implies an L?-error even for the second derivatives of the global solution
function, hence essentially an estimate in H2(£2). Even stronger results can be obtained if
additional equations for the derivatives of u are considered (cf. |7]).

19



6. 2. Convergence for a hyperbolic linear partial differential equations
equation

We consider again the hyperbolic equation mentioned above of the form
Lu= fon O CQ, (6.13)

where

_ ou 0

and (h;;) is a symmetric matrix of signature (n, 1), if dimQ = n + 1. We assume that
some O C 2 is bounded by two spacelike surfaces>; and ¥, and swept out by a family of
spacelike surfaces Y. (s). Recall that the initial conditions

u=g and du = w. (6.15)

Let p be the interpolation polynom described above such that
Lu—p)=AfonOCQ. (6.16)
u—p=Ag and du = Aw. (6.17)

Then we use the following energy estimate

Proposition 6.3 Let u solve the intial value problem (6.13), (6.15). Let
O(s)=0n{t<s} (6.18)
(swept out by the spacelike surfaces X.(s)). Then

fo(s) lu|?2dV <

6.19
fz’;(s) |g?dS + C(s — s0) [5, (Ig]* + w|?) dS + C Jos) | f|2dV (019
for s € [so, s1].
This implies
Theorem 6.4 With the same assumptions as in propostion 6.2. we have
fo(s) lu—p|*dV <
(6.20)

s 18g12dS + C(s = s0) [y, (1891 + |w]?) dS + C [o,) |ASI?dV
for s € [so, s1].
Hence the polynomial interpolation scheme described in Section 4 leads to L?-convergence.

One can improve this scheme assuming regularity of solutions and considering systems of
equations including equations for derivatives of the solution u (cf. [7]).
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7 Applications to parabolic equations (connection to WKB-
expansions)

We summarize some results concerning WKB-expansions of parabolic equations (cf. [6] for
details). Let us consider the parabolic diffusion operator

) 9
—Lu=g -3 Zw wax,ax] =2 i biges (7.1)

where the diffusion coefficients a;; and the first order coefficients b; in (7.1) depend on the
spatial variable x only. In the following let 6t = T — t, and let

(xvy) - d(l’,y) >0, (‘Tvy) - Ck(xvy)r k>0 (72)

denote some smooth functions on the domain R” xR™. Then a set of (simplified) conditions
sufficient for pointwise valid WKB-representations of the form

_ 1 k
p(dt,x,y) = NoreT exp ( 2& —1—20 T yét) (7.3)

for the solution (¢,z) — p(dt, z,y).

3& — Lu = 0, with final value

U(O,ﬂf,y) = 5(33 - y)v
is given by
(A) The operator L is uniformly elliptic in R”, i.e. the matrix norm of (a;;(x)) is bounded

below and above by 0 < A < A < oo uniformly in z,

(B) the smooth functions z — a;;(x) and x — b;(z) and all their derivatives are bounded.

For more subtle (and partially weaker conditions) we refer to [6]. We consider the case
where there exists a global transformation to the Laplace operator. If we add the uniform
boundedness condition

(C) there exists a constant ¢ such that for each multiindex a and for all 1 <14, j,k < n,

o
Oz

8ajk
or®

< cexp (c|x|2) , (7.5)

Y

then the function d? = (z — y)? (in the transformed coordinates and ¢, equals its Taylor
expansion around y € R" i.e ¢, k > 0 have the power series representations

ce(z,y) = 4Chaly)oz® k>0. (7.6)

Moreover ¢, k > 0 are determined by the recursive equations

n 1 ) 1 di‘] 8CO
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where the boundary condition

oy, ) = —5 I\ fdet (@3 (y)) (7.9

determines ¢y uniquely for each y € R™, and for £k + 1 > 1 we have

d:v c C,
(k + Depsr(@,y) + 5 2 aij(@ )< 3 88];;1 T2 Bal;tl)
(7.9)

k  Oc 0O 92
= 5 2247 0 (%) g 9. gfcjl + 5200504 (7) 55 5’21 + 32 bi) gk
with boundary conditions

Ck+1($ay) = Rk(yvy) if z= Y, (710)

Ry, being the right side of (7.9). In case a;; = 0;; we have the representations

P (2,y) = (2 — ), (7.11)

i

1
ole.s) = (=) [ bly + o =), (r.12)

and )
Corn(@,9) = / Ruly + s — ), y)s*ds, (7.13)
0

Ry being again the right-hand-side of (7.9). The integrals can be taken out if the functions
x — bi(x) are given by multivariate power series and error estimates for the truncation
error in space and time are obtained (cf. [6, 8]). However, even if the coefficient functions
are analytic, i.e. equal locally a power series, it is not possible to approximate such a
function globally by their Taylor polynomial. As an example consider the equation

n

ou 1 1 Ou
— — —Au— =0 7.14
ot 2 b Ez: 1+ z; Ox; ( )
Here, the coefficient functions
1

are univariate locally analytic function with convergence radius 1. Such type of equations
occur in praxis of finance (cf. [4, 8]). In order to obtain an approximation of the WKB-
expansion say up to order 5, i.e. compute the coefficient functions

xﬁck(x7y)7k:07"' 757 (716)

we need a global approximation of the functions (7.15) and their derivatives up to order 10!
This is due to the recursion equations for the ¢x, k& > 1 which involve second derivatives
of c;_1. If we have 20 interpolation points on the z-axis this implies that our regular
interpolation algorithm computes a polynomial of order 231. We do the computation in a
more modest example in order to keep the resulting polynomial representable on one page
in the following section.
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8 A numerical example

The following polynomial is a similtaneous approximation of the function

f:00,54 CR—R
(8.1)
f@) =5

and its first, second, and third derivative on the domain [0,5,4] with 19 interpolation
points. Hence the degree of this univariate polynomial is 74. Note that the convergence
radius of f is 1.

75
Ppr6(z) = D am (@ — Tasea) "I (@ — 3y)? (8.2)
m=0
Note that d” . (1)
—1)"n!
—— | —— ) lz=0 = 57— lz=0 = (=1)"n! 8.3
dzn <1+az> o0 (14 z)n+1 la=0 = (=1)"n (8.3)
This leads to the values ag = 1, a; = —1, as = 1, and ag = —1 for the coefficients of

our interpolation polynomial at zg = 0. Note that the coefficients a; of the interpolation
polynomial tend to become smaller for large indexes ¢ as you would expect.
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ag = 1.0

a; = —1.000000000000, az = 1.000000000000, a3z = —1.000000000000
aq = 0.769230765432, a5 = —0.591715921811, ag = 0.455165657066

a7 = —0.350124490177, ag = 0.218822618520, ag = —0.136753442090
a1p = 0.085452696109, a1 = —0.053404312398, ai2 = 0.028144617397
a1z = —0.014953338935, a4 = 0.008262188243, a;5 = —0.005370784216
a1 = 0.003734873988, a7 = —0.003633027430, a1z = 0.004645502211
arg = —0.006813570816, azp = 0.007086610952, ag; = —0.007144432312
aze = 0.006238342564, as3 = —0.002646146059, az4 = —0.002374282360
azs = 0.008387675067, azs = —0.015766978592, azy = 0.024857498610
agg = —0.025373687351, a9 = 0.025025735340, asg = —0.023974098174
az; = 0.022321168853, a3z = —0.015945627926, as3 = 0.011155207224
azy = —0.007619506803, ass = 0.005069120726, azs = —0.002759684498
ag7 = 0.001479716734, aszgs = —0.000790172686, azg = 0.000430223475
aso = —0.000208511304, a1 = 0.000106279314, as2 = —0.000056281013
as3 = 0.000028862889, asq = —0.000011153733, ass = 0.000002201139
ass = 0.000002233629, as7 = —0.000004202246, asg = 0.000003699371
asg = —0.000002870941, asp = 0.000002068390, as; = —0.000001402599
ase = 0.000000753699, as3 = —0.000000375935, as4 = 0.000000159621
ass = —0.000000037499, ass = —0.000000015690, as7 = 0.000000032004
asg = —0.000000031616, asg = 0.000000023406, agy = —0.000000010968
ag1 = 0.000000001564, a2 = 0.000000005590, agz = —0.000000011521
ags = 0.000000012190, ags = —0.000000012095, ags = 0.000000011769
ag7 = —0.000000011467, aggs = 0.000000008698, agy = —0.000000006652
azp = 0.000000005132, a7; = —0.00009P003988, a7z = 0.000000002523

a7z = —0.000000001600, a74 = 0.000000001015, a7s = —0.000000000643

(8.4)



9 Conclusion

We have designed regular polynomial interpolation algorithms and variations which pro-
duce families of multivariate polynomials which solve linear systems of partial differential
equations on arbitrary sets of interpolation points. In our basic algorithm the members of
the family of polynomials are defined recursively each being an extension of the preceding
member in the sense that the preceding member agrees with a given member on the set of
interpolation points on which the preceding member satisfies the linear system of partial
differential equations. We have shown that the family of multivariate polynomials has the
global solution as its natural limit if some a priori information on the system of partial
differential equations is available. The information needed can variate from case to case.
In any case a solution should exist. We have shown how to use a priori estimates of elliptic
equations and of hyperbolic systems of equations in order to obtain error estimates adapted
to the regularity of the solution. Similar is true for parabolic equations. All this makes
our approach compatible with new techniques like sparse grids or weighted Monte-Carlo
algorithms developed in order to treat systems of higher dimension. In case of parabolic
equations we showed how regular polynomial interpolation of known functions can be used
in order to compute higher order approximations of WKB-expansions of fundamental so-
lutions. We also constructed extensions where the algorithm is parallelized on different
set of interpolation points an showed how these partial polynomial approximations can be
patched together to one multivariate polynom which fits the given system of linear partial
differential equations on the union of sets of interpolation points.
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