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Abstra
tWe 
onsider regular polynomial interpolation algorithms on re
ursively de�nedsets of interpolation points whi
h approximate global solutions of arbitrary well-posedsystems of linear partial di�erential equations. Convergen
e of the 'limit' of the re-
ursively 
onstru
ted family of polynomials to the solution and error estimates areobtained from a priori estimates for some standard 
lasses of linear partial di�erentialequations, i.e. ellipti
 and hyperboli
 equations. Another variation of the algorithmallows to 
onstru
t polynomial interpolations whi
h preserve systems of linear partialdi�erential equations at the interpolation points. We show how this 
an be applied inorder to 
ompute higher order terms of WKB-approximations of fundamental solutionsof a large 
lass of linear paraboli
 equations. The error estimates are sensitive to theregularity of the solution. Our method is 
ompatible with re
ent developments for so-lution of higher dimensional partial di�erential equations, i.e. (adaptive) sparse grids,and weighted Monte-Carlo, and has obvious appli
ations to mathemati
al �nan
e andphysi
s.1 Introdu
tionThis work shows how multivariate interpolation te
hniques 
an be 
ombined with analyti
information of linear partial di�erential equations (i.e. a priori estimates and/or WKBrepresentations of solutions) in order to design e�
ient and a

urate numeri
al s
hemesfor solving (systems) of linear partial di�erential equations. These s
hemes are nothingbut sequen
es of multivariate polynomials whi
h are 
onstru
ted re
ursively su
h thatthey solve a given linear system of partial di�erential equations on a �nite dis
rete set ofinterpolation points. However, additional information is needed in order to ensure thatthe sequen
e of interpolation polynomials 
onverges to a (or, if uniqueness is proved, the)global solution of a given linear system of partial di�erential equations. As we shall see, thisinformation 
an be provided by a priori estimates whi
h in turn lead us to error estimatesin regular norms dependent on the regularity of the solution. We examine the situation inthe 
ase of linear ellipti
 equations with variable 
oe�
ients. Another possibility is that(more or less) expli
it representations of solutions are known whi
h lead to problems whi
hare easier to solve. A prominent example is the WKB-expansion whi
h was investigatedin [6℄. The re
ursive stru
ture of WKB 
oe�
ient fun
tions and the error analysis lead usto the problem of regular polynomial approximation. In this introdu
tionary Se
tion weour method on an abstra
t level.1. 1. Regular polynomial interpolationSin
e we are interested in the relationship between multivariate polynomial interpolationand approximation of solutions of partial di�erential equations, our fo
us will be on mul-tivariate polynomial interpolation. However, in order to make basi
 ideas more a

essible1



we shall des
ribe algorithms in the univariate 
ase �rst and then generalize to the mul-tivariate 
ase. It is well known that polynomial interpolation in the multivariate 
ase isquite di�erent from the univariate 
ase in general. However, in our approa
h whi
h aimsat solving linear systems of partial di�erential equations or aims at supplementing 
ertainstrategies of solving partial di�erential equations many features are already present in theunivariate framework. In order to avoid misunderstandings, we dwell a little on this point.Classi
ally, the problem of multivariate interpolation 
an be stated as follows (
f. [11℄):Given a set of interpolation points Θ = {x1, · · · , xN} and an N-dimensionalspa
e PΘ of polynomials �nd, for given values y1, · · · , yN , a unique polynomial f ∈ P su
hthat
f(xj) = yj, j ∈ 1, · · · ,N. (1.1)In this form it turns out that there is an intri
ate relation between sets of interpolationpoints and interpolation spa
es that must be satis�ed in order that the problem 
an be
onsidered to be well-posed. Either we have to make some restri
tions 
on
erning the setof interpolation points Θ (
f. [11℄) or we 
onsider Θ to be �xed and 
onsider the problemof 
onstru
ting the polynomial spa
e Pθ (
f.[1℄). This amounts to a 
onstru
tion of themap

Θ → PΘ (1.2)with additional 
onstraints su
h as minimality of degree (
f. [11, 1℄) or monotoni
ity (
f.[1℄). In this paper we are interested in interpolation algorithms with the following features
• there are no essential restri
tion on the dis
rete set Θ of interpolation points ex
eptthat Θ ⊂ D, where D is the domain of the fun
tion to be interpolated.
• the map Θ → PΘ is monoton (indeed our basi
 algorithm is an extension of multi-variate versions of Newton's interpolation algorithm).
• the algorithm 
an be extended to ve
tor valued interpolation fun
tions g : D ⊆

R
n → R

k and if g satis�es a system of linear partial di�erential equations, thenthe interpolation polynomial p solves the same system of linear partial di�erentialequations on the given set Θ of interpolation points.
• the algorithm is numeri
ally stable and pra
ti
al with respe
t to the problem thatthe interpolation fun
tion f and arbitrary set of partial derivatives of f are to beinterpolated simultaneously. For the appli
ation of higher order approximation ofthe fundamental solution of linear paraboli
 equations we 
omute a

urate approx-imations of derivatives of smooth fun
tions up to order 10 in order to obtain anapproxmation of order 5 of the WKB-expansion of the fundamental solution.
• the algorithm 
an be re�ned in order to solve well-posed linear systems of partialdi�erential equations dire
tly.
• the algorithm 
an be 
ombined with 
ollo
ation methods in an e�
ient way; it 
anbe partially parallelized.
• the algorithm allows for error estimates whi
h depend on the regularity of the solutionsu
h that the algorithm is 
ompatible with methods for higher dimensional problemsof linear systems of partial di�erential equations su
h as sparse grids, adaptive sparsegrids, and weighted Monte-Carlo. 2



First we 
onsider the problem of polynomial approximation p of a regular (i.e smooth or�nitely many times di�erentiable) fun
tion
f : D ⊆ R

n → R (1.3)de�ned on dis
rete subset of Θ ⊂ D where for m given linear partial di�erential operators
Li =

∑

|α|≤βi

ai
α(x)∂α, (1.4)we require that

Lif(xj) = Lip(xj) for 1 ≤ i ≤ m (1.5)for some �nite set of points xj ∈ Θ ⊂ D. As indi
ated above we shall allow that the inter-polation set Θ 
an be 
onstru
ted re
ursively (and, hen
e, extended arbitrarily within thedomain of the interpolation fun
tion). Investigations of spe
i�
 instan
es of this problem
an be found in the literature on polynomial interpolation (
f. the survey paper of [10℄ forthe development up to the year 2001). Note that other algorithms of natural interpolationof Ck-fun
tions have been proposed (
f.[5℄ for hints at the history and further referen
es).The paper is organized as follows. In Se
tion 1.2 we introdu
e the partial di�erential equa-tions for whi
h we seek global regular interpolation polynomials of their global solutions.All basi
 types of partial di�erential equations, i.e. ellipti
 equations, paraboli
 equations,and hyperboli
 equations are 
onsidered. While the basi
 algorithm is quite similar forea
h type of partial di�erential equation, we shall see, however, that the 
onvergen
e ofthe s
heme of re
ursively de�ned interpolation polynomials depends on very di�erent apriori estimates for di�erent type of equations. In 
ase of se
ond order ellipti
 equations
lassi
al S
hauder boundary estimates 
an be used, while in the 
ase of hyperboli
 equa-tions energy estimates are 
onsidered. In the 
ase of paraboli
 equations we refer ba
kto Safanov-Krylov estimates 
onsidered in the 
ontext of the trun
ation error analysis ofWKB-expansions. In Se
tion 2.1 we introdu
e �rst an extension of Newton's polynomialalgorithm whi
h interpolates a given fun
tion and its derivatives up to some given order
k simultaneously. Se
tion 2.2. des
ribes a variation of this algorithm whi
h interpolates agiven fun
tion su
h that a given set of partial di�erential equations is preserved. Se
tion3 dis
usses the extension to the multvariate 
ase. In Se
tion 4 we re�ne the algorithm and
onstru
t polynomials whi
h satisfy a given linear (i.g. partial) di�erential equation ona given set of interpolation points, i.e. there is no given fun
tion to be interpolated. InSe
tion 5 we 
onsider re�nements whi
h show how polynomials 
onstru
ted on disjoint setsof interpolation points 
an be synthesized in order to get one polynomial whi
h interpo-lates on the union of sets of interpolation points. Naturally, parallelization is 
onsideredinthis 
ontext. In Se
tion 6 we show how a priori estimates of ellipti
 equations (standardS
hauder boundary estimates) and hyperboli
 equations (energy estimates) lead to 
on-vergent s
hemes implied by error estimates. Se
tion 7 dis
usses a spe
ial use of regularpolynomial interpolation for paraboli
 equations where the global solution is given in theform of a WKB- expansion. Se
tion 8 provides a numeri
al example of global regular poly-nomial interpolation of a lo
ally analyti
 fun
tion up to the third derivative. In Se
tion 9we provide a summary and give an outlook on 
urrent resear
h and resear
h in the nearfuture. Before we start with the des
ription of the algorithm, we state the typi
al linearpartial di�erential equations and indi
ate the di�erent types of approximations and errorestimates whi
h we aim at. 3



1. 2. Regular interpolation and partial di�erential equationsWe 
onsider the three standard types of linear partial di�erential equations, namely ellipti
equations, paraboli
 equations, and hyperboli
 equations, and exemplify di�erent types ofappli
ation and extension.
• The most popular examples of ellipti
 partial di�erential equations are of the se
ondorder form, i.e.

n
∑

j,k

ajk(x)
∂2u

∂xj∂xk
+
∑

l

bl(x)
∂u

∂xl
+ c(x)u = f(x), (1.6)to be solved on a domain Ω ⊆ R

n with the boundary 
ondition
u
∣

∣

∣

∂Ω
= g (1.7)for some fun
tion f : ∂Ω → R whi
h is usually assumed to be Lips
hitz 
ontinuousat least. Here, ajk are (at least) measurable 
oe�
ient fun
tions satisfying for some
onstant c, and ellipti
ity means that

∑

jk

ajk(x)ξiξj ≥ c > 0 (uniformly in x). (1.8)We 
onstru
t an extension of the polynomial interpolation algorithm whi
h produ
esa multivariate polynomial solving this ellipti
 equation on an arbitrary grid of inter-polation points. In order to obtain error estimates b standard boundary S
hauderestimates in this paper we shall make some regularity assumptions. We derive 
onver-gen
e of the family of multivariate polynomials 
onstru
ted by our our interpolations
heme to the global solution of the linear ellipti
 equation on a bounded domainand we derive error estimates from a priori estimates.
• Paraboli
 equations of the form

∂u

∂t
− Lu = 0, (1.9)on D := Ω × (0, T ), (Ω ⊆ R

n, with
u(0, x) = δy(x) := δ(x − y), y ∈ R

n, (1.10)where δ is the Dira
 delta distribution, and where
Lu ≡ 1

2

∑

ij

aij(x)
∂2u

∂xi∂xj
+
∑

i

bi(x)
∂u

∂xi
(1.11)is an ellipti
 operator. The solution of this equation is 
alled fundamental solution,be
ause solutions of standard paraboli
 initial-value boundary problems 
an be rep-resented by 
onvolution integrals of data fun
tions with the fundamental solution.The standard assumptions for su
h a fundamental solution to exist are4



(A) The operator L is uniformly paraboli
 in R
n, i.e. there exists 0 < λ < Λ < ∞su
h that for all ξ ∈ R

n \ {0}

0 < λ|ξ|2 ≤
n
∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.(B) The 
oe�
ients of L are bounded fun
tions in R
n whi
h are uniformly Hölder
ontinuous of exponent α (α ∈ (0, 1)).If some regularity assumptions on the 
oe�
ients hold in addition, then it 
an beshown that the fundamental solution p is of the form

p(t, x, y) =
1√
2πt

n exp



−d2(x, y)

2t
+
∑

k≥0

ck(x, y)tk



 , (1.12)with some regular 
oe�
ient fun
tions d2 and ck. We shall show how our regularpolynomial interpolation algorithm 
an be used to 
ompute the fundamental solutionin terms of this representation.Remark 1.1 The algorithm designed in the 
ase of ellipti
 equations 
an be appliedto the paraboli
 
ase dire
tly, of 
ourse. However, it turns out that the 
onvergen
eis better if the spe
ial representation (1.12) is used.
• As an example of a hyperboli
 equation we 
onsider an equation of the form

Lu = f in Ω, (1.13)where
Lu ≡

∑

ij

hij
∂u

∂xi∂xj
+
∑

i

∂

∂xj
+ c(x)u (1.14)and (hij) is a symmetri
 matrix of signature (n, 1), if dimΩ = n + 1. We assumethat some O ⊂ Ω is bounded by two spa
elike surfa
es Σi and Σe and swept out bya family of spa
elike surfa
es Σe(s). We assume the initial 
onditions

u = g and du = ω (1.15)where g is a fun
tion on Ω and Ω is a 1-form.2 Interpolation algorithm (univariate 
ase)We start with the des
ription of the algorithm whi
h produ
es polynomials whi
h satisfysome given requirements on interpolation points. Our starting point is an extension ofNewton's polynomial interpolation method su
h that the interpolation polynomial and itsderivatives up to a given order k (an integer) equal a given fun
tion and its derivativesup to order k at the interpolation points. For simpli
ity of representation and sin
e theessential features of the algorithm 
an be demonstrated for one dimensional fun
tions, wedes
ribe our ideas �rst in the univariate 
ase and then generalize to the multivariate 
asein the next se
tion. 5



2. 1. Extension of Newton's methodLet us re
all the Newtonian interpolation for an univariate fun
tion
f : [a, b] ⊂ R → R. (2.1)Given a dis
rete set of interpolation points D = {x0, x1 · · · , xN} ⊂ [a, b] we want to
onstru
t a polynomial

p : [a, b] ⊂ R → R su
h that
f(xi) = p(xi) for all xi ∈ D.

(2.2)The idea of the basi
 Newton interpolation algorithm is that instead of looking for somepolynomial of form ∑N
i=1 bix

i for some 
onstants bi we may write
N
∑

l=0

alΦl(x) (2.3)with
Φ0(x) = 1 and Φl(x) = Πl

i=0(x − xi) for l ≥ 1. (2.4)In order to determine a0, · · · aN we then may solve the system
R0a :=















1 0 0 · · · 0
1 φ1(x1) 0 · · · 0
1 φ1(x2) φ2(x2) · · · 0... ... ... ...
1 φ1(xN ) φ2(xN ) · · · φN (xN )





























a0

a1

a2...
aN















=















f(x0)
f(x1)
f(x2)...
f(xN )















(2.5)This leads to an L2-approximation of the fun
tion f similar to the Gaussian algorithm.Note however, that the matrix R0 is a lower diagonal. Hen
e the linear system 
an besolved easily. Moreover the matrix 
ondition number is mu
h better than that of theVandermonde matrix used in the 
lassi
al Gaussian interpolation. We extend this idea toa Ck-norm interpolation, i.e. we design an algorithm that approximates f up to the k-thderivative, i.e. we 
onstru
t a polynomial
q : [a, b] ⊂ R → R su
h that
f (l)(xi) = q(l)(xi) for all xi ∈ D and all l ≤ k,

(2.6)where for a fun
tion g : [a, b] ⊂ R → R g(l) denotes the derivative of order l while g = g0.We 
onsider the polynomial
(N+1)(k+1)−1

∑

m=0

amΦm,k(x) (2.7)where
Φm,k(x) = (x − x

m div(k+1))
m mod(k+1)Π

mdiv(k+1)−1
l=0 (x − xl)

k+1, (2.8)where, by 
onvention, we understand
Π−1

l=0(x − xl)
k+1 := 1. (2.9)6



For simpli
ity of notation we sometimes use the abbreviations
p(m) = mdiv(k + 1) and q(m) = mmod(k + 1). (2.10)Next we de�ne

Φ
(l)
m,k(x) :=

d

dxl
Φm,k(x), (2.11)and for ea
h k ≥ 1 the linear system

Rk















a0

a1

a2...
a(k+1)(N+1)−1















=

























f(x0)
f ′(x0)...

f (k)(x0)
f(x1)...

f (k)(x(k+1)(N+1)−1)

























(2.12)
where Rk is a (N + 1)(k + 1) × (N + 1)(k + 1)-matrix determined by (k + 1) × (k + 1)matri
es Alm

k as follows:
Rk :=















A00
k Zk Zk Zk · · · Zk

A10
k A11

k Zk Zk · · · Zk

A20
k A21

k A31
k Zk · · · Zk... ... ... ... ... ...

AN0
k AN1

k AN2
k AN3

k · · · ANN
k















, (2.13)where Zk is the (k + 1) × (k + 1) matrix with 0 entries, and
A

ij
k = Ai

k(xj) (2.14)with
A

ij
k :=



















Φ(k+1)p(i),k(xj) Φ(k+1)p(i)+1,k(xj) Φ(k+1)p(i)+2,k(xj) · · · Φ(k+1)p(i)+k,k(xj)

Φ
(1)
(k+1)p(i),k(xj) Φ

(1)
(k+1)p(i)+1,k

(xj) Φ
(1)
(k+1)p(i)+2,k

(xj) · · · Φ
(1)
(k+1)p(i)+k,k

(xj)

Φ
(2)
(k+1)p(i),k(xj) Φ

(2)
(k+1)p(i)+1,k

(xj) Φ
(2)
(k+1)p(i)+2,k

(xj) · · · Φ
(2)
(k+1)p(i)+k,k

(xj)... ... ... ... ...
Φ

(k)
(k+1)p(i),k(xj) Φ

(k)
(k+1)p(i)+1,k

(xj) Φ
(k)
(k+1)p(i)+2,k

(xj) · · · Φ
(k)
(k+1)p(i)+k,k

(xj)



















.(2.15)Note that
A00

k :=















1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 2 0 · · · 0... ... ... ... ... ...
0 0 0 0 · · · k!















. (2.16)This leads to a system whi
h 
an be solved row by row. It is therefore very easy toimplement and numeri
ally well-
onditioned.Remark 2.1 In order to avoid large entries in the matri
es Alm
k one may 
onsider basisfun
tions of form 1

l!Φ
(l)
(k+1)p(i),k, but we do not deal with the pe
uliar ni
eties of 
omputationhere. 7



2. 2. Interpolation preserving linear systems of di�erential equationsThe pre
eding algorithm 
an be adapted it in order to 
onstru
t a polynomial approxima-tion p of f where the k di�erential operators
Lif(x) =

∑

j≤qi

ai
j(x)

d

dxj
f(x), i = 1, · · · , k (2.17)are preserved on a dis
rete set of points Θ = {x0, · · · , xN} in the sense that

Lif(xj) = Lip(xj) for xj ∈ Θ. (2.18)At this point the linear system of the operators {Li|1 ≤ i ≤ k} is quite arbitrary; we justassume that the operators are de�ned pointwise, i.e. x → ai
j(x) are 
lassi
al fun
tionswhi
h 
an be evaluated pointwise (at least on the set of interpolation points). Note thatwe do not ask about 
onvergen
e of a family of interpolation polynomials to at this point.There are several possibilities to extend our pre
eding algorithm. One is the following. Let

Qi :=
{

j|ai
j 6= 0

} (2.19)and de�ne
Lm

i =
∑

j∈Qi,j≤m

a1
ij
(x)

dij

dxij
. (2.20)We start with

Q1 = {i11, · · · , i1r1} , (2.21)and assume that
i11 < · · · < i1r1 (2.22)We 
onsider �rst the interpolation point x0 and start with the following ansatz for theinterpolation polynomial

p10(x) =
∑

i1j∈Q1

b10
ij

(x − x0)
i1j . (2.23)We assume f(x0) = p10(x0) = 0 w.l.o.g. ; we shall see later how we interpolate valuesof f di�erent from zero at the other interpolation points x1, · · · , xN . First we apply theoperator

Li1
1 ≡ a1

i1
(x)

di1

dxi1
(2.24)to f and p10 at x0. This leads to

i1!b
10
i1

= a1
i1

(x0)
di1f

dxi1
(x0) ⇒ b10

i1
=

1

i1!
a1

i1

dijf

dxi1
(x0) (2.25)Indu
tively we assume that the 
oe�
ients b10

ij
have been de�ned up to the index im forsome m < r1 and that the operator Lim

1 has been de�ned a

ordingly. We apply theoperator
L

im+1

1 ≡ Lim
1 + a1

im+1
(x)

dim+1

dxim+1
(2.26)8



to f and p10 at x0. For an integer s with m + 1 ≤ s ≤ r1 de�ne
ps
10(x) =

s
∑

j=1

b10
ij

(x − x0)
ij . (2.27)Then we have

L
im+1

1 p10(x0) = Lim
1 p10(x0) + a1

im+1
(x0)

dim+1

dxim+1
p10(x0) =

Lim
1 pim

10 (x0) + im+1!a
1
im+1

(x0)b
10
im+1

= L
im+1

1 f(x0).

(2.28)This gives b10
im+1

. Next indu
tively assume that an interpolation polynomial p1k has been
onstru
ted whi
h interpolates f on the set of interpolation points {x0, · · · , xk} for somepositive integer k with k < N subje
t to the 
ondition
L1f(xi) = p1k(xi) for 1 ≤ i ≤ k. (2.29)First we extend that polynomial in order to interpolate f at the point xk+1. We 
onsiderthe ansatz

p0
1(k+1)(x) = p1k(x) + b

1(k+1)
0 Πk

l=0(x − xl)
q1 . (2.30)We then get b

1(k+1)
0 from the equation

p0
1(k+1)(xk+1) = f(xk+1). (2.31)The ansatz for p1(k+1) (i.e. the interpolation polynomial whi
h preserves L1f on the setof interpolation points {x1, · · · , xk+1}) is

p1(k+1)(x) = p0
1(k+1)(x) +

∑

ij∈Q1

b
1(k+1)
ij

(x − xk+1)
ijΠk

l=0(x − xl)
q1+1 (2.32)and the determination of 
oe�
ient 
onstants b

1(k+1)
ij

is similar to the pro
edure for theinterpolation point x0 des
ribed above. Pro
eeding indu
tively, we are lead to the polyno-mial p1 whi
h interpolates f at the interpolation points of Θ = {x0, · · · , xN} su
h that
L1p1(xj) = L1f(xj) for all xj ∈ Θ. (2.33)Finally assuming that for some integer s < k the polynomial ps satis�es the 
ondition that

ps(xj) = f(xj) for xj ∈ Θ

Lips(xj) = Lif(xj) for xj ∈ Θ and i ≤ s,

(2.34)it is 
lear that we only need to 
onsider the redu
ed operator
Ls+1 ≡

∑

ijj∈Qs+1\∪s
i=1Qi

as+1
ij

(x)
dij

dxij
. (2.35)and pro
eed analogously. 9



3 Extension to the multivariate 
aseNext we 
onsider generalizations to the multivariate 
ase. There are several possibilitiesbut the most simple seems to be the following. First we formulate the problem in a waythat will turn out to be useful in the 
ontext of polynomial interpolation of global solutionsof linear systems of partial di�erential equations. In its most simple form it is a form ofmultivariate Newton interpolation: given a fun
tion
f : S ⊂ R

n → R (3.1)we want to 
onstru
t a polynomial
p : S ⊂ R

n → R su
h that
f(xi) = p(xi) for all xi ∈ D ⊆ S,

(3.2)where D = {x0, x1, · · · , xn} is some dis
rete sets of points in R
n whose 
oordinates willbe denoted by supers
ript indi
es as x

j
i , j = 1, · · · , n. This is done then by re
ursivede�nition of polynomials p0, p1, · · · . First, de�ne

p0(x) ≡ f(x0). (3.3)Next, ansatz and equation
p1(x) ≡ f(x0) + a1Π

n
i=1(x

i − xi
0) = f(x1) (3.4)leads to the determination of p1 by

a1 = f(x1)−f(x0)
Πn

i=1(xi−xi
0)

(3.5)Next assume that p0, p1, · · · , pq have been de�ned. Then ansatz and equation
pq+1(xq+1) ≡ p(xq+1) + aq+1Π

q
k=0Π

n
i=1(x

i − xi
k) = f(xq+1) (3.6)leads to the determination of pq+1 by

aq+1 =
f(xq+1)−pq(xq+1)

Πq

k=0Π
n
i=1(x

i−xi
k
) (3.7)3. 1. Extension of Newton's methodNext we extend a multivariate version of Newton's method, i.e. we design an algorithmthat approximates f up to the β-th derivative (β = (β1, · · · , βn) being some multiindex)where we 
onstru
t a polynomial

q : S ⊂ R → R su
h that
∂f
∂xγ (xi) = ∂q

∂xγ (xi) for all xi ∈ D ⊆ S and all γ ≤ β.

(3.8)where β is given (i.e. the multivariate substitute for k in the univariate 
ase des
ribedabove), and ordering is in the following sense:10



De�nition 3.1 Let xα and xβ be monomials in R [x1, · · · , xn]. We say that xα > xβ (lexi
ographi
al order) if∑i α
i >

∑

i β
i or ∑i α

i =
∑

i β
i, and in the di�eren
e α−β ∈ Z

nthe left-most non zero entity is positive.Now, let α0, α1, · · · , αm, · · · an enumeration of multiindi
es with respe
t to this ordering.We de�ne a sequen
e of polynomials pα0 , pα1 , · · · , pαm , · · · re
ursively. First, let
pα0(x) = aα0 +

∑

γ≤β

aα0γΠn
i=1(x

i − xi
α0

)γi . (3.9)If pα0 , · · · , pαm−1 have been de�ned, then we de�ne
pαm(x) = pαm−1(x)+

∑

γ≤β aαm−1γΠn
i=1(x

i − xi
αm−1

)γ
i

Πm−1
j=0 Πn

i=1(x
i − xi

αj
)β

i+1.

(3.10)This leads to a linear system to be solved for a ve
tor (aα0 , · · · , aαN β) of length (N +
1)
(
∑

i βi + 1
)

Rβ





















aα0...
aα0β

aα1...
aαN β





















=





















f(xα0)...
f (β)(xα0)
f(xα1)...

f (β)(xαN
)





















(3.11)with
Rβ :=















A00
β Zβ Zβ Zβ · · · Zβ

A10
β A11

β Zβ Zβ · · · Zβ

A20
β A21

β A31
β Zβ · · · Zβ... ... ... ... ... ...

AN0
β AN1

β AN2
β AN3

β · · · ANN
β















(3.12)We abbreviate ∑β =
∑

i(β
i + 1) and de�ning p(m) = m ÷∑β we have

A
ij
k :=



















ΦP

βp(i),β(xj) ΦP

βp(i)+β1,β(xj) ΦP

βp(i)+β2,β(xj) · · · ΦP

βp(i)+β,β(xj)

Φ
(β1)
P

βp(i),β(xj) Φ
(1)
P

βp(i)+β1,β
(xj) Φ

(β1)
(k+1)p(i)+β2,β

(xj) · · · Φ
(β1)
P

βp(i)+β,β
(xj)

Φ
(β2)
P

βp(i),β(xj) Φ
(β2)
P

βp(i)+β1,β
(xj) Φ

(β2)
P

βp(i)+β2,k
(xj) · · · Φ

(β2)
P

βp(i)+β,β
(xj)... ... ... ... ...

Φ
(β)
P

βp(i),β(xj) Φ
(β)
P

βp(i)+β1,β
(xj) Φ

(β)
P

βp(i)+β2,β
(xj) · · · Φ

(β)
P

βp(i)+β,β
(xj)



















.(3.13)3. 2. Multivariate Interpolation preserving linear systems of PDEsSimilar to the univariate 
ase one 
an adapt the pre
eding algorithm to the interpolationof multivariate fun
tions, i.e. interpolate f by a polynomial p su
h that f = p, and
Lif(x) = Lip(x) for x ∈ Θ. (3.14)11



where Θ = {x0, · · · , xN} is the set of interpolation points, and the partial di�erentialoperators are de�ned by
Lif(x) =

∑

|α|≤qi

ai
α(x)∂αf(x), = 1, · · · , k. (3.15)The pro
edure is analogue to that des
ribed in Se
tion 2.2. (
f.also [7℄).4 Approximation of global solutions of linear partial di�er-ential equationsWe re�ne the algorithm further in order to solve linear partial di�erential equations glob-ally. In this 
ase the fun
tion u to be approximated is not known. In this se
tion weshall simply des
ribe an algorithm whi
h 
onstru
ts a polynomial whi
h sati�es a linearsystem of partial di�erential equations on an arbitrary set of interpolation points. It is not
lear, however, if this polynomial approximation 
onverges to the solution of the system.To ensure that and in order to estimate the rate of 
onvergen
e we shall need the a prioriestimates and regularity results. Note however, that the regularity 
onstraints on the so-lution maybe low for problems on 
ompa
t domains as any 
ontinuous solution fun
tions

u 
an be approximated by a families of polynomial fun
tions approximating u. Therefore,prin
ipally, the families of polynomial fun
tions 
onstru
ted here may approximate 
ontin-uous global solutions in vis
osity sense. An investigation of this problem will be 
onsideredelsewhere in a more general framework where we in
lude some 
lass of nonlinear problems.In order to make the basi
 ideas transparent we 
onsider �rst s
alar linear problems. Weexemplify our algorithm �rst in the 
ase of dimension n = 1 and then generalize to the
ase n > 2. What we have in mind here are ellipti
 equations but we need the ellipti
ity
ondition only when we wan to prove that the family of polynomials 
onstruxted 
onvergesto the global solutions. Then we exemplify our method in the 
ase of a typi
al linear �rstorder system. It is then 
lear how to generalize to systems of linear equations of any order.4. 1. The 
ase s
alar se
ond order equations of dimension n = 1We 
onsider the simple boundary value problem
L1u ≡ a(x)

d2u

dx2
+ b(x)

du

dx
+ c(x)u = f(x) on (d, e) ⊂ R, (4.1)with the boundary 
ondition u(d) = cd and u(e) = ce (a
tually an ordinary di�erentialequation). If a(x) ≥ λ > 0 for all x ∈ R, then we have an ellipti
 operator, but this is notan assumption whi
h we need to 
onstru
t an univariate polynomial whi
h satis�es theboundary problem on the interpolation points.We start with the point d. We 
onstru
t a list of polynomial qm,m ≥ 0. We de�ne the qmin substeps. Let p0 = a0. In order that p0 satis�es the boundary 
ondition at x = d weimpose

p0 = a0 = cd (4.2)Next we de�ne
p1(x) = a0 + a1(x − d) (4.3)12



In order to satisfy the se
ond boundary 
ondition we get
p1(e) = a0 + a1(e − d) = cd + a1(e − d) = ce ⇒ a1 =

ce − cd

e − d
. (4.4)It is 
lear that p1 preserves the boundary 
onditions, i.e. p(d) = u(d) = cd and p(e) =

u(e) = ce. Next let x0 be the �rst interpolation point (any point in the interval (d, e). Wewant to ensure that
a(x0)

d2p

dx2
(x0) + b(x0)

dp

dx
(x0) + c(x0)p(x0) = f(x0). (4.5)In order to ensure this, we de�ne a polynomial whi
h is an extension of p0 in three steps.First, de�ne

p2(x) = a0 + a1(x − d) + a4(x − x0)
2(x − d)(x − e) (4.6)Plugging in and evaluating at x = x0 we get

a(x0)2a4(x0 − d)(x0 − e) + b(x0)a1 + c(x0)(a0 + a1(x0 − d)) = f(x0) (4.7)Sin
e a0, a1 are known we get (re
all that x0 6= d and x0 6= e)
a4 =

f(x0) − c(x0)(a0 + a1(x0 − d)) − b(x0)a1

2a(x0)(x0 − d)(x0 − e)
. (4.8)Next de�ne

p3(x) = p2(x) + a3(x − x0)(x − xd)(x − xe). (4.9)Plugging in and evaluating at x = x0 we get (assuming that )
L1p3(x0) = L1p2(x0) + a(x0)a3(2(x0 − d)

+2(x0 − xe)) + b(x0)a3(x0 − d)(x0 − e) = f(x0).
(4.10)Hen
e, (provided that x0 6= d and x0 6= e),

a3 =
f(x0) − L1p2(x0)

a(x0)(2(x0 − d) + 2(x0 − e)) + b(x0)(x0 − d)(x0 − e)
(4.11)Finally, �nishing the �rst indu
tive step of re
ursive de�nition of the polynomial family

(qm)m∈N

p4(x) = p3(x) + a2(x − d)(x − e). (4.12)Plugging in and evaluating at x = x0 we get (assuming that )
L1p4(x0) = L1p3(x0) + 2a(x0)a2 + b(x0)((x0 − d) + (x0 − e)) = f(x0). (4.13)Hen
e, (re
all again that x0 6= d and x0 6= e),

a2 =
f(x0) − L1p3(x0) − b(x0)((x0 − d) + (x0 − e))

2a(x0)((x0 − d) + 2(x0 − e))
(4.14)Now we 
an de�ne

q1(x) = p4(x) (4.15)13



Next assume that the polynomials q1, · · · , qk have been de�ned. This means that we have
omputed the polynomial 
oe�
ients a0, a1, · · · , a2+3k. Then qk+1 is de�ned via
qk+1(x) = qk(x) + (x − d)3(x − e)3Πk

l=0(x − xl)
3zk(x), (4.16)where zk is a polynomial fun
tion whi
h will be de�ned in three substeps. First, let

qk+1,1(x) = qk(x) + a2+3(k+1)(x − xk+1)
2(x − d)3(x − e)3Πk

l=0(x − xl)
3 (4.17)Plugging in leads to

L1qk+1,1(xk+1) = L1qk(xk+1) + a(xk+1)2a2+3(k+1)(xk+1 − d)3×

(xk+1 − e)3Πk
l=0(xk+1 − xl)

3 = f(xk+1).

(4.18)Hen
e,
a2+3(k+1) =

f(xk+1) − L1qk(xk+1)

a(xk+1)2(xk+1 − d)3(xk+1 − e)3Πk
l=0(xk+1 − xl)3

(4.19)Next, let
qk+1,2(x) = qk+1,1(x) + a2+3k+2(x − xk+1)(x − d)3(x − e)3Πk

l=0(x − xl)
3 (4.20)We de�ne

R(x) = (x − d)3(x − e)3Πk
l=0(x − xl)

3. (4.21)Plugging in leads to
L1qk+1,2(xk+1) = L1qk+1,1(xk+1)+

a(xk+1)2a2+3k+2
d2

dx2 R(xk+1) + b(xk+1)a2+3k+2
d
dx

R(xk+1) = f(xk+1).

(4.22)Hen
e,
a2+3k+2 =

f(xk+1) − L1qk+1,1(xk+1)

a(xk+1)
d2

dx2 R(xk+1) + b(xk+1)
d
dx

R(xk+1)
(4.23)Finally, let

qk+1,3(x) = qk+1,2(x) + a2+3k+1(x − d)3(x − e)3Πk
l=0(x − xl)

3

= a2+3k+1R(x)
(4.24)Plugging in leads to

L1qk+1,3(xk+1) = L1qk+1,2(xk+1) + a(xk+1)a2+3k+1
d2

dx2 R(xk+1)

+b(xk+1)a2+3k+1
d
dx

R(xk+1) + c(xk+1)a2+3k+1R(xk+1) = f(xk+1).

(4.25)Hen
e,
a2+3k+2 =

f(xk+1) − L1qk+1,2(xk+1)

a(xk+1)
d2

dx2 R(xk+1) + b(xk+1)
d
dx

R(xk+1) + c(xk+1)R(xk+1)
. (4.26)It is 
lear how to pro
eed indu
tively in order to get a family of interpolation polyno-mials whi
h satisfy the di�erential equation on an in
reasing set of interpolation points.Note,however,that we have not used any stru
tural information about the 
oe�
ients atthis point. This means that the equation may be ill-posed,and 
onvergen
e 
annot beguaranteed. 14



4. 2. The 
ase of s
alar linear partial di�erential equationsFor a positive integer k 
onsider an equation of form
Lku ≡

∑

|α|≤k

aα(x)
∂αu

∂xα
= g(x), (4.27)to be solved on the domain Ω where

u
∣

∣

∣

∂Ω
= f (4.28)What we have in mind is an ellipti
 equation f order k, but ellipti
ity is not required inorder to des
ribe the algorithm whi
h produ
es a family of multivariate polynomials whi
hsatisfy the equation on a set of interpolation points in Ω. Ellipti
ity be
omes importantwhen we want to show that the family of polynomial 
onverges to the solution of theequation (assuming that there is an unique global solution). For simpli
ity of notation we
onsider the 
ase k = 2, i.e. the situation of (1.9). Assume that f ∈ Ck and 
hoose adis
rete interpolation set Θb ⊂ ∂Ω. Then we 
an apply the extended Newton algorithm ofSe
tion 3 in order to produ
e a polynomial pb : R

n → R su
h that
pb(x) = f(x) for all x ∈ Θb

∂pb

∂xα = ∂pb

∂xα for all α with |α| ≤ l and x ∈ Θb

(4.29)We assume that Θb = {x0b, · · · , xMb} with xib = (x1
ib, · · · , xn

ib) and de�ne
Φb(x) = ΠMb

i=0bΠ
n
j=1(x

j − x
j
i )

l+1. (4.30)Next let θint ⊂ Ω \ ∂Ω be a set of interpolation points in the interior of Ω. Let
Θint = {x0, · · · , xN} . (4.31)We enumerate (
ase k = 2) the q := (n+1)n

2 di�usion 
oe�
ients aα1 , · · · , aαq (arbitraryorder), where we assume αl = (αl1, αl2) and de�ne �rst q polynomials p
di�,l
0 (x), l = 1, · · · , q.Let

p
di�,1
0 (x) = pb(x) + Φb(x)aα1(x

α11 − xα11
0 )(xα12 − xα12

0 ). (4.32)Then we have
L2p

di�,1
0 (x0) = L2pb(x0) + Φb(x0)(1 + δα11α12)aα1 = f(x0), (4.33)whi
h leads to

aα1 =
f(x0) − L2pb(x0)

(1 + δα11α12)Φb(x0)
(4.34)Having de�ned p

di�,1
0 (x), · · · , p

di�,l
0 (x) (and therefore 
omputed aα1 , · · · , aαl

) we de�ne
p
di�,l+1
0 (x) = p

di�,l
0 (x) + Φb(x)aαl+1

(xα(l+1)1 − x
α(l+1)1

0 )(xα(l+1)2 − x
α(l+1)2

0 ), (4.35)and evaluation leads to
aαl+1

=
f(x0) − L2p

di�,l
0 (p(x0)

(1 + δα(l+1)1α(l+1)2
)Φb(x0)

. (4.36)15



Pro
eeding indu
tively we get a p
di�,q
0 (x) whi
h equals together with its derivatives up toorder l the fun
tion f and su
h that the di�usion part of the operator applied to p

di�,q
0 (x)equals g at x0. It is now 
lear how this pro
edure 
an be extended su
h that an extendedpolynomial p0(x) equals together with its derivatives up to order l the fun
tion f and su
hthat the total operator applied to p0(x) equals g at x0. As in Se
tion 3 the ansatz for theinterpolation polynomial pΘ whi
h satis�es the linear equation on the set of interpolationpoints Θ = {x0, · · · , xN} then is

pΘ(x) =
N
∑

i=0

Πi
j=1Π

n
k=1(x

k − xk
j−1)

3pi(x), (4.37)where pi for i ≥ 2 are then 
onstru
ted as p0 above.4. 3. The 
ase of a linear hyperboli
 equationWe 
onsider the hyperboli
 equation mentioned above of the form
Lu = f in Ω, (4.38)where

Lu ≡
∑

ij

hij
∂u

∂xii∂xj
+
∑

i

∂

∂xj
+ c(x)u (4.39)and (hij) is a symmetri
 matrix of signature (n, 1), if dimΩ = n+1. Note that the operator

L 
an be transformed into the form
Lu ≡ �u + L1u, (4.40)where L1u is some �rst order di�erential operator on Ω. We assume the initial 
onditions

u = g and du = ω, (4.41)where g and ω (1 − form) are initial data. It is 
lear that the algorithm des
ribed inthe pre
eding se
tion 
an be used in the present situation. Later we shall see that energyestimates imply 
onvergen
e of the s
heme.5 Further re�nements: 
ollo
ation and parallelizationNumeri
al experiments show that the 
oe�
ients of the re
ursively 
omputed polynomialshave to be 
omputed with in
reasing a

ura
y in order to 
ontrol e�e
ts of the trun
ationerror of the 
oe�
ients of the polynomials. In the numeri
al example below, where we
omputed a polynomial approximation of degree 74 of the lo
ally analyti
 fun
tion
x → 1

1 + x
(5.1)and its derivatives up to order 3 on the interval [0, 5.4] su
h e�e
ts are not observed. How-ever, if we in
rease the number of derivatives to be approximated up to order k = 10 andin
rease the number of interpolation points, e�e
ts of trun
ation errors 
an be observed for16



polynomials of degrees larger than 200. The error in
reases as |x| be
omes large and trun-
ation errors in
rease. This error 
an be redu
ed by a more pre
ise representation of the
omputational approximation of the real numbers involved in the 
omputation. However,as we point out in this se
tion, we 
an 
ompute m polynomials pΘ1
1 , · · · , pΘm

m of degree
N1, N2 · · ·Nm parallel whi
h interpolate a given linear system of partial di�erential equa-tions on some interpolation sets Θ1, · · · ,Θm using our basi
 algorithm, and then 
omputeone polynomial pP

Θ whi
h interpolates the same linear system of partial di�erential equa-tions on the set ∑Θ = Θ1,∪ · · · ,∪Θm. It turns out that this 
an be in su
h a way thatthe trun
ation error of the resulting polynomial pP

Θ is mu
h smaller than in 
ase of adire
t extension of one polynomial pΘi
using the basi
 algorithm. We 
all this method the
ollo
ation extension of our basi
 algorithm. We shall assume that the sets of interpolationpoints are mutually disjun
t, i.e.

Θi ∩ Θj = ⊘ i� i 6= j. (5.2)It is 
lear that the 
omputation of the polynomials pΘ1
1 , · · · , pΘm

m 
an be done parallel andonly the step of synthesizing has to be done non-parallel. Next we des
ribe that step in 
aseof two polynomials for simpli
it of notation. Extension to m > 2 polynomials will be 
learfrom that des
ription. So let Θ1,Θ2 ⊂ Ω ⊂ R
n be two dis
rete �nite sets of interpolationpoints of a linear system of partial di�erential equations Lu = f to be solved on a domain

Ω and su
h that Θ1 ∩ Θ2 = ⊘. We write down the polynomial in the univariate 
asebe
ause this simpli�es the notation, and the multivariate 
ase is quite similar. Then wede�ne a regular polynomial interpolation formula on Θ1 ∪ Θ2 by
∑N

j=1 Πk 6=j,
(x−x

Θ1
k

)k+1

(x
Θ1
j −x

Θ1
k

)k+1
ΠM

i=1
(x−x

Θ2
i )k+1

(x
Θ1
j −x

Θ2
i )k+1

pΘ1(x)

−∑j Πp∈{1,2} l 6=j(x − x
Θp

l )k+1a
j
i,1(x − xΘ1

j )i

+
∑M

j=1 Πk 6=j
(x−x

Θ1
k

)k+1

(x
Θ1
j −x

Θ1
k

)k+1
ΠN

i=1
(x−x

Θ2
i )k+1

(x
Θ1
j −x

Θ2
i )k+1

pΘ2(x)

−∑j Πp∈{1,2} l 6=j(x − x
Θp

l )k+1a
j
i,2(x − xΘ2

j )i

=:
∑

j q
1j
Θ2,Θ1

(x)pΘ1(x) + ha
1(x)

+
∑

j q
2j
Θ1,Θ2

(x)pΘ2(x) + ha
2(x),

(5.3)
where the 
onstants a

j
i,p, p ∈ {1, 2} are 
omputed re
ursively as follows: For ea
h j we 
ande�ne a

j
0,p = 0. If a

j
1,p, · · · , a

j
l−1,p are determined, then 
ompute a

j
1,p via

∑

1≤r≤l

(

l

r

)

Dr
xq

pj
Θ1Θ2

(xj)D
l−r
x pΘp(xj) = Dl

xha
p(xj) (5.4)for ea
h j. Note that this 'synthesis of polynomials' improves the 
omputational power ofour method dramati
ally. In the example below, where we approximate a simple lo
allyanalyti
 fun
tion

x → 1

1 + x
(5.5)17



(with 
onvergen
e radius 1) and its derivatives up to the third derivative on the interval
[0, 5.4] with 19 interpolation points Θ1 = {k0.3|k = 0, · · · 18} we 
ompute a polynomial ofdegree 74 in half a minute on a modest laptop ma
hine. If we want to 
ompute a poly-nomial whi
h gives the same kind of approximation on the interval [0, 5836, 8] it will takeseveral weeks. However, using parallelization and synthesis, and using the rough estimatethat synthesis takes in average the same time as building the 1024 basis polynomials ofdegree 74 on the intervals [0, 5.4] and [k5.7, (k + 1)5.7], k = 1, · · · 1023 we need 10 steps ofparallel synthesis of pairs of polynomials of 
ost of a less than a minute to get a regularapproximation polynomial whi
h is at least of degree 75776! It is 
lear fromthe pre
edingremarks how to extend this to the multivariate 
ase (
f. also [7℄).6 Convergen
e of polynomial approximations of global solu-tions of linear ellipti
 PDE and error estimates by a prioriestimatesUp to now we just 
onsidered (regular) polynomial interpolation on given sets of interpo-lation points. In this se
tion we 
onsider standard problems in the theory of linear partialdi�erential equations and derive the 
onvergen
e of our algorithm and error estimates (asthe mesh size of the sets of interpolation points 
onverges to zero). We start with ellip-ti
 equations and then 
onsider hyperboli
 problems. Similar results 
an be obtained forinitial-value boundary problems for paraboli
 equations (sin
e analogous error estimates
an be obtained). In this 
ase, however, it turns out that (at least for regular data) aWKB-expansion of the fundamental solution has better 
onvergen
e properties and errorestimates 
an be obtained by Safanov a priori estimates (
f. [8℄ and [6℄). We shall 
onsiderappli
ation of our algorithm to this 
ase in the next se
tion. Note that Sin
e to get an errorfrom simple Taylor expansion in genera, be
ause the interpolated fun
tion is unknown.6. 1. Convergen
e for ellipti
 equations with regular dataWe 
onsider the Diri
hlet problem for ellipti
 equations, i.e. an equation of the form

Lu =
∑

|α|≤k

aα(x)
∂u

∂xα
= f(x) (6.1)on a domain Ω ⊆ R

n. 
oe�
ient fun
tions
x → aα(x), (6.2)and where u is given on the boundary, i.e.
u
∣

∣

∂Ω
= g. (6.3)We 
onsider the 
lassi
al 
ase where k = 2 and Ω is bounded. We assume uniform ellipti
ity,i.e. there exists a 
onstant K > 0 su
h that for all x ∈ Ω

n
∑

ij=1

aij(x)ξiξj ≥ K|ξ|2. (6.4)18



In the 
lassi
al 
ase S
hauder boundary estimates are available. We 
ite them in the
ontext of a standard existen
e result. for a s
alar fun
tion h in Ω we introdu
e the norms
‖h‖bd

k =

k
∑

j=0

∑

|δ|=j

‖Dδh‖0 (6.5)where
‖h‖0 := sup

x∈Ω
|h(x)|, (6.6)and

‖h‖bd
k+α = ‖h‖bd

k +
k
∑

j=0

∑

|δ|=j

Hbd
α

(

Dδh
)

, (6.7)where Hbd
α (f) is the Hölder 
oe�
ient of a given fun
tion f in Ω. We assume that the
oe�
ient fun
tions x → aij(x) (di�usion terms), x → bi(x) (drift terms), the potentialterm (x → c(x)), and the right side x → f(x) are uniformly Hölder 
ontinuous (exponent

α) su
h that
‖aij‖bd

α ≤ C, ‖bi‖bd
α ≤ C, ‖c‖bd

α ≤ C, ‖f‖bd
α ≤ C (6.8)for some generi
 
onstant C.Theorem 6.1 Assume that 
onditions (6.4) and (6.8) hold, and assume that c ≤ 0. Fur-thermore, assume that ∂Ω belongs to C2+α and that g belongs to Cb

2αd. Then the inequalities
‖u‖bd

2+α ≤ C
(

‖g‖ + ‖u‖0 + ‖f‖bd
α

)

≤ C
(

‖g‖ + sup∂Ω |g| + C supΩ |f | + ‖f‖bd
α

)

(6.9)hold. Furthermore there exist a unique solution u ∈ Cbd
2+α to the Diri
hlet problem.The interpolation polynomial pΘ des
ribed in the pre
eding se
tion is by 
onstru
tion su
hthat

L(u − pΘ) =
∑

|α|≤k

aα(x)
∂(u − pθ)

∂xα
= ∆f(x), (6.10)and

u − pΘ

∣

∣

∂Ω
= ∆g. (6.11)It follows thatTheorem 6.2 Assume the same 
onditions as in theorem 6.1.. Then

‖u − pΘ‖bd
2+α ≤ C

(

‖∆g‖ + sup∂Ω |∆g| + C supΩ |∆f | + ‖∆f‖bd
α

) (6.12)Note that this implies an L2-error even for the se
ond derivatives of the global solutionfun
tion, hen
e essentially an estimate in H2(Ω). Even stronger results 
an be obtained ifadditional equations for the derivatives of u are 
onsidered (
f. [7℄).
19



6. 2. Convergen
e for a hyperboli
 linear partial di�erential equationsequationWe 
onsider again the hyperboli
 equation mentioned above of the form
Lu = f on O ⊂ Ω, (6.13)where

Lu ≡
∑

ij

hij
∂u

∂xii∂xj
+
∑

i

∂

∂xj
+ c(x)u (6.14)and (hij) is a symmetri
 matrix of signature (n, 1), if dimΩ = n + 1. We assume thatsome O ⊂ Ω is bounded by two spa
elike surfa
esΣi and Σe and swept out by a family ofspa
elike surfa
es Σe(s). Re
all that the initial 
onditions

u = g and du = ω. (6.15)Let p be the interpolation polynom des
ribed above su
h that
L(u − p) = ∆f on O ⊂ Ω. (6.16)
u − p = ∆g and du = ∆ω. (6.17)Then we use the following energy estimateProposition 6.3 Let u solve the intial value problem (6.13), (6.15). Let

O(s) = O ∩ {t ≤ s} (6.18)(swept out by the spa
elike surfa
es Σe(s)). Then
∫

O(s) |u|2dV ≤
∫

Σb
i (s)

|g|2dS + C(s − s0)
∫

Σi

(

|g|2 + |ω|2
)

dS + C
∫

O(s) |f |2dV

(6.19)for s ∈ [s0, s1].This impliesTheorem 6.4 With the same assumptions as in propostion 6.2. we have
∫

O(s) |u − p|2dV ≤
∫

Σb
i (s)

|∆g|2dS + C(s − s0)
∫

Σi

(

|∆g|2 + |ω|2
)

dS + C
∫

O(s) |∆f |2dV

(6.20)for s ∈ [s0, s1].Hen
e the polynomial interpolation s
heme des
ribed in Se
tion 4 leads to L2-
onvergen
e.One 
an improve this s
heme assuming regularity of solutions and 
onsidering systems ofequations in
luding equations for derivatives of the solution u (
f. [7℄).20



7 Appli
ations to paraboli
 equations (
onne
tion to WKB-expansions)We summarize some results 
on
erning WKB-expansions of paraboli
 equations (
f. [6℄ fordetails). Let us 
onsider the paraboli
 di�usion operator
∂u
∂t

− Lu ≡ ∂u
∂t

− 1
2

∑

i,j aij
∂2u

∂xi∂xj
−∑i bi

∂u
∂xi

, (7.1)where the di�usion 
oe�
ients aij and the �rst order 
oe�
ients bi in (7.1) depend on thespatial variable x only. In the following let δt = T − t, and let
(x, y) → d(x, y) ≥ 0, (x, y) → ck(x, y), k ≥ 0 (7.2)denote some smooth fun
tions on the domain R

n×R
n. Then a set of (simpli�ed) 
onditionssu�
ient for pointwise valid WKB-representations of the form

p(δt, x, y) =
1√

2πδt
n exp

(

−d2(x, y)

2δt
+

∞
∑

k=0

ck(x, y)δtk

)

, (7.3)for the solution (t, x) → p(δt, x, y).
∂u
∂δt

− Lu = 0,with �nal value
u(0, x, y) = δ(x − y),

(7.4)is given by(A) The operator L is uniformly ellipti
 in R
n, i.e. the matrix norm of (aij(x)) is boundedbelow and above by 0 < λ < Λ < ∞ uniformly in x,(B) the smooth fun
tions x → aij(x) and x → bi(x) and all their derivatives are bounded.For more subtle (and partially weaker 
onditions) we refer to [6℄. We 
onsider the 
asewhere there exists a global transformation to the Lapla
e operator. If we add the uniformboundedness 
ondition(C) there exists a 
onstant c su
h that for ea
h multiindex α and for all 1 ≤ i, j, k ≤ n,

∣

∣

∣

∂ajk

∂xα

∣

∣

∣
,
∣

∣

∣

∂bi

∂xα

∣

∣

∣
≤ c exp

(

c|x|2
)

, (7.5)then the fun
tion d2 = (x − y)2 (in the transformed 
oordinates and ck equals its Taylorexpansion around y ∈ R
n, i.e ck, k ≥ 0 have the power series representations

ck(x, y) =
∑

α ck,α(y)δxα, k ≥ 0. (7.6)Moreover ck, k ≥ 0 are determined by the re
ursive equations
−n

2
+

1

2
Ld2 +

1

2

∑

i





∑

j

(aij(x) + aji(x))
d2

xj

2





∂c0

∂xi
(x, y) = 0, (7.7)21



where the boundary 
ondition
c0(y, y) = −1

2
ln
√det (aij(y)) (7.8)determines c0 uniquely for ea
h y ∈ R

n, and for k + 1 ≥ 1 we have
(k + 1)ck+1(x, y) + 1

2

∑

ij aij(x)
(

d2
xi

2
∂ck+1

∂xj
+

d2
xj

2
∂ck+1

∂xi

)

= 1
2

∑

ij aij(x)
∑k

l=0
∂cl

∂xi

∂ck−l

∂xj
+ 1

2

∑

ij aij(x) ∂2ck

∂xi∂xj
+
∑

i bi(x)∂ck

∂xi
,

(7.9)with boundary 
onditions
ck+1(x, y) = Rk(y, y) if x = y, (7.10)

Rk being the right side of (7.9). In 
ase aij = δij we have the representations
d2(x, y) =

∑

i

(xi − yi)
2, (7.11)

c0(x, y) =
∑

i

(yi − xi)

∫ 1

0
bi(y + s(x − y))ds, (7.12)and

ck+1(x, y) =

∫ 1

0
Rk(y + s(x − y), y)skds, (7.13)

Rk being again the right-hand-side of (7.9). The integrals 
an be taken out if the fun
tions
x → bi(x) are given by multivariate power series and error estimates for the trun
ationerror in spa
e and time are obtained (
f. [6, 8℄). However, even if the 
oe�
ient fun
tionsare analyti
, i.e. equal lo
ally a power series, it is not possible to approximate su
h afun
tion globally by their Taylor polynomial. As an example 
onsider the equation

∂u

∂t
− 1

2
∆u −

n
∑

i

1

1 + xi

∂u

∂xi
= 0 (7.14)Here, the 
oe�
ient fun
tions

xi →
1

1 + xi
= bi(x) (7.15)are univariate lo
ally analyti
 fun
tion with 
onvergen
e radius 1. Su
h type of equationso

ur in praxis of �nan
e (
f. [4, 8℄). In order to obtain an approximation of the WKB-expansion say up to order 5, i.e. 
ompute the 
oe�
ient fun
tions

x → ck(x, y), k = 0, · · · , 5, (7.16)we need a global approximation of the fun
tions (7.15) and their derivatives up to order 10!This is due to the re
ursion equations for the ck, k ≥ 1 whi
h involve se
ond derivativesof ck−1. If we have 20 interpolation points on the x-axis this implies that our regularinterpolation algorithm 
omputes a polynomial of order 231. We do the 
omputation in amore modest example in order to keep the resulting polynomial representable on one pagein the following se
tion. 22



8 A numeri
al exampleThe following polynomial is a similtaneous approximation of the fun
tion
f : [0, 5, 4] ⊆ R → R

f(x) = 1
1+x

(8.1)and its �rst, se
ond, and third derivative on the domain [0, 5, 4] with 19 interpolationpoints. Hen
e the degree of this univariate polynomial is 74. Note that the 
onvergen
eradius of f is 1.
p76(x) =

75
∑

m=0

am(x − xmdiv4)mmod4Πmdiv4−1
l=0 (x − xl)

4 (8.2)Note that
dn

dxn

(

1

1 + x

)

|x=0 =
(−1)nn!

(1 + x)n+1
|x=0 = (−1)nn! (8.3)This leads to the values a0 = 1, a1 = −1, a2 = 1, and a3 = −1 for the 
oe�
ients ofour interpolation polynomial at x0 = 0. Note that the 
oe�
ients ai of the interpolationpolynomial tend to be
ome smaller for large indexes i as you would expe
t.
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a0 = 1.0

a1 = −1.000000000000, a2 = 1.000000000000, a3 = −1.000000000000

a4 = 0.769230765432, a5 = −0.591715921811, a6 = 0.455165657066

a7 = −0.350124490177, a8 = 0.218822618520, a9 = −0.136753442090

a10 = 0.085452696109, a11 = −0.053404312398, a12 = 0.028144617397

a13 = −0.014953338935, a14 = 0.008262188243, a15 = −0.005370784216

a16 = 0.003734873988, a17 = −0.003633027430, a18 = 0.004645502211

a19 = −0.006813570816, a20 = 0.007086610952, a21 = −0.007144432312

a22 = 0.006238342564, a23 = −0.002646146059, a24 = −0.002374282360

a25 = 0.008387675067, a26 = −0.015766978592, a27 = 0.024857498610

a28 = −0.025373687351, a29 = 0.025025735340, a30 = −0.023974098174

a31 = 0.022321168853, a32 = −0.015945627926, a33 = 0.011155207224

a34 = −0.007619506803, a35 = 0.005069120726, a36 = −0.002759684498

a37 = 0.001479716734, a38 = −0.000790172686, a39 = 0.000430223475

a40 = −0.000208511304, a41 = 0.000106279314, a42 = −0.000056281013

a43 = 0.000028862889, a44 = −0.000011153733, a45 = 0.000002201139

a46 = 0.000002233629, a47 = −0.000004202246, a48 = 0.000003699371

a49 = −0.000002870941, a50 = 0.000002068390, a51 = −0.000001402599

a52 = 0.000000753699, a53 = −0.000000375935, a54 = 0.000000159621

a55 = −0.000000037499, a56 = −0.000000015690, a57 = 0.000000032004

a58 = −0.000000031616, a59 = 0.000000023406, a60 = −0.000000010968

a61 = 0.000000001564, a62 = 0.000000005590, a63 = −0.000000011521

a64 = 0.000000012190, a65 = −0.000000012095, a66 = 0.000000011769

a67 = −0.000000011467, a68 = 0.000000008698, a69 = −0.000000006652

a70 = 0.000000005132, a71 = −0.000000003988, a72 = 0.000000002523

a73 = −0.000000001600, a74 = 0.000000001015, a75 = −0.000000000643

(8.4)
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9 Con
lusionWe have designed regular polynomial interpolation algorithms and variations whi
h pro-du
e families of multivariate polynomials whi
h solve linear systems of partial di�erentialequations on arbitrary sets of interpolation points. In our basi
 algorithm the members ofthe family of polynomials are de�ned re
ursively ea
h being an extension of the pre
edingmember in the sense that the pre
eding member agrees with a given member on the set ofinterpolation points on whi
h the pre
eding member satis�es the linear system of partialdi�erential equations. We have shown that the family of multivariate polynomials has theglobal solution as its natural limit if some a priori information on the system of partialdi�erential equations is available. The information needed 
an variate from 
ase to 
ase.In any 
ase a solution should exist. We have shown how to use a priori estimates of ellipti
equations and of hyperboli
 systems of equations in order to obtain error estimates adaptedto the regularity of the solution. Similar is true for paraboli
 equations. All this makesour approa
h 
ompatible with new te
hniques like sparse grids or weighted Monte-Carloalgorithms developed in order to treat systems of higher dimension. In 
ase of paraboli
equations we showed how regular polynomial interpolation of known fun
tions 
an be usedin order to 
ompute higher order approximations of WKB-expansions of fundamental so-lutions. We also 
onstru
ted extensions where the algorithm is parallelized on di�erentset of interpolation points an showed how these partial polynomial approximations 
an bepat
hed together to one multivariate polynom whi
h �ts the given system of linear partialdi�erential equations on the union of sets of interpolation points.Referen
es[1℄ de Boor, C. , Ron, A., On multivariate polynomial interpolation, Constr. Approx., 1990.[2℄ Dinh-Düng, Calvi, J.P., Trung, N.T., Polynomial Proje
tors preserving homo-geous partial di�erential equations, Journal of Approximation Theory, 2005.[3℄ Frazer, R. A., Jones, W.P., S
an, S. W., Approximations to fun
tions and tosolutions of di�erential equations, Gr. Br. Aero. Res. Coun
el. Rep. Memo 1799 , 1937.[4℄ Fries, C., Kampen, J., Proxy Simulation S
hemes for generi
 robust Monte Carlosensitivities, pro
ess oriented importan
e sampling and high a

ura
y drift approxi-mation (with appli
ations to the LIBOR market model), Journal of ComputationalFinan
e, Vol. 10, Nr. 2, 2007.[5℄ Gas
a,M., Sauer, Th., On the history of multivariate polynomial interpolation, J.Comput. Appl. Math. 122 (2000), S. 23-35.[6℄ Kampen, J., The WKB-Expansion of the fundamental solution of linear paraboli
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ations .book, submitted to Memoirs of the Ameri
an Mathe-mati
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