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AbstratWe review reent progress in the understanding of the interplay betweenpopulation models, measure-valued di�usions, general oalesent proessesand inferene methods for evolutionary parameters in population genetis.Along the way, we will disuss the powerful and intuitive (modi�ed) lookdownonstrution of Donnelly and Kurtz, Pitman's and Sagitov's Λ-oalesents aswell as reursions and Monte Carlo shemes for likelihood-based inferene ofevolutionary parameters based on observed geneti types.1 IntrodutionWe disuss mathematial models for an e�et whih in population genetis jargon,somewhat orthogonal to di�usion proess nomenlature, is alled �geneti drift�,namely the phenomenon that the distribution of geneti types in a populationhanges in the ourse of time simply due to stohastiity in the individuals'reprodutive suess and the �niteness of all real populations. We will onlyonsider �neutral� geneti types. This ontrasts and omplements the notion ofseletion, whih refers to senarios in whih one or some of the types onfer adiret or indiret reprodutive advantage to their bearers. Thus, in the absene ofdemographi stohastiity, the proportion of a seletively advantageous type wouldinrease in the population, whereas that of neutral types would remain onstant.The interplay between small �tness di�erenes among types and the stohastiitydue to �niteness of populations leads to many interesting and hallenging problems,see e.g. the artile by A. Etheridge, P. Pfa�elhuber and A. Wakolbinger [EPW07℄.Geneti drift an be studied using two omplementary approahes, whih are inmany senses, some of whih we will disuss below, dual to eah other. Looking�forwards� in time, the evolution of the type distribution an be approximatelydesribed by Markov proesses taking values in the probability measures on thespae of possible types. Looking �bakwards�, one desribes the random genealogyof a sample from the population. Given the genealogial tree, one an thensuperimpose the mutation proess in a seond step. The artile by P. Mörters[M07b℄ studies asymptoti properties of these genealogial trees in the limit of alarge sample sizes as an example of the use of the multifratal spetrum.The lassial model for geneti drift is the so-alled Wright-Fisher di�usion, whihis appropriate when the variability of the reprodutive suess among individuals issmall. Reently, there has been mathematial and biologial interest in situationswhere the variane of the number of o�spring per individual is (asymptotially)in�nite, and detailed desriptions of the possible limiting objets have beenobtained. We review these developments, giving partiular emphasis to theinterplay between the forwards models, generalised Fleming-Viot proesses, andtheir dual bakwards models, Λ-oalesents. We use this opportunity to advertisethe lookdown onstrution of Donnelly and Kurtz (in its [DK99℄ ��avour�), whih1



provides a realisation-wise oupling for this duality. Furthermore, we show howthese approahes an be used to derive reursions for the probabilities of observedtypes in a sample from a stationary population. These reursions an usually notbe solved in losed form and an be di�ult to implement exatly, in partiular ifthe spae of possible types or the sample size is large. We desribe a Monte-Carlomethod whih allows an approximate solution.Many important and interesting aspets of mathematial population geneti modelsare omitted in our review, in partiular the possibilities of varying population sizes,seletive e�ets, spatial or other population substruture, multi-lous dynamis andreombination. We also fous on haploid models, meaning that our individuals haveonly one parent. For an introdution to oalesents with emphasis on biology, seee.g. [H90℄, [N01℄, [HSW05℄, [W06℄, for bakground on (lassial and generalised)Fleming-Viot proesses and variations of Kingman's oalesent, see e.g. [EK86℄,[D93℄, [EK93℄ and [DK99℄.2 Population geneti models with neutral typesCannings-models. In neutral population models, the main (and only) souresof stohastiity are due to random geneti drift and mutation. The �rst featureis aptured in a basi lass of population models, namely the so-alled Cannings-models ([C74, C75℄). We will subsequently extend these by adding mutations.Consider a (haploid) population of onstant size (e.g. due to a �xed amount ofresoures) onsisting of, say, N individuals. Suppose the population is undergoing�random mating� with �xed non-overlapping generations and ideally has evolved fora long time, so that it an be onsidered �in equilibrium�. In eah generation t ∈ Z,the distribution of the o�spring numbers is given by a non-trivial random vetor
(ν

(t)
1 , . . . , ν

(t)
N ) with N∑
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ν
(t)
i = N, (1)where ν(t)

k is the number of hildren of individual k. The vetors ν(t), t ∈ Z areassumed i.d.d.Neutrality means that we additionally suppose that the distribution of eah suhrandom vetor is exhangeable, i.e. for eah permutation σ ∈ SN , we have that
(νσ(1), . . . , νσ(N)) = (ν1, . . . , νN ) in law.If these onditions are met, we speak of a Cannings-model.To explain the notion of random geneti drift, imagine that eah individual has aertain geneti type. For example, at the geneti lous under onsideration, eahindividual is of one of the types (or alleles) {a,A}. Eah type is passed on unhangedfrom parent to o�spring (we will introdue mutation to this model later).For eah generation t, let Xt denote the number of individuals whih arry the �a�-allele. By the symmetries of the model, {Xt} is a �nite Markov-hain on {0, . . .N}as well as a martingale. In partiular, we may represent its dynamis as

Xt+1 =
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ν
(t)
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Note that although E[Xt] = X0 for all t (due to the martingale property), thehain will almost surely be absorbed in either 0 or N in �nite time. In fat, theprobability that type a will be �xed in the population equals its initial frequeny
X0/N . This is a simple example of the power of geneti drift: although in thismodel there is no evolutionary advantage of one of the types over the other, onetype will eventually get �xed (this fore will later be balaned by mutation, whihintrodues new geneti variation).2.1 �Classial� limit results in the �nite variane regimeTwo-type neutral Wright-Fisher model. The lassial example from this lassis the famous Wright-Fisher model ([F22℄, [W31℄). Informally, one an think ofthe following reprodution mehanism. At generation t, eah individual piks oneparent uniformly at random from the population alive at time t− 1 and opies itsgeneti type (i.e. either a or A). Denoting by pt−1 = Xt−1/N the proportion ofalleles of type a in generation t − 1, the number Xt of a-alleles in generation t isbinomial, that is,

P{Xt = k|Xt−1} =

(
N

k

)
pkt−1(1 − pt−1)

N−k.Compliant with (1), the o�spring vetor (ν1, . . . , νN ) would be multinomial with
N trials and suess probabilities 1/N, . . . , 1/N .The Wright-Fisher di�usion as a limit of �many� Cannings-models. Forlarge populations, it is often useful to pass to a di�usion limit. To this end, denoteby

Y N (t) :=
1

N
X⌊t/cN⌋, t ≥ 0,where ⌊t/cN⌋ is the integer part of t/cN , and the time saling fator is

cN :=
E[ν1(ν1 − 1)]

N − 1
=

V[ν1]

N − 1
, (3)the (saled) �o�spring variane�. Note that cN an also be interpreted as the prob-ability that two randomly sampled individuals from the population have the sameanestor one generation ago (this will be important in Setion 3). The followingexat onditions for onvergene follow from the onditions given by [MS01℄ and astraightforward appliation of duality, whih we will disuss below [see (42)℄: If

cN → 0 and E[ν1(ν1 − 1)(ν1 − 2)]

N2cN
→ 0 as N → ∞, (4)

{Y Nt } onverges weakly to a di�usion proess {Yt} in [0, 1], whih is the uniquestrong solution of
dYt =

√
Yt(1 − Yt) dBt, Y0 := x ∈ [0, 1],where {Bt} is a standard Brownian motion. Equivalently, {Yt} is haraterised asa (strong) Markov proess with generator

Lf(y) =
1

2
y(1 − y)

d2

dy2
f(y), y ∈ [0, 1], f ∈ C2([0, 1]). (5)3



To this ontinuous model, the mahinery of one-dimensional di�usion theory maybe applied. For example, it is easy to ompute the mean time to �xation, if Y0 = x,whih is
m(x) = −2(x log x+ (1 − x) log(1 − x)).In terms of the original disrete model, if X0/N = 1/2, one obtains

(2 log 2)
N

σ2
≈ 1.39

N

σ2
generations(assuming that asymptotially, V[ν1] ≈ σ2).Moran's model. An equally famous model for a disrete population, living inontinuous time, ustomarily attributed to P. A. P. Moran, works as follows: Eahof the N individuals arries an independent exponential lok (with rate 1). If a bellrings, the orresponding individual (dies and) opies the type of a uniformly at ran-dom hosen individual from the urrent population (inluding itself). Another wayto think about this is to pik the jumps times aording to a Poisson-proess withrate N and then independently hoose a partile whih dies and another partilewhih gives birth.Note that even though this model does not literally �t into the Cannings lass,its �skeleton hain� is a Cannings model with ν uniformly distributed on all thepermutations of

(2, 0, 1, 1, . . . , 1).The fration of type a-individuals in both models, suitably resaled, onverge tothe Wright-Fisher di�usion: the ontinuous-time variant has to be sped up by afator of N , the skeleton hain by a fator of N2, as N skeleton steps roughlyorrespond to one �generation�.Remark (several types and higher-dimensionalWright-Fisher di�usions).It is straightforward to extend the disussion above to a situation with �nitely-many (say k) geneti types, and obtain analogous limit theorems. Under the sameassumptions, the fration of type i in generation ⌊t/cN⌋ is approximately desribedby Y it , where
Yt = (Y 1

t , . . . , Y
k
t ) ∈ {(y1, . . . , yk) : yi ≥ 0,

∑
i yi = 1}is a di�usion with generator L(k), ating on f ∈ C2(Rk) as

L(k)f(y) =
1

2

k∑

i,j=1

yi(δij − yj)
∂2

∂yi∂yj
f(y). (6)

2Fleming-Viot proesses and in�nitely many types. To inorporate senarioswith in�nitely many possible types, it is most onvenient to work with measure-valued proesses. For simpliity and de�niteness, we hoose here E = [0, 1] as thespae of possible types, and onsider random proesses on M1([0, 1]). For example,let X̃(t, i) (with values in E) be the type of individual i in generation t in a Canningsmodel, and let
ZNt :=

1

N

N∑

i=1

δX̃(t,i) (7)4



be the empirial type distribution in generation t. Then, under Assumptions (4),if ZN0 ⇒ µ ∈ M1([0, 1]), the resaled proesses {ZN⌊t/cN⌋} onverge weakly towardsa measure-valued di�usion {Zt}, whih uniquely solves the (well-posed) martingaleproblem with respet to the generator
LΦ(µ) =

∑

J⊆{1,...,p},|J|=2

∫
µ(da1) · · ·µ(dap)

(
φ(aJ1 , . . . , a

J
p ) − φ(a1, . . . , ap)

) (8)for µ ∈ M1([0, 1]) and test funtions
Φ(µ) =

∫
φ(a1, . . . , ap)µ(da1) · · ·µ(dap), (9)where p ∈ N and φ : [0, 1]p → R is measurable and bounded, and for a =

(a1, . . . , ap) ∈ [0, 1]p and J ⊆ {1, . . . , p}, we put
aJi = aminJ if i ∈ J, and aJi = ai if i /∈ J, i = 1, . . . , p, (10)see e.g. [EK86℄, Ch. 10, Thm 4.1. Thinking of a as the types of a sample of size pdrawn from µ, passage from a to aJ means a oalesene of ai, i ∈ J .In partiular, if µ =

∑k
i=1 yiδai

for k di�erent points ai ∈ [0, 1], then
Zt =

k∑

i=1

Y it δai
,where {Y it : i = 1, . . . , k, t ≥ 0} is the k-dimensional Wright-Fisher di�usion withgenerator (6).2.2 Beyond �nite variane: oasional extreme reprodutioneventsSine the end of the 1990ies, more general reprodution mehanisms and their in-�nite population limits have been studied in the mathematial ommunity ([S99℄,[P99℄, [DK99℄, [MS01℄, [S00℄).Although the motivation for this ame from onsiderations about the genealogyof population resp. oalesent proesses, we desribe the orresponding populationmodels forward in time �rst. Many of the tehnial assumption here will beomemore lear after the next Setion has been studied.Impliit in (4) is the assumption that eah family size νi is small ompared to thetotal population size N . A natural generalisation, motivated by onsidering speieswith potentially very many o�spring, is to onsider senarios where oasionally, asingle family is of appreiable size when ompared to N . In this spirit, Eldon andWakeley ([EW06℄) proposed a family of Cannings models, where in a population ofsize N , ν is a (uniform) permutation of

(
2, 0, 1, . . . , 1

) or of (
⌊ψN⌋, 0, 0, . . . , 0︸ ︷︷ ︸

⌊ψN⌋ times, 1, . . . , 1) (11)with probability 1 − N−γ resp. N−γ for some �xed parameter ψ ∈ (0, 1] and γ >
0. The idea is of ourse that from time to time, an exeptionally large family isprodued, whih reruits a (non-negligible) fration ψ of the next generation.This is appealing as being presumably the oneptually simplest model of this phe-nomenon. On the other hand, while one may be willing to aept the assumption5



that in a speies with high reprodutive potential and variability, suh extreme re-produtive events an our, the stipulation that these generate always the samefration ψ is ertainly an over-simpli�ation.A more realisti model would allow �random� ψ, where the parameter ψ is ho-sen aording to some (probability) measure F . So far, the question whih F are�natural� for whih biologial appliations is largely open.A plausible lass of Cannings models for senarios with (asymptotially) heavy-tailed o�spring distributions has been introdued and studied by Shweinsberg([S03℄): In eah generation, individuals generate potential o�spring as in a super-ritial Galton-Watson proess, where the tail of the o�spring distribution variesregularly with index α, more preisely the probability to have more than k hildrendeays like Const. × k−α. Among these, N are sampled without replaement tosurvive and form the next generation. The parameter α ∈ (1, 2] governing the tailof individual litter sizes haraterises the limit proess, and intuitively smaller αorresponds to more extreme variability among o�spring numbers.Mathematially, the situation is well understood (see [S99℄, [MS01℄): For the disus-sion of limit proesses, we �rst speialise to the situation of two types only. Considerthe Markov hain (2) on the time sale 1/cN , where cN is de�ned in (3). If cN → 0,for some probability measure F on [0, 1]

N

cN
P{ν1 > Nx} −→

∫

(x,1]

1

y2
F (dy) (12)for all x ∈ (0, 1) with F ({x}) = 0 and

E[ν1(ν1 − 1) ν2(ν2 − 1)]

N2
· 1

cN
−→ 0 , as N → ∞, (13)then the proesses {XN

⌊t/cN⌋/N} onverge weakly to a Markov proess {Yt} in [0, 1]with generator
Lf(y) =

F ({0})
2
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∫

(0,1]

(
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(
(1 − r)y + r

)
+ (1 − y)f

(
(1 − r)y

)
− f(y)

) 1

r2
F (dr) (14)for f ∈ C2([0, 1]). The moment ondition (13) has a natural interpretation in termsof the underlying genealogy, see the remark about simultaneous multiple ollisionson page 15. Alternatively, {Yt} an be desribed as the solution of

dYt =
√
F ({0})Yt−(1 − Yt−) dBt

+

∫

(0,t]×(0,1]×[0,1]

(
1{u≤Y (t−)}r(1 − Yt−) − 1{u>Y (t−)}rYt−

)
N
(
ds dr du

)
, (15)where {Bt} is a standard Brownian motion and N is an independent Poissonproess on [0,∞) × (0, 1] × [0, 1] with intensity measure dt ⊗ r−2F0(dr) ⊗ du with

F0 = F − F ({0})δ0. Here, r−2F0(dr) is the intensity with whih exeptionalreprodutive events replaing a fration r of the total population our in thelimiting proess.The lass onsidered by Eldon and Wakeley ([EW06℄) leads to F = δ0 for γ > 2,
F =

2

2 + ψ2
δ0 +

ψ2

2 + ψ2
δψ for γ = 2 (16)6



and δψ for 1 < γ < 2. The models onsidered by Shweinsberg in [S03℄ yield Betameasures, namely
F (dr) =

Γ(2)

Γ(2 − α)Γ(α)
r1−α(1 − r)α−1 dr. (17)In [BBC05℄, these proesses have been haraterised as time-hanges of α-stableontinuous-mass branhing proesses renormalised to have total mass 1 at any time.For the situation with in�nitely many possible types, the orresponding limitinggeneralised Fleming-Viot proess an be onsidered as a measure-valued di�usionwith àdlàg paths whose generator, on test funtions of the form (9) with φ twotimes ontinuously di�erentiable, is

F ({0})LΦ(µ) +

∫

E

∫

(0,1]

(
Φ
(
(1 − r)µ+ rδa

)
− Φ(µ)

) F0(dr)

r2
µ(da), (18)where L is de�ned in (8).2.3 Introduing mutation.We now introdue another major evolutionary �player�, whih ounterats thelevelling fore of random geneti drift. Indeed, when on the right sale, see (22)below, mutation ontinuously introdues new types to a population, leading toreasonable levels of geneti variability.Example: The two alleles ase. For our pre-limiting Cannings-models, imaginethe following simple mehanism. At eah reprodution event, partiles retain thetype of their parents with high probability. However, with a small probability, thetype an hange aording to some mutation mehanism. In the situation of thetwo-allele model given by the types {a,A}, suppose that independently for eahhild, a mutation from parental type a to A happens with probability p(N)

a→A, anddenote by p(N)
A→a the orresponding probability for a mutation from A to a.Let cN , as de�ned in (3), tend to zero. If the assume, in addition to (12), (13), that

p
(N)
a→A

cN
→ µa→A and p

(N)
A→a

cN
→ µA→a, (19)then, the proess desribing the fration of the a-population, onverges to a limitwhih has generator, for a suitable test-funtion f ∈ C2, given by

Lf(y) +
(
− yµa→A + (1 − y)µA→a

) d
dy
f(y), (20)where L is given by (14).General mutation mehanisms. Here, we ome bak to onsider measure-valueddi�usions on some type spae E. Let E be a ompat metri spae (we will laterusually assume E = [0, 1]Z or [0, 1]). To desribe a mutation mehanism, let q(x, dy)be a Feller transition funtion on E×B(E), and de�ne the bounded linear operator

B on the set of bounded funtion on E by
Bf(x) =

∫

E

(
f(y) − f(x)

)
q(x, dy). (21)7



Denote the individual mutation probability per individual in the N -th stage of thepopulation approximation by rN and assume that
rN
cN

→ r ∈ [0,∞), (22)where cN is de�ned in (3). Note that the saling depends on the lass of Canningsmodels onsidered. For example, for the models in the domain of attration of aBeta-oalesent [see the onsiderations leading to (17)℄, the hoie of α �xes thesaling of the individual mutation probability µ per generation: in a population ofsize N , this translates to a rate
r = CαN

α−1µ (23)with whih mutations appear in the limit. In the ase α = 2, this is the familiarformula r (= θ/2) = 2Nµ.Then, the empirial proess {ZNt }, desribing the distribution of types on E andde�ned in analogy to (7), onverges to a limiting Markov proess Z, whose evolutionis desribed by the generator [using the notation from (9)℄
LB,FΦ(µ) = r

p∑

i=1

∫

Ep

Bi(φ(a1, . . . , ap))µ
⊗p(da1 . . . dap) + LFΦ(µ), (24)where LF is de�ned by (18), and Biφ is the operator B, de�ned in (21), atingon the i-th oordinate of φ. This proess is alled the F -generalised Fleming-Viotproess with individual mutation proess B. Note that in the nomenlature of[BLG03℄, this would be a ν-generalised FV proess with ν(dr) = F (dr)/r2.General Moran model with mutation. While the Cannings lass uses disretegenerations, the phenomena disussed above an also be expressed in terms of aontinuous time model, whih is a natural generalisation of the lassial Moranmodel. For a given (�xed) total population size N let BN be a Poisson proesson [0,∞) × {1, 2 . . . , N − 1} with intensity measure dt ⊗ µN , where µN is some�nite measure. If (t, k) is an atom of BN , then at time t, a �k-birth event� takesplae: k uniformly hosen individuals die and are immediately replaed by theo�spring of another individual, whih is piked uniformly among the remaining

N − k. �Extreme� reprodutive events an thus be inluded by allowing µN to havesuitable mass on ks omparable to N . The lassial Moran model, in whih onlysingle birth events our, orresponds to µN = Nδ1.Additionally, assume that individuals have a type in E, and eah partile mutatesduring its lifetime independently at rate rN ≥ 0 aording to the jump proess withgenerator B given by (21). Write X(N)
i (t) for the type of individual i at time t.Let us denote the empirial proess for the N -partile system by

ZN(t) :=
1

N

N∑

i=1

δ
X

(N)
i

(t)
. (25)We will further on assume that X(N)

i (0) = Xi, i = 1, . . . , N , where the Xi areexhangeable and independent of BN , so in partiular limN→∞ ZN (0) exists a.s. byde Finetti's Theorem.For a reasonable large population limit, one obviously has to impose assumptionson µN and rN . To onnet to the formulation in [DK99℄, note that BN an be8



equivalently desribed by the �aumulated births� proess
AN (t) :=

∑

(s,k)∈supp(BN ), s≤t

k, t ≥ 0, (26)whih is of ourse simply a ompound Poisson proess. We write [AN ](t) =∑
s≤t

(
∆AN (s)

)2 for the quadrati variation of AN . Then, if
NrN → r (27)and

[AN ](Nt) +AN (Nt)

N2
=: UN (t) ⇒ U(t), (28)where the limit proess U must neessarily be a subordinator with generator

GUf(x) =

∫

[0,1]

(
f(x+ u) − f(x)

)
ν̃(du) + af ′(x), (29)the time-resaled empirial proesses

{
ZN (Nt), t ≥ 0} ⇒ Z, as N → ∞,where {Z(t)} is the solution of the well-posed martingale problem orresponding to(24), see [DK99℄, Theorems 3.2 and 1.1. The relation between GU and F appearingin (24) is as follows:

a = 2F ({0}), ν̃ is the image measure of 1

r2
F (dr) under r 7→ √

r. (30)The latter is owed to the fat that �substantial� birth events, where k is of order N ,appear with their squared relative size as jumps of UN .While the Assumption (28) is quite general, it is instrutive (and will be usefullater) to speialise to a partiular lass of approximating birth event rates µN ({k})whih is losely related to the limiting operators (18): For a given F ∈ M1([0, 1]),put
µN ({k}) =NF ({0})1{k=1}

+
1

N

∫

(0,1]

(
N

k + 1

)
rk+1(1 − r)N−k−1 1

r2
F (dr), k = 1, . . . , N − 1.(31)Then, (28) is ful�lled and the limiting U is desribed by (29) and (30). This is the(randomised) �Moran equivalent� of the �random ψ� disussed in Subsetion 2.2,and will turn out to be the natural mehanism of the �rst N levels of the lookdownonstrution, see below. A way to think about the seond term in (31) is thatpartiles partiipate in an �r-extreme birth event� independently with probability

r. Note that (31) implies, for any x ∈ (0, 1) with F ({x}) = 0,
N

N−1∑

k≥⌊xN⌋

µN ({k}) −→
N→∞

∫ 1

x

1

r2
F (dr), (32)so in the limiting proess, �x-reprodutive events� our at rate dt⊗ x−2F (dx). Asin a k-birth event, the probability for a given partile to die is k/N , (31) impliitly9



de�nes the average lifetime of an individual in the N -th approximating model. Theindividual death rate of a �typial� partile in the N -partile model is
dN =

N−1∑

k=1

k

N
µN ({k}) = F ({0}) +

∫

(0,1]

1 − (1 − r)N−1

r
F (dr). (33)If 1/r is not in L1(F ), this will diverge as N → ∞. In the last paragraph of theremark about �oming down from in�nity� on page 16, we will see a relation tostrutural properties of the orresponding oalesents. Also note that (27) and(33) impliitly determine the mutation rate per �lifetime unit� in the N -th model,similarly as in (23).Popular mutation models. Having the full generator (24) at hand, it is noweasy to speialise to the following lassial mutation models.1) Finitely-many alleles. In this model, we assume a general �nite type spae,say, E = {1, . . . , d}. Then, the mutation mehanism an always be written as astohasti transition matrix P = (Pij) times the overall mutation rate r ∈ (0,∞).That is,

Bf(i) = r

d∑

j=1

Pij
(
f(j) − f(i)

)
.2) In�nitely-many alleles. Here, one assume that eah mutation leads to an entirelynew type. Tehnially, one simply assumes that E = [0, 1] and that eah mutation,ouring at rate r > 0, independently piks a new type x ∈ [0, 1], aording to theuniform distribution on [0, 1], i.e.

Bf(y) = r

∫

[0,1]

(
f(x) − f(y)

)
dx.Note that this the paradigm example of a parent-independent mutation model.After one mutation step, all information about the anestral type is lost.3) In�nitely-many sites model. One thinks of a long part of a DNA sequene, so thateah new mutation ours at a di�erent site. Hene in priniple, the informationabout the anestral type is retained. Moreover, it is possible to speak about the�distane� between two types (e.g. by ounting the pairwise di�erenes).As a rule of thumb, if the number of mutations observed is small ompared tothe square-root of the length of the sequene, this assumption is reasonable. For amathematial formulation, one may set E = [0, 1]N and de�ne the mutation operatorby

Bf(x1, x2, . . . ) =

∫

[0,1]

f(u, x1, x2, . . . ) − f(x1, x2, x3, . . . ) du.For a type vetor x̄ = (x1, x2, . . . ), one an interpret x1 as the most reently mutatedsite, x2 as the seond most reently mutated site and so on. This additional infor-mation about the temporal order of mutations, whih is usually not present in realsequene data, is �fatored out� afterwards by onsidering appropriate equivalenelasses.For a su�iently �old� population, whih an be assumed to be in equilibrium, it isan interesting question whether for eah pair of types x̄, ȳ visible in the population,there exist indies i, j, suh that xi+k = yj+k for eah k ∈ N. (34)10



The ondition means that there is a most reent ommon anestor for all the types.This question is a prototype of a question for whih the evolution of a populationshould be studied bakwards in time. We will ome bak to this in the Setion 3,see page 17.The in�nitely-many sites model has an interesting ombinatorial struture, see,e.g. [GT95℄ or [BB07℄, Setion 2. For example, in pratie, one frequently does notknow whih of the bases visible at a segregating site is the mutant. This an behandled by onsidering appropriate equivalene lasses.2.4 LookdownThe famous lookdown onstrution of Donnelly and Kurtz (see [DK99℄) provides auni�ed approah to all the limiting population models whih we have disussed sofar, providing a lever nested oupling of approximating generalised Moran modelsin suh a way that the measure-valued limit proess is reovered as the empirialdistribution proess of an exhangeable system of ountably many partiles. How-ever, its full power will only beome lear when we onsider genealogies of samplesand follow history bakwards in time in the next setion. We present here a versionsuitable for populations of �xed total size. The onstrution is very �exible andworks for many senarios, inluding (ontinuous-mass) branhing proesses.Note that [DK99℄ all what follows the `modi�ed' lookdown onstrution, in orderto distinguish it from the onstrution of the lassial Fleming-Viot superproessintrodued by the same authors in [DK96℄. Here we drop the pre�x `modi�ed'.Let F ∈ M1([0, 1]). The lookdown-onstrution leading to an empirial proesswith generator (24) works as follows:We onsider a ountably in�nite system of individuals, eah partile being identi�edby a level j ∈ N. We equip the levels with types ξjt , j ∈ N in some type spae E(and we think of E being an element of {{1, . . . , d}, [0, 1], [0, 1]N
} depending on ourhoie of mutation model). Initially, we require the types ξ0 = (ξj0)j∈N to be anexhangeable random vetor, so that

lim
N→∞

1

N

N∑

j=1

δξj
0

= µ,for some �nite measure µ on E. The point is that the onstrution will preserveexhangeability.There are two �sets of ingredients� for the reprodution mehanism of these partiles,one orresponding to the ��nite variane� part F ({0}), and the other to the �extremereprodutive events� desribed by F0 = F − F ({0})δ0. Restrited to the �rst Nlevels, the dynamis is that of a very partiular permutation of the generalisedMoran model desribed by (31), with the property that always that partile withthe highest level is the next to die.For the �rst part, let {Lij(t)}, 1 ≤ i < j < ∞ be independent Poisson proesseswith rate F ({0}). Intuitively, at jump times t of Lij , the partile at level j �looksdown� at level i and opies the type there, orresponding to a single birth event ina(n approximating) Moran model. Types on levels above j are shifted aordingly,in formulas
ξk(t) =





ξk(t−), if k < j,
ξi(t−), if k = j,
ξk−1(t−), if k > j,

(35)11
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1Figure 1: Relabelling after a birth event involving levels 2, 3 and 6.if ∆Lij(t) = 1. This mehanism is well de�ned beause for eah k, there are only�nitely many proesses Lij , i < j ≤ k at whose jump times ξk has to be modi�ed.For the seond part, whih orresponds to multiple birth events, let B be Poissonpoint proess on R
+ × (0, 1] with intensity measure dt ⊗ r−2F0(dr). Note that foralmost all realisations {(ti, yi)} of B, we have

∑

i : ti≤t

y2
i <∞ for all t ≥ 0. (36)The jump times ti in our point on�guration B orrespond to reprodution events.Let Uij , i, j ∈ N, be i.i.d. uniform([0, 1]). De�ne for J ⊂ {1, . . . , l} with |J | ≥ 2,

LlJ(t) :=
∑

i : ti≤t

∏

j∈J

1Uij≤yi

∏

j∈{1,...,l}−J

1Uij>yi
. (37)

LlJ(t) ounts how many times, among the levels in {1, . . . , l}, exatly those in J wereinvolved in a birth event up to time t. Note that for any on�guration B satisfying(36), sine |J | ≥ 2, we have
E
[
LlJ(t)

∣∣B
]

=
∑

i : ti≤t

y
|J|
i (1 − yi)

l−|J| ≤
∑

i : ti≤t

y2
i <∞,so that LlJ(t) is a.s. �nite.Intuitively, at a jump ti, eah level tosses a uniform oin, and all the levels jwith Uij ≤ yi partiipate in this birth event. Eah partiipating level adopts thetype of the smallest level involved. All the other individuals are shifted upwardsaordingly, keeping their original order with respet to their levels (see Figure 1).More formally, if t = ti is a jump time and j is the smallest level involved, i.e.

Uij ≤ yi and Uik > yi for k < j, we put
ξkt =





ξkt−, for k ≤ j,

ξjt−, for k > j with Uik ≤ yi,

ξ
k−Jk

t

t− , otherwise, (38)where Jkti = #{m < k : Uim ≤ yi} − 1. 12



So far, we have treated the reprodutive mehanism of the partile system. We nowturn our attention to the third ingredient, the mutation steps.For a given mutation rate r and mutation operator B, as de�ned in (21), de�ne foreah level ∈ N an independent Poisson proesses Mi with rate r, so that if proess
Mi jumps, and the urrent type at level i is x, then a new type is being hosenaording to the kernel q(x, ·). For a rigorous formulation, all three mehanismstogether an be ast into a ountable system of Poisson proess-driven stohastidi�erential equations, see [DK99℄, Setion 6.Then ([DK99℄), for eah t > 0, (ξ1t , ξ

2
t , . . .) is an exhangeable random vetor, sothat

Zt = lim
N→∞

1

N

N∑

j=1

δξj
t

(39)exists almost surely by de Finetti's Theorem, and is the Markov proess withgenerator (24) and initial ondition Z0 = µ.Remark. An alternative and very elegant way to enode the genealogy of aFleming-Viot proess with generator (18) is via a �ow of bridges, as desribed in[BLG03℄. However, unlike the situation for the lookdown onstrution, it seemsunlear how to inorporate mutation in this approah. 23 Neutral genealogies: beyond Kingman's oales-entAfter having spent a onsiderable amount of pages on models for the evolution ofthe type distribution of a population forwards in time, we now turn to the fruitfulapproah of looking bakwards in time by analysing the genealogies of samplesdrawn at present. An important advantage of this approah is that in a neutralsituation, this allows one to think of a stohasti two-step proedure, �rst simulat-ing a genealogy, and then independently superimposing the mutation events on thegiven genealogial tree. This point of view has many omputational and oneptualadvantages. We will see below how the lookdown onstrution, introdued inSetion 2.4, provides a uni�ed framework by simultaneously desribing the for-wards evolution and all the genealogial trees of the approximating partile systems.3.1 Genealogies and oalesent proessesA way to desribe the genealogy of a sample of size n from a (haploid) populationis to introdue a family of partitions of {1, . . . , n} as follows:
i ∼t j i� i and j have the same anestor time t before present. (40)Obviously, if t ≥ t′, then i ∼t′ j implies i ∼t j, i.e. the anestral partition beomesoarser as t inreases.For neutral population models of �xed population size in the domain of attrationof the lassial Fleming-Viot proess, suh as the Wright-Fisher- and the Moranmodel, the (random) genealogy of a �nite sample an be (approximately) desribed13



by the now lassial Kingman-oalesent, whih we introdue brie�y, followed bythe more reently disovered and muh more general Λ-oalesents.Kingman's oalesent. Let Pn be the set of partitions of {1, . . . , n} and let
P denote the set of partitions of N. For eah n ∈ N, Kingman [K82℄ introduedthe so-alled n-oalesent, whih is a Pn-valued ontinuous time Markov pro-ess {Π(n)

t , t ≥ 0}, suh that Π
(n)
0 is the partition of {1, . . . , n} into singletonbloks, and then eah pair of bloks merges at rate one. Given that there are

b bloks at present, this means that the overall rate to see a merger betweenbloks is ( b2 ). Note that only binary mergers are allowed. Kingman [K82℄ alsoshowed that there exists a P-valued Markov proess {Πt, t ≥ 0}, whih is nowalled the (standard) Kingman-oalesent, and whose restrition to the �rst npositive integers is the n-oalesent. To see this, note that the restrition ofany n-oalesent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an m-oalesent. Henethe proess an be onstruted by an appliation of the standard extension theorem.
Λ-oalesents. Pitman [P99℄ and Sagitov [S99℄ introdued and disussed oales-ents whih allow multiple ollisions, i.e. more than just two bloks may merge ata time. Again, suh a oalesent with multiple ollisions (whih will be later alleda Λ-oalesent) is a P-valued Markov-proess {Πt, t ≥ 0}, suh that for eah n,its restrition to the �rst n positive integers is a Pn-valued Markov proess (the�n-Λ-oalesent�) with the following transition rates. Whenever there are b bloksin the partition at present, eah k-tuple of bloks (where 2 ≤ k ≤ b ≤ n) is mergingto form a single blok at rate λb,k, and no other transitions are possible. The rates
λb,k do not depend on either n or on the struture of the bloks. Pitman showedthat in order to be onsistent, whih means that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,suh transition rates must neessarily satisfy
λb,k =

∫ 1

0

xk(1 − x)b−k
1

x2
Λ(dx), (41)for some �nite measure Λ on the unit interval. We exlude the (trivial) ase Λ = 0.By a trivial time transformation, one an always assume that Λ is a probabilitymeasure. In [S99℄, the orresponding measure is termed F (= Λ/Λ([0, 1]), and thisis the F appearing throughout Setion 2.2.Note that (41) sets up a one-to-one orrespondene between oalesents with multi-ple ollisions and �nite measures Λ. Indeed, it is easy to see that the λb,k determine

Λ by an appliation of Hausdor�'s moment problem, whih has a unique solutionin this ase.Due to the restrition property, the Λ-oalesent on P (with rates obtained fromthe measure Λ as desribed above) an be onstruted from the orresponding
n-Λ-oalesents via extension.Approximation of genealogies in �nite population models. Consider a sam-ple of size n from a (stationary) Cannings model of size N ≫ n, without mutation,and de�ne an anestral relation proess {R(N,n)

k : k = 0, 1, . . .} via (40). Reallingthat cN , as de�ned in (3), is the probability for a randomly piked pair of individ-uals to have the same anestor one generation ago, it seems reasonable to resaletime and de�ne
Π

(N,n)
t := R

(N,n)
⌊t/cN⌋, t ≥ 0, (42)14



as then (if cN → 0) for a sample of size two, the time to the most reent ommonanestor is approximately exponentially distributed with rate 1.Indeed, [S99℄ and [MS01℄ have shown that if cN → 0 and (4) holds true, then
{Π(N,n)

t : t ≥ 0} onverges weakly to Kingman's n-oalesent, while (12) and (13)imply that the limit is a Λ-oalesent with transition rates given by (41), where
Λ = F , with F from the right-hand side of (12).Obviously, there is a lose relation between multiple merger events in the genealogyof the sample and �extreme� reprodutive events in the population, in whih a non-negligible proportion, say x ∈ (0, 1], of the population alive in the next generationgoes bak to a single anestor in the urrent generation. In fat, the integrand in(41) an be interpreted as follows: When following b lineages bakwards, in suhan event, eah of them �ips a oin with suess probability x and all the suessfullineages subsequently merge.On the other hand, although individuals an have more than two o�spring, themoment ondition (4) ensures that families are typially small ompared to thetotal population size and thus implies that in the limit, only binary mergers arevisible in the genealogy.Remark (Simultaneous multiple ollisions). It should be pointed out thatMöhle and Sagitov [MS01℄ provide a omplete lassi�ation of possible limits ofgenealogies in Cannings-models, in partiular if the ondition (13) is violated. Inthis ase, the resulting genealogies ontain simultaneous multiple ollisions, whihhave been studied independently and termed �Ξ-oalesents� by Shweinsberg in[S00℄, in whih several groups of lineages an merge at exatly the same time. Notethat the �rst fator in (13) is the probability to observe two simultaneous mergersin one generation in a sample of size four, whereas the seond fator is the inverseof the pair oalesene probability.Sine a orresponding theory of forward population models in the spirit ofSetion 2.2 is not yet ompletely established and our spae is limited, we restritourselves here to the �Λ-world�. 2Analyti Duality. Consider an F -generalised Fleming-Viot proess {Zt} withgenerator (18) starting from Z0 = µ ∈ M1(E). The idea that the type distribu-tion in an n-sample from the population at time t an be obtained by �olouring�
t-anestral partitions independently aording to Z0 has the following expliit ana-lytial inarnation: For bounded measurable f : En → R,

E

[ ∫

E

· · ·
∫

E

fΠ0(a1, . . . , a|Π0|)Zt(da1) · · ·Zt(dap)
]

= E

[∫

E

· · ·
∫

E

fΠt
(b1, ..., b|Πt|)Z0(db1) · · ·Z0(db|Πt|)

]
, (43)where Π is the n-F -oalesent starting at π0 = {{1}, ..., {n}}, and, for any partition

π = {C1, ..., Cq} of {1, ..., n},
fπ(b1, ..., bq) := f(a1, ..., ap)with ai := bk if i ∈ Ck. This is lassial for the Kingman ase, and has �rst beenexpliitly formulated in [BLG03℄ for the Λ-ase. Note that speialising (43) in thease F = δ0 to a two-point spae yields the well-known moment duality betweenthe Wright-Fisher di�usion (5) and the blok-ounting proess of Kingman's15



oalesent, whih is a pure death proess with death rate (n2).Remarks (�Coming down from in�nity�). 1. Not all Λ-oalesents seem to bereasonable as models for biologial populations, sine some do not allow for a �nite�time to the most reent ommon anestor� of the entire population (TMRCA) inthe sense of �oming down from in�nity in �nite time�. The latter means that anyinitial partition in P , and for all ε > 0, the partition Πε) a.s. onsists of �nitelymany bloks only. Shweinsberg [S00℄ proves that if either Λ has an atom at 0 or Λhas no atom at zero and
λ∗ :=

∞∑

b=2

( b∑

k=2

(k − 1)

(
b

k

)
λb,k

)−1

<∞, (44)where λb,k is given by (41), then the orresponding oalesent does ome down fromin�nity (and if so, the time to ome down to only one blok has �nite expetation).For the orresponding generalised (Λ/Λ([0, 1]))-Fleming-Viot proess {Zt} withoutmutation, (44) means that the size of the support of Zt beomes one in �nite time� the proess �xes on the type of the population's �eve�.2. An important example for a oalesent, whih (only just) does not ome downfrom in�nity is the Bolthausen-Sznitman oalesent, where Λ(dx) = dx is the uni-form distribution on [0, 1]. This is the Beta(2 − α, α)-oalesent with α = 1, and itplays an important role in statistial mehanis models for disordered systems (seee.g. [Bo06℄ for an introdution).3. However, it should be observed that all n-Λ-oalesents (for �nite n) do have ana.s. �nite TMRCA.4. Note that by Kingman's theory of exhangeable partitions, for eah t > 0,asymptoti frequenies of the lasses exists. If a Λ-oalesent does not ome downfrom in�nity, it may or may not be the ase that these frequenies sum to one(�proper frequenies�). [P99℄ showed that the latter holds i� ∫0+ r−1Λ(dr) = ∞.Note that if ∫[0,1] r−1 Λ(dr) < ∞, we see from (33) that limN→∞ dN < ∞. Henein the lookdown onstrution, at eah time t ≥ 0 there is a positive fration oflevels whih have not yet partiipated in any lookdown event. These orrespond to�dust�. 2Examples for oalesents whih satisfy (44) are Kingman's oalesent, the proessonsidered in [EW06℄, orresponding to (16), (but note that [EW06℄ also onsiders
F = δψ with ψ ∈ (0, 1), for whih (44) fails), and the so-alled Beta(2 − α, α)-oalesents with α ∈ (1, 2), with Λ = F given by (17). Note that even though (17)makes no sense for α = 2, Kingman's oalesent an be inluded in this family asthe weak limit Beta(2 − α, α) → δ0 as α→ 2).Coalesents and the modi�ed lookdown onstrution. We now make useof the expliit desription of the modi�ed onstrution to determine the oalesentproess embedded in it. Fix a (probability) measure F on [0, 1]. Reall the Poissonproesses Lij and LlK from (37) in Setion 2.4 above. For eah t ≥ 0 and k =
1, 2, . . . , let N t

k(s), 0 ≤ s ≤ t, be the level at time s of the anestor of the individualat level k at time t. In terms of the LlK and Lij , the proess N t
k(·) solves, for

16



0 ≤ s ≤ t,
N t
k(s) = k −

∑

1≤i<j<k

∫ t

s−

1{Nt
k
(u)>j} dLij(u)

−
∑

1≤i<j<k

∫ t

s−

(j − i)1{Nt
k
(u)=j} dLij(u)

−
∑

K⊂{1,...,k}

∫ t

s−

(N t
k(u) − min(K))1{Nt

k
(u)∈K} dL

k
K(u)

−
∑

K⊂{1,...,k}

∫ t

s−

(|K ∩ {1, . . . , N t
k(u)}| − 1)

× 1{Nt
k
(u)>min(K), Nt

k
(u)/∈K} dL

k
K(u), (45)Fix 0 ≤ T and, for t ≤ T , de�ne a partition ΠT (t) of N suh that k and l are in thesame blok of ΠT (t) if and only if NT

k (T − t) = NT
l (T − t). Thus, k and l are in thesame blok if and only if the two levels k and l at time T have the same anestorat time T − t. Then ([DK99℄, Setion 5),the proess {ΠT

t : 0 ≤ t ≤ T
} is an F -oalesent run for time T .Note that by employing a natural generalisation of the lookdown onstrutionusing driving Poisson proesses on R and e.g. using T = 0 above, one an usethe same onstrution to �nd an F -oalesent with time set R+. We would liketo emphasise that in ontrast to (43), whih an be proved using the reasoningabove, the lookdown onstrution provides a realisation-wise oupling of the typedistribution proess {Zt} and the oalesent desribing the genealogy of a sample.Superimposing mutations. Consider now an F -generalised Fleming-Viotproess {Zt} with �individual� mutation operator rB, desribed by the generator

LB,F given by (24), starting from Z0 = µ. The lookdown onstrution easily allowsto prove that for eah t, the distribution of a sample of size n from Zt an beequivalently desribed as follows: Run an n-F -oalesent for time t, interpret thisas a forest with labelled leaves. �Colour� eah root independently aording to µ,then run the Markov proess with generator rB independently along the branhesof eah tree, and �nally read o� the types at the leaves.Remark. If (44) is ful�lled and the individual mutation proess with generator
B has a unique equilibrium, one an let t → ∞ in the above argument to seethat {Zt} has a unique equilibrium, and the distribution of an n-sample from thisequilibrium an be obtained by running an n-F -oalesent until it hits the trivialpartition. Then olour this most reent ommon anestor randomly aording tothe stationary distribution of B, and run the mutation proess along the branhesas above.This approah is very fruitful in population genetis appliations. For example,under ondition (44), (34) will be satis�ed for t large enough, irrespetive of theinitial ondition.4 Population geneti inferenePopulations with extreme reprodutive behaviour. Reently, biologists havestudied the geneti variation of ertain marine speies with rather extreme repro-17



dutive behaviour, see, e.g., Árnason [A04℄ (Atlanti Cod) and [BBB94℄ (Pai�Oyster). In this situation, one would like to deide whih oalesent is suitable,based upon observed geneti types in a sample from the population.Eldon and Wakeley [EW06℄ analysed the sample desribed in [BBB94℄ and proposeda one-parameter family of Λ-oalesents, whih omprises Kingman's oalesent asa boundary ase, namely those desribed by (16), as models for their genealogy.Inferene is then based on a simple summary statisti, the number of segregatingsites and singleton polymorphisms. They onlude that ([EW06℄, p. 2622):For many speies, the oalesent with multiple mergers might bea better null model than Kingman's oalesent.In this setion, we obtain reursions for the type probabilities of an n-samplefrom a general Λ-oalesent under with a general �nite alleles model. We presenttwo approahes, one based on the lookdown onstrution, the other on diretmanipulations with the generator LB,F . We disuss how this reursion an then beused to derive a Monte-Carlo sheme to ompute likelihoods of model parametersin Λ-oalesent senarios given the observed types, in the spirit of [GT94b℄, see also[BB07℄ for the in�nite-sites ase. These an be used e.g. for maximum likelihoodestimation.Remark. Analogous reursions for the probability of on�gurations in thein�nite-alleles model have been obtained in [M06b℄. Exat asymptoti expressionsfor ertain summary statistis for the in�nite-alleles and in�nite-sites models underBeta-oalesents [reall (17)℄ have been obtained in [BBS06℄. 24.1 Finite-alleles reursion I: Using the lookdown onstru-tionReall that in the �nite alleles model, type hanges, or mutations, ourr at rate
r, and P = (Pij) is an irreduible stohasti transition matrix on the �nite typespae E. Note that silent mutations are allowed (i.e. Pjj ≥ 0), denote the uniqueequilibrium of P by µ. We assume that the reprodution mehanism is desribedby some F = Λ ∈ M1([0, 1]).Suppose the system, desribed by the lookdown onstrution, is in equilibrium.Consider the �rst n levels at time 0 and let τ−1 be the last instant before 0 whenat least one of the types at levels 1, . . . , n hanges. Then, −τ−1 is exponentiallydistributed with rate

rn = nr +

n∑

k=2

(
n

k

)
λn,k. (46)Denote by p the distribution of the types of the �rst n levels in the stationarylookdown onstrution, say, at time 0. Later, due to exhangeability, we will merelybe interested in the type frequeny probability p0(n). Deomposing aording towhih event ourred at time τ−1, we obtain

p
(
(y1, . . . , yn)

)
=

r

rn

n∑

i=1

∑

z∈E

p
(
(y1, . . . , yi−1, z, yi+1, . . . , yn)

)
Pzyi

+
1

rn

∑

K⊂{1,...,n}
|K|≥2

λn,|K|1{all yj equal for j ∈ K}p
(
γK(y1, . . . , yn)

)
, (47)18



where γK(y1, . . . , yn) ∈ En−|K|+1 is that vetor of types of length n−|K|+1 whih(
ξ1(τ−1−), . . . , ξn−|K|+1(τ−1−)

) must be in order that a resampling event involvingexatly the levels in K among levels 1, . . . , n generates (ξ1(τ−1), . . . , ξn(τ−1)
)

=
(y1, . . . , yn). Formally,

γK(y1, . . . , yn)i = yi+#((K\{minK})∩{1,...,i}), 1 ≤ i ≤ n− |K| + 1.As the type at level 1 is the stationary Markov proess with generator rB, we havethe boundary ondition p((y1)) = µ(y1), y1 ∈ E. Note that, by exhangeability,
p
(
(y1, . . . , yn)

)
= p
(
(yπ(1), . . . , yπ(n))

)for any permutation π of {1, . . . , n}. So, the only relevant information is (of ourse)how many samples were of whih type. For n = (n1, . . . , nd) ∈ Z
d
+ we write #n :=

n1 + · · · + nd for the `length', and
κ(n) =

(
1, 1, . . . , 1︸ ︷︷ ︸

n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , d, . . . , d︸ ︷︷ ︸
nd

)
∈ E#nfor a `anonial representative' of the (absolute) type frequeny vetor n. Let

p0(n) :=

(
#n

n1, n2, . . . , nd

)
p
(
κ(n)

) (48)be the probability that in a sample of size #n, there are exatly nj of type j,
j = 1, . . . , d. We abbreviate n := #n, and write ek for the k-th anonial unitvetor of Z

d. Noting that
nj

(
#n

n1, n2, . . . , nd

)
p(n− ej + ei) =

(
ni + 1 − δij

)
p0(n − ej + ei)and that (for nj ≥ k, otherwise the term is 0)

(
nj
k

)(
#n

n1, n2, . . . , nd

)
p(n − (k − 1)ej) =

(
n

k

)
nj − k + 1

n− k + 1
p0(n − (k − 1)ej),(47) translates into the following reursion for p0:

p0(n) =
r

rn

d∑

j=1

d∑

i=1

(ni + 1 − δij)Pijp
0(n− ej + ei)

+
1

rn

d∑

j=1
nj≥2

nj∑

k=2

(
n

k

)
λn,k

nj − k + 1

n− k + 1
p0(n − (k − 1)ej) (49)with boundary onditions p0(ej) = µj .Remark. In the Kingman-ase, we have λn,k = 1(n ≥ 2 = k), rn = nθ/2 + n(n−

1)/2 = n(n− 1 + θ)/2 (and we assume r = θ/2 as �usual�), hene (49) beomes thewell-known
p0(n) =

θ

n− 1 + θ

d∑

j=1

d∑

i=1

ni + 1 − δij
n

Pijp
0(n − ej + ei)

+
n− 1

n− 1 + θ

d∑

j=1
nj≥2

nj − 1

n− 1
p0(n− ej). (50)19



4.2 Finite-alleles reursion II: Generator approahAn alternative method to obtain the reursion for the type probabilities in the�nite-alleles ase is by using a generator approah, see [DIG04a℄. Let f ∈ C2 and
∆d = {(x1, . . . , xd) : xi ≥ 0, x1 + · · · + xd = 1} and onsider the mutation operator

B̃f(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

) ∂f
∂xi

(x1, . . . , xd).For the resampling operator, we distinguish the Kingman- and non-Kingman om-ponents. First, assume Λ({0}) = 0 (non-Kingman). Consider
R1f(x1, . . . , xd) =

d∑

i=1

∫
xi

(
f
(
r̄x1, . . . , r̄xi−1, r̄xi + r, r̄xi+1, . . . , r̄xd

)

− f(x1, . . . , xd)
)
r−2Λ(dr), (51)where r̄ = 1 − r. For the Kingman-part (Λ = δ0) of the resampling operator, wehave

R2f(x1, . . . , xd) =
1

2

d∑

i,j=1

xi(δij − xj)
∂2f

∂xi∂xj
(x1, . . . , xd).Finally, for general Λ and a ≥ 0, write R = R1 + aR2, where R1 uses Λ0 =

Λ − Λ({0}δ0. Now, let X(t) = (X1(t), . . . , Xd(t)) be the stationary proess withgenerator L = B̃+R [note thatXi(t) = Zt({i}), where {Zt} is the stationary proesswith generator (24)℄. Write X = X(0). Let n = (n1, . . . , nd), n = n1 + · · · + nd.Then,
E

[ d∏

i=1

Xni

i

]is the probability of observing in a sample of size n from the equilibrium populationtype i preisely ni times in a partiular order (e.g. �rst n1 samples of type 1, next
n2 samples of type 2, et.). Put

fn(x) := x
n :=

d∏

i=1

xni

i .Then,
g(n) :=

(
n

n1 . . . nd

)
E
[
fn(X)

]is the probability of observing type i exatly ni times, i = 1, . . . , d, without regardof the order. Note that
B̃fn(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

)
nifn−ei

(x1, . . . , xd)

= r

d∑

i,j=1

niPjifn−ei+ej
(x) − rnfn(x)

20



and
fn((1 − r)x + rei) = (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
(
(1 − r)xi + r

)ni

= (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
ni∑

k=0

(
ni
k

)
rk(1 − r)ni−kxni−k

i

=

ni∑

k=0

(
ni
k

)
rk(1 − r)n−k

(
xni−k
i

d∏

j 6=i

x
nj

j

)
,so the term inside the integral in the expression (51) for R1 an be written as

d∑

i=1

ni∑

k=0

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=0

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ

=

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=2

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ ,observing that the terms with k = 0 and k = 1 anel sine x1 + · · · + xd = 1 and
n1 + · · · + nd = n. Realling the de�nition of λn,k from (41), we obtain

R1fn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x). (52)Furthermore

R2fn(x) =
1

2

d∑

i,j=1

xi(δij − xj)ni(nj − δij)fn−ei−ej
(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
d∑

i,j=1

ni(nj − δij)

2
fn(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) − n(n− 1)

2
fn(x). (53)Combining the terms from R1 and R2 (using (52) and (53) above, and replaing Λby Λ0 in (51)), we have

Rfn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x).Thus we obtain from the stationarity ondition ELfn(X) = 0 that

rnEfn(X) = r

d∑

i,j=1

niPjiEfn−ei+ej
(X) +

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kEfn−(k−1)ei

(X),where rn is de�ned in (46). Multiplying with ( n
n1...nd

)
/rn and some algebra gives

g(n) =
r

rn

d∑

i,j=1

(nj + 1 − δij)Pjig(n − ei + ej)

+
1

rn

d∑

i:ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1
g(n − (k − 1)ei),whih agrees with (49). 21



4.3 A Monte Carlo Sheme for sampling probabilitiesReursion (49) an be used to estimate p0(n) for a given n ∈ Z
d
+ using a Markovhain, in the spirit of [GT94b℄, as follows:Let {Xk} be a Markov hain on Z

d
+ with transitions

n →





n− ej + ei w. p. r

rnf(n) (ni + 1 − δij)Pij if nj > 0,

n− (k − 1)ei w. p. 1
rnf(t,n)

(
n
k

)
λn,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni,where [with rn de�ned in (46)℄

f(n) =
1

rn

(
d∑

i,j=1
nj>0

r(ni + 1 − δij)Pij +
∑

1≤i≤d
ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1

)
. (54)Then,

p0(n) = E(n)

τ∏

l=0

f(t(l),n(l)). (55)Remark (Inferene for Kingman's oalesent). Likelihood-based inferenemethods for Kingman's oalesent, some solving reursion (50) approximatelyvia Monte Carlo methods, others using MCMC, have been developed sine thebeginning of the 1990ies, see [EG87℄, [GT94a℄, [GT94b℄, [GT94℄, [GT96a℄,[GT96b℄, [GT97℄, [FKY99℄, [DIG04a℄, [SD00℄. In [SD00℄, Stephens and Donnellyprovide proposal distributions for importane sampling, whih are optimal in somesense, and ompare them to various other methods. Their importane samplingsheme seems, at present, to be the most e�ient tool for inferene for relativelylarge datasets, but heavily uses the fat that Kingman's oalesent allows onlybinary mergers. It is at present unlear what an analogous strategy in the general
Λ-ase ought to be. 24.4 Simulating samplesLet E, (Pij), µ, r be the parameters of a �nite-alleles model. Then, one may obtainthe type on�guration in an n-sample as follows:Let {Y (n)

t }t≥0 be the blok ounting proess orresponding to an n-Λ-oalesent, i.e.
Y

(n)
t = #{bloks of Πt} is a ontinuous-time Markov hain on N with jump rates

qij =

(
i

i− j + 1

)
λi,i−j+1, i > j ≥ 1starting from Y

(n)
0 = n. Its Green funtion is
g(n,m) := E

[ ∫ ∞

0

1
{Y

(n)
s =m}

ds

] for n ≥ m ≥ 2, (56)whih an easily be omputed reursively, see [BB07℄, Setion 7.1. Denoting by
τ := inf{t : Y

(n)
t = 1} be the time required to ome down to only one lass and by22



∂ a �emetery state�, it follows from Nagasawa's Formula [see, e.g., [RW87℄, (42.4)℄that the time-reversed path
Ỹ

(n)
t :=

{
Y

(n)
(τ−t)−, 0 ≤ t < τ,

∂, τ ≤ t,
(57)is a ontinuous-time Markov hain on {2, . . . , n} ∪ {∂} with jump rate matrix

q̃
(n)
ji =

g(n, i)

g(n, j)
qij , j < i ≤ n, −q̃(n)

jj =
∑

i=j+1

q̃
(n)
ji =

j−1∑

ℓ=1

qjℓ, q̃
(n)
n∂ = −qnnand initial distribution P{Ỹ (n)

0 = k} = g(n, k)qk1, k = 2, 3, . . . , n. Note thatunless Λ is onentrated on {0}, the dynamis does depend on n. We write
p̃
(n)
ji := q̃

(n)
ji /(−q̃

(n)
jj ), j < i ≤ n for the transition matrix of the skeleton hain of

Y (n).In view of the remark on page 17, it is lear that he following algorithm generatesan n-sample from the stationary distribution of the proess with generator LB,Fgiven by (24):Algorithm (generating samples).(i) Generate K with P{K = k} = g(n, k)qk1, k = 2, . . . , n, begin with η = KδX ,where X ∼ µ.(ii) Draw U ∼ Unif([0, 1]).If U ≤ kr

kr+(−q̃
(n)
kk

)
:Replae one of the present types by a P -step from it, i.e. replae η :=

η − δx + δy with probability ηx

#ηPxy (for x 6= y), where #η is the totalmass of η.Otherwise:If #η = n : Output η and stop.Else, pik J ∈ {#η, . . . , n} with P{J = j} = p̃
(n)
#η,j. Choose one of thepresent types (aording to their present frequeny), and add J − #ηopies of this type, i.e. replae η := η+(J −#η)δx with probability ηx

#η .(iii) Repeat (ii).Remark. Ordered samples an be obtained from a realization of η by randomreordering. In the ase of parent-independent mutation, i.e. if Pij = Pj for all
i, j, it is possible to simplify the proedure by simulating �bakwards in time�.�Ative�anestral lineages are lost either by (possibly multiple) oalesene or whenhitting their �de�ning� mutation, in whih ase one simply assigns a random typedrawn aroding to Pj . 2
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