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Abstra
tWe review re
ent progress in the understanding of the interplay betweenpopulation models, measure-valued di�usions, general 
oales
ent pro
essesand inferen
e methods for evolutionary parameters in population geneti
s.Along the way, we will dis
uss the powerful and intuitive (modi�ed) lookdown
onstru
tion of Donnelly and Kurtz, Pitman's and Sagitov's Λ-
oales
ents aswell as re
ursions and Monte Carlo s
hemes for likelihood-based inferen
e ofevolutionary parameters based on observed geneti
 types.1 Introdu
tionWe dis
uss mathemati
al models for an e�e
t whi
h in population geneti
s jargon,somewhat orthogonal to di�usion pro
ess nomen
lature, is 
alled �geneti
 drift�,namely the phenomenon that the distribution of geneti
 types in a population
hanges in the 
ourse of time simply due to sto
hasti
ity in the individuals'reprodu
tive su

ess and the �niteness of all real populations. We will only
onsider �neutral� geneti
 types. This 
ontrasts and 
omplements the notion ofsele
tion, whi
h refers to s
enarios in whi
h one or some of the types 
onfer adire
t or indire
t reprodu
tive advantage to their bearers. Thus, in the absen
e ofdemographi
 sto
hasti
ity, the proportion of a sele
tively advantageous type wouldin
rease in the population, whereas that of neutral types would remain 
onstant.The interplay between small �tness di�eren
es among types and the sto
hasti
itydue to �niteness of populations leads to many interesting and 
hallenging problems,see e.g. the arti
le by A. Etheridge, P. Pfa�elhuber and A. Wakolbinger [EPW07℄.Geneti
 drift 
an be studied using two 
omplementary approa
hes, whi
h are inmany senses, some of whi
h we will dis
uss below, dual to ea
h other. Looking�forwards� in time, the evolution of the type distribution 
an be approximatelydes
ribed by Markov pro
esses taking values in the probability measures on thespa
e of possible types. Looking �ba
kwards�, one des
ribes the random genealogyof a sample from the population. Given the genealogi
al tree, one 
an thensuperimpose the mutation pro
ess in a se
ond step. The arti
le by P. Mörters[M07b℄ studies asymptoti
 properties of these genealogi
al trees in the limit of alarge sample sizes as an example of the use of the multifra
tal spe
trum.The 
lassi
al model for geneti
 drift is the so-
alled Wright-Fisher di�usion, whi
his appropriate when the variability of the reprodu
tive su

ess among individuals issmall. Re
ently, there has been mathemati
al and biologi
al interest in situationswhere the varian
e of the number of o�spring per individual is (asymptoti
ally)in�nite, and detailed des
riptions of the possible limiting obje
ts have beenobtained. We review these developments, giving parti
ular emphasis to theinterplay between the forwards models, generalised Fleming-Viot pro
esses, andtheir dual ba
kwards models, Λ-
oales
ents. We use this opportunity to advertisethe lookdown 
onstru
tion of Donnelly and Kurtz (in its [DK99℄ ��avour�), whi
h1



provides a realisation-wise 
oupling for this duality. Furthermore, we show howthese approa
hes 
an be used to derive re
ursions for the probabilities of observedtypes in a sample from a stationary population. These re
ursions 
an usually notbe solved in 
losed form and 
an be di�
ult to implement exa
tly, in parti
ular ifthe spa
e of possible types or the sample size is large. We des
ribe a Monte-Carlomethod whi
h allows an approximate solution.Many important and interesting aspe
ts of mathemati
al population geneti
 modelsare omitted in our review, in parti
ular the possibilities of varying population sizes,sele
tive e�e
ts, spatial or other population substru
ture, multi-lo
us dynami
s andre
ombination. We also fo
us on haploid models, meaning that our individuals haveonly one parent. For an introdu
tion to 
oales
ents with emphasis on biology, seee.g. [H90℄, [N01℄, [HSW05℄, [W06℄, for ba
kground on (
lassi
al and generalised)Fleming-Viot pro
esses and variations of Kingman's 
oales
ent, see e.g. [EK86℄,[D93℄, [EK93℄ and [DK99℄.2 Population geneti
 models with neutral typesCannings-models. In neutral population models, the main (and only) sour
esof sto
hasti
ity are due to random geneti
 drift and mutation. The �rst featureis 
aptured in a basi
 
lass of population models, namely the so-
alled Cannings-models ([C74, C75℄). We will subsequently extend these by adding mutations.Consider a (haploid) population of 
onstant size (e.g. due to a �xed amount ofresour
es) 
onsisting of, say, N individuals. Suppose the population is undergoing�random mating� with �xed non-overlapping generations and ideally has evolved fora long time, so that it 
an be 
onsidered �in equilibrium�. In ea
h generation t ∈ Z,the distribution of the o�spring numbers is given by a non-trivial random ve
tor
(ν

(t)
1 , . . . , ν

(t)
N ) with N∑

i=1

ν
(t)
i = N, (1)where ν(t)

k is the number of 
hildren of individual k. The ve
tors ν(t), t ∈ Z areassumed i.d.d.Neutrality means that we additionally suppose that the distribution of ea
h su
hrandom ve
tor is ex
hangeable, i.e. for ea
h permutation σ ∈ SN , we have that
(νσ(1), . . . , νσ(N)) = (ν1, . . . , νN ) in law.If these 
onditions are met, we speak of a Cannings-model.To explain the notion of random geneti
 drift, imagine that ea
h individual has a
ertain geneti
 type. For example, at the geneti
 lo
us under 
onsideration, ea
hindividual is of one of the types (or alleles) {a,A}. Ea
h type is passed on un
hangedfrom parent to o�spring (we will introdu
e mutation to this model later).For ea
h generation t, let Xt denote the number of individuals whi
h 
arry the �a�-allele. By the symmetries of the model, {Xt} is a �nite Markov-
hain on {0, . . .N}as well as a martingale. In parti
ular, we may represent its dynami
s as

Xt+1 =

Xt∑

i=1

ν
(t)
i . (2)2



Note that although E[Xt] = X0 for all t (due to the martingale property), the
hain will almost surely be absorbed in either 0 or N in �nite time. In fa
t, theprobability that type a will be �xed in the population equals its initial frequen
y
X0/N . This is a simple example of the power of geneti
 drift: although in thismodel there is no evolutionary advantage of one of the types over the other, onetype will eventually get �xed (this for
e will later be balan
ed by mutation, whi
hintrodu
es new geneti
 variation).2.1 �Classi
al� limit results in the �nite varian
e regimeTwo-type neutral Wright-Fisher model. The 
lassi
al example from this 
lassis the famous Wright-Fisher model ([F22℄, [W31℄). Informally, one 
an think ofthe following reprodu
tion me
hanism. At generation t, ea
h individual pi
ks oneparent uniformly at random from the population alive at time t− 1 and 
opies itsgeneti
 type (i.e. either a or A). Denoting by pt−1 = Xt−1/N the proportion ofalleles of type a in generation t − 1, the number Xt of a-alleles in generation t isbinomial, that is,

P{Xt = k|Xt−1} =

(
N

k

)
pkt−1(1 − pt−1)

N−k.Compliant with (1), the o�spring ve
tor (ν1, . . . , νN ) would be multinomial with
N trials and su

ess probabilities 1/N, . . . , 1/N .The Wright-Fisher di�usion as a limit of �many� Cannings-models. Forlarge populations, it is often useful to pass to a di�usion limit. To this end, denoteby

Y N (t) :=
1

N
X⌊t/cN⌋, t ≥ 0,where ⌊t/cN⌋ is the integer part of t/cN , and the time s
aling fa
tor is

cN :=
E[ν1(ν1 − 1)]

N − 1
=

V[ν1]

N − 1
, (3)the (s
aled) �o�spring varian
e�. Note that cN 
an also be interpreted as the prob-ability that two randomly sampled individuals from the population have the samean
estor one generation ago (this will be important in Se
tion 3). The followingexa
t 
onditions for 
onvergen
e follow from the 
onditions given by [MS01℄ and astraightforward appli
ation of duality, whi
h we will dis
uss below [see (42)℄: If

cN → 0 and E[ν1(ν1 − 1)(ν1 − 2)]

N2cN
→ 0 as N → ∞, (4)

{Y Nt } 
onverges weakly to a di�usion pro
ess {Yt} in [0, 1], whi
h is the uniquestrong solution of
dYt =

√
Yt(1 − Yt) dBt, Y0 := x ∈ [0, 1],where {Bt} is a standard Brownian motion. Equivalently, {Yt} is 
hara
terised asa (strong) Markov pro
ess with generator

Lf(y) =
1

2
y(1 − y)

d2

dy2
f(y), y ∈ [0, 1], f ∈ C2([0, 1]). (5)3



To this 
ontinuous model, the ma
hinery of one-dimensional di�usion theory maybe applied. For example, it is easy to 
ompute the mean time to �xation, if Y0 = x,whi
h is
m(x) = −2(x log x+ (1 − x) log(1 − x)).In terms of the original dis
rete model, if X0/N = 1/2, one obtains

(2 log 2)
N

σ2
≈ 1.39

N

σ2
generations(assuming that asymptoti
ally, V[ν1] ≈ σ2).Moran's model. An equally famous model for a dis
rete population, living in
ontinuous time, 
ustomarily attributed to P. A. P. Moran, works as follows: Ea
hof the N individuals 
arries an independent exponential 
lo
k (with rate 1). If a bellrings, the 
orresponding individual (dies and) 
opies the type of a uniformly at ran-dom 
hosen individual from the 
urrent population (in
luding itself). Another wayto think about this is to pi
k the jumps times a

ording to a Poisson-pro
ess withrate N and then independently 
hoose a parti
le whi
h dies and another parti
lewhi
h gives birth.Note that even though this model does not literally �t into the Cannings 
lass,its �skeleton 
hain� is a Cannings model with ν uniformly distributed on all thepermutations of

(2, 0, 1, 1, . . . , 1).The fra
tion of type a-individuals in both models, suitably res
aled, 
onverge tothe Wright-Fisher di�usion: the 
ontinuous-time variant has to be sped up by afa
tor of N , the skeleton 
hain by a fa
tor of N2, as N skeleton steps roughly
orrespond to one �generation�.Remark (several types and higher-dimensionalWright-Fisher di�usions).It is straightforward to extend the dis
ussion above to a situation with �nitely-many (say k) geneti
 types, and obtain analogous limit theorems. Under the sameassumptions, the fra
tion of type i in generation ⌊t/cN⌋ is approximately des
ribedby Y it , where
Yt = (Y 1

t , . . . , Y
k
t ) ∈ {(y1, . . . , yk) : yi ≥ 0,

∑
i yi = 1}is a di�usion with generator L(k), a
ting on f ∈ C2(Rk) as

L(k)f(y) =
1

2

k∑

i,j=1

yi(δij − yj)
∂2

∂yi∂yj
f(y). (6)

2Fleming-Viot pro
esses and in�nitely many types. To in
orporate s
enarioswith in�nitely many possible types, it is most 
onvenient to work with measure-valued pro
esses. For simpli
ity and de�niteness, we 
hoose here E = [0, 1] as thespa
e of possible types, and 
onsider random pro
esses on M1([0, 1]). For example,let X̃(t, i) (with values in E) be the type of individual i in generation t in a Canningsmodel, and let
ZNt :=

1

N

N∑

i=1

δX̃(t,i) (7)4



be the empiri
al type distribution in generation t. Then, under Assumptions (4),if ZN0 ⇒ µ ∈ M1([0, 1]), the res
aled pro
esses {ZN⌊t/cN⌋} 
onverge weakly towardsa measure-valued di�usion {Zt}, whi
h uniquely solves the (well-posed) martingaleproblem with respe
t to the generator
LΦ(µ) =

∑

J⊆{1,...,p},|J|=2

∫
µ(da1) · · ·µ(dap)

(
φ(aJ1 , . . . , a

J
p ) − φ(a1, . . . , ap)

) (8)for µ ∈ M1([0, 1]) and test fun
tions
Φ(µ) =

∫
φ(a1, . . . , ap)µ(da1) · · ·µ(dap), (9)where p ∈ N and φ : [0, 1]p → R is measurable and bounded, and for a =

(a1, . . . , ap) ∈ [0, 1]p and J ⊆ {1, . . . , p}, we put
aJi = aminJ if i ∈ J, and aJi = ai if i /∈ J, i = 1, . . . , p, (10)see e.g. [EK86℄, Ch. 10, Thm 4.1. Thinking of a as the types of a sample of size pdrawn from µ, passage from a to aJ means a 
oales
en
e of ai, i ∈ J .In parti
ular, if µ =

∑k
i=1 yiδai

for k di�erent points ai ∈ [0, 1], then
Zt =

k∑

i=1

Y it δai
,where {Y it : i = 1, . . . , k, t ≥ 0} is the k-dimensional Wright-Fisher di�usion withgenerator (6).2.2 Beyond �nite varian
e: o

asional extreme reprodu
tioneventsSin
e the end of the 1990ies, more general reprodu
tion me
hanisms and their in-�nite population limits have been studied in the mathemati
al 
ommunity ([S99℄,[P99℄, [DK99℄, [MS01℄, [S00℄).Although the motivation for this 
ame from 
onsiderations about the genealogyof population resp. 
oales
ent pro
esses, we des
ribe the 
orresponding populationmodels forward in time �rst. Many of the te
hni
al assumption here will be
omemore 
lear after the next Se
tion has been studied.Impli
it in (4) is the assumption that ea
h family size νi is small 
ompared to thetotal population size N . A natural generalisation, motivated by 
onsidering spe
ieswith potentially very many o�spring, is to 
onsider s
enarios where o

asionally, asingle family is of appre
iable size when 
ompared to N . In this spirit, Eldon andWakeley ([EW06℄) proposed a family of Cannings models, where in a population ofsize N , ν is a (uniform) permutation of

(
2, 0, 1, . . . , 1

) or of (
⌊ψN⌋, 0, 0, . . . , 0︸ ︷︷ ︸

⌊ψN⌋ times, 1, . . . , 1) (11)with probability 1 − N−γ resp. N−γ for some �xed parameter ψ ∈ (0, 1] and γ >
0. The idea is of 
ourse that from time to time, an ex
eptionally large family isprodu
ed, whi
h re
ruits a (non-negligible) fra
tion ψ of the next generation.This is appealing as being presumably the 
on
eptually simplest model of this phe-nomenon. On the other hand, while one may be willing to a

ept the assumption5



that in a spe
ies with high reprodu
tive potential and variability, su
h extreme re-produ
tive events 
an o

ur, the stipulation that these generate always the samefra
tion ψ is 
ertainly an over-simpli�
ation.A more realisti
 model would allow �random� ψ, where the parameter ψ is 
ho-sen a

ording to some (probability) measure F . So far, the question whi
h F are�natural� for whi
h biologi
al appli
ations is largely open.A plausible 
lass of Cannings models for s
enarios with (asymptoti
ally) heavy-tailed o�spring distributions has been introdu
ed and studied by S
hweinsberg([S03℄): In ea
h generation, individuals generate potential o�spring as in a super-
riti
al Galton-Watson pro
ess, where the tail of the o�spring distribution variesregularly with index α, more pre
isely the probability to have more than k 
hildrende
ays like Const. × k−α. Among these, N are sampled without repla
ement tosurvive and form the next generation. The parameter α ∈ (1, 2] governing the tailof individual litter sizes 
hara
terises the limit pro
ess, and intuitively smaller α
orresponds to more extreme variability among o�spring numbers.Mathemati
ally, the situation is well understood (see [S99℄, [MS01℄): For the dis
us-sion of limit pro
esses, we �rst spe
ialise to the situation of two types only. Considerthe Markov 
hain (2) on the time s
ale 1/cN , where cN is de�ned in (3). If cN → 0,for some probability measure F on [0, 1]

N

cN
P{ν1 > Nx} −→

∫

(x,1]

1

y2
F (dy) (12)for all x ∈ (0, 1) with F ({x}) = 0 and

E[ν1(ν1 − 1) ν2(ν2 − 1)]

N2
· 1

cN
−→ 0 , as N → ∞, (13)then the pro
esses {XN

⌊t/cN⌋/N} 
onverge weakly to a Markov pro
ess {Yt} in [0, 1]with generator
Lf(y) =

F ({0})
2

y(1 − y)
d2

dy2
f(y)

+

∫

(0,1]

(
yf
(
(1 − r)y + r

)
+ (1 − y)f

(
(1 − r)y

)
− f(y)

) 1

r2
F (dr) (14)for f ∈ C2([0, 1]). The moment 
ondition (13) has a natural interpretation in termsof the underlying genealogy, see the remark about simultaneous multiple 
ollisionson page 15. Alternatively, {Yt} 
an be des
ribed as the solution of

dYt =
√
F ({0})Yt−(1 − Yt−) dBt

+

∫

(0,t]×(0,1]×[0,1]

(
1{u≤Y (t−)}r(1 − Yt−) − 1{u>Y (t−)}rYt−

)
N
(
ds dr du

)
, (15)where {Bt} is a standard Brownian motion and N is an independent Poissonpro
ess on [0,∞) × (0, 1] × [0, 1] with intensity measure dt ⊗ r−2F0(dr) ⊗ du with

F0 = F − F ({0})δ0. Here, r−2F0(dr) is the intensity with whi
h ex
eptionalreprodu
tive events repla
ing a fra
tion r of the total population o

ur in thelimiting pro
ess.The 
lass 
onsidered by Eldon and Wakeley ([EW06℄) leads to F = δ0 for γ > 2,
F =

2

2 + ψ2
δ0 +

ψ2

2 + ψ2
δψ for γ = 2 (16)6



and δψ for 1 < γ < 2. The models 
onsidered by S
hweinsberg in [S03℄ yield Betameasures, namely
F (dr) =

Γ(2)

Γ(2 − α)Γ(α)
r1−α(1 − r)α−1 dr. (17)In [BBC05℄, these pro
esses have been 
hara
terised as time-
hanges of α-stable
ontinuous-mass bran
hing pro
esses renormalised to have total mass 1 at any time.For the situation with in�nitely many possible types, the 
orresponding limitinggeneralised Fleming-Viot pro
ess 
an be 
onsidered as a measure-valued di�usionwith 
àdlàg paths whose generator, on test fun
tions of the form (9) with φ twotimes 
ontinuously di�erentiable, is

F ({0})LΦ(µ) +

∫

E

∫

(0,1]

(
Φ
(
(1 − r)µ+ rδa

)
− Φ(µ)

) F0(dr)

r2
µ(da), (18)where L is de�ned in (8).2.3 Introdu
ing mutation.We now introdu
e another major evolutionary �player�, whi
h 
ountera
ts thelevelling for
e of random geneti
 drift. Indeed, when on the right s
ale, see (22)below, mutation 
ontinuously introdu
es new types to a population, leading toreasonable levels of geneti
 variability.Example: The two alleles 
ase. For our pre-limiting Cannings-models, imaginethe following simple me
hanism. At ea
h reprodu
tion event, parti
les retain thetype of their parents with high probability. However, with a small probability, thetype 
an 
hange a

ording to some mutation me
hanism. In the situation of thetwo-allele model given by the types {a,A}, suppose that independently for ea
h
hild, a mutation from parental type a to A happens with probability p(N)

a→A, anddenote by p(N)
A→a the 
orresponding probability for a mutation from A to a.Let cN , as de�ned in (3), tend to zero. If the assume, in addition to (12), (13), that

p
(N)
a→A

cN
→ µa→A and p

(N)
A→a

cN
→ µA→a, (19)then, the pro
ess des
ribing the fra
tion of the a-population, 
onverges to a limitwhi
h has generator, for a suitable test-fun
tion f ∈ C2, given by

Lf(y) +
(
− yµa→A + (1 − y)µA→a

) d
dy
f(y), (20)where L is given by (14).General mutation me
hanisms. Here, we 
ome ba
k to 
onsider measure-valueddi�usions on some type spa
e E. Let E be a 
ompa
t metri
 spa
e (we will laterusually assume E = [0, 1]Z or [0, 1]). To des
ribe a mutation me
hanism, let q(x, dy)be a Feller transition fun
tion on E×B(E), and de�ne the bounded linear operator

B on the set of bounded fun
tion on E by
Bf(x) =

∫

E

(
f(y) − f(x)

)
q(x, dy). (21)7



Denote the individual mutation probability per individual in the N -th stage of thepopulation approximation by rN and assume that
rN
cN

→ r ∈ [0,∞), (22)where cN is de�ned in (3). Note that the s
aling depends on the 
lass of Canningsmodels 
onsidered. For example, for the models in the domain of attra
tion of aBeta-
oales
ent [see the 
onsiderations leading to (17)℄, the 
hoi
e of α �xes thes
aling of the individual mutation probability µ per generation: in a population ofsize N , this translates to a rate
r = CαN

α−1µ (23)with whi
h mutations appear in the limit. In the 
ase α = 2, this is the familiarformula r (= θ/2) = 2Nµ.Then, the empiri
al pro
ess {ZNt }, des
ribing the distribution of types on E andde�ned in analogy to (7), 
onverges to a limiting Markov pro
ess Z, whose evolutionis des
ribed by the generator [using the notation from (9)℄
LB,FΦ(µ) = r

p∑

i=1

∫

Ep

Bi(φ(a1, . . . , ap))µ
⊗p(da1 . . . dap) + LFΦ(µ), (24)where LF is de�ned by (18), and Biφ is the operator B, de�ned in (21), a
tingon the i-th 
oordinate of φ. This pro
ess is 
alled the F -generalised Fleming-Viotpro
ess with individual mutation pro
ess B. Note that in the nomen
lature of[BLG03℄, this would be a ν-generalised FV pro
ess with ν(dr) = F (dr)/r2.General Moran model with mutation. While the Cannings 
lass uses dis
retegenerations, the phenomena dis
ussed above 
an also be expressed in terms of a
ontinuous time model, whi
h is a natural generalisation of the 
lassi
al Moranmodel. For a given (�xed) total population size N let BN be a Poisson pro
esson [0,∞) × {1, 2 . . . , N − 1} with intensity measure dt ⊗ µN , where µN is some�nite measure. If (t, k) is an atom of BN , then at time t, a �k-birth event� takespla
e: k uniformly 
hosen individuals die and are immediately repla
ed by theo�spring of another individual, whi
h is pi
ked uniformly among the remaining

N − k. �Extreme� reprodu
tive events 
an thus be in
luded by allowing µN to havesuitable mass on ks 
omparable to N . The 
lassi
al Moran model, in whi
h onlysingle birth events o

ur, 
orresponds to µN = Nδ1.Additionally, assume that individuals have a type in E, and ea
h parti
le mutatesduring its lifetime independently at rate rN ≥ 0 a

ording to the jump pro
ess withgenerator B given by (21). Write X(N)
i (t) for the type of individual i at time t.Let us denote the empiri
al pro
ess for the N -parti
le system by

ZN(t) :=
1

N

N∑

i=1

δ
X

(N)
i

(t)
. (25)We will further on assume that X(N)

i (0) = Xi, i = 1, . . . , N , where the Xi areex
hangeable and independent of BN , so in parti
ular limN→∞ ZN (0) exists a.s. byde Finetti's Theorem.For a reasonable large population limit, one obviously has to impose assumptionson µN and rN . To 
onne
t to the formulation in [DK99℄, note that BN 
an be8



equivalently des
ribed by the �a

umulated births� pro
ess
AN (t) :=

∑

(s,k)∈supp(BN ), s≤t

k, t ≥ 0, (26)whi
h is of 
ourse simply a 
ompound Poisson pro
ess. We write [AN ](t) =∑
s≤t

(
∆AN (s)

)2 for the quadrati
 variation of AN . Then, if
NrN → r (27)and

[AN ](Nt) +AN (Nt)

N2
=: UN (t) ⇒ U(t), (28)where the limit pro
ess U must ne
essarily be a subordinator with generator

GUf(x) =

∫

[0,1]

(
f(x+ u) − f(x)

)
ν̃(du) + af ′(x), (29)the time-res
aled empiri
al pro
esses

{
ZN (Nt), t ≥ 0} ⇒ Z, as N → ∞,where {Z(t)} is the solution of the well-posed martingale problem 
orresponding to(24), see [DK99℄, Theorems 3.2 and 1.1. The relation between GU and F appearingin (24) is as follows:

a = 2F ({0}), ν̃ is the image measure of 1

r2
F (dr) under r 7→ √

r. (30)The latter is owed to the fa
t that �substantial� birth events, where k is of order N ,appear with their squared relative size as jumps of UN .While the Assumption (28) is quite general, it is instru
tive (and will be usefullater) to spe
ialise to a parti
ular 
lass of approximating birth event rates µN ({k})whi
h is 
losely related to the limiting operators (18): For a given F ∈ M1([0, 1]),put
µN ({k}) =NF ({0})1{k=1}

+
1

N

∫

(0,1]

(
N

k + 1

)
rk+1(1 − r)N−k−1 1

r2
F (dr), k = 1, . . . , N − 1.(31)Then, (28) is ful�lled and the limiting U is des
ribed by (29) and (30). This is the(randomised) �Moran equivalent� of the �random ψ� dis
ussed in Subse
tion 2.2,and will turn out to be the natural me
hanism of the �rst N levels of the lookdown
onstru
tion, see below. A way to think about the se
ond term in (31) is thatparti
les parti
ipate in an �r-extreme birth event� independently with probability

r. Note that (31) implies, for any x ∈ (0, 1) with F ({x}) = 0,
N

N−1∑

k≥⌊xN⌋

µN ({k}) −→
N→∞

∫ 1

x

1

r2
F (dr), (32)so in the limiting pro
ess, �x-reprodu
tive events� o

ur at rate dt⊗ x−2F (dx). Asin a k-birth event, the probability for a given parti
le to die is k/N , (31) impli
itly9



de�nes the average lifetime of an individual in the N -th approximating model. Theindividual death rate of a �typi
al� parti
le in the N -parti
le model is
dN =

N−1∑

k=1

k

N
µN ({k}) = F ({0}) +

∫

(0,1]

1 − (1 − r)N−1

r
F (dr). (33)If 1/r is not in L1(F ), this will diverge as N → ∞. In the last paragraph of theremark about �
oming down from in�nity� on page 16, we will see a relation tostru
tural properties of the 
orresponding 
oales
ents. Also note that (27) and(33) impli
itly determine the mutation rate per �lifetime unit� in the N -th model,similarly as in (23).Popular mutation models. Having the full generator (24) at hand, it is noweasy to spe
ialise to the following 
lassi
al mutation models.1) Finitely-many alleles. In this model, we assume a general �nite type spa
e,say, E = {1, . . . , d}. Then, the mutation me
hanism 
an always be written as asto
hasti
 transition matrix P = (Pij) times the overall mutation rate r ∈ (0,∞).That is,

Bf(i) = r

d∑

j=1

Pij
(
f(j) − f(i)

)
.2) In�nitely-many alleles. Here, one assume that ea
h mutation leads to an entirelynew type. Te
hni
ally, one simply assumes that E = [0, 1] and that ea
h mutation,o

uring at rate r > 0, independently pi
ks a new type x ∈ [0, 1], a

ording to theuniform distribution on [0, 1], i.e.

Bf(y) = r

∫

[0,1]

(
f(x) − f(y)

)
dx.Note that this the paradigm example of a parent-independent mutation model.After one mutation step, all information about the an
estral type is lost.3) In�nitely-many sites model. One thinks of a long part of a DNA sequen
e, so thatea
h new mutation o

urs at a di�erent site. Hen
e in prin
iple, the informationabout the an
estral type is retained. Moreover, it is possible to speak about the�distan
e� between two types (e.g. by 
ounting the pairwise di�eren
es).As a rule of thumb, if the number of mutations observed is small 
ompared tothe square-root of the length of the sequen
e, this assumption is reasonable. For amathemati
al formulation, one may set E = [0, 1]N and de�ne the mutation operatorby

Bf(x1, x2, . . . ) =

∫

[0,1]

f(u, x1, x2, . . . ) − f(x1, x2, x3, . . . ) du.For a type ve
tor x̄ = (x1, x2, . . . ), one 
an interpret x1 as the most re
ently mutatedsite, x2 as the se
ond most re
ently mutated site and so on. This additional infor-mation about the temporal order of mutations, whi
h is usually not present in realsequen
e data, is �fa
tored out� afterwards by 
onsidering appropriate equivalen
e
lasses.For a su�
iently �old� population, whi
h 
an be assumed to be in equilibrium, it isan interesting question whether for ea
h pair of types x̄, ȳ visible in the population,there exist indi
es i, j, su
h that xi+k = yj+k for ea
h k ∈ N. (34)10



The 
ondition means that there is a most re
ent 
ommon an
estor for all the types.This question is a prototype of a question for whi
h the evolution of a populationshould be studied ba
kwards in time. We will 
ome ba
k to this in the Se
tion 3,see page 17.The in�nitely-many sites model has an interesting 
ombinatorial stru
ture, see,e.g. [GT95℄ or [BB07℄, Se
tion 2. For example, in pra
ti
e, one frequently does notknow whi
h of the bases visible at a segregating site is the mutant. This 
an behandled by 
onsidering appropriate equivalen
e 
lasses.2.4 LookdownThe famous lookdown 
onstru
tion of Donnelly and Kurtz (see [DK99℄) provides auni�ed approa
h to all the limiting population models whi
h we have dis
ussed sofar, providing a 
lever nested 
oupling of approximating generalised Moran modelsin su
h a way that the measure-valued limit pro
ess is re
overed as the empiri
aldistribution pro
ess of an ex
hangeable system of 
ountably many parti
les. How-ever, its full power will only be
ome 
lear when we 
onsider genealogies of samplesand follow history ba
kwards in time in the next se
tion. We present here a versionsuitable for populations of �xed total size. The 
onstru
tion is very �exible andworks for many s
enarios, in
luding (
ontinuous-mass) bran
hing pro
esses.Note that [DK99℄ 
all what follows the `modi�ed' lookdown 
onstru
tion, in orderto distinguish it from the 
onstru
tion of the 
lassi
al Fleming-Viot superpro
essintrodu
ed by the same authors in [DK96℄. Here we drop the pre�x `modi�ed'.Let F ∈ M1([0, 1]). The lookdown-
onstru
tion leading to an empiri
al pro
esswith generator (24) works as follows:We 
onsider a 
ountably in�nite system of individuals, ea
h parti
le being identi�edby a level j ∈ N. We equip the levels with types ξjt , j ∈ N in some type spa
e E(and we think of E being an element of {{1, . . . , d}, [0, 1], [0, 1]N
} depending on our
hoi
e of mutation model). Initially, we require the types ξ0 = (ξj0)j∈N to be anex
hangeable random ve
tor, so that

lim
N→∞

1

N

N∑

j=1

δξj
0

= µ,for some �nite measure µ on E. The point is that the 
onstru
tion will preserveex
hangeability.There are two �sets of ingredients� for the reprodu
tion me
hanism of these parti
les,one 
orresponding to the ��nite varian
e� part F ({0}), and the other to the �extremereprodu
tive events� des
ribed by F0 = F − F ({0})δ0. Restri
ted to the �rst Nlevels, the dynami
s is that of a very parti
ular permutation of the generalisedMoran model des
ribed by (31), with the property that always that parti
le withthe highest level is the next to die.For the �rst part, let {Lij(t)}, 1 ≤ i < j < ∞ be independent Poisson pro
esseswith rate F ({0}). Intuitively, at jump times t of Lij , the parti
le at level j �looksdown� at level i and 
opies the type there, 
orresponding to a single birth event ina(n approximating) Moran model. Types on levels above j are shifted a

ordingly,in formulas
ξk(t) =





ξk(t−), if k < j,
ξi(t−), if k = j,
ξk−1(t−), if k > j,

(35)11
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1Figure 1: Relabelling after a birth event involving levels 2, 3 and 6.if ∆Lij(t) = 1. This me
hanism is well de�ned be
ause for ea
h k, there are only�nitely many pro
esses Lij , i < j ≤ k at whose jump times ξk has to be modi�ed.For the se
ond part, whi
h 
orresponds to multiple birth events, let B be Poissonpoint pro
ess on R
+ × (0, 1] with intensity measure dt ⊗ r−2F0(dr). Note that foralmost all realisations {(ti, yi)} of B, we have

∑

i : ti≤t

y2
i <∞ for all t ≥ 0. (36)The jump times ti in our point 
on�guration B 
orrespond to reprodu
tion events.Let Uij , i, j ∈ N, be i.i.d. uniform([0, 1]). De�ne for J ⊂ {1, . . . , l} with |J | ≥ 2,

LlJ(t) :=
∑

i : ti≤t

∏

j∈J

1Uij≤yi

∏

j∈{1,...,l}−J

1Uij>yi
. (37)

LlJ(t) 
ounts how many times, among the levels in {1, . . . , l}, exa
tly those in J wereinvolved in a birth event up to time t. Note that for any 
on�guration B satisfying(36), sin
e |J | ≥ 2, we have
E
[
LlJ(t)

∣∣B
]

=
∑

i : ti≤t

y
|J|
i (1 − yi)

l−|J| ≤
∑

i : ti≤t

y2
i <∞,so that LlJ(t) is a.s. �nite.Intuitively, at a jump ti, ea
h level tosses a uniform 
oin, and all the levels jwith Uij ≤ yi parti
ipate in this birth event. Ea
h parti
ipating level adopts thetype of the smallest level involved. All the other individuals are shifted upwardsa

ordingly, keeping their original order with respe
t to their levels (see Figure 1).More formally, if t = ti is a jump time and j is the smallest level involved, i.e.

Uij ≤ yi and Uik > yi for k < j, we put
ξkt =





ξkt−, for k ≤ j,

ξjt−, for k > j with Uik ≤ yi,

ξ
k−Jk

t

t− , otherwise, (38)where Jkti = #{m < k : Uim ≤ yi} − 1. 12



So far, we have treated the reprodu
tive me
hanism of the parti
le system. We nowturn our attention to the third ingredient, the mutation steps.For a given mutation rate r and mutation operator B, as de�ned in (21), de�ne forea
h level ∈ N an independent Poisson pro
esses Mi with rate r, so that if pro
ess
Mi jumps, and the 
urrent type at level i is x, then a new type is being 
hosena

ording to the kernel q(x, ·). For a rigorous formulation, all three me
hanismstogether 
an be 
ast into a 
ountable system of Poisson pro
ess-driven sto
hasti
di�erential equations, see [DK99℄, Se
tion 6.Then ([DK99℄), for ea
h t > 0, (ξ1t , ξ

2
t , . . .) is an ex
hangeable random ve
tor, sothat

Zt = lim
N→∞

1

N

N∑

j=1

δξj
t

(39)exists almost surely by de Finetti's Theorem, and is the Markov pro
ess withgenerator (24) and initial 
ondition Z0 = µ.Remark. An alternative and very elegant way to en
ode the genealogy of aFleming-Viot pro
ess with generator (18) is via a �ow of bridges, as des
ribed in[BLG03℄. However, unlike the situation for the lookdown 
onstru
tion, it seemsun
lear how to in
orporate mutation in this approa
h. 23 Neutral genealogies: beyond Kingman's 
oales-
entAfter having spent a 
onsiderable amount of pages on models for the evolution ofthe type distribution of a population forwards in time, we now turn to the fruitfulapproa
h of looking ba
kwards in time by analysing the genealogies of samplesdrawn at present. An important advantage of this approa
h is that in a neutralsituation, this allows one to think of a sto
hasti
 two-step pro
edure, �rst simulat-ing a genealogy, and then independently superimposing the mutation events on thegiven genealogi
al tree. This point of view has many 
omputational and 
on
eptualadvantages. We will see below how the lookdown 
onstru
tion, introdu
ed inSe
tion 2.4, provides a uni�ed framework by simultaneously des
ribing the for-wards evolution and all the genealogi
al trees of the approximating parti
le systems.3.1 Genealogies and 
oales
ent pro
essesA way to des
ribe the genealogy of a sample of size n from a (haploid) populationis to introdu
e a family of partitions of {1, . . . , n} as follows:
i ∼t j i� i and j have the same an
estor time t before present. (40)Obviously, if t ≥ t′, then i ∼t′ j implies i ∼t j, i.e. the an
estral partition be
omes
oarser as t in
reases.For neutral population models of �xed population size in the domain of attra
tionof the 
lassi
al Fleming-Viot pro
ess, su
h as the Wright-Fisher- and the Moranmodel, the (random) genealogy of a �nite sample 
an be (approximately) des
ribed13



by the now 
lassi
al Kingman-
oales
ent, whi
h we introdu
e brie�y, followed bythe more re
ently dis
overed and mu
h more general Λ-
oales
ents.Kingman's 
oales
ent. Let Pn be the set of partitions of {1, . . . , n} and let
P denote the set of partitions of N. For ea
h n ∈ N, Kingman [K82℄ introdu
edthe so-
alled n-
oales
ent, whi
h is a Pn-valued 
ontinuous time Markov pro-
ess {Π(n)

t , t ≥ 0}, su
h that Π
(n)
0 is the partition of {1, . . . , n} into singletonblo
ks, and then ea
h pair of blo
ks merges at rate one. Given that there are

b blo
ks at present, this means that the overall rate to see a merger betweenblo
ks is ( b2 ). Note that only binary mergers are allowed. Kingman [K82℄ alsoshowed that there exists a P-valued Markov pro
ess {Πt, t ≥ 0}, whi
h is now
alled the (standard) Kingman-
oales
ent, and whose restri
tion to the �rst npositive integers is the n-
oales
ent. To see this, note that the restri
tion ofany n-
oales
ent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an m-
oales
ent. Hen
ethe pro
ess 
an be 
onstru
ted by an appli
ation of the standard extension theorem.
Λ-
oales
ents. Pitman [P99℄ and Sagitov [S99℄ introdu
ed and dis
ussed 
oales-
ents whi
h allow multiple 
ollisions, i.e. more than just two blo
ks may merge ata time. Again, su
h a 
oales
ent with multiple 
ollisions (whi
h will be later 
alleda Λ-
oales
ent) is a P-valued Markov-pro
ess {Πt, t ≥ 0}, su
h that for ea
h n,its restri
tion to the �rst n positive integers is a Pn-valued Markov pro
ess (the�n-Λ-
oales
ent�) with the following transition rates. Whenever there are b blo
ksin the partition at present, ea
h k-tuple of blo
ks (where 2 ≤ k ≤ b ≤ n) is mergingto form a single blo
k at rate λb,k, and no other transitions are possible. The rates
λb,k do not depend on either n or on the stru
ture of the blo
ks. Pitman showedthat in order to be 
onsistent, whi
h means that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,su
h transition rates must ne
essarily satisfy
λb,k =

∫ 1

0

xk(1 − x)b−k
1

x2
Λ(dx), (41)for some �nite measure Λ on the unit interval. We ex
lude the (trivial) 
ase Λ = 0.By a trivial time transformation, one 
an always assume that Λ is a probabilitymeasure. In [S99℄, the 
orresponding measure is termed F (= Λ/Λ([0, 1]), and thisis the F appearing throughout Se
tion 2.2.Note that (41) sets up a one-to-one 
orresponden
e between 
oales
ents with multi-ple 
ollisions and �nite measures Λ. Indeed, it is easy to see that the λb,k determine

Λ by an appli
ation of Hausdor�'s moment problem, whi
h has a unique solutionin this 
ase.Due to the restri
tion property, the Λ-
oales
ent on P (with rates obtained fromthe measure Λ as des
ribed above) 
an be 
onstru
ted from the 
orresponding
n-Λ-
oales
ents via extension.Approximation of genealogies in �nite population models. Consider a sam-ple of size n from a (stationary) Cannings model of size N ≫ n, without mutation,and de�ne an an
estral relation pro
ess {R(N,n)

k : k = 0, 1, . . .} via (40). Re
allingthat cN , as de�ned in (3), is the probability for a randomly pi
ked pair of individ-uals to have the same an
estor one generation ago, it seems reasonable to res
aletime and de�ne
Π

(N,n)
t := R

(N,n)
⌊t/cN⌋, t ≥ 0, (42)14



as then (if cN → 0) for a sample of size two, the time to the most re
ent 
ommonan
estor is approximately exponentially distributed with rate 1.Indeed, [S99℄ and [MS01℄ have shown that if cN → 0 and (4) holds true, then
{Π(N,n)

t : t ≥ 0} 
onverges weakly to Kingman's n-
oales
ent, while (12) and (13)imply that the limit is a Λ-
oales
ent with transition rates given by (41), where
Λ = F , with F from the right-hand side of (12).Obviously, there is a 
lose relation between multiple merger events in the genealogyof the sample and �extreme� reprodu
tive events in the population, in whi
h a non-negligible proportion, say x ∈ (0, 1], of the population alive in the next generationgoes ba
k to a single an
estor in the 
urrent generation. In fa
t, the integrand in(41) 
an be interpreted as follows: When following b lineages ba
kwards, in su
han event, ea
h of them �ips a 
oin with su

ess probability x and all the su

essfullineages subsequently merge.On the other hand, although individuals 
an have more than two o�spring, themoment 
ondition (4) ensures that families are typi
ally small 
ompared to thetotal population size and thus implies that in the limit, only binary mergers arevisible in the genealogy.Remark (Simultaneous multiple 
ollisions). It should be pointed out thatMöhle and Sagitov [MS01℄ provide a 
omplete 
lassi�
ation of possible limits ofgenealogies in Cannings-models, in parti
ular if the 
ondition (13) is violated. Inthis 
ase, the resulting genealogies 
ontain simultaneous multiple 
ollisions, whi
hhave been studied independently and termed �Ξ-
oales
ents� by S
hweinsberg in[S00℄, in whi
h several groups of lineages 
an merge at exa
tly the same time. Notethat the �rst fa
tor in (13) is the probability to observe two simultaneous mergersin one generation in a sample of size four, whereas the se
ond fa
tor is the inverseof the pair 
oales
en
e probability.Sin
e a 
orresponding theory of forward population models in the spirit ofSe
tion 2.2 is not yet 
ompletely established and our spa
e is limited, we restri
tourselves here to the �Λ-world�. 2Analyti
 Duality. Consider an F -generalised Fleming-Viot pro
ess {Zt} withgenerator (18) starting from Z0 = µ ∈ M1(E). The idea that the type distribu-tion in an n-sample from the population at time t 
an be obtained by �
olouring�
t-an
estral partitions independently a

ording to Z0 has the following expli
it ana-lyti
al in
arnation: For bounded measurable f : En → R,

E

[ ∫

E

· · ·
∫

E

fΠ0(a1, . . . , a|Π0|)Zt(da1) · · ·Zt(dap)
]

= E

[∫

E

· · ·
∫

E

fΠt
(b1, ..., b|Πt|)Z0(db1) · · ·Z0(db|Πt|)

]
, (43)where Π is the n-F -
oales
ent starting at π0 = {{1}, ..., {n}}, and, for any partition

π = {C1, ..., Cq} of {1, ..., n},
fπ(b1, ..., bq) := f(a1, ..., ap)with ai := bk if i ∈ Ck. This is 
lassi
al for the Kingman 
ase, and has �rst beenexpli
itly formulated in [BLG03℄ for the Λ-
ase. Note that spe
ialising (43) in the
ase F = δ0 to a two-point spa
e yields the well-known moment duality betweenthe Wright-Fisher di�usion (5) and the blo
k-
ounting pro
ess of Kingman's15




oales
ent, whi
h is a pure death pro
ess with death rate (n2).Remarks (�Coming down from in�nity�). 1. Not all Λ-
oales
ents seem to bereasonable as models for biologi
al populations, sin
e some do not allow for a �nite�time to the most re
ent 
ommon an
estor� of the entire population (TMRCA) inthe sense of �
oming down from in�nity in �nite time�. The latter means that anyinitial partition in P , and for all ε > 0, the partition Πε) a.s. 
onsists of �nitelymany blo
ks only. S
hweinsberg [S00℄ proves that if either Λ has an atom at 0 or Λhas no atom at zero and
λ∗ :=

∞∑

b=2

( b∑

k=2

(k − 1)

(
b

k

)
λb,k

)−1

<∞, (44)where λb,k is given by (41), then the 
orresponding 
oales
ent does 
ome down fromin�nity (and if so, the time to 
ome down to only one blo
k has �nite expe
tation).For the 
orresponding generalised (Λ/Λ([0, 1]))-Fleming-Viot pro
ess {Zt} withoutmutation, (44) means that the size of the support of Zt be
omes one in �nite time� the pro
ess �xes on the type of the population's �eve�.2. An important example for a 
oales
ent, whi
h (only just) does not 
ome downfrom in�nity is the Bolthausen-Sznitman 
oales
ent, where Λ(dx) = dx is the uni-form distribution on [0, 1]. This is the Beta(2 − α, α)-
oales
ent with α = 1, and itplays an important role in statisti
al me
hani
s models for disordered systems (seee.g. [Bo06℄ for an introdu
tion).3. However, it should be observed that all n-Λ-
oales
ents (for �nite n) do have ana.s. �nite TMRCA.4. Note that by Kingman's theory of ex
hangeable partitions, for ea
h t > 0,asymptoti
 frequen
ies of the 
lasses exists. If a Λ-
oales
ent does not 
ome downfrom in�nity, it may or may not be the 
ase that these frequen
ies sum to one(�proper frequen
ies�). [P99℄ showed that the latter holds i� ∫0+ r−1Λ(dr) = ∞.Note that if ∫[0,1] r−1 Λ(dr) < ∞, we see from (33) that limN→∞ dN < ∞. Hen
ein the lookdown 
onstru
tion, at ea
h time t ≥ 0 there is a positive fra
tion oflevels whi
h have not yet parti
ipated in any lookdown event. These 
orrespond to�dust�. 2Examples for 
oales
ents whi
h satisfy (44) are Kingman's 
oales
ent, the pro
ess
onsidered in [EW06℄, 
orresponding to (16), (but note that [EW06℄ also 
onsiders
F = δψ with ψ ∈ (0, 1), for whi
h (44) fails), and the so-
alled Beta(2 − α, α)-
oales
ents with α ∈ (1, 2), with Λ = F given by (17). Note that even though (17)makes no sense for α = 2, Kingman's 
oales
ent 
an be in
luded in this family asthe weak limit Beta(2 − α, α) → δ0 as α→ 2).Coales
ents and the modi�ed lookdown 
onstru
tion. We now make useof the expli
it des
ription of the modi�ed 
onstru
tion to determine the 
oales
entpro
ess embedded in it. Fix a (probability) measure F on [0, 1]. Re
all the Poissonpro
esses Lij and LlK from (37) in Se
tion 2.4 above. For ea
h t ≥ 0 and k =
1, 2, . . . , let N t

k(s), 0 ≤ s ≤ t, be the level at time s of the an
estor of the individualat level k at time t. In terms of the LlK and Lij , the pro
ess N t
k(·) solves, for

16



0 ≤ s ≤ t,
N t
k(s) = k −

∑

1≤i<j<k

∫ t

s−

1{Nt
k
(u)>j} dLij(u)

−
∑

1≤i<j<k

∫ t

s−

(j − i)1{Nt
k
(u)=j} dLij(u)

−
∑

K⊂{1,...,k}

∫ t

s−

(N t
k(u) − min(K))1{Nt

k
(u)∈K} dL

k
K(u)

−
∑

K⊂{1,...,k}

∫ t

s−

(|K ∩ {1, . . . , N t
k(u)}| − 1)

× 1{Nt
k
(u)>min(K), Nt

k
(u)/∈K} dL

k
K(u), (45)Fix 0 ≤ T and, for t ≤ T , de�ne a partition ΠT (t) of N su
h that k and l are in thesame blo
k of ΠT (t) if and only if NT

k (T − t) = NT
l (T − t). Thus, k and l are in thesame blo
k if and only if the two levels k and l at time T have the same an
estorat time T − t. Then ([DK99℄, Se
tion 5),the pro
ess {ΠT

t : 0 ≤ t ≤ T
} is an F -
oales
ent run for time T .Note that by employing a natural generalisation of the lookdown 
onstru
tionusing driving Poisson pro
esses on R and e.g. using T = 0 above, one 
an usethe same 
onstru
tion to �nd an F -
oales
ent with time set R+. We would liketo emphasise that in 
ontrast to (43), whi
h 
an be proved using the reasoningabove, the lookdown 
onstru
tion provides a realisation-wise 
oupling of the typedistribution pro
ess {Zt} and the 
oales
ent des
ribing the genealogy of a sample.Superimposing mutations. Consider now an F -generalised Fleming-Viotpro
ess {Zt} with �individual� mutation operator rB, des
ribed by the generator

LB,F given by (24), starting from Z0 = µ. The lookdown 
onstru
tion easily allowsto prove that for ea
h t, the distribution of a sample of size n from Zt 
an beequivalently des
ribed as follows: Run an n-F -
oales
ent for time t, interpret thisas a forest with labelled leaves. �Colour� ea
h root independently a

ording to µ,then run the Markov pro
ess with generator rB independently along the bran
hesof ea
h tree, and �nally read o� the types at the leaves.Remark. If (44) is ful�lled and the individual mutation pro
ess with generator
B has a unique equilibrium, one 
an let t → ∞ in the above argument to seethat {Zt} has a unique equilibrium, and the distribution of an n-sample from thisequilibrium 
an be obtained by running an n-F -
oales
ent until it hits the trivialpartition. Then 
olour this most re
ent 
ommon an
estor randomly a

ording tothe stationary distribution of B, and run the mutation pro
ess along the bran
hesas above.This approa
h is very fruitful in population geneti
s appli
ations. For example,under 
ondition (44), (34) will be satis�ed for t large enough, irrespe
tive of theinitial 
ondition.4 Population geneti
 inferen
ePopulations with extreme reprodu
tive behaviour. Re
ently, biologists havestudied the geneti
 variation of 
ertain marine spe
ies with rather extreme repro-17



du
tive behaviour, see, e.g., Árnason [A04℄ (Atlanti
 Cod) and [BBB94℄ (Pa
i�
Oyster). In this situation, one would like to de
ide whi
h 
oales
ent is suitable,based upon observed geneti
 types in a sample from the population.Eldon and Wakeley [EW06℄ analysed the sample des
ribed in [BBB94℄ and proposeda one-parameter family of Λ-
oales
ents, whi
h 
omprises Kingman's 
oales
ent asa boundary 
ase, namely those des
ribed by (16), as models for their genealogy.Inferen
e is then based on a simple summary statisti
, the number of segregatingsites and singleton polymorphisms. They 
on
lude that ([EW06℄, p. 2622):For many spe
ies, the 
oales
ent with multiple mergers might bea better null model than Kingman's 
oales
ent.In this se
tion, we obtain re
ursions for the type probabilities of an n-samplefrom a general Λ-
oales
ent under with a general �nite alleles model. We presenttwo approa
hes, one based on the lookdown 
onstru
tion, the other on dire
tmanipulations with the generator LB,F . We dis
uss how this re
ursion 
an then beused to derive a Monte-Carlo s
heme to 
ompute likelihoods of model parametersin Λ-
oales
ent s
enarios given the observed types, in the spirit of [GT94b℄, see also[BB07℄ for the in�nite-sites 
ase. These 
an be used e.g. for maximum likelihoodestimation.Remark. Analogous re
ursions for the probability of 
on�gurations in thein�nite-alleles model have been obtained in [M06b℄. Exa
t asymptoti
 expressionsfor 
ertain summary statisti
s for the in�nite-alleles and in�nite-sites models underBeta-
oales
ents [re
all (17)℄ have been obtained in [BBS06℄. 24.1 Finite-alleles re
ursion I: Using the lookdown 
onstru
-tionRe
all that in the �nite alleles model, type 
hanges, or mutations, o

urr at rate
r, and P = (Pij) is an irredu
ible sto
hasti
 transition matrix on the �nite typespa
e E. Note that silent mutations are allowed (i.e. Pjj ≥ 0), denote the uniqueequilibrium of P by µ. We assume that the reprodu
tion me
hanism is des
ribedby some F = Λ ∈ M1([0, 1]).Suppose the system, des
ribed by the lookdown 
onstru
tion, is in equilibrium.Consider the �rst n levels at time 0 and let τ−1 be the last instant before 0 whenat least one of the types at levels 1, . . . , n 
hanges. Then, −τ−1 is exponentiallydistributed with rate

rn = nr +

n∑

k=2

(
n

k

)
λn,k. (46)Denote by p the distribution of the types of the �rst n levels in the stationarylookdown 
onstru
tion, say, at time 0. Later, due to ex
hangeability, we will merelybe interested in the type frequen
y probability p0(n). De
omposing a

ording towhi
h event o

urred at time τ−1, we obtain

p
(
(y1, . . . , yn)

)
=

r

rn

n∑

i=1

∑

z∈E

p
(
(y1, . . . , yi−1, z, yi+1, . . . , yn)

)
Pzyi

+
1

rn

∑

K⊂{1,...,n}
|K|≥2

λn,|K|1{all yj equal for j ∈ K}p
(
γK(y1, . . . , yn)

)
, (47)18



where γK(y1, . . . , yn) ∈ En−|K|+1 is that ve
tor of types of length n−|K|+1 whi
h(
ξ1(τ−1−), . . . , ξn−|K|+1(τ−1−)

) must be in order that a resampling event involvingexa
tly the levels in K among levels 1, . . . , n generates (ξ1(τ−1), . . . , ξn(τ−1)
)

=
(y1, . . . , yn). Formally,

γK(y1, . . . , yn)i = yi+#((K\{minK})∩{1,...,i}), 1 ≤ i ≤ n− |K| + 1.As the type at level 1 is the stationary Markov pro
ess with generator rB, we havethe boundary 
ondition p((y1)) = µ(y1), y1 ∈ E. Note that, by ex
hangeability,
p
(
(y1, . . . , yn)

)
= p
(
(yπ(1), . . . , yπ(n))

)for any permutation π of {1, . . . , n}. So, the only relevant information is (of 
ourse)how many samples were of whi
h type. For n = (n1, . . . , nd) ∈ Z
d
+ we write #n :=

n1 + · · · + nd for the `length', and
κ(n) =

(
1, 1, . . . , 1︸ ︷︷ ︸

n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , d, . . . , d︸ ︷︷ ︸
nd

)
∈ E#nfor a `
anoni
al representative' of the (absolute) type frequen
y ve
tor n. Let

p0(n) :=

(
#n

n1, n2, . . . , nd

)
p
(
κ(n)

) (48)be the probability that in a sample of size #n, there are exa
tly nj of type j,
j = 1, . . . , d. We abbreviate n := #n, and write ek for the k-th 
anoni
al unitve
tor of Z

d. Noting that
nj

(
#n

n1, n2, . . . , nd

)
p(n− ej + ei) =

(
ni + 1 − δij

)
p0(n − ej + ei)and that (for nj ≥ k, otherwise the term is 0)

(
nj
k

)(
#n

n1, n2, . . . , nd

)
p(n − (k − 1)ej) =

(
n

k

)
nj − k + 1

n− k + 1
p0(n − (k − 1)ej),(47) translates into the following re
ursion for p0:

p0(n) =
r

rn

d∑

j=1

d∑

i=1

(ni + 1 − δij)Pijp
0(n− ej + ei)

+
1

rn

d∑

j=1
nj≥2

nj∑

k=2

(
n

k

)
λn,k

nj − k + 1

n− k + 1
p0(n − (k − 1)ej) (49)with boundary 
onditions p0(ej) = µj .Remark. In the Kingman-
ase, we have λn,k = 1(n ≥ 2 = k), rn = nθ/2 + n(n−

1)/2 = n(n− 1 + θ)/2 (and we assume r = θ/2 as �usual�), hen
e (49) be
omes thewell-known
p0(n) =

θ

n− 1 + θ

d∑

j=1

d∑

i=1

ni + 1 − δij
n

Pijp
0(n − ej + ei)

+
n− 1

n− 1 + θ

d∑

j=1
nj≥2

nj − 1

n− 1
p0(n− ej). (50)19



4.2 Finite-alleles re
ursion II: Generator approa
hAn alternative method to obtain the re
ursion for the type probabilities in the�nite-alleles 
ase is by using a generator approa
h, see [DIG04a℄. Let f ∈ C2 and
∆d = {(x1, . . . , xd) : xi ≥ 0, x1 + · · · + xd = 1} and 
onsider the mutation operator

B̃f(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

) ∂f
∂xi

(x1, . . . , xd).For the resampling operator, we distinguish the Kingman- and non-Kingman 
om-ponents. First, assume Λ({0}) = 0 (non-Kingman). Consider
R1f(x1, . . . , xd) =

d∑

i=1

∫
xi

(
f
(
r̄x1, . . . , r̄xi−1, r̄xi + r, r̄xi+1, . . . , r̄xd

)

− f(x1, . . . , xd)
)
r−2Λ(dr), (51)where r̄ = 1 − r. For the Kingman-part (Λ = δ0) of the resampling operator, wehave

R2f(x1, . . . , xd) =
1

2

d∑

i,j=1

xi(δij − xj)
∂2f

∂xi∂xj
(x1, . . . , xd).Finally, for general Λ and a ≥ 0, write R = R1 + aR2, where R1 uses Λ0 =

Λ − Λ({0}δ0. Now, let X(t) = (X1(t), . . . , Xd(t)) be the stationary pro
ess withgenerator L = B̃+R [note thatXi(t) = Zt({i}), where {Zt} is the stationary pro
esswith generator (24)℄. Write X = X(0). Let n = (n1, . . . , nd), n = n1 + · · · + nd.Then,
E

[ d∏

i=1

Xni

i

]is the probability of observing in a sample of size n from the equilibrium populationtype i pre
isely ni times in a parti
ular order (e.g. �rst n1 samples of type 1, next
n2 samples of type 2, et
.). Put

fn(x) := x
n :=

d∏

i=1

xni

i .Then,
g(n) :=

(
n

n1 . . . nd

)
E
[
fn(X)

]is the probability of observing type i exa
tly ni times, i = 1, . . . , d, without regardof the order. Note that
B̃fn(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

)
nifn−ei

(x1, . . . , xd)

= r

d∑

i,j=1

niPjifn−ei+ej
(x) − rnfn(x)

20



and
fn((1 − r)x + rei) = (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
(
(1 − r)xi + r

)ni

= (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
ni∑

k=0

(
ni
k

)
rk(1 − r)ni−kxni−k

i

=

ni∑

k=0

(
ni
k

)
rk(1 − r)n−k

(
xni−k
i

d∏

j 6=i

x
nj

j

)
,so the term inside the integral in the expression (51) for R1 
an be written as

d∑

i=1

ni∑

k=0

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=0

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ

=

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=2

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ ,observing that the terms with k = 0 and k = 1 
an
el sin
e x1 + · · · + xd = 1 and
n1 + · · · + nd = n. Re
alling the de�nition of λn,k from (41), we obtain

R1fn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x). (52)Furthermore

R2fn(x) =
1

2

d∑

i,j=1

xi(δij − xj)ni(nj − δij)fn−ei−ej
(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
d∑

i,j=1

ni(nj − δij)

2
fn(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) − n(n− 1)

2
fn(x). (53)Combining the terms from R1 and R2 (using (52) and (53) above, and repla
ing Λby Λ0 in (51)), we have

Rfn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x).Thus we obtain from the stationarity 
ondition ELfn(X) = 0 that

rnEfn(X) = r

d∑

i,j=1

niPjiEfn−ei+ej
(X) +

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kEfn−(k−1)ei

(X),where rn is de�ned in (46). Multiplying with ( n
n1...nd

)
/rn and some algebra gives

g(n) =
r

rn

d∑

i,j=1

(nj + 1 − δij)Pjig(n − ei + ej)

+
1

rn

d∑

i:ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1
g(n − (k − 1)ei),whi
h agrees with (49). 21



4.3 A Monte Carlo S
heme for sampling probabilitiesRe
ursion (49) 
an be used to estimate p0(n) for a given n ∈ Z
d
+ using a Markov
hain, in the spirit of [GT94b℄, as follows:Let {Xk} be a Markov 
hain on Z

d
+ with transitions

n →





n− ej + ei w. p. r

rnf(n) (ni + 1 − δij)Pij if nj > 0,

n− (k − 1)ei w. p. 1
rnf(t,n)

(
n
k

)
λn,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni,where [with rn de�ned in (46)℄

f(n) =
1

rn

(
d∑

i,j=1
nj>0

r(ni + 1 − δij)Pij +
∑

1≤i≤d
ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1

)
. (54)Then,

p0(n) = E(n)

τ∏

l=0

f(t(l),n(l)). (55)Remark (Inferen
e for Kingman's 
oales
ent). Likelihood-based inferen
emethods for Kingman's 
oales
ent, some solving re
ursion (50) approximatelyvia Monte Carlo methods, others using MCMC, have been developed sin
e thebeginning of the 1990ies, see [EG87℄, [GT94a℄, [GT94b℄, [GT94
℄, [GT96a℄,[GT96b℄, [GT97℄, [FKY99℄, [DIG04a℄, [SD00℄. In [SD00℄, Stephens and Donnellyprovide proposal distributions for importan
e sampling, whi
h are optimal in somesense, and 
ompare them to various other methods. Their importan
e samplings
heme seems, at present, to be the most e�
ient tool for inferen
e for relativelylarge datasets, but heavily uses the fa
t that Kingman's 
oales
ent allows onlybinary mergers. It is at present un
lear what an analogous strategy in the general
Λ-
ase ought to be. 24.4 Simulating samplesLet E, (Pij), µ, r be the parameters of a �nite-alleles model. Then, one may obtainthe type 
on�guration in an n-sample as follows:Let {Y (n)

t }t≥0 be the blo
k 
ounting pro
ess 
orresponding to an n-Λ-
oales
ent, i.e.
Y

(n)
t = #{blo
ks of Πt} is a 
ontinuous-time Markov 
hain on N with jump rates

qij =

(
i

i− j + 1

)
λi,i−j+1, i > j ≥ 1starting from Y

(n)
0 = n. Its Green fun
tion is
g(n,m) := E

[ ∫ ∞

0

1
{Y

(n)
s =m}

ds

] for n ≥ m ≥ 2, (56)whi
h 
an easily be 
omputed re
ursively, see [BB07℄, Se
tion 7.1. Denoting by
τ := inf{t : Y

(n)
t = 1} be the time required to 
ome down to only one 
lass and by22



∂ a �
emetery state�, it follows from Nagasawa's Formula [see, e.g., [RW87℄, (42.4)℄that the time-reversed path
Ỹ

(n)
t :=

{
Y

(n)
(τ−t)−, 0 ≤ t < τ,

∂, τ ≤ t,
(57)is a 
ontinuous-time Markov 
hain on {2, . . . , n} ∪ {∂} with jump rate matrix

q̃
(n)
ji =

g(n, i)

g(n, j)
qij , j < i ≤ n, −q̃(n)

jj =
∑

i=j+1

q̃
(n)
ji =

j−1∑

ℓ=1

qjℓ, q̃
(n)
n∂ = −qnnand initial distribution P{Ỹ (n)

0 = k} = g(n, k)qk1, k = 2, 3, . . . , n. Note thatunless Λ is 
on
entrated on {0}, the dynami
s does depend on n. We write
p̃
(n)
ji := q̃

(n)
ji /(−q̃

(n)
jj ), j < i ≤ n for the transition matrix of the skeleton 
hain of

Y (n).In view of the remark on page 17, it is 
lear that he following algorithm generatesan n-sample from the stationary distribution of the pro
ess with generator LB,Fgiven by (24):Algorithm (generating samples).(i) Generate K with P{K = k} = g(n, k)qk1, k = 2, . . . , n, begin with η = KδX ,where X ∼ µ.(ii) Draw U ∼ Unif([0, 1]).If U ≤ kr

kr+(−q̃
(n)
kk

)
:Repla
e one of the present types by a P -step from it, i.e. repla
e η :=

η − δx + δy with probability ηx

#ηPxy (for x 6= y), where #η is the totalmass of η.Otherwise:If #η = n : Output η and stop.Else, pi
k J ∈ {#η, . . . , n} with P{J = j} = p̃
(n)
#η,j. Choose one of thepresent types (a

ording to their present frequen
y), and add J − #η
opies of this type, i.e. repla
e η := η+(J −#η)δx with probability ηx

#η .(iii) Repeat (ii).Remark. Ordered samples 
an be obtained from a realization of η by randomreordering. In the 
ase of parent-independent mutation, i.e. if Pij = Pj for all
i, j, it is possible to simplify the pro
edure by simulating �ba
kwards in time�.�A
tive�an
estral lineages are lost either by (possibly multiple) 
oales
en
e or whenhitting their �de�ning� mutation, in whi
h 
ase one simply assigns a random typedrawn a

roding to Pj . 2
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