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A higher gradient theory of mixtures for multi-omponent materials with numerialexamples for binary alloysThomas Böhme‡∗, Wolfgang Dreyer†, Frank Duderstadt†, and Wolfgang H. Müller‡

† Weierstraÿ Institut für Angewandte Analysis und Stohastik, Mohrenstraÿe 39, 10117 Berlin, Germany
‡ Tehnishe Universität Berlin, Institut für Mehanik (LKM), Sekr. MS-2, Einsteinufer 5, 10587 Berlin, Germany(Dezember 2007)A theory of mixture for multi-omponent materials is presented based on a novel, straightforward method for the exploitation of theSeond Law of thermodynamis. In partiular the onstitutive equations for entropy, heat and di�usion �ux as well as the stress tensorare formulated as a onsequene of the non-negative entropy prodution. Furthermore we derive the established Gibbs equation aswell as the Gibbs Duhem relation whih also follow from the formalism. Moreover, it is illustrated, how loal mehanial strains dueto eigenstrains or external loadings, modify the free energy and, onsequently, hange the hemial potentials of the omponents. Allonseutive steps are illustrated, �rst, for simple mixtures and, seond, for a system ontaining two di�erent phases. So-alled highergradients of the onentrations are onsidered, whih take the nonuniform omposition into aount. It will also beome apparent thatmore/other variables of modi�ed/di�erent physial problems beyond the illustrated ones an be easily treated within the presentedframework. This work ends with the spei�ation to binary alloys and with the presentation of various numerial simulations.1 IntrodutionThe quantitative desription of di�usion proesses in solid mixtures represent an ongoing and importantaspet in modern materials siene. The reason for this is evident, sine there is a ontinuously inreasingdemand in strength and lifetime of today's engineering materials (e.g., lead-free solders or nikel-basealloys) whih are permanently subjeted to aging proesses. One aspet of aging is given by di�usion in thebulk resulting in formation and growth of preipitated (dis)ordered phases. Aompanying phenomena arephase separation by spinodal deomposition and nuleation as well as oarsening by Ostwald-ripeningboth of whih onsiderably hange the internal mirostruture of the materials and, onsequently, theirglobal behavior.A review of the literature shows that the theoretial desription of di�usion proesses in mixtures hasa history of more than 150 years. In 1855 Fik proposed to treat di�usion analogously to Fourier's lawof heat ondution. The resulting �rst and seond Fik's laws allow the haraterization of �downhill�di�usion, i.e., of material transfers from high to low onentrations. However, they are not suitable toexplain �uphill� di�usion, suh as nuleation and spinodal deomposition during whih onentrationsgradients are ampli�ed. Although the latter proesses are well-known from the experimental point of view,f., Ostwald (1900), a ommonly aepted general theory for the e�etive predition of interfaes, phaseboundaries and other di�usion-indued inhomogeneities in solids, in partiular under the onsideration ofarbitrary onditions (e.g., thermal mis�ts, loal stresses, et.), is still a pending problem.However, there are various pioneering works in the literature dediated to uphill di�usion. Already Gibbs(1892) was onerned about the onditions for the stability and formation of �disontinuities� in liquidsand solids. However, it seems that the �rst popular theoretial work stems from Beker & Döring (1935)in whih they present a statistial model for the nuleation of liquid droplets. Beker (1937) also publisheda moleular model in order to desribe the formation of superstrutures and preipitations within binarysolids. Based on that work Hillert (1961) developed a one dimensional model for the qualitative predi-tion of the nonuniform onentration �eld by spinodal deomposition and nuleation in �inhomogeneous
∗Corresponding author. E-mail: thomas.boehme�tu-berlin.de ��Weierstraÿ-Institut für Angewandte Analysis und Stohastik Berlinpreprint No. 1286 · ISSN 0946-8633 · 2007http://www.wias-berlin.de/main/publiations/wias-publ



2 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müllersolids� (si!). This approah was generalized by Cahn & Hilliard (1958)1. They �rst presented a generalphenomenologial theory of spinodal deomposition and nuleation adding interfaial energy ontributionsto the free energy by means of onentration gradient terms in order to haraterize the nonuniform on-entration �eld. The resulting Cahn-Hilliard equation, f., Cahn (1961, 1968), allows for an expliitsimulation of the formation and growth of (oarsening) phases separated by smooth interfaes and denotesthe starting point for so-alled Phase Field Models (PFM). >From then on phase �eld equations werestudied from di�erent point-of-views, e.g. Langer (1971), and one �nds a multitude of modi�ations, f.,Giaomin & Lebowitz (1996), extentions, e.g. Allen & Cahn (1979), and generalizations, Gurtin (1996).Parallel to this hronology so-alled Sharp Interfae Models (SIM) were developed in whih the nonuni-form system is assumed to involve well-de�ned phases separated by sharp interfaes whose motion is deter-mined by the jump onditions following from the balanes on disontinuities. It is reasonable to postulatethat the SIM equations must follow from the equations aording to the PFM. For that reason one has toredue �suitably� the �nite width of the smooth interfaes into sharp interfaes whih is usually done bytransforming the orresponding equations to the limit ase of in�nite width, Gurtin & Lusk (1999), Dreyer& Wagner (2005). However, note that it is also possible to treat a nonzero interfae width within the SIMframework, Elder et al. (2001). A �subgroup� within SIM are so-alled LSW theories, named after the sem-inal works of Lifshitz & Slyozov (1961) and Wagner (1961). They start from the Gibbs-Thomson e�etand investigate the temporal development of the radius distribution of spherial preipitations embeddedin supersaturated solutions. Due to a dissolving proess they found that the average radius r̄(t) inreaseswith t−1/3 whereas the number of preipitates N(t) redues with t−1. Thus bigger inlusions grow at theexpense of smaller ones. On the other hand experimental investigations ould not re�et these preditionsquantitatively, f., Ardell & Niholson (1966). For example, the theoretially predited distribution funtionis too narrow and the oarsening rate depends on the preipitate's volume fration, originally assumed tobe in�nitely small. However, aording to these shortomings various improvements were developed, f.,Voorhees (1985).Nevertheless, in view of the ongoing miniaturization, e.g., in miroeletroni solders, questions about theimpat of loal mehanial �elds on di�usion inreasingly raised. Indeed, Cahn (1961, 1968) inorporatedad ho a separate elasti energy term for isotropi solids. However, onsequenes on the interfaial energyontributions or eigenstrain e�ets due to a mis�t between the di�erent phases did not enter the theory.These shortomings were, in fat, later partially diminished by Larhé & Cahn (1982). They modi�ed theelasti energy expression by a onentration dependent sti�ness matrix but questions about the in�ueneof strains to the interfaial energy remain.Regardless of the open questions the fous has reently hanged to quantitative numerial simulationsinitiated by the fast inreasing omputational apaities. The applied algorithms are mainly based on dis-rete Fourier transforms, Wang & Khahaturyan (1995), or �nite elements, Garke et al. (2001), in orderto solve the governing PDEs. In partiular PFMs have been applied to simulations of the mirostruture insolders, f., Dreyer & Müller (2000), Ubahs et al. (2004) as well as to solidi�ation problems, Boettingeret al. (2002).In the present work we want to turn the attention bak to the theoretial aspets of di�usion. Ourpurpose is to provide both a general and a systemati theoretial framework in order to investigate nonuni-form mixtures subjeted to thermo-mehanial �elds. We start with the lassial loal balane equations formass, momentum and internal energy density and exploit the Seond Law of Thermodynamis in order todedue the required onstitutive relations for the di�usion �ux, the stress tensor and the heat �ux. For thatreason we propose �ve statements of an entropy priniple, whih re�et the �undisputed elements� withinthe already existing priniples (f., Setion 3.4). For the sake of transpareny and in order to emphasizethe potential of the presented proedure we, �rst, onsider a single phase of a mixture and illustrate theonsisteny of the obtained results with lassial thermodynamis. Seond, we turn the attention to mul-tiphase and multiomponent solids inluding so-alled higher gradients into the domain of the onstitutiveequations and demonstrate how the lassial results hange, due to the heterogeneities of the material. We
1Here the work of Hillert appears before the work of Cahn and Hilliard, beause Hillert already derived the formulae in 1956 inhis PhD thesis.



A higher gradient theory of mixtures for multi-omponent materials 3end with the appliation of the theory in order to predit the phase evolution within the binary ase studyalloy Ag-Cu.2 Symbols and NotationFor better readability we present various symbols, that are frequently used. Additional symbols, whih areused only oasionally are explained when required. Furthermore throughout this work the sum onvention
xiyi .

=
∑3

i=1 xiyi holds1.quantities of motion
Xi Lagrange position (artesian)
xi = χi(Xj , t) urrent position
ui = xi − Xi displaements
vi = dxi/dt = ẋi (baryentri) veloity
F ij = ∂χi(Xk, t)/∂Xj deformation gradient
J = detF ij ≥ 0 Jaobian
Cij = FmiFmj ∧ detCij = J2 right Cauhy-Green tensor
cij = J−2/3Cij ∧ detcij = 1 unimodular right Cauhy-Green tensor
σij Cauhy stress tensor
tij = J(F im)

−1
σmn(F jn)

−1 2nd Piola-Kirhhoff tensorthermodynamial quantities
ν number of omponents of the mixture
α ∈ {1, . . . , ν} label for the onstituents
Nα number of partiles of the omponent α
N =

∑ν
α=1 Nα total number of partiles of the mixture

nα partile density of omponent α
n =

∑ν
α=1 nα partile density of the mixture

yα = nα/n = Nα/N Mole fration/partile onentration of α

mH = 1.66 · 10−27 kg 1/12 of the arbon 12 isotope (referene mass)
Mα moleular weight (dimensionless)
mα = mHMα moleular mass (in kg) of omponent α
m =

∑ν
α=1 Nαmα total mass (in kg)

ρα = mαnα mass density of omponent α
ρ =

∑ν
α=1 mαnα total mass density of the mixture

M = M̃(yα) =
∑ν

α=1 Mαyα mean moleular weight of a mixture partile
cα = ρα/ρ = nαmα/(nm) mass onentration of omponent α

T , p, V (absolute) temperature, pressure, total volume
ǫ, η energy, entropy per unit mass
ϕ = ǫ − Tη Helmholtz free energy per unit mass
ψ = ϕ + p/ρ Gibbs free energy per unit mass
µα hemial potential (in J/partile) of omponent α
ji
α partile di�usion �ux of omponent α

J i
α mass di�usion �ux of omponent α

qi heat �ux
1We use the index notation of Cartesian vetors (v ≡ vi) and tensors (e.g., T ≡ T ij). Furthermore throughout this paper an upper indexdoes not refer to ontravariant oordinates. Rather it is used to avoid onfusion with indies haraterizing a partiular onstituent.



4 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müller3 Some Elements of Nonequilibrium Thermodynamis3.1 Desription of Motion and DeformationIn order to measure the motion and deformation of a body a referene state is required, in whih theposition of the material points is referred to the oordinates Xi. The symbol xi denotes the position attime t of that material point whih is at Xi in the referene on�guration, and the funtion
x = χi(t, X1, X2, X3) (1)is alled the motion.The funtion χi an be used to determine the baryentri veloity vi

0 as well as the displaement U i ofthe material points, viz.:
vi
0(t, X

j) =
∂χi(t, Xj)

∂t
and U i(t, Xj) = χi(t, Xj) − Xj . (2)Furthermore the displaement gradient H ij and the deformation gradient F ij are de�ned as:

H ij =
∂U i

∂Xj
and F ij =

∂χi

∂Xj
= δij + H ij . (3)Note that the quantities introdued above ontain the referene position Xj as arguments, i.e., a La-grange or material desription is used. However, one an alternatively use the so-alled Euler or spatialdesription. We assume that the Jaobian J = det(F ij) > 0, so that we may invert xi = χi(t, Xj). Wewrite

Xi = (χ−1)i(t, xj) (4)and eliminate the Lagrange oordinates in the equations (2) and (3). We de�ne
vi(t, xj) = vi

0

(
t, (χ−1)j(t, xk)

)
, ui(t, xj) = U i

(
t, (χ−1)j(t, xk)

)
,

hij = H ij
(
t, (χ−1)j(t, xk)

)
=

∂ui

∂xj
, (F−1)ij =

∂(χ−1)i

∂xj
= δij − hij . (5)and all the newly introdued quantities the Euler or spatial desription.Next we introdue as measures of strain the right Cauhy-Green tensor, Cij , and the Green straintensor, Gij :

Cij = FmiFmj and Gij =
1

2
(Cij − δij) . (6)Furthermore we introdue the unimodular right Cauhy-Green tensor, cij , beause it is useful to split

Cij into a pure volume-hanging, J2/3, and into a volume-preserving part, cij , whih desribes pure hangesof the shape of the body:
Cij = J2/3cij with det(cij) = 1 . (7)3.2 Balane Equations and Mass Di�usion FluxIn order to investigate mixtures, in partiular the temporal hange of the internal omposition, the partialmass density ρα(xj , t) of the di�erent onstituents, the baryentri veloity vi(xj , t) (in ase of liquids) or the



A higher gradient theory of mixtures for multi-omponent materials 5displaements ui(xj , t) (in ase of solids), and the internal energy density ρǫ(xj , t) of the thermodynamialsystem need to be determined. These �elds are used in the partial mass balane, the momentum balaneand in the internal energy balane whih read in regular points in ase of absene of external fores andenergy supplies:
∂ρα

∂t
= −∂(ραvi

α)

∂xi
+ τρ

α (partial mass balane) , (8)
∂ρvi

∂t
= − ∂

∂xj

(
ρvjvi − σij

)
(momentum balane) , (9)

∂ρǫ

∂t
= − ∂

∂xj

(
ρǫvj + qj

)
+ σij ∂vi

∂xj
(internal energy balane) . (10)Note that the internal energy density is used instead of the temperature T beause ρǫ appears under thetime derivative ∂/∂t in Eq. (10). The temperature, whih is more important from a experimental point ofview, will be de�ned later. In general the di�erent omponents of a mixture an reat hemially, whihgives rise to a prodution term, τρ

α, on the right hand side of Eq. (8). Consequently the onservation ofmass does not hold for the individual omponent α.By summation of Eq. (8) w.r.t. all onstituents α ∈ {1, . . . , ν} the onservation law of mass for the wholemixture results. We write:
∂ρ

∂t
= −∂(ρvi)

∂xi
(11)

with
ν∑

α=1

ρα
(def)
= ρ ,

ν∑

α=1

ραvi
α

(def)
= ρvi ,

ν∑

α=1

τρ
α = 0 . (12)An alternative form of Eq. (11) is given by J = ρ0/ρ where ρ0 represents the mass density of the referenestate, f., Müller (1985a). This relation follows by integrating Eq. (11) and by using the relation dJ/dt =

J · ∂vi/∂xi, f., Eq. (A2).The mass di�usion �ux haraterizes the mass transport resulting from the deviation between the partialveloity of the omponent α, vi
α, and the baryentri veloity and is de�ned as:

J i
α

(def)
= ρα(vi

α − vi) whih implies ν∑

α=1

J i
α = 0 , (13)by means of Eq. (12)2. The de�nition of the mass di�usion �ux, viz. Eq. (13)1, an be used in order torewrite Eq. (8) in the following form:

∂ρα

∂t
= −∂(ραvi + J i

α)

∂xi
+ τρ

α (alternative partial mass balane) . (14)3.3 Partile Di�usion FluxA general mixture theory of solids should also allow for the treatment of vaanies whih may be onsideredas massless onstituents. Therefore it is more pratial to examine the balane of the individual partiledensities nα(xi, t) instead of Eq. (8). By means of ρα = mαnα we �nd:
∂nα

∂t
= −∂(nαvi

α)

∂xi
+ τn

α with τρ
α = mατn

α ,
ν∑

α=1

mατn
α = 0 . (15)



6 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerThe partile di�usion �ux is de�ned analogously to Eq. (13), viz.:
ji
α

(def)
= nα(vi

α − vi) and J i
α = mαji

α ,
ν∑

α=1

mαji
α = 0 . (16)Hene Eq. (15) an be written orrespondingly to Eq. (14):

∂nα

∂t
= −∂(nαvi + ji

α)

∂xi
+ τn

α (alternative partial partile balane) . (17)It is worth mentioning that the sum ∑
α τn

α is not neessarily zero: due to hemial reations an overallpartile onservation of the mixture does not hold.We use the quantities that our under the time derivative in the balanes, viz. {ρα or nα, vi or ui, ρǫ},as primary variables. Beyond these variables further quantities, so-alled onstitutive quantities, suh as
σij , qi, J i

α, ji
α and τ

ρ/n
α , our. They must be spei�ed by means of onstitutive equations whih relatethem to the variables and their derivatives in a material-dependent manner. The resulting so-alled �eldequations represent a system of Partial Di�erential Equations (PDE) for the variables, whih, in turn, anbe solved with initial/boundary onditions.3.4 Entropy PrinipleClausius introdued the onept of entropy in the 19th entury (f., Dreyer et al. (2000) for a detailedoverview of the physial and historial bakground). Originally his objetive was to establish a rationalbasis to Carnot's study whih had lead to an upper bound for the maximal work that an be produedby a heat engine. Clausius was aware of many serious errors in Carnot's paper, whih he had to orretat �rst. The most prominent error onerns the fat that even the onservation law of energy, the 1st Lawof Thermodynamis, is found to be violated, i.e. Carnot assumed that the heat that is needed to produemehanial work is onserved during the proess. Surprisingly, Carnot's �nal result is orret and Clausiusre-derived it from the simple axiom: Heat annot �ow by it itself from a older body to a hotter body. Thisis the �rst version of the 2nd Law of Thermodynamis. Based on his axiom Clausius, however, derived afurther law that goes far beyond the haraterization of e�ienies of heat engines. Nowadays this law isalled the 2nd Law of Thermodynamis (2nd law), and it reads without a ontribution from radiation:

dS

dt
≥ Q̇

T
or

d

dt

∫

V
ρη dV ≥ − 1

T

∮

∂V
qini dA . (18)The inequality onerns an arbitrary body with volume V , whose surfae ∂V may exhange heat withthe environment with rate Q̇ at a homogeneous temperature T . By means of this version of the 2nd LawClausius introdued a new additive quantity, whih he alled the entropy of the body. The equality signholds in equilibrium and in non-equilibrium the variation of the entropy is larger than Q̇/T .After some generalizations, whih we will explain in the following, the entropy inequality is used todayfor many purposes. Among them we have: (i) it restrits the admissible lass of onstitutive funtions, (ii)it establishes stability riteria for thermodynami proesses, (iii) it may guarantee uniqueness of initialboundary value problems, (iv) it ontrols the approah to equilibrium of a tehnial system and it givesthe possible equilibria.In this paper we fous on the materials siene point-of-view, and here the Eq. (18) is rather imprati-able and the question about a loal form of the inequality must be posed. However, the usual proedure(Reynold's transport theorem) that transforms Eq. (18)2 into a loal form fails sine the temperaturestands outside the integral. In other words, the question about the loal form of the (non-onvetive partof the) entropy �ux φi ourring in Eq. (35)1 arises.Various attempts were undertaken in the past to �nd a general form for the entropy �ux. The mostobvious way is to simply �write� the temperature T under the integral. The resulting equation is alled the



A higher gradient theory of mixtures for multi-omponent materials 7Clausius-Duhem inequality:
d

dt

∫

V
ρη dV ≥ −

∮

∂V

qini

T
dA ⇒ ∂ρη

∂t
+ ∇i

(
ρηvi +

qi

T

)
≥ 0 . (19)Consequently the entropy �ux is φi = qi/T , f., Colemann & Noll (1963), or Green & Naghdi (1969).However, this form of φi already fails in ase of ideal gases, f., Dreyer et al. (2000), or binary �uid mixtures,f., Müller (1968). This shortoming was, as far as we know, in a systemati manner �rst remedied by theseminal works of Müller (1968) and, later, Liu (1972). Here, in ontradition to the preliminary de�nition ofthe loal form of φi, the entropy �ux is onsidered to be a material-dependent quantity and thus relies on aonstitutive law whose expliit form results from the exploitation of the 2nd law aording to the strategiesof Müller and Liu. However, reent investigations show that the expliit determination of the entropy �uxby means of the eponymous method of Liu, whih uses the balane equations as onstraints during theexploitation of the 2nd law, might beome impossible or at least very subtle if omplex materials are underonsideration, for example those that need higher derivatives in their onstitutive laws. In suh a ase theentropy density and entropy �ux may do not form a unique pair, f., F�aiu & Molinari (1996). In partiularit is a priori not lear, as to whether only the balanes or, additionally, higher derivatives of the balanesmust be onsidered. Therefore we present a revision of the entropy priniple based on �ve, well aeptedstatements, whih - in an astonishing simple, but general way - allows to exploit the 2nd law in order toexamine the onstitutive relations for omplex materials. It avoids the di�ulties of the existing methods bypresribing a partiular form of the entropy prodution, ζ, based on established thermodynamial onepts.3.4.1 Simple One-dimensional Example: Thermoelastiity with Strain Gradients . In this setionwe give a simple illustration how an a priori assumption on the entropy �ux an be avoided in order tobase the entropy priniple on �rm grounds.To this end we onsider a one-dimensional thermo-elasti body with referene mass density ρ0 = 1kg/m3,whose state at time t is given by the �elds internal energy density, e(t, x), or temperature, T (t, x), andthe displaement u(t, x) whih we onsider as the basi variables. In this setion x denotes a Lagrangeoordinate.The �eld equations for the variables rely on the equations of balane for momentum and internal energy

ü − ∂σ

∂x
= 0, ė +

∂q

∂x
= σu̇x . (20)For abbreviation we indiate in this setion the spatial derivatives of the displaement by ux, uxx and soon.In order to end up with a losed set of �eld equation we have to relate the two quantities stress, σ, andand heat �ux, q, whih are not among the basi variables, via onstitutive laws to the variables and theirderivatives. Within the setting of a phase �eld model, a popular onstitutive law for the stress to desribephase transitions in a thermo-elasti body is given by

σ = σ0(e, ux) − a(e, ux)uxxx − b(e, ux)u2
xx, (21)where σ0 is a non-monotone funtion of ux of van der Waals type and a and b are not spei�ed in moredetail at this moment. The onstitutive law for the heat �ux will be given later on.As we shall see, the struture of the system (20) with (21) is already su�iently rih to allow an interestingonsequene. We start the following disussion with the introdution of a funtion that relates the entropydensity s to the variables and their derivatives, viz.

s = h(e, ux, uxx, uxxx). (22)We do not disuss here how to obtain that funtion. For example, it ould be alulated within the frame-



8 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müllerwork of statistial mehanis, as it is in fat usually done, f., Böhme et al. (2007).We now form the time derivative of s:
ṡ =

∂h

∂e
ė +

∂h

∂ux
u̇x +

∂h

∂uxx
u̇xx +

∂h

∂uxxx
u̇xxx, (23)and proeed with the elimination of ė by means of the balane equation (20)2. Next the produt rule isused to rearrange terms. The result is:

ṡ = − ∂

∂x

(
∂h

∂e
q −

(
∂h

∂uxx
− ∂

∂x

∂h

∂uxxx

)
u̇x +

∂h

∂uxxx
u̇xx

)
+

+

(
∂h

∂ux
− ∂

∂x

∂h

∂uxx
+

∂2

∂x2

∂h

∂uxxx
+

∂h

∂e
σ

)
u̇x + q

∂

∂x

∂h

∂e
. (24)This identity forms the basis to establish the entropy inequality by two de�nitions, Clausius' axiom and aonlusion.1. We de�ne the (absolute) temperature, T , and subsequently de�ne the entropy �ux, φ, aording to:

1

T
=

∂h

∂e
, and φ =

q

T
−

(
∂h

∂uxx
− ∂

∂x

∂h

∂uxxx

)
u̇x +

∂h

∂uxxx
u̇xx . (25)2. We satisfy Clausius' axiom, aording to whih heat annot �ow by itself from a old to a hot plae, by:

q
∂ 1

T

∂x
≥ 0, (26)i.e., the heat �ux must be antiparallel to the temperature gradient.3. The identity (24) is linear in the veloity gradient u̇x, however, it an arbitrarily hosen to onstrut anarbitrary solution of the system (20) and (21). In partiular, it an be hosen so that the last line of (24)beomes negative. This an only be avoided by the requirement that the fator of u̇x in (24) must vanish,i.e.:

σ

T
= − ∂h

∂ux
+

∂

∂x

∂h

∂uxx
− ∂2

∂x2

∂h

∂uxxx
. (27)Thus the identity (24) has turned into the entropy inequality:

ṡ +
∂φ

∂x
≥ 0 , (28)whih results here as a onsequene of the �eld equations and some additional assumptions: (i) The de�ni-tion (25)1 of the temperature in non-equilibrium is the same as in equilibrium. (ii) The entropy produtionis of the form irreversible �ux × driving fore, whih is in a thermoelasti body the heat �ux times thederivative of 1 / T . (iii) The onstitutive funtions for the stress and for the heat �ux, are restrited by(27), and (26), respetively, so that the �eld equations imply a further equation of balane, viz. (28), witha non-negative prodution.Note that the desribed strategy requires in partiular, as a prerequisite, the identi�ation of the irre-versible �uxes and the orresponding driving fores in the system of �eld equations. These are those thatare known to be zero in equilibrium.We now proeed to exploit the onsequenes of the entropy priniple onerning the onstitutive laws forthe stress and the heat �ux. We start from the assumption that the entropy density (22) is given by the
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s = h0(e, ux) − 1

2
α(e, ux)u2

xx + γ(e, ux)uxxx . (29)In order to desribe two existing phases, the funtion h0(e, ux) is non-onave with respet to ux, and
α > 0, so that the homogeneous body has maximal entropy.The exploitation of (25)2 and (27) then yields the entropy �ux

φ = (α + γ′)uxxu̇x − γuxx , (30)and the onstitutive funtion for the stress
σ

T
= −h′

0 − (α + 2γ′)uxxx − 1

2
(α′ + 2γ′′)u2

xx . (31)A omparison of this result with (21) implies that we have σ0 = −Th′
0, a = T (α+2γ′) and b = T 1

2(α′+2γ′′).We onlude that the entropy priniple requires that the oe�ient funtions a and b are not independentof eah other but must satisfy
b =

1

2
a′. (32)A further important onlusion is that the alternative hoies (α 6= 0,γ = 0) or (α = 0,γ 6= 0) lead to thesame stress-strain relation. Thus there is no unique orrespondene between the hosen entropy/entropy�ux pair and the onstitutive law for the stress.Finally we give the onstitutive law for the heat �ux by the simplest possibility to satisfy the inequality(26), whih is the lassial Fourier law

q = −κ
∂T

∂x
with κ > 0 . (33)Note that Dunn & Serrin (1985) obtained a di�erent law for the heat �ux beause they relied their treatmentof the same subjet on the Clausius-Duhem inequality.The omplete proedure to hange from the energy density e to the temperature T as a variable isdesribed in detail in Setion 4.2.1.3.4.2 Statement of the Entropy Priniple. The entropy priniple presented here onsists of four parts:1. We postulate the existene of the onstitutive quantities alled entropy density, ρη, and entropy �ux,

φi. The onstitutive relation of ρη has the form:
ρη = S

(
variables, (funtions of) derivatives of the variables) , (34)in whih the variables are the arguments of the time derivatives of the balanes. All onstitutive equa-tions are of this type but, by abandoning the Priniple of Equipresene (Truesdell & Toupin 1960a),the arguments an di�er.2. There exists a loal entropy balane

∂ρη

∂t
+

∂(ρηvk + φk)

∂xk
= ζ with ζ ≥ 0 (dissipation inequality) . (35)The onstraint of Eq. (35)2, viz. the non-negative entropy-prodution ζ, represents the Seond Law ofThermodynamis.



10 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müller3. We de�ne the absolute temperature to be:
1

T

(def)
=

∂ρη

∂ρǫ
, (36)whih orresponds to the onept of the integrating fator within lassial thermodynamis.4. (a) Analogously to the onept of thermodynamial �uxes (Fz) and driving fores (Dz) known fromthe Thermodynamis of Irreversible Proesses, Ekard (1940), we postulate the following form for theentropy prodution:

ζ =
∑

z

FzDz , Fz
e.g.
= {jk

α or Jk
α, σij

diss, q
k} . (37)

σij
diss (with σij = σij

el + σij
diss) gives the dissipative, also alled irreversible, ontribution to the stress.Note that there was no suh part in the example of the last setion. It is well known, Ekard (1940),that the driving fores orresponding to the �uxes in (37) are

Dz =
{
∇i

(µα − µν

T

)
,∇(iv

j),∇i(1/T )
}

, (38)The newly introdued quantities µα are the hemial potentials, see Setion 4 for their de�nition in theurrent study.(b) For equilibrium the �uxes Fz vanish, i.e., Fz|eq .
= 0, whih, in turn, guarantees the absene ofdissipation, i.e., ζ|eq = 0, within equilibrium. Hene it follows that ζ|eq is minimal. Relying on theassumption that the Fz depend on the Dz, we may onlude that Dz|eq = 0 holds additionally.3.4.3 The Role of the 2nd Law. The �eld equations (balanes + onstitutive relations) represent asystem of partial di�erential equations for the determination of the variables. Suh a solution must satisfythe 2nd law (f., Statement 2 of the last paragraph) and onsequently the onstitutive relations must beonstruted suh, that the 2nd law follows for any solution of the �eld equations.For that reason we interpret the balanes (9, 10,14) as a system of algebrai equations, in whih the righthand sides an be hosen arbitrarily in order to alulate the left hand sides, see also Alt & Pawlow (1996).Due to the produt rule the arbitrary terms on the right hand sides are:

{
ρα,

∂vi

∂xi
, vi,

∂ρα

∂xi
,
∂J i

α

∂xi
, τρ

α
︸ ︷︷ ︸partial mass balane , ρ, ρvi,

∂v〈i

∂xj〉
,
∂σij

∂xj
︸ ︷︷ ︸momentum balane , ρǫ,

∂ρǫ

∂xi
,
∂qi

∂xi
, σij

︸ ︷︷ ︸internal energy balane} . (39)Alternatively, in order to investigate partile di�usion (f., Setion 3.3), one must onsider the balanes (9,10,17). Hene the quantities ρα, J i
α and τρ

α in Eq. (39) must be replaed by nα, ji
α and τn

α .Thus one has to onstrut the onstitutive relations suh that the 2nd law follows for an arbitrary hoieof the list of elements in Eq. (39) representing an arbitrary solution of the balanes.4 Investigations of a Single Phase4.1 Exploitation of the 2nd Law for non-reating, thermo-elasti SolidsIn what follows we onsider a thermo-elasti solid mixture onsisting of ν non-reating omponents, i.e.,
σij

diss = 0 ⇒ σij = σij
el and τn

α = 0. In partiular we assume for the onstitutive funtion of the entropy den-sity ρη in Eq. (34) a quite simple form, for whih we need, as we shall see, four alternative representations:
ρη = S̃(ρǫ, n1, . . . , nν , c

ij) = Ŝ(T, n1, . . . , nν , c
ij) = S̄(T, y1, . . . , yν−1, ρ, cij) = Ś(T, y1, . . . , yν−1, C

ij) .(40)
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ρǫ identi�es the thermal variable whereas the symbols nα, α ∈ {1, . . . , ν}, and cij haraterizes the om-position and the deformation of the solid. Note that cij only ontains �ve independent elements due to therelation det cij = (J−2/3)3J2 = 1 whereas Cij in Eq. (40)4 inorporates six independent elements. The set
{ρ, cij} an be used alternatively instead of Cij , whih is reasonable sine ρ and Cij are not independentdue to the relation ρ0/ρ = J = detF ij = det

√
Cij (f., Setion 3.2).The alternative representations of the Eqs. (40)1−4 give ρη by ν + 6 arguments and will be needed fordi�erent purposes. For instane we will see that the funtion S̃ is extremely useful for the exploitation ofthe 2nd law whereas the sets of arguments in S̄, Ŝ and Ś an be used for the de�nition of the hemialpotential µα or for the alulation of the pressure p and the stresses tij .In what follows we write for the entropy balane in Eq. (35)1 by means of the produt rule:

∂S̃
∂t︸︷︷︸
A

+vi ∂S̃
∂xi︸︷︷︸
B

+S̃ ∂vi

∂xi
+

∂φi

∂xi
= ζ . (41)The expressions A and B an be re-written using Eq. (40)1 and the hain rule, viz.

∂S̃
∂t

=
∂S̃
∂ρǫ

∂ρǫ

∂t
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂t
+

∂S̃
∂cij

∂cij

∂t
,

∂S̃
∂xi

=
∂S̃
∂ρǫ

∂ρǫ

∂xi
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂xi
+

∂S̃
∂ckl

∂ckl

∂xi
. (42)The terms ∂ρǫ/∂t and ∂nα/∂t in Eq. (42)1 an be substituted by the right hand sides of the aordingbalanes, Eqs. (10) and (17). The resulting equation as well as the Eqs. (42)2 and (36) an be inserted intoEq. (41). It follows:

ζ =
1

T

[
− ∂

∂xj

(
ρǫvj + qj

)
+ σij

el

∂vi

∂xj

]
+

ν∑

α=1

∂S̃
∂nα

[
−∂(nαvi + jα

i )

∂xi

]

+
∂S̃
∂ckl

(
∂ckl

∂t
+ vi ∂ckl

∂xi

)

︸ ︷︷ ︸
=dckl/dt

+vi

(
1

T

∂ρǫ

∂xi
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂xi

)
+ S̃ ∂vi

∂xi
+

∂φi

∂xi
. (43)The expression under the brae, dtc

kl = ċkl (def)
= ∂ckl

∂t + vi ∂ckl

∂xi , stands for the total temporal derivative of ckland an be replaed by the relation (f., Appendix A):
ċkl = −2

3
J−2/3 ∂vi

∂xi
Ckl + J−2/3 ∂vi

∂xj

(
F jkF il + F jlF ik

)
. (44)Rearrangement and redution of the terms in Eq. (43) yield:

ζ =
∂

∂xi

(
φi − qi

T
−

ν∑

α=1

ji
α

∂S̃
∂nα

)
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
+ qi ∂1/T

∂xi

︸ ︷︷ ︸
Q

+

∂vi

∂xj

[
σij

el

T
+ J−2/3

(
F jkF il + F jlF ik

) ∂S̃
∂ckl

+ δij

(
S̃ − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

) ]
≥ 0 , (45)in whih the symbol δij stands for the Kroneker symbol. Note that all terms that are linear in vi vanish,and, therefore, Eq. (45) is in agreement with the Priniple of Objetivity formulated by Colemann & Noll(1963).



12 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerThe arrangement of Eq.(45) presumes a priori knowledge on the entropy prodution ζ aording toStatement 4 of Setion 3.4. In partiular we arrange the expression Q to be of the form ∑
FzDz andextrat the terms linear in ∂vi/∂xj due to the arbitrary list elements in Eq. (39). Now we de�ne theentropy �ux φi as:

φi (def)
=

qi

T
+

ν∑

α=1

ji
α

∂S̃
∂nα

. (46)Thus the parenthesis of the �rst summand in Eq. (45) vanishes and we obtain the form:
Px + Q ≥ 0 , ∀x ∈ R ⇒ P = 0 ∧ Q ≥ 0 , (47)with the abbreviations x = ∂vi/∂xj for the veloity gradient and P = [. . .] for the braket of the fourthterm. The onlusion in Eq. (47) results sine Eq. (47)1 is linear in x, whih an be arbitrarily hosen.Therefore we an violate the inequality exept for the ase P = 0 ∧ Q ≥ 0.Finally the de�nition of the entropy �ux in Eq. (46) remedied the aforementioned �aw within the works ofColeman & Noll (1963) and Green & Naghdi (1969), in whih the entropy �ux is assumed to be φi = qi/T .The �ux φi in Eq. (46) additionally inorporates di�usional ontributions, whih orresponds to the resultsof Müller (1985b).4.2 Seleted Results4.2.1 Heat Flux and Di�usion Flux. As a onsequene of Eq. (45) and (47) we onlude:

qi ∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
≥ 0 . (48)A further evaluation of Eqs. (48) requires the substitution of the experimentally unmanageable expression

∂S̃/∂nα by a measurable physial value. For this reason we introdue the following funtional representa-tions for the Helmholtz free energy density ρϕ aording to Eq. (40):
ρϕ = F̃(ρǫ, n1, . . . , nν , c

ij) = F̂(T, n1, . . . , nν , c
ij) = F̄(T, y1, . . . , yν−1, ρ, cij) = F́(T, y1, . . . , yν−1, C

ij) ,(49)and de�ne the hemial potential µα as:
µα

(def)
=

∂F̂
∂nα

. (50)Moreover, the Legendre transform as outlined in Appendix B yields:
∂S̃
∂nα

= − 1

T

∂F̂
∂nα

= −µα

T
. (51)By additionally applying the mass onservation of Eq. (16)3, ji

ν = −∑ν−1
β=1

mβ

mν
ji
β , the following form of Eq.
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qi ∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
= qi ∂1/T

∂xi
+

ν−1∑

β=1

ji
β

∂
(

mβ

mν
µν − µβ

)
/T

∂xi

= qi ∂1/T

∂xi
+

ν−1∑

β=1

mβji
β

∂
(

µν

mν
− µβ

mβ

)
/T

∂xi
≥ 0 . (52)The simplest way to ahieve a non-negative expression for the right hand side of Eq. (52)1,2 is to hoose

qi, σij
diss, ji

β or J i
β = mβji

β suh that quadrati expressions in ∂1/T
∂xi , ∂(mβµν/mν−µβ)/T

∂xi or ∂(µν/mν−µβ/mβ)/T
∂xiwith positive oe�ients result. If thermo-di�usion oupling (Ludwig-Soret and Dufour e�et, f., deGroot (1960)) is negleted we put:

ji
β =

ν−1∑

δ=1

M ij
βδ

∂
(

mδ

mν
µν − µδ

)
/T

∂xj
, J i

β =
ν−1∑

δ=1

Bij
βδ

∂ (µ∗
ν − µ∗

δ) /T

∂xj
, qi = κij ∂1/T

∂xj
, (53)

with the alternative de�nition µ∗
α

(def)
= µα/mα and furthermore:

µ∗
α =

∂
̂̂F(T, ρ1, . . . , ρν , c

ij)

∂ρα
=

1

mα

∂F̂
∂nα

, α = {1, . . . , ν} . (54)Note that the material-spei�, positive de�nite diagonal matries M ij
βδ, Bij

βδ and κij in Eq. (53) are notneessarily onstant and, in general, an depend on the same arguments used in the Eqs. (40/49).By means of the hain rule, viz. ∂1/T
∂xj = − 1

T 2
∂T
∂xj , Eq. (53)3 hanges to qi = −κ̄ij(T ) ∂T

∂xj , with κ̄ij(T ) =

κij/T 2. If κ̄ij = const this equation is alled Fourier's law of heat ondution in whih the symbol κ̄ijdenotes the matrix of thermal ondutivity. On the other side Eqs. (53)1,2 reveals that the di�usion �ux isproportional to the gradient of the di�erene of the hemial potentials µα or µ∗
α. The matries M ij

βδ and
Bij

βδ are often alled mobilities.4.2.2 Mehanial Constitutive Equations. In order to determine the pressure and the stress tensor weonsider the ondition P = 0 in Eq. (47). The trae of σij de�nes the pressure. One obtains from Eq. (45):
p = −1

3
σkk =

1

3
J−2/3T

(
FmkFml + FmlFmk

) ∂S̃
∂ckl

+ T

(
ρη − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

)
.(55)



14 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerNote that Cij and cij are symmetri sine C
T = (FT

F)T = F
T
F ∧ c = const · C holds. Therefore theterms ontaining ∂S̃/∂ckl vanish and it follows by means of Eqs. (B6) and (C6)2 in Appendix B,C:

p = −ρϕ − T
ν∑

α=1

nα
∂S̃
∂nα

(App. B)
= −ρϕ +

ν∑

α=1

nα
∂F̂
∂nα

(App. C)
= −ρϕ +

ν∑

α=1

nαmα
∂F̄
∂ρ

+

ν∑

α=1

ν−1∑

β=1

yα
∂F̄
∂yβ

(
δαβ − nβ

n

)

︸ ︷︷ ︸
=0

(56)
= −ρϕ + ρ

∂F̄
∂ρ

= ρ2 ∂ϕ̄

∂ρ
. (57)The 2nd Piola-Kirhhoff stress tensor tij an be also expressed by a partial derivative of theHelmholtz free energy. For this purpose we use the de�nition of tij in Setion 2 and analyze the onstraint

P = 0 with respet to Eq. (45):
tij = J(F im)−1σmn(F jn)−1

= −J1/3T
[
δjkδil + δjlδik

] ∂S̃
∂ckl

− JT (F in)−1(F jn)−1

︸ ︷︷ ︸
=(Cij)−1

(
S̃ − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

)

= −2J1/3T
∂S̃
∂cij

+ J(Cij)−1

(
ρϕ + T

ν∑

α=1

nα
∂S̃
∂nα

+
2

3
J−2/3TCkl ∂S̃

∂ckl

)
. (58)This equation an be further simpli�ed by suessively applying the Legendre transforms of AppendixB, C and D. One obtains:

tij
(App. B,C)

= 2J1/3 ∂F̄
∂cij

+ J(Cij)−1

(
ρϕ − ρ

F̄
∂ρ

− 2

3
J−2/3Ckl ∂F̄

∂ckl

)

(App. D)
= 2J1/3 ∂F́

∂Ckl

(
ρ0

ρ

)2/3

+ J(Cij)−1

(
ρϕ +

2

3
J2/3ckl ∂F́

∂Ckl
− 2

3
Ckl 1

2
(δmkδnl + δnkδml)

∂F́
∂Cmn

)

= 2J
∂F́
∂Cij

+ J(Cij)−1
(
ρϕ

)
= 2J

∂ρ

∂Cij
ϕ + 2Jρ

∂ϕ́

∂Cij
+ J(Cij)−1

(
ρϕ

)

= 2Jρ
∂ϕ́

∂Cij
= 2ρ0

∂ϕ́

∂Cij
. (59)For the last step in Eq. (59) we used the relation ∂ρ/∂Cij = ∂

∂Cij

( ρ0

(detC)1/2

)
= −ρ0

2 (detC)−3/2 ∂
∂Cij (detC) =

−ρ0

2 (detC)−1/2(Cij)−1 = −ρ
2(Cij)−1.4.2.3 Gibbs-Duhem Relation and Gibbs Equation. In order to underline the power of the presententropy priniple we additionally derive two important equations of thermodynamis, namely the Gibbs-Duhem relation and the Gibbs equation. The �rst one follows diretly from Eq. (56)2:

p

ρ
+ ϕ =

1

ρ

ν∑

α=1

nα
∂F̂
∂nα

=
1

ρ

ν∑

α=1

nαµα , (Gibbs-Duhem equation) . (60)



A higher gradient theory of mixtures for multi-omponent materials 15The latter one relates the Helmholtz free energy density to the entropy, stresses and hemial potential.Therefore we onsider the total di�erential d(ρϕ) = dF̂ :
d(ρϕ) =

∂F̂
∂T

dT +
ν∑

α=1

∂F̂
∂nα

dnα +
∂F̂
∂cij

dcij . (61)For the oe�ients ∂F̂/∂T and ∂F̂/∂cij , and ∂F̂/∂nα we apply the Legendre transforms of AppendiesB, C and D; it follows:
∂F̂
∂T

=
∂

∂T

(
Ê − T Ŝ

)
(App. B)

= −ρη ,
∂F̂
∂nα

= µα , (62)
∂F̂
∂cij

(App. C)
=

∂F̄
∂cij

= ρ
∂ϕ

∂cij

(App. D)
= ρJ2/3 ∂ϕ

∂Cij

(59)
=

1

2
J−1/3tij . (63)In partiular Eq. (63)2 holds sine ρ and cij are independent arguments within F̄ . Thus we an �nallywrite:

d(ρϕ) = −ρη dT +
1

2
J−1/3tij dcij +

ν∑

α=1

µα dnα , (Gibbs equation) . (64)Eq. (64) an be used for the diret identi�ation of ρη and µα but annot be used for the alulation of tijsine the onstraint det cij = 1 ⇔ (cij)−1dcij = 0 holds. For the identi�ation of the pressure and the 2ndPiola-Kirhho� tensor one needs the Gibbs equation - aording to Eqs. (57) and (59) - in terms of ϕ̄ and
ϕ́. Here a straightforward alulation yields the two alternative forms of the Gibbs equation:

dF̄ = ρdϕ̄ + ϕ̄dρ =
∂F̄
∂T

dT +
∂F̄
∂ρ

dρ +
∂F̄
∂cij

dcij +

ν−1∑

β

∂F̄
∂yβ

dyβ

⇔ dϕ̄ = −ηdT +
p

ρ2
dρ +

1

ρ

∂F̄
∂cij

dcij +
1

ρ

ν−1∑

β

∂F̄
∂yβ

dyβ , (65)and
dF́ = ρdϕ́ + ϕ́dρ =

∂F́
∂T

dT +
∂F́
∂Cij

dCij +
ν−1∑

β

∂F́
∂yβ

dyβ

⇔ dϕ́ = −ηdT +
1

2ρ0
tijdCij +

1

ρ

ν−1∑

β

∂F́
∂yβ

dyβ . (66)Eqs. (65) and (66) allow for a diret identi�ation of p and tij as partial derivatives of ϕ̄ or ϕ́, respetively.However, the prize we pay is loss of the losed form for the hemial potential µα. Furthermore Eqs. (64,65) an be used for the liquid matter, where for purely volumetri deformations cij = δij ⇔ dcij = 0holds. Consequently, one obtains from (64) for mixtures: d(ρϕ) = −ρηdT +
∑

µαdnα and from (65) forpure liquids: dϕ = −ηdT + (p/ρ2)dρ, whih mathes the lassial results of thermodynamis, f., Müller(1985).



16 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müller4.2.4 Splitting of the Free Energy into a Mehanial and a Chemial Part1. In order to study di�usionproesses in thermo-elasti solid mixtures one needs an expliit expression for ρϕ that allows to determinethe hemial potentials µα or µ∗
α aording to Eqs. (50,54), whih are neessary during alulation of thedi�usion �uxes ji

α or J i
α in Eq. (53)1,2.(I) Conept. We start with the observation that the deformation of the solid results from two independente�ets, viz.:1) (inelasti) deformations, resulting from internal di�usion proesses (e.g., mis�ts, whih follow from theredistribution of the atoms) and from temperature hanges (i.e., thermal expansion),2) elasti deformations resulting from the hange of the stress state aording to the appliation of externalloadings.In order to distinguish between these proesses we onsider three di�erent states, haraterized by temper-ature, partile onentrations, and deformation gradient, namely (T, yβ , F ij) with β = {1, 2, . . . , ν − 1}.These states are spei�ed by the settings indiated in Table 2.Table 2.: Spei�ation of the three states required for the distintion between inelasti and elasti defor-mations in a multi-omponent thermo-elasti, di�usive solid.referene state S0 intermediate state S∗ urrent state Stemperature T T0 T∗ = T Tomposition yβ y0

β y∗β = yβ yβdeformation gradient F ij F ij
0 = δij F ij

∗ F ijFurthermore the following onditions for the Cauhy stresses, σij , and for the deformation gradient,
F ij , are formulated for the transformations between the states, f., Figure 1:

σij

{
= −p̄δij !

= const. , for S0 → S∗

6= −p̄δij , for S∗ → S
and F ij

{
= F ij

∗ , for S0 → S∗

= F ij
el , for S∗ → S

, (67)in whih p̄ is the referene pressure.In summary, the deformation gradient F ij
∗ represents the inelasti part of the deformation at onstantreferene stress, whereas F ijel ontains the pure elasti deformation. It is important to note that neitherthe onentration, i.e., the distribution of the onstituents over the lattie sites, nor the temperature dohange for S∗ → S, f., Figure 1.Finally we note that hemial experiments, espeially phase equilibria measurements, typially refer tothe state S∗ or, with other words, the proess, whih is observed during the experiment is given by thetransformation S0 → S∗.(II) Mass densities, partile densities, onentrations, and Jaobians. Now we alulate for the threedi�erent states S0, S∗, and S the mass densities ρ0, ρ∗ and ρ, and the Jaobians J∗, Jel and J in terms ofonentrations and partile densities. For the mass densities we obtain (see also Setion 2):

ρ0 = mH · n0 · M(y0
α) , ρ∗ = mH · n∗ · M(yα) , ρ = mH · n · M(yα) (68)

1This paragraph is based on preliminary onsiderations by Dreyer & Duderstadt (2004).
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PSfrag replaements referene state

intermediate state

urrent state

F ij
∗ ,

σij = −p̄δij

F ij
el ,

σij 6= −p̄δij

α β

ontrol volume
V0 ontrol volume V 6= V∗

ontrol volume
V∗ 6= V0

total deformation, F ij

e.g.,di�usionor thermalexpansion arbitrary, elastideformation
Figure 1.: Three states of a multi-omponent thermo-elasti di�usive solid. (a) The referene state S0with the referene temperature T , the referene omposition y0

β , and the referene (undeformed) strainstate desribed by F ij
0 = δij . (b) The intermediate state S∗ with T∗ = T , y∗β = yβ , and F ij

∗ for S0 → S∗.() The urrent state S with T , yβ , and F ij for S0 → S and F ijel for S∗ → S.and the alulations of the Jaobians yields:
J∗

(def)
= detF ij

∗ =
ρ0

ρ∗
=

M(y0
α)

M(yα)

(def)
= ν(yα)

n0

n∗
, Jel (def)

= detF ijel =
ρ∗
ρ

=
n∗

n
, J

(def)
= det F ij =

ρ0

ρ
= ν(yα)

n0

n
.(69)>From Eq. (69) the multipliative deomposition of the Jaobian J diretly follows:

J = JelJ∗ . (70)(III) Relations between the deformation gradients. In addition to Eq. (70) there is a orrespondingdeomposition of the total deformation gradient F ij . If the onept of the three introdued states S0, S∗,and S is aepted then we have
F ij = F ik

el F kj
∗ . (71)



18 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerThe proof of Eq. (71) diretly follows from the three motions of the body (see Setion 3.1):
xi = χi(t, Xj) , Xi

∗ = χi
∗(t, X

j) , xi = χi
el(t, X

j
∗) , (72)so that by virtue of the hain rule we may write

F ij =
∂χi

∂Xj
=

∂χi
el

∂Xk
∗

=F ik
el

∂χk
∗

∂Xj

=F kj
∗

. (73)(IV) Example. At this point we brie�y onsider an example to illustrate the deformation that might leadto the intermediate state, haraterized by F ij
∗ . At �rst we onsider isotropi thermal expansion. Usuallythe thermal expansion oe�ient is measured without onsidering any hanges of the omposition withinthe body, f., James et al. (2001), or Pignatiello et al. (2007). In this ase we may write

J∗ = ν(yβ)

=1

n0

n∗
=

n0

n∗
=

V∗

V0
= [1 + α(T − T0)]

3 , (74)where α denotes the linear thermal expansion oe�ient. In other words, the hange of the volume from
V0 to V∗ is measured.If we now onsider a proess that inorporates thermal expansion and di�usion, then we have to use inthe model

J∗ = det F ij
∗ = ν(yβ)

n0

n∗
= ν(yβ)

V∗

V0
= ν(yβ) [1 + α(T − T0)]

3 . (75)Next we investigate the ase of anisotropi thermal expansion with di�usion. Instead of the volume of thebody we now have to determine experimentally the deformation gradient, whih relies, in analogy to theabove equations, on the ansatz:
F ij
∗ = ν(yβ)1/3

[
δij + αij(T − T0)

]
. (76)(V) Two seond Piola-Kirhhoff & Cauhy stress tensors. Aording to Setion 2 the Cauhystress tensor an be written as:

σij =
1

J
F imF jntmn , σij =

1

JelF imel F jnel zmn , (77)where tij refers to the referene state S0 and zij to the intermediate state S∗. A ombination of Eq. (77)1,2yields the relation:
tij = J∗(F

−1
∗ )im(F−1

∗ )jnzmn . (78)(VI) St. Venant-Kirhhoff law. The St. Venant-Kirhhoff law relates a seond Piola-Kirhhoff stress tensor to the elasti strains, f., Truesdell & Noll, (1965a). Sine for the ase illustratedin Figure 1 the elasti deformation starts at S∗ and ends in S, we have to formulate that law for zij . Itreads:
zij = −p̄Jel(C

−1
el )ij +

1

2
K̄ijkl(T, yβ)

(
Ckl

el − δkl
)

with Ckl
el = Fmk

el Fml
el , (79)where the symbol K̄ijkl = K̄jikl = K̄ijlk = K̄klij stands for the sti�ness matrix, whih is generally assumedto be a funtion of T and yβ .



A higher gradient theory of mixtures for multi-omponent materials 19However, in order to alulate the free energy density by means of the exploitation of the 2nd law, f.,Eq. (59), we also need to know the seond Piola-Kirhhoff stress tensor tij . By inserting Eq. (79) intoEq. (78) we �nd after some rearrangements of terms:
tij = −p̄J(C−1)ij +

1

2
Kijkl(T, yβ)

(
Ckl − Ckl

∗ (T, yβ)
) (80)with the de�nitions:

Ckl
∗ = Fmk

∗ Fml
∗ , Ckl = FmkFml and Kijkl = J∗(F

−1
∗ )im(F−1

∗ )jn(F−1
∗ )kp(F−1

∗ )lqK̄mnpq . (81)The Jaobian J∗ as well as the deformation gradient F ij
∗ depend on temperature T and on the onentrations

yβ , f., Eqs. (76)2 and (75), thus Cij
∗ = Cij

∗ (T, yβ) and Kijkl = Kijkl(T, yβ) depend on the same variables.The newly introdued quantity Cij
∗ is often alled mis�t strain or eigen-strain.(VII) Chemial and mehanial part of the free energy. Aording to the deomposition of the deforma-tion gradient in Eq. (71) we now present a deomposition of the Helmholtz free energy into a hemialpart and into a mehanial part, whih refers, in this ontext, to the elasti deformations. We assume thatthe Helmholtz free energy an be represented by two additive ontributions

ϕ = ϕmech + ϕchem. (82)If the total Helmholtz free energy is given, we identify those two ontributions by the de�nitions:
ϕchem (def)

= ϕ́
(
T, y1, . . . , yν−1, C

ij = Cij
∗

)
, ϕmech (def)

= ϕ́
(
T, y1, . . . , yν−1, C

ij
)
− ϕchem . (83)The hemial part of the Helmholtz free energy is typially obtained from measurements of phase equi-libria under the pressure p̄ or by alulations within the settings of statistial mehanis. The mehanialpart, ϕmech, whih is exlusively related to the elasti deformations during the transformation S∗ → S, isalulated from a given stress-strain relation, whih is here given by Eq. (59). To this end reall that Eq.(80) depends on the variables {T, y1, . . . , yν−1, C

ij} using the relation J = J́(Ckl) =
√

det Ckl. Thereforewe an insert Eq. (80) into Eq. (59) and integrate the result w.r.t. Cij . We obtain
ϕ́(T, yβ , Cij) =

Kijkl(T, yβ)

8ρ0

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
− p̄

ρ0

[
J∗(T, yβ) − J́

]
+ K(T, yβ) , (84)in whih K and p̄J∗/ρ0 denote integration �onstants� beause they depend exlusively on the variables

{T, y1, . . . , yν−1}. Furthermore we made use of the relation (C−1)ij = (det Ckl)−1∂Cij(det Ckl).Thus, one �nds for the funtional representation of ρϕ:
F́ =

Kijkl(T, yβ)

8J́

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
− p̄

(
J∗(T, yβ)

J́
− 1

)
+ ρ́K(T, yβ) , (85)with ρ = ρ́(Cij) = ρ0/J́(Cij). The mehanial part, ρϕmech, must vanish for the ase Cij = Cij

∗ and J = J∗.Thus we onlude:
ρϕmech = F́mech =

Kijkl(T, yβ)

8J́

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
− p̄

(
J∗(T, yβ)

J́
− 1

)
, (86)

ρϕchem = F́chem = ρ́K(T, yβ) . (87)In order to alulate the hemial potentials, µα, aording to Eq. (50), we have to rewrite F́mech/chem in



20 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müllerterms of {T, nα, cij} with α = {1, . . . , ν}. By means of the relations
ρ = ρ̂(nα) =

∑

α

mαnα , J = Ĵ(nα) =
ρ0∑

α mαnα
, (88)

Cij = Ĵ2/3cij , yβ = ŷβ(nα) =
nβ∑
α nα

, (89)we reformulate Eq. (85) as follows:
F̂ = F̂mech + F̂chem =

=
Kijkl(T, ŷβ)

8Ĵ

(
Ĵ2/3cij − Cij

∗ (T, ŷβ)
) (

Ĵ2/3ckl − Ckl
∗ (T, ŷβ)

)
+ ρ̂K(T, ŷβ) − p̄

(
J∗(T, ŷβ)

Ĵ
− 1

)
, (90)whih now may be di�erentiated w.r.t. nα. As a result we �nd for the hemial potentials:

µα
(def)
=

∂F̂
∂nα

=
(Kijkl)′

8J

∂ŷβ

nα

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
+

Kijklmα

8ρ0

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)

+
Kijkl

8J

(
−2

3

mα

ρ
Cij − (Cij

∗ )′
∂ŷβ

∂nα

) (
Ckl − Ckl

∗

)

+
Kijkl

8J

(
−2

3

mα

ρ
Ckl − (Ckl

∗ )′
∂ŷβ

∂nα

) (
Cij − Cij

∗

)

− p̄

(
J ′
∗

J

∂ŷβ

∂nα
+ J∗

mα

ρ0

)
+ mαK + ρK′ ∂ŷβ

∂nα
, (91)where the symbol (♦)′ stands for the derivative ∂♦/∂yβ . Furthermore we have ∂ŷβ/∂nα = 1

n(δαβ − yβ),whih follows diretly from Eq. (89)2.4.3 Comparison with the Literature: Gibbs and Helmholtz Free Energy, Spei� Strain Energy,Complementary Strain Energy, and Theorems of CastiglianoFinally we ompare some of the derived equations with the literature. We speialize to ompressible puresubstanes and start with the orresponding alternative form of the Gibbs relation in Eq. (66):
dϕ = −ηdT +

1

2ρ0
tijdCij (92)

⇔ dw⋆ = −ηdT − 1

2ρ0
Cijdtij with w⋆ (def)

= ϕ − 1

2ρ0
tijCij , (93)where ϕ = ϕ̃(T, Cij) and w⋆ = ŵ⋆(T, tij).Note that Eq. (93) - in whih we temporarily all the introdued quantity w⋆ the strain potential -holds solely, if the stress strain relation is invertible1. Furthermore Eq. (92) and (93) imply the followinghyper-elasti relations for the stresses and strains:

2ρ0
∂ϕ̃

∂Cij
= tij , 2ρ0

∂ŵ⋆

∂tij
= −Cij . (94)

1A popular ounter-example are rubber balloons, f., Müller & Strehlow (2004).



A higher gradient theory of mixtures for multi-omponent materials 21Another version of the Gibbs relations an be found by using the de�nition for the �rst Piola Kirh-hoff stress tensor :
pij (def)

= Jσik(F−1)
jk (95)and the di�erentiation rule dCij = (dF ki)F kj + F kidF kj . Then one obtains from Eq. (92):

dϕ = −ηdT +
1

ρ0
pijdF ij (96)

⇔ dw⋆ = −ηdT − 1

ρ0
F ijdpij with w⋆ (def)

= ϕ − 1

ρ0
pijF ij , (97)where ϕ = ϕ̄(T, F ij) and w⋆ =

⌢
w ⋆(T, pij). Hene follows:

ρ0
∂ϕ̄

∂F ij
= pij , ρ0

∂
⌢
w ⋆

∂pij
= −F ij . (98)It is worth mentioning that ϕ̄(T, F ij) annot depend on all nine independent oe�ients of F ij due tothe Priniple of Objetivity, f., Colemann & Noll (1963). In partiular ϕ only depend on six omponentsfollowing from symmetri ombinations of F ij , e.g., C = F

T
F.Landau & Lifshitz (1966) used a third form of the Gibbs relations to be obtained with the linearization

dCij ≈ d(2εij + δij) = 2dεij and tij = σij in Eq. (92). Consequently they found (in our notation):
dϕ = −ηdT +

1

ρ0
σijdεij (99)

⇔ dw⋆ = −ηdT − 1

ρ0
εijdσij with1 w⋆ (def)

= ϕ − 1

ρ0
σijεij , (100)where ϕ = ϕ̆(T, εij), w⋆ = ẃ⋆(T, σij) and furthermore

ρ0
∂ϕ̆

∂εij
= σij , ρ0

∂ẃ⋆

∂σij
= −εij . (101)The energeti formulations for the stresses and strains in Eqs. (94,98,101) are frequently found in literature,e.g., Truesdell & Noll (1965b), and an be interpreted as the ontinuum mehanial version of the �rst andseond theorem of Castigliano, f., Beker & Bürger (1975). The quantities ϕ and w⋆ are typially alledthe (mass-)spei� strain energy2 and the omplementary spei� strain energy.In this ontext we point out that there is a onsiderable onfusion about the meaning of w⋆ in theliterature. So, for instane, Landau & Lifshitz (1966), Beker & Bürger (1975) and Truedsell & Toupin(1960b) wrongly identify the omplementary spei� strain energy w⋆ with the Gibbs free energy ψ. Inturn, Landau & Lifshitz (1966) are puzzled that their de�nition of the Gibbs free energy for solids doesnot agree with the �lassial� ones, ψ = ϕ + p/ρ, used in �uid thermodynamis. This irritation is remediedwithin the present work, in whih - for solids as well as for liquids - the same de�nition holds for theGibbsfree energy, viz.:

ψ = ϕ +
p

ρ
with p = −σkk

3
= − 1

3J
tijCij = − 1

3J
pijF ij . (102)

1Note that the de�nitions of w⋆ in Eq. (100)2 is not equivalent to the ones in Eqs. (97,93)2 due to the performed linearization. This isevident replaing in, e.g., Eq. (93)2 the term tijCij by the linearized form σij(2εij + δij).
2Another notation frequently found is spei� stored energy.



22 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerNote that for the ase of solids this form of the Gibbs free energy annot be derived from the Legendretransforms performed in the Eqs. (92,93), (96,97) and (99,100).5 Multiphase Mixtures5.1 Exploitation of the 2nd Law by Considering Higher GradientsIn this setion we onsider materials that onsist of di�erent phases. First of all, one has to larify of whihnature the various ourring phases are and whih physial quantity an be used for their haraterization.Note that multi-phase materials are manifold. The phases an vary for instane in their ompositions,e.g., Ag-rih α- or Cu-rih β-phases in euteti Ag-Cu below the euteti temperature, or in the lattiestrutures, e.g., ferrite (α-phase, BCT) and austenite (γ-phase, FCC) in iron.Aording to the Introdution we turn the attention to di�usion-indued phase transformations, suh asspinodal deomposition, nuleation and subsequent oarsening in non-reating, multi-omponent, elastiallystressed solids (τn
α = 0 and σij = σij

el ). Consequently the ourring phases di�er in its omposition, i.e.,in the partial partile densities n1, . . . , nν . Therefore we must inorporate phase boundaries ontainingonsiderable gradients ∇inα, ∇ijnα, . . . et. (α = {1, . . . , ν}), and we modify the funtional representationof ρη aording to Eq. (40) as follows:
ρη = S̃(ρǫ, nα,∇inα,∇ijnα, cij) = Ŝ(T, nα,∇inα,∇ijnα, cij) =

= S̄(T, yβ ,∇iyβ ,∇ijyβ ,∇iρ,∇ijρ, ρ, cij) = Ś(T, yβ ,∇iyβ ,∇ijyβ ,∇iρ,∇ijρ, Cij) . (103)The index α = {1, ..., ν} and β = {1, ..., ν − 1} were used as abbreviations. The expressions A and B of thedissipation inequality, Eq. (41), are now re-written analogously to Eqs. (42)1,2:
∂S̃

∂t
=

∂S̃

∂ρǫ

∂ρǫ

∂t
+

∂S̃

∂cij

∂cij

∂t
+

ν∑

α=1

(
∂S̃

∂nα

∂nα

∂t
+

∂S̃

∂∇inα

∂∇inα

∂t
+

∂S̃

∂∇ijnα

∂∇ijnα

∂t

) (104)
∂S̃

∂xi
=

∂S̃

∂ρǫ

∂ρǫ

∂xi
+

∂S̃

∂ckl

∂ckl

∂xi
+

ν∑

α=1

(
∂S̃

∂nα

∂nα

∂xi
+

∂S̃

∂∇knα

∂∇knα

∂xi
+

∂S̃

∂∇klnα

∂∇klnα

∂xi

) (105)The terms ∂ρǫ/∂t and ∂nα/∂t are substituted in the same manner as in Setion 4.1, namely by the righthand sides of Eqs. (10,17). The additional terms ∂∇inα/∂t and ∂∇ijnα/∂t are replaed by the right handside of the di�erentiated partial partile balane, Eq. (17), viz.:
∂∇knα

∂t
= − ∂

∂xk

[
vi ∂nα

∂xi
+ nα

∂vi

∂xi
+

∂ji
α

∂xi

]

= − ∂vi

∂xk

∂nα

∂xi
− vi ∂2nα

∂xi∂xk
− ∂nα

∂xk

∂vi

∂xi
− nα

∂2vi

∂xi∂xk
− ∂2ji

α

∂xi∂xk
, (106)

∂∇klnα

∂t
= − ∂2vi

∂xk∂xl

∂nα

∂xi
− 2

∂vi

∂xk

∂2nα

∂xi∂xl
− vi ∂3nα

∂xi∂xk∂xl
− ∂2nα

∂xk∂xl

∂vi

∂xi

−2
∂nα

∂xk

∂2vi

∂xi∂xl
− nα

∂3vi

∂xi∂xk∂xl
− ∂3ji

α

∂xi∂xk∂xl
. (107)Note, that Eq. (104) gives diretly rise, whih balanes and whih di�erentiated balanes must be onsideredduring the exploitation of the 2nd law. Indeed, this fat remedies the aforementioned shortoming of Liu'sproedure, f., Setion 3.4. Here the ourring temporal derivatives of Eq. (104) our due to Statement 1of the Entropy Priniple, proposed in Setion 3.4, and depend on the hoie of the arguments in Eq. (103)1.



A higher gradient theory of mixtures for multi-omponent materials 23By inserting Eqs. (10, 17, 106, 107) into Eq. (104) one obtains for the entropy prodution ζ aording toEq. (41):
ζ =

∂

∂xi

[
φi − qi

T
−

ν∑

α=1

ji
α

∂S̃

∂nα

]
+ qi ∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃

∂nα

)

+
∂vi

∂xj

[
σij

el

T
+ J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl
− δij

(
ρǫ

T
− S̃ +

ν∑

α=1

nα
∂S̃

∂nα
+

2

3
J−2/3Ckl S̃

∂ckl

) ]

−
ν∑

α=1

∂S̃

∂∇knα

(
∂vi

∂xk

∂nα

∂xi

=a +
∂nα

∂xk

∂vi

∂xi

=b + nα
∂2vi

∂xi∂xk

= +
∂2ji

α

∂xi∂xk

=d )

−
ν∑

α=1

∂S̃

∂∇klnα

(
∂2vi

∂xk∂xl

∂nα

∂xi

=e + 2
∂vi

∂xk

∂2nα

∂xi∂xl

=f +
∂2nα

∂xk∂xl

∂vi

∂xi

=g
+ 2

∂nα

∂xk

∂2vi

∂xi∂xl

=h + nα
∂3vi

∂xi∂xk∂xl

=i +
∂3ji

α

∂xi∂xk∂xl

=j )
. (108)The �rst four summands orrespond to the result in Eq. (45). In what follows one has to inlude theHG-terms ∂S̃

∂∇knα
(a+ . . . + d) and ∂S̃

∂∇klnα
(e+ . . . + j) �suitably� into the �rst three rows of Eq. (108), whihwill later be used in order to de�ne the entropy �ux φi, the di�usion �ux ji

α, and the mehanial onstitutiverelations. For this reason we use the following strategy aording to the previous setion:a) Rearrange the di�usion �ux terms (d) and (j) suh that terms linear in ji
α and linear in the divergeneoperator ∂/∂xi will result.b) Transpose the veloity terms (a-) and (e-i) in suh a way that terms linear in ∂vi/∂xi and ∂vi/∂xj orterms linear in ∂/∂xi, respetively, will result.>From the �rst item one �nds:

− ∂S̃

∂∇knα
(d) =

∂

∂xi

[
ji
α

∂

∂xk

(
∂S̃

∂∇knα

)
− ∂S̃

∂∇inα

∂jk
α

∂xk

]
− ji

α

∂

∂xi

[
∂

∂xk

(
∂S̃

∂∇knα

)]
, (109)

− ∂S̃

∂∇klnα
(j) =

∂

∂xi

[
− ji

α

∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)
+

∂jl
α

∂xl

∂

∂xk

(
∂S̃

∂∇kinα

)
− ∂

∂xk

(
∂jl

α

∂xl

)
∂S̃

∂∇kinα

]

+ ji
α

∂

∂xi

[
∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)]
. (110)Aording to the seond �strategy point� we re-arrange as follows:

− ∂S̃

∂∇knα
(a + b + ) = nα

∂vi

∂xi

∂

∂xk

(
∂S̃

∂∇knα

)
− ∂vi

∂xk

∂nα

∂xi

∂S̃

∂∇knα
− ∂

∂xi

[
nα

∂vk

∂xk

∂S̃

∂∇inα

]
, (111)

− ∂S̃

∂∇klnα
(e + f) =

∂vi

∂xk

[
∂nα

∂xi

∂

∂xl

(
∂S̃

∂∇klnα

)
− ∂2nα

∂xi∂xl

∂S̃

∂∇klnα

]
− ∂

∂xi

(
∂vk

∂xl

∂nα

∂xk

∂S̃

∂∇linα

)
, (112)
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− ∂S̃

∂∇klnα
(g + h + i) =

∂

∂xi

[
nα

∂vk

∂xk

∂

∂xl

(
∂S̃

∂∇ilnα

)
− ∂S̃

∂∇kinα

∂

∂xk

(
nα

∂vl

∂xl

)]

− nα
∂vi

∂xi

∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)
. (113)Eq. (109-113) an be substituted into Eq. (108). By means of the Euler-Lagrange derivative:

δ♦

δnα

(def)
=

∂♦

∂nα
−∇k · ∂♦

∂∇knα
+ ∇kl ·

∂♦

∂∇klnα
(114)and the partial partile balane in the form:

ṅα
(def)
=

∂nα

∂t
+ vi ∂nα

∂xi

(17)
= −nα

∂vi

∂xi
− ∂ji

α

∂xi
. (115)we �nally write for the entropy prodution ζ:

ζ =
∂

∂xi

{
φi − qi

T
−

ν∑

α

ji
α

δS̃

δnα
+

ν∑

α

ṅα

[
∂S̃

∂∇inα
− ∂

∂xl

(
∂S̃

∂∇linα

)]

+
ν∑

α

∂ṅα

∂xl

∂S̃

∂∇linα
−

ν∑

α

∂vl

∂xk

∂nα

∂xl

∂S̃

∂∇kinα

}

+ qi ∂1/T

∂xi
+

ν∑

α

ji
α

∂

∂xi

(
δS̃

δnα

)

+
∂vi

∂xj

{
σij

el

T
+ J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl
−

ν∑

α

∂nα

∂xi

[
∂S̃

∂∇jnα
− ∂

∂xl

(
∂S̃

∂∇jlnα

)]

−
ν∑

α

∂2nα

∂xi∂xl

∂S̃

∂∇jlnα
− δij

[
ρǫ

T
− S̃ +

ν∑

α

nα
δS̃

δnα
+

2

3
J−2/3Ckl ∂S̃

∂ckl

] }
≥ 0 . (116)Indeed, the alulations leading to Eqs. (109-113) are lengthy but easily reproduible. In partiular thedivergene term of Eq. (113) was arranged in this form beause of the last two summands of the divergeneterm in Eq. (110) and keeping the partial partile balane of Eq. (115) in mind. In the same manner onean ombine the last term of Eq. (111) and the seond part of the divergene term in Eq. (109).5.2 Entropy, Heat and Di�usion Flux and Mehanial Constitutive EquationsEq. (116) an now be exploited in the same manner as in Setion 4.1. First, we de�ne the entropy �uxsuh that the divergene term of the �rst two rows vanishes:

♦ Entropy �ux :
φi =

qi

T
+

ν∑

α

ji
α

δS̃

δnα
−

ν∑

α

ṅα

[
∂S̃

∂∇inα
− ∂

∂xl

(
∂S̃

∂∇linα

)]
−

ν∑

α

∂ṅα

∂xl

∂S̃

∂∇linα
+

ν∑

α

∂vl

∂xk

∂nα

∂xl

∂S̃

∂∇kinα
. (117)



A higher gradient theory of mixtures for multi-omponent materials 25Consequently the remaining equation takes the form P · x + Q ≥ 0, ∀(x = ∇jvi); and it follows P = 0 and
Q ≥ 0. In partiular it holds that:

qi ∂1/T

∂xi
+

ν∑

α

ji
α

∂

∂xi

(
δS̃

δnα

)
≥ 0 , (118)

− σij
el

T
= J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl
−

ν∑

α

∂nα

∂xi

[
∂S̃

∂∇jnα
− ∂

∂xl

(
∂S̃

∂∇jlnα

)]
−

ν∑

α

∂2nα

∂xi∂xl

∂S̃

∂∇jlnα

− δij

[
ρǫ

T
− S̃ +

ν∑

α

nα
δS̃

δnα
+

2

3
J−2/3Ckl ∂S̃

∂ckl

]
. (119)Eq. (118) and (119) represent important results whih allow to derive the onstitutive equations for theheat �ux, the di�usion �ux and for the stresses in multi-omponent, multi-phase solid mixtures. The partialderivatives of S̃ must be substituted using the di�erent funtional representations of the Helmholtz freeenergy (α = 1, . . . , ν and β = 1, . . . , ν − 1):

ρϕ = F̃(ρǫ, nα,∇inα,∇ijnα, cij) = F̂(T, nα,∇inα,∇ijnα, cij)

= F̄(T, yβ ,∇iyβ ,∇ijyβ ,∇iρ,∇ijρ, ρ, cij) = F́(T, yβ ,∇iyβ ,∇ijyβ ,∇iρ,∇ijρ, Cij) (120)and applying the Legendre transforms of Appendix E - G.As an example we onsider the heat and the di�usion �ux in Eq. (118). To this end we de�ne the hemialpotential µα in multi-phase mixtures aording to Eq. (50) and (54) as:
µα

T

(def)
=

δF̂/T

δnα
or

µ∗
α

T

(def)
=

δ
̂̂
F/T

δρα
=

1

mα

δF̂/T

δnα
(121)with the alternative funtional representation of theHelmholtz free energy ρϕ =

̂̂
F(T, ρα,∇iρα,∇ijρα, cij)and the Euler-Lagrange derivative introdued in Eq. (114).In order to guarantee a non-negative entropy prodution in Eq. (118) we hoose ji

α and qi suhthat quadrati expressions result, f., Setion 4.2. The Legendre transform in Appendix E yields
δS̃/δnα = −δ(F̂/T )/δnα. Therefore we �nd (without thermo-di�usion oupling):
♦ Di�usion �ux :

ji
β =

ν−1∑

δ=1

M ij
βδ

∂ 1
T

(
mδ

mν
µν − µδ

)

∂xj
and J i

β =
ν−1∑

δ=1

Bij
βδ

∂ 1
T (µ∗

ν − µ∗
δ)

∂xj
, (122)

♦ Heat �ux :
qi = κij ∂1/T

∂xj
(Fourier's law) , (123)where the symbols M ij

βδ, Bij
βδ and κij stand for the (positive de�nite) oe�ients of the mobility andondutivity matrix. Moreover, the sums range from 1 to ν−1, and the di�erene of the hemial potentialsours due to the inorporation of the onstraints ji

ν = −∑ν−1
β=1

mβ

mν
ji
β or J i

ν = −∑ν−1
β=1 J i

β , respetively.Note that the higher gradients do not enter the lassial Fourier's law in Eq. (123) whereas the di�usion�ux inorporates higher gradients due to the re-de�nition of the hemial potentials in terms of the Euler-Lagrange derivative aording to Eq. (121).



26 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerThe mehanial onstitutive equations, e.g., for the pressure p or the 2nd Piola-Kirhhoff tensor tijfollow in an analogous manner as illustrated in Setion 4.2, i.e., from the exploitation of Eq. (119) and theLegendre transforms examined in the Appendies E - G .5.3 An Instrutive Example: Isothermal Di�usion in Binary Mixtures5.3.1 Preliminary Remarks on the Chemial Potential. As we shall see below it may be pratial toexpress the hemial potential µα or µ∗
α in terms of δF̄/δyβ or δF/δcβ , respetively. To this end we onsiderthe Legendre transform in Appendix F and write for the ase of isothermal di�usion (i.e., T = const):

µα
(121)1

=
δF̂

δnα

(App. F)
= mα

δF̄

δρ
+

ν−1∑

λ=1

δF̄

δyλ

(
δαλ

n
− nλ

n2

)
. (124)Thus one obtains for the di�erene term in Eq. (122)1:

mδ

mν
µν − µδ =

mδ

mν

ν−1∑

λ=1

δF̄

δyλ

(
δνλ

n
− nλ

n2

)
−

ν−1∑

λ=1

δF̄

δyλ

(
δδλ

n
− nλ

n2

)
. (125)Note that the alulation of Eq. (124)2 diretly follows by applying the relations of Eqs. (H13-H15) to thethree summands of the Euler-Lagrange derivative de�ned in Eq. (114).For the onsideration of the alternative de�nition of the hemial potential µ∗

α in Eq. (121)2 one needsthe Legendre transform between the following funtional representations of ρϕ:
ρϕ =

̂̂
F(T, ρα,∇iρα,∇ijρα, cij) = F(T, cβ,∇icβ,∇ijcβ ,∇iρ,∇ijρ, ρ, cij) , (126)where α = 1, . . . , ν and β = 1, . . . , ν − 1. By means of the relations derived in Appendix H the followingrelations hold:

µ∗
α

(121)2
=

δ
̂̂
F

δρα

(App. H)
=

δF

δρ
+

ν−1∑

λ=1

δF̄

δcλ

(
δαλ

ρ
− ρλ

ρ2

)
, (127)and for the di�erene term in Eq. (122)2:

µ∗
ν − µ∗

δ =
ν−1∑

λ=1

δF

δcλ

(
δνλ

ρ
− ρλ

ρ2

)
−

ν−1∑

λ=1

δF

δcλ

(
δδλ

ρ
− ρλ

ρ2

)
= −

ν−1∑

λ=1

δF

δcλ

δδλ

ρ
= −1

ρ

δF

δcδ
. (128)Note that the variational derivatives δF̄/δρ and δF/δρ vanish in the di�erene of the hemial potentialsin Eqs. (125, 128).5.3.2 Partile Di�usion Flux. In what follows we speify to a binary mixture A-B haraterized bythe following relations:

n = nA + nB , yB = 1 − yA . (129)For the ase of isothermal di�usion as de�ned before, Eq. (122)1 redues to:
ji
A =

M ij
AA

T

∂
(

mA

mB
µB − µA

)

∂xj
and ji

B = −mA

mB
ji
A . (130)



A higher gradient theory of mixtures for multi-omponent materials 27The di�erene of the hemial potentials reads aording to Eq. (125):
mA

mB
µB − µA =

mA

mB

δF̂

δnB
− δF̂

δnA

(125)
=

mA

mB

δF̄

δyA

(
δBA

n︸︷︷︸
=0

−nA

n2

)
− δF̄

δyA

(
δAA

n
− nA

n2

)

= − 1

n

δF̄

δyA

(
mA

mB
yA + yB

)
. (131)Thus a ombination of Eq. (131) and (130)1 yields for the partile di�usion �ux of omponent A:

ji
A = −M ij

AA

T
∇j

[
1

n

δF̄

δyA

(
mA

mB
yA + yB

)]
(App. G)

= −M ij
AA

T
∇j

[
1

n

δF́

δyA

(
mA

mB
yA + yB

)]
, (132)in whih the di�usion �ux of omponent B is determined by the relation of Eq. (130)2.5.3.3 Mass Di�usion Flux. Analogously to Eq. (129) and (130) we write for the total mass density,the mass onentrations and the mass di�usion �ux of omponent A:

ρ = ρA + ρB , cA = 1 − cB (133)and with Eq. (122)2
J i

A =
Bij

AA

T

∂ (µ∗
B − µ∗

A)

∂xj
with J i

B = −J i
A . (134)By using the relation of Eq. (128) the di�erene of the hemial potentials redues to:

µ∗
B − µ∗

A =
δ
̂̂
F

δρB
− δ

̂̂
F

δρA

(128)
=

δF

δcA

(
δBA

ρ︸︷︷︸
=0

−ρA

ρ2

)
− δF

δcA

(
δAA

ρ
− ρA

ρ2

)
= −1

ρ

δF

δcA
. (135)Hene we �nally obtain from Eq. (134) and (135) and the Legendre transforms in Appendix G and H:

J i
A = −Bij

AA

T
∇j

(
1

ρ

δ
⋄
F

δcA

)
and J i

B = −Bij
AA

T
∇j

(
1

ρ

δ
⋄
F

δcB

)
, (136)in whih we used the funtional representation: ρϕ =

⋄
F (T, cβ ,∇icβ ,∇ijcβ,∇iρ,∇ijρ, Cij).Eq. (136) implies that, in ontrast to the `multiphase-�eld approah' of Eiken et al. (2006), the relation

ρ(µ∗
B − µ∗

A) = δ
⋄
F /δcB = −δ

⋄
F /δcA holds exlusively, if the mass onentration cβ is used, otherwise therelations in Eq. (132) must be onsidered.5.3.4 Expansion of the Free Energy Density. In order to investigate Eq. (136) in more detail thequestion arise, how ⋄

F depends on the higher gradients, e.g., ∇icB, ∇ijcB, ∇iρ, and ∇ijρ. To this end wefollow the strategy of Cahn & Hilliard (1958) and expand the Helmholtz free energy into a Taylor series



28 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Mülleraround the homogeneous (i.e., no gradients) state1:
F = F0(T, cB, Cij) +

∂F0

∂∇kcB︸ ︷︷ ︸
(def)
= lk

·∇kcB +
∂F0

∂∇klcB︸ ︷︷ ︸
(def)
= −akl

·∇klcB +
1

2

∂2
F0

∂∇kcB∂∇lcB︸ ︷︷ ︸
(def)
= 2 bkl

·∇kcB · ∇lcB + . . . , (137)where the introdued so-alled Higher Gradient Coe�ients (HGCs) depend on the temperature T , the(homogeneous) omposition cB, and the strain tensor Cij , i.e., lk = lk(T, cB, Cij), akl = akl(T, cB, Cij),and bkl = bkl(T, cB, Cij). Furthermore we neglet in Eq. (137) the higher gradients ∇iρ and ∇ijρ, sinethey do not enter the di�usion �ux in Eq. (136).The HGCs in Eq. (137) haraterize the (smoothly) hanging omposition within the phase boundariesand are diretly linked to the surfae tensions between the di�erent phases, f., Dreyer & Wagner (2005).Moreover, they an be exatly determined by means of mirosopi theories taking interatomi potentialsinto aount, e.g., Lennard-Jones potentials (f., Dreyer & Müller (2003)) or Embedded-Atom-Methodpotentials (f., Böhme et al. (2007)). For instane it follows in the ase of ubi latties (due to the periodiarrangement of the rystal) that lk = 0 and in ase of no lattie deformations that akl = a · δkl and
bkl = b · δkl.The Helmholtz free energy of the homogeneous state (e.g., of the melt), F0, onsists of a pure hemialpart and a pure mehanial part : F0 = F

chem
0 + F

mech
0 , f., Setion 4.2.4. The hemial part an be foundfrom phase equilibrium data, typially provided by thermodynamial databases, e.g., MTdata (1998). Themehanial part follows from the integration of the stress-strain relation as explained for the ase of theSt. Venant Kirhhoff law in Setion 4.2.4.5.3.5 Extended Di�usion Equation. For the investigation of the temporal and spatial evolution of themass onentration �eld cB = c(xi, t) within a non-reating elasti solid mixture we rewrite Eq. (14) bymeans of the relation ρα = cαρ as follows:

ρ
dc

dt
+

∂J i

∂xi
= 0 (partial mass balane) , (138)where we put J i

B = J i and used the total temporal derivative dtc = ∂tc + vi(∇ic). In order to alulate theEuler-Lagrange derivative δF/δc in Eq. (136) we obtain by means of Eq. (137) and lk = 0:
∂F

∂c
=

∂F0

∂c
− ∂akl

∂c

∂2c

∂xk∂xl
+

∂bkl

∂c

∂c

∂xk

∂c

∂xl
,

∂F

∂(∂c/∂xm)
= 2bml ∂c

∂xl
,

∂F

∂(∂2c/∂xm∂xn)
= −akl .(139)Thus it follows by virtue of the hain rule:

∂

∂xm

(
∂F

∂(∂c/∂xm)

)
= 2

∂bml

∂c

∂c

∂xm

∂c

∂xl
+ 2

∂bml

∂Crs

∂Crs

∂xm

∂c

∂xl
+ 2bml ∂2c

∂xm∂xl
, (140)

∂2

∂xm∂xn

(
∂F

∂(∂2c/∂xm∂xn)

)
= −∂2amn

∂c2

∂c

∂xm

∂c

∂xn
− ∂amn

∂c

∂2c

∂xm∂xn
− 2

∂2amn

∂c∂Crs

∂Crs

∂xm

∂c

∂xn

− ∂2amn

∂CopCrs

∂Cop

∂xm

∂Crs

∂xn
− ∂amn

∂Crs

∂2Crs

∂xm∂xn
. (141)

1In the following we write by onveniene F =
⋄

F.



A higher gradient theory of mixtures for multi-omponent materials 29The relation (139)1-(140)+(141) de�nes the variational derivative δF/δc. Consequently one obtains for thedi�usion �ux in Eq. (136)2 by using the abbreviation Aij = ∂aij

∂c + bij :
J i = −Bij

AA

T
∇j

[
1

ρ

(
∂F0

∂c
− 2Akl ∂2c

∂xk∂xl
− ∂Akl

∂c

∂c

∂xk

∂c

∂xl

− 2
∂Akl

∂Cmn

∂c

∂xk

∂Cmn

∂xl
− ∂2akl

∂CopCmn

∂Cop

∂xk

∂Cmn

∂xl
− ∂akl

∂Cmn

∂2Cmn

∂xk∂xl

)]
. (142)Eq. (138) and Eq. (142) represent the Extended Di�usion Equation (EDE). It is a non-linear PartialDi�erential Equation (PDE) of fourth order for the onentration �eld c(xi, t) and an be interpreted asthe generalization of the Cahn-Hilliard equation.5.3.6 Numerial Example: Spinodal Deomposition and Ostwald Ripening in Euteti Ag-Cu.Assumptions and Restritions. In order to redue the omputational e�ort we restrit in what follows tolinear elasti solids subjeted to small deformations and use for the funtional representations the linearizedstrains εij instead of the right Cauhy-Green strain tensor Cij , i.e., F0 = F0(T, c, εij), akl = akl(T, c, εij),

bkl = bkl(T, c, εij), and Akl = Akl(T, c, εij). Moreover, orresponding to small deformations we approximatethe �rst and seond Piola-Kirhhoff tensor, pij and tij , by the Cauhy stress tensor, σij , whih impliesthat the di�erenes between the referene on�guration and the urrent on�guration are ignored. By usinga Lagrangeian desription, f., Setion 3.1, the primary variables are the onentration �eld c(Xj , t) andthe displaements U i(Xj , t), whih are determined by:
ρ0

dc

dt
+

∂J i

∂Xi
= 0 (partial mass balane) ,

∂pij

∂Xj
= 0 (stati momentum balane) (143)and for whih the following onstitutive equations hold:

J i = −ρ0Mij(T )∇j

[
∂(Fchem

0 + F
mech
0 )

∂c
− 2Akl ∂2c

∂Xk∂X l
− ∂Akl

∂c

∂c

∂Xk

∂c

∂X l

− 2
∂Akl

∂εmn

∂c

∂Xk

∂εmn

∂X l
− ∂2akl

∂εopεmn

∂εop

∂Xk

∂εmn

∂X l
− ∂akl

∂εmn

∂2εmn

∂Xk∂X l

]
, (144)

pij ≈ σij ≈ ∂F

∂εij
= σij

local −
∂akl

∂εij

∂2c

∂Xk∂X l
+

∂bkl

∂εij

∂c

∂Xk

∂c

∂X l
, (145)with σij

local

(Hooke)
= Kijkl(T, c)

(
εkl − αkl∆T

), F
mech
0 = 1

2σij
(
εij − αij∆T

) and εij = 1
2(∂U i/∂Xj +

∂U j/∂Xi. Moreover, the alternatively introdued mobility Mij is given by the rede�nition ρ2
0Mij(T ) =

Bij
AA/T with [Mij ] = [m5/Js]. In order to solve the PDE system (143�145) for the unknown variables cand U i numerially we restrit the simulations to three ases:a) 1D-simulations without loal thermo-mehanial strains, i.e., εkl

elast = εkl − αkl∆T = 0, ∀ {k, l}.b) 1D-simulations under the presene of one-dimensional loal thermo-mehanial strains1 (�line strains�),i.e., ε11
elast = εelast 6= 0 ∧ εkl

elast = 0, ∀{k, l} = {k, l | k · l > 0}.) 2D-simulations without loal thermo-mehanial strains.The restrition to line strains aording to Case b) requires overestimated stresses in order to avoid defor-mations in the seond and third dimension. However, this 1D-ase enables us to �nd a losed expressionfor the strains εelast = εelast(X, t) with X ≡ X1. To this end we assume linearity for the sti�ness Kijkl and
1This strain state denotes the one-dimensional equivalent to the two-dimensional ase of plane strains.



30 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müllerfor the thermal expansion oe�ient αkl within the smoothly hanging phase boundary between the twoequilibrium phase α and β, viz.:
Ξ(c) = (1 − Θ(c)) Ξα + Θ(c)Ξβ , Ξα/β = {Kijkl

α/β , αkl
α/β} , Θ(c) =

cβ − c(X, t)

cβ − cα
. (146)For ubi lattie strutures (as given for Ag, Cu and Ag-Cu) all elements of the sti�ness matrix vanishexept for K11 = K22 = K33, K12 = K13 = K23, and K44 = K55 = K66 (Voigt notation), f., Table 4.By assuming in Eq. (145) σij

local to be the leading term one obtains from Hooke's law:
σ11 =

[
K11

β − Θ(c)(K11
β − K11

α )
]
(ε11 − α11∆T ) , (147)

σ22 =
[
K12

β − Θ(c)(K12
β − K12

α )
]
(ε11 − α11∆T ) , (148)

σ33 =
[
K13

β − Θ(c)(K13
β − K13

α )
]
(ε11 − α11∆T ) and σ12 = σ13 = σ23 = 0 . (149)>From the stati balane of momentum, i.e., ∂σij/∂Xj = 0, and with the dependenies σ11 = σ11(X),

σ22 = σ22(X), and σ33 = σ33(X) one obtains for the only non-trivial solution:
dσ11

dX
= 0 ⇒ σ11 = σ0 = const. (150)and onsequently for the elasti strains, f., Eq. (147) and for the mehanial part of the Helmholtz freeenergy:

ε11elast =
σ0

K11
β − cβ−c(X,t)

cβ−cα
(K11

β − K11
α )

, F
mech
0 =

1

2

σ2
0

K11
β − cβ−c(X,t)

cβ−cα
(K11

β − K11
α )

. (151)Eqs. (151)1,2 an be diretly used to substitute the F
mech
0 - and the εij-terms in Eq. (144). In order tosolve the resulting EDE one needs reliable material data, in partiular for (i) the hemial part of theHelmholtz free energy F

chem
0 , (ii) the sti�ness matrix K11

α/β and the thermal expansion oe�ients α11,(iii) the mobility Mij , and (iv) the HGCs akl, bkl, and Akl. For this reason we onsider the euteti binaryalloy Ag-Cu at 1000 Kelvin and put A ≡ Ag, B ≡ Cu, and c ≡ cCu.Materials Data I. Chemial Part of the Free Energy1. In order to determine F
chem
0 we use theommerial MTdataTM database, MTdata (1998), whih provides a �eld of disrete values F

chem
0 (ci),

ci = {0, 0.01, 0.02, . . . , 0.99, 1} from phase equilibrium measurements. In order to obtain a losed fun-tional form of these data required for omputation and for the enoding we simply perform a polynomial�t aording to the Margules-ansatz
F

chem
0 (c) = (1 − c)ga + cgb + gcRT [c ln c + (1 − c) ln(1 − c)] + c(1 − c) [χIc + χII(1 − c)] , (152)where R = 8.314 [J/(mol K)℄ stands for the universal gas onstant. The �t parameters ga, gb, gc, χI , and

χII have no physial meaning and are ompiled in Table 3 together with the resulting equilibrium on-entrations, cα/β , following from the ommon tangent rule and the spinodal onentrations, csp
1/2, resultingfrom the roots of ∂2

F
chem
0 /∂c2. The orresponding urves are displayed in Figure 2.Materials Data II. Mobility, Sti�ness, and Thermal Expansion Coe�ient. By omparing the �rstand seond Fik's law, i.e., dtc = −∂J i/∂Xi with J i = −Dij(∂c/∂Xj) with the EDE for the limit ase

1Note that the most databases, e.g., MTdata (1998), make no di�erene between the Helmholtz and the Gibbs free energy.



A higher gradient theory of mixtures for multi-omponent materials 31Table 3.: Fit parameters aording to the Margules-ansatz and harateristi onentrations.
ga

[
GJ
m3

]
gb

[
GJ
m3

]
gc

[
mole
m3

]
χI

[
GJ
m3

]
χII

[
GJ
m3

]
ceut cα cβ csp

1 csp
2-7.27 -5.20 1.11 · 105 2.97 3.01 0.29 0.063 0.945 0.19 0.79

PSfrag replaementsin GJ/m F
ch

em
0

in GJ/m3

c

PSfrag replaements
∂

2
F

ch
em

0
/∂

c2

in GJ/m3in GJ/m
cFigure 2.: Free energy density and its seond derivative as funtions of the mass onentration for atemperature of T = 1000 K.of lassial Fikian di�usion (no mehanial and HGC terms) one obtains the following relations betweenthe di�usion oe�ients Dij and the mobility Mij :

Dij = Mij ∂2
F

chem
0

∂c2
⇒ Mij

α/β =
Dij

α/β

∂2Fchem
0

∂c2

∣∣∣∣∣
c=cα/β

. (153)The di�usion oe�ients for the pure substanes Dij
Ag/Cu = DAg/Cuδ

ij an be easily found in the literature,e.g., Brandes & Brook (1992), where they are measured by means of traer experiments w.r.t Cu in Agand vie versa. Obviously the sign of the mobility depends on the urvature of F
chem
0 , whih is positiveoutside of the spinodal area (enlosed by the spinodal onentrations) and negative for csp

1 < c < csp
2 . Inpartiular a negative mobility gives rise for �uphill� di�usion (e.g., spinodal deomposition), during whihonentrations gradients are ampli�ed.As indiated by the equilibrium onentrations, cα/β , f., Table 3, the equilibrium α- and β-phases areextremely Ag- or Cu-ontaining. Therefore it is reasonable to approximate for the equilibrium phases:

Ξα ≈ ΞAg and Ξβ ≈ ΞCu with Ξ = {K11, α11,Mij}. (154)In order to determine the orresponding values within the phase boundaries we assume a linear dependeneaording to Eq. (146). Table 4 and 5 �nally shows the aording quantities used during the simulations.Materials Data III. HGCs. The oarsening rate is ruially in�uened by the HGCs and, onsequently,their exat knowledge is an essential requirement for a quantitative investigation. In partiular values whihare too high lead to overly high oarsening rates and vie versa. Unfortunately the HGCs are extremelypoorly doumented, and, even if found, they are frequently ad ho estimates the soure of whih is notlear. Furthermore we ould only �nd onstant HGCs so that Eq. (144) would redue to the �rst two termswithin the brakets.Due to these shortomings a theoretial framework based on atomi interations (namely Embedded-Atom-Method (EAM) potentials) was developed whih allows the alulation of the HGCs as funtions of



32 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerTable 4.: Sti�ness matrix of pure silver and opper in GPa and Voigt notation, Soure: Kittel (1962).
Kkl

ij

∣∣∣Ag 11 22 33 23 31 12 Kkl
ij

∣∣∣Cu 11 22 33 23 31 1211 168 121 121 0 0 0 11 124 94 94 0 0 022 121 168 121 0 0 0 22 94 124 94 0 0 033 121 121 168 0 0 0 33 94 94 124 0 0 023 0 0 0 75 0 0 23 0 0 0 46 0 031 0 0 0 0 75 0 31 0 0 0 0 46 012 0 0 0 0 0 75 12 0 0 0 0 0 46Table 5.: Di�usion, mobility, and thermal expansion oe�ients for the pure substanes Ag and Cu Soure:Brandes & Brook (1992), MTdata (1998), Winter (2007).
Dα [m2/s℄ Dβ [m2/s℄ Mα [m5/Js℄ Mβ [m5/Js℄ α11

α [10−6/K℄ α11
β [10−6/K℄

1.01 × 10−14 4.09 × 10−15 7.25 × 10−25 3.65 × 10−25 18.9 16.5

c and εij , Böhme et al. (2007). In partiular it is shown that the HCGs take the form:
akl(c, εij) = −k(c)

∂y

∂c
· Hkl(c, εij) , bkl(c, εij) = k(c)

∂2y

∂c2
· Hkl(c, εij) , Akl (def)

=
∂akl

∂c
+ bkl , (155)

Hkl(c, εij) = Φkl
0 (c) + εmnΦmnkl

1 (c) + εmnεpqΦmnpqkl
2 (c) , (156)where the funtions Φkl

0 , Φmnkl
1 , and Φmnpqkl

2 represent ombinations of the di�erent ontributions to theinteratomi potentials and depend expliitly and impliitly (via the equilibrium lattie parameter R = R(c))on c. Obviously, Hkl ontains a linear term w.r.t. εij , and, onsequently, the HGCs are not symmetri withrespet to positive or negative strains. Therefore we an distinguish between the e�ets of ompressive andtensile loadings during the di�usion simulations. Figure 3 (�rst row) shows the HGCs a11, b11, and A11alulated from the EAM approah for the `line strain' ase εij = ε · δijδ1iδ1j .The funtions used for the alulations of the urves in Figure 3 are very lengthy and extremely time-onsuming. In order to optimize the omputation time we perform a bilinear interpolation of the form:
Ξ(c, ε) = kΞ

ε · ε + kΞ
c · c + kΞ

cε · ε · c + kΞ
0 with Ξ =

{
a11, b11, A11

}
. (157)in whih the �tting proedure must be performed separately for positive and negative strains. To thisend we use the atomistially alulated HGCs of Figure 3 (�rst row) at the ad ho hosen points (c, ε) =

{(cα, 0), (cβ , 0), (cα,±0.2), (cβ,±0.2)}. Figure 3 (seond row) displays the aording interpolated funtions.The �t parameters introdued in Eq. (157) are ompiled in Table 6.Brief Remarks on the Numerial Realization. For the numerial treatment we, �rst, transformed theEDE to a dimensionless form by replaing Xi, F0, and t by the dimensionless quantities X̃i, F̃0, and t̃ usingthe relations, f., Li & Müller (2001):
X̃i =

Xi

L
, F̃0 =

F0

Ψ0
, t̃ =

Ψ0Mβ

L2(cβ − cα)
=

t

t0
, (158)in whih the fators L, Ψ0, and t0 must be �appropriately� hosen. Table 7 shows the orresponding valuesthat were used during the simulations.The resulting dimensionless EDE is implemented in a FORTRAN 90 program. Moreover, the spatial
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X
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X
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a in N11

e=0.2

e
e=-0.2

x

x

x

c

b in N11

e

e=0.2

e=-0.2

X

X

X

C

A in N11

e=0.2

e
e=-0.2

in N

e

in N

e

in N

eFigure 3.: 1st Row: Various HGCs alulated by means of the embedded-atom-method, f., Böhme et al.(2007). 2nd Row: Interpolated HGCs.Table 6.: Interpolated oe�ients for the HGCs as bilinear funtions of c and ε.
Ξ kΞ

ε in N kΞ
c in N kΞ

cε in N kΞ
0 in N

ε > 0 (tensile loading)
a11 −3.79 · 10−10 8.74 · 10−11 −6.40 · 10−11 4.04 · 10−11

b11 −5.22 · 10−10 4.72 · 10−11 1.64 · 10−10 5.84 · 10−11

A11 −5.74 · 10−10 3.74 · 10−11 1.50 · 10−10 1.53 · 10−10

ε < 0 (pressure loading)
a11 −1.11 · 10−9 8.74 · 10−11 1.91 · 10−10 4.04 · 10−11

b11 −1.52 · 10−9 4.72 · 10−11 7.77 · 10−10 5.84 · 10−11

A11 −1.10 · 10−9 3.74 · 10−11 3.80 · 10−10 1.53 · 10−10derivatives are disretized by �nite di�erenes (with N grid points in 1D and N ×N grid points in 2D, f.,Table 7) and replaed by an algebrai expression in Fourier spae, f., Dreyer & Müller (2000). For therequired disrete Fourier transforms we use the free available FFTPACK5 pakage, f., Hairer & Wanner(2002). The time integration is performed by means of an expliit Euler method with the onstant timestep ∆t̃ and, partially, by an impliit and time adaptive Runge-Kutta proedure using the free availableRADAU pakage, f., Shwarztrauber & Valent (2004).1D-Simulations. Figures 4-6 display the spinodal deomposition and oarsening proess along a �line�in Ag-Cu at 1000 Kelvin. We started with an euteti homogeneous onentration pro�le (ceut = 0.29)disturbed by a slight �utuation in order to enfore the unstable state to deompose. The outermostdashed lines represent the orresponding equilibrium onentrations of the α- and β-phase, whereas theinnermost ones identify the spinodal onentrations, f., Table 3. Obviously, the system immediately beginsto deompose for small simulation times. When the whole mixture reahes the equilibrium onentrationsoarsening proeeds suh that the bigger phases grow at the expense of the smaller ones.



34 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerTable 7.: Numerial parameters used during the simulations.
Simulations Ψ0 in GJ/m3 2πL in µm t0 in se N (N × N) ∆t̃1D (strain-free) 0.1 0.06 2.105 256 0.04 · 10−61D (5000 MPa) 0.1 0.06 2.105 256 0.04 · 10−61D (-5000 MPa) 0.1 0.06 2.105 256 0.02 · 10−62D (Euler, 1 �u.) 0.1 0.05 1.462 128 × 128 0.1 · 10−52D (Euler, 16 �u.) 0.1 0.05 1.462 128 × 128 0.1 · 10−52D (RADAU) 0.1 0.05 1.462 128 × 128 �
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Figure 4.: One-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000 K(strain-free ase).At this point it is worth mentioning that the total simulation times are in the range of some minutes,whih is notedly shorter w.r.t. the experimental observations of these phenomena, f., Müller & Böhme(2006). The reason for that are the extremely small HGCs used during the simulations. In fat, typialvalues found in literature are muh larger, f., Ubahs et al. (2004)1, whih is more onvenient from thenumerial point-of-view and results in greater time steps ∆t̃. However, in some rare ases there are alsosimilarly small HGC values reported in the literature, f., Küpper & Masbaum (1994),2 in whih thesimulation times are also extremely short.Furthermore smaller HGCs result in a sharper phase boundary width and, onsequently, the disretization
N must be hosen su�iently large, whereas the simulated volume element 2πL must be hosen small in
1Here the authors used a onstant value of γCH = κλ2 = 1 · 10−5 N (in their notation).
2Within this work the authors onsidered an Al-In system and hose a onstant HGC of γ = 2 · 10−10 N (in their notation).



A higher gradient theory of mixtures for multi-omponent materials 35
0 50 100 150 200 250

horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 00000000 , t= 000000.000 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 00005000 , t= 000000.004 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 00011000 , t= 000000.009 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 00043000 , t= 000000.036 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 01800000 , t= 000001.516 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 03000000 , t= 000002.527 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 020000000 , t= 000016.844 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c
Loops: 070000000 , t= 000058.953 sec

0 50 100 150 200 250
horizontal position N

0

0.2

0.4

0.6

0.8

1

c
o
n
c
e
n
t
r
a
t
i
o
n

c

Loops: 0270000000 , t= 000227.390 sec

Figure 5.: One-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000 K(tensile loading of σ0 = 5000 MPa).order to model the interfae boundary realistially,3 f., Table 7. In partiular, the disretization of N = 256yields approximately 9 grid points within the phase boundary as illustrated in Figure 7 (seond row, left).From this fat we alulate:
256 grid points = 0.06 µm ⇔ 9 grid points = 2.1 nm = 21

◦A , (159)whih orresponds to approximately 7 atomi distanes (rAg = 2.88
◦A) and re�ets a realistially sharpinterfae boundary.The impat of the HGCs on the interfae width is illustrated in Figure 7 (seond row), in whih we variedthe magnitude of A11 under the onstraint of ∂A11/∂c = const. The orresponding oarsening behavioris displayed in Figure 7 (�rst row), in whih the larger interfaes widths result in faster oarsening rates.From the phenomenologial point-of-view this fat is lear sine sharper interfaes inrease the separationof the di�erent phases and, thus, derease their interation and, in turn, their oarsening behavior.Finally the appliation of very large loading regimes during the simulations illustrated in the Figure 5and 6 is notieable. This was done in order to investigate the e�et of thermo-mehanial stresses withinmanageable omputational times. Indeed, tensile and ompressive stresses inrease the oarsening rate. Inpartiular, it seems that pressure loading has a stronger in�uene on oarsening than tensile loading.2D-Simulations. For the two-dimensional simulations we start with a euteti homogeneous onentrationpro�le disturbed by one, two and 18 �utuations as indiated in Figure 8. We use a spatial disretization of

N ×N = 128× 128 so that approximately 4�5 grid points are within the phase boundary. Figure 9 and 10displays the obtained mirographs and the deomposition and oarsening proess, in whih the white areasbelong to the Cu-rih β-phase. In partiular, we performed � as already in the one-dimensional simulations� an expliit Euler method for the time integration.
3See also Brandmair (2007) for a detailed study of the di�erent numerial parameters.
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Figure 6.: One-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000 K(pressure loading of σ0 = −5000 MPa).
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Figure 7.: The impat of the magnitude of the HGCs on the phase boundary width and on the oarseningrate. 1st Row: Coarsening stages after 20000 loops (strain-free ase) using a HGC of A11 = A11
EAM, A11 =

2 · A11
EAM, and A11 = 4 · A11

EAM. 2nd Row: Aording zoomed interfae areas.Note that the 2D-simulations are extremely time-onsuming and, onsequently, we searhed for opti-mization possibilities. To this end we realized the time integration by means of a time-adaptive ImpliitRunge-Kutta (IRK) method provided by the RADAU routine, f., Hairer & Wanner (2002). The orre-sponding simulations are illustrated in Figure 11. Unfortunately the omplex IRK proedure inrease theomputational time onsiderably, whih annot be ompensated by the larger time steps ∆t̃. Therefore theinvestigated oarsening stages are muh smaller than the orresponding ones in Figure 9 and 10. In partiu-
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Figure 9.: Two-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000 Kwithout thermo-mehanial loading by using the expliit Euler method (one initial �utuation).Fromupper left to lower right : after t̃ = 0.005; 0.01; 0.015; 0.035; 0.1; 1; 2.1; 4.9.
6 Conlusion and OutlookIn this work a thermodynamially onsistent theory was presented, whih allows modeling of di�usionproesses in multiomponent (solid) materials and the aompanying phenomena of phase transition andphase evolution, in partiular under the presene of loal thermo-mehanial strain �elds.We started with a brief historial overview about the development of di�usion theories and disussexisting shortomings and open questions within the models and approahes. In partiular we pointed outthat the existing entropy priniples - suh as Liu's method of Lagrange multipliers - yield non-unique orquestionable relations for the entropy �ux φi. Due to these arguments we presented �ve statements for anentropy priniple, whih form the undisputed elements of the existing priniples.
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Figure 10.: Two-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000 Kwithout thermo-mehanial loading by using the expliit Euler method (16 initial �utuation). Fromupper left to lower right : after t̃ = 0.004; 0.006; 0.015; 0.04; 0.06; 0.1; 1.5; 4.3.
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Figure 11.: Two-dimensional simulation of spinodal deomposition and oarsening in Ag-Cu at 1000K without thermo-mehanial loading by using the time adaptive impliit Runge-Kutta methodprovided by the RADAU routine (two initial �utuation). From upper left to lower right : after t̃ =
0.0038; 0.0077; 0.0088; 0.0131; 0.0163; 0.0217; 0.0307; 0.0486.In order to stress the feasibility of the priniple we, �rst, investigated a single phase, whih orrespondsto the ase of lassial mixtures, and derived the onstitutive equations for the entropy, heat, and di�usion�ux as well as for the pressure and the seond Piola-Kirhhoff stress tensor. Moreover, we also derived aGibbs-Duhem and various Gibbs relations and demonstrated the onsisteny with the results of lassialthermodynamis of �uid mixtures. Furthermore the additive deomposition of the Helmholtz free energy
ϕ = ϕmech + ϕchem and of the hemial potential µ = µmech + µchem was introdued, motivated by the
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system completely decomposed
~

Coarsening

Spinodal decomp.

t = approx. 0.007

Figure 12.: The time step adaption of the RADAU routine during the simulation illustrated in Figure 11.observation that the mass density ρ within a di�usive solid mixture an hange by two independent e�ets:(a) elasti lattie deformations (mehanial e�et) and (b) redistribution of atoms by di�usion (hemiale�et).Seond, we exploited the entropy priniple for multi-phase mixtures by means of the inorporation of so-alled higher gradients. In partiular, we turned the attention to the di�usion �ux and derived an extendeddi�usion equation, whih represents - in ombination with the partial mass balane - a generalization ofthe well-established Cahn-Hilliard equation. The HGCs depend here on the onentration and the loalthermo-mehanial strains, whih lead to additional ontributions to the di�usion �ux. Finally we spei�edto the binary ase and exemplarily presented numerial studies w.r.t. the brazing solder alloy Ag-Cu.The introdued thermodynamial approah an be used as a general framework in order to obtain theonstitutive relations for di�erent lasses of materials. We spei�ed to non-reating (τρ/n
α = 0) mixturesand to the elasti ase (σij

diss = 0). However, an extension to reating materials under, e.g., plasti defor-mations an be performed by onsidering the prodution term τ
ρ/n
α and the dissipative term σij

diss duringthe exploitation of the 2nd law. In partiular, σij
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Appendix A: Proof of Equation (44)The following relation holds between the derivatives of the redued right Cauhy-Green tensor ckl andthe Cauhy-Green tensor Ckl aording to Setion 2:

ċkl =
d

dt

(
J−2/3Ckl

)
= −2

3
J−5/3J̇Ckl + J−2/3Ċkl . (A1)Moreover we have the identity:
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Ċkl =
d

dt

(
FmkFml

)
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. (A3)The result of Eqs. (A3) and (A2) an be inserted into Eq. (A1). We �nally �nd:
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42 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerAppendix B: Legendre Transform between S̃ and ŜWe start with the funtional representation S̃ of the entropy density ρη and write for the total di�erential:
d(ρη) = dS̃ =
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∂ρǫ = 1/T . Furthermore it holds with ρǫ = Ê(T, n1, . . . , nν , c
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dcij . (B3)The term d(ρǫ) in Eq. (B1) an now be substituted by the left hand side of Eq. (B3). By means of thede�nition of the absolute temperature, Eq. (36), one obtains:
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and we identify with d(ρη) = dŜ :
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∂Ŝ
∂cij

=
∂S̃
∂cij

+
1

T

∂Ê
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. (B5)Sine the variables T and nα are independent within the domain of Ŝ one an, in partiular, �nd from Eq.(B5)2 the relation (β 6= α):
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∂Ŝ
∂nα

)
= − 1

T

∂F̂
∂nα

= − 1

T

∂(ρϕ)

∂nα

∣∣∣∣
T,nβ ,cij

. (B6)
Appendix C: Legendre Transform between F̂ and F̄Reall the funtional representations shown in Eq. (49)2,3. Consequently we an write:
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A higher gradient theory of mixtures for multi-omponent materials 43Obviously the transfer from F̄ to F̂ requires the substitution of dyβ and dρ by dnα. For this reason wealulate:
ρ(n1, . . . , nν) =

ν∑

α=1

mαnα ⇒ dρ =
ν∑

α=1

∂ρ

∂nα
dnα =

ν∑

α=1

mαdnα (C3)
yβ(n1, . . . , nν) =

nβ∑ν
α=1 nα

⇒ dyβ =
ν∑

α=1

∂yβ

∂nα
dnα =

ν∑

α=1

(
δαβ

n
− nβ

n2

)
dnα . (C4)Eqs. (C3) and (C4) an be inserted into Eq. (C2). We obtain:

d(ρϕ) =
∂F̄
∂T

dT +
ν∑

α=1



mα
∂F̄
∂ρ

+
ν−1∑

β=1

∂F̄
∂yβ

(
δαβ

n
− nβ

n2

)

 dnα +
∂F̄
∂cij

dcij . (C5)By omparing the oe�ients between Eqs. (C1) and (C5) results:
∂F̂
∂T

=
∂F̄
∂T

,
∂F̂
∂nα

= mα
∂F̄
∂ρ

+
ν−1∑

β=1

∂F̄
∂yβ

(
δαβ

n
− nβ

n2

)
,

∂F̂
∂cij

=
∂F̄
∂cij

. (C6)Appendix D: Legendre Transform between F̄ and F́Aording to Eq. (49)3,4 we write:
d(ρϕ) = dF̄ =

∂F̄
∂T

dT +
ν−1∑

β=1

∂F̄
∂yβ

dyβ +
∂F̄
∂ρ

dρ +
∂F̄
∂cij

dcij (C2)
= dF́ =

∂F́
∂T

dT +
ν−1∑

β=1

∂F́
∂yβ

dyβ + +
∂F́
∂Cij

dCij . (D1)Hene we have to substitute dρ and dcij by means of dCij . For this reason we �nd:
Cij(cij , ρ) = J2/3cij = cij

(
ρ0

ρ

)2/3

⇒ dCij =
∂Cij

∂ckl
dckl +

∂Cij

∂ρ
dρ , (D2)

with
∂Cij

∂ckl

(Cij=Cji)
=

1

2

∂

∂ckl
(Cij + Cji) =

1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil) (D3)
and

∂Cij

∂ρ
= −2

3

cij

ρ

(
ρ0

ρ

)2/3

. (D4)Insertion of Eqs. (D2)2, (D3) and (D4) into Eq. (D1) results in:
d(ρϕ) =

∂F́
∂T

dT +
ν−1∑

β=1

∂F́
∂yβ

dyβ +
∂F́
∂Cij

[
1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil)dckl − 2

3

cij

ρ

(
ρ0

ρ

)2/3

dρ

]
. (D5)



44 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerComparison of Eqs. (C2) and (D5) yields for the oe�ients:
∂F̄
∂T

=
∂F́
∂T

,
∂F̄
∂yβ

=
∂F́
∂yβ

,
∂F̄
∂ρ

= −2

3

cij

ρ

(
ρ0

ρ

)2/3 ∂F́
∂Cij

,

∂F̄
∂ckl

=
1

2

∂F́
∂Cij

(
ρ0

ρ

)2/3

(δikδjl + δjkδil) . (D6)
Appendix E: Legendre Transform between S̃ and ŜAording to the funtional representations in Eq. (103)1,2 the following total di�erentials are formulated(α = 1, . . . , ν):

d(ρη) = dS̃ =
∂S̃

∂ρǫ
d(ρǫ) +

∂S̃

∂nα
dnα +

∂S̃

∂∇inα
d(∇inα) +

∂S̃

∂∇ijnα
d(∇ijnα) +

∂S̃

∂cij
dcij (E1)

= dŜ =
∂Ŝ

∂T
dT +

∂Ŝ

∂nα
dnα +

∂Ŝ

∂∇inα
d(∇inα) +

∂Ŝ

∂∇ijnα
d(∇ijnα) +

∂Ŝ

∂cij
dcij , (E2)with the de�nition of the absolute temperature ∂S̃

∂ρǫ = 1/T . The total di�erential of the internal energydensity ρǫ = Ê(T, nα,∇inα,∇ijnα, cij) in Eq. (E1) an be replaed by means of:
d(ρǫ) = dÊ =

∂Ê

∂T
dT +

∂Ê

∂nα
dnα +

∂Ê

∂∇inα
d(∇inα) +

∂Ê

∂∇ijnα
d(∇ijnα) +

∂Ê

∂cij
dcij . (E3)Hene it follows from Eq. (E1):

dS̃ =
1

T

∂Ê

∂T
dT +

(
1

T

∂Ê

∂nα
+

∂S̃

∂nα

)
dnα +

(
1

T

∂Ê

∂∇inα
+

∂S̃

∂∇inα

)
d(∇inα)

+

(
1

T

∂Ê

∂∇ijnα
+

∂S̃

∂∇ijnα

)
d(∇ijnα) +

(
1

T

∂Ê

∂cij
+

∂S̃

∂cij

)
dcij . (E4)Sine T and nα are independent arguments within the funtional representations Ê and Ŝ we identify:

∂Ŝ

∂T
=

1

T

∂Ê

∂T
, −T

∂S̃

∂nα
=

∂F̂

∂nα
, −T

∂S̃

∂∇inα
=

∂F̂

∂∇inα

− T
∂S̃

∂∇ijnα
=

∂F̂

∂∇ijnα
, −T

∂S̃

∂cij
=

∂F̂

∂cij
, (E5)where F̂(T, nα,∇inα,∇ijnα, cij) is the funtional representation of the Helmholtz free energy density ρϕ.



A higher gradient theory of mixtures for multi-omponent materials 45Appendix F: Legendre Transform between F̂ and F̄Using the representations in Eq. (120) we �nd the following total di�erentials (α = 1, . . . , ν and β =
1, . . . , ν − 1):

d(ρϕ) = dF̂ =
∂F̂

∂T
dT +

∂F̂

∂nα
dnα +

∂F̂

∂∇inα
d(∇inα) +

∂F̂

∂∇ijnα
d(∇ijnα) +

∂F̂

∂cij
dcij (F1)

= dF̄ =
∂F̄

∂T
dT +

∂F̄

∂yβ
dyβ +

∂F̄

∂∇iyβ
d(∇iyβ) +

∂F̄

∂∇ijyβ
d(∇ijyβ) +

∂F̄

∂ρ
dρ

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂cij
dcij . (F2)Now the terms with brakets must be �suitably� replaed by expressions of dnα, d(∇inα) and d(∇ijnα).For this reason we write as follows:

ρ =
∑

α

mαnα ⇒ dρ =
∑

α

mαdnα , (F3)
∇iρ =

∑

α

mα∇inα ⇒ d(∇iρ) =
∑

α

mαd(∇inα) , (F4)
∇ijρ =

∑

α

mα∇ijnα ⇒ d(∇ijρ) =
∑

α

mαd(∇ijnα) . (F5)Furthermore holds:
yβ =

nβ∑
α nα

⇒ yβ = Ŷβ(nα) , (F6)
∇iyβ = ∇i

(
nβ∑
α nα

)
⇒ ∇iyβ = Ŷ

i
β(nα,∇inα) , (F7)

∇ijyβ = ∇ij

(
nβ∑
α nα

)
⇒ ∇ijyβ = Ŷ

ij
β (nα,∇inα,∇ijnα) (F8)and after a straightforward alulation:

dyβ =
∑

α

∂Ŷβ

∂nα
dnα =

∑

α

(
δαβ

n
− nβ

n2

)
dnα (F9)

d(∇iyβ) =
∑

α

∂Ŷ
i
β

∂nα
dnα +

∑

α

∂Ŷ
i
β

∂∇inα
d(∇inα) =

∑

α

∇i

(
δαβ

n
− nβ

n2

)
dnα +

∑

α

(
δαβ

n
− nβ

n2

)
d(∇inα)(F10)

d(∇ijyβ) =
∑

α

∂Ŷ
ij
β

∂nα
dnα +

∑

α

∂Ŷ
ij
β

∂∇knα
d(∇knα) +

∑

α

∂Ŷ
ij
β

∂∇klnα
d(∇klnα)

=
∑

α

∇ij

(
δαβ

n
− nβ

n2

)
dnα + 2

∑

α

∇j

(
δαβ

n
− nβ

n2

)
d(∇inα) +

∑

α

(
δαβ

n
− nβ

n2

)
d(∇ijnα) .(F11)



46 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerSubstituting the underbraket terms in Eq. (F2) by the results in Eqs. (F3-F5) and (F9-F11) yields:
dF̄ =

∂F̄

∂T
dT +

∂F̄

∂cij
dcij+

+
∑

α

{
mα

∂F̄

∂ρ
+

∑

β

[
∂F̄

∂yβ

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇iyβ
∇i

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇ijyβ
∇ij

(
δαβ

n
− nβ

n2

) ]}
dnα

+
∑

α

{
mα

∂F̄

∂∇iρ
+

∑

β

[
∂F̄

∂∇iyβ

(
δαβ

n
− nβ

n2

)
+ 2

∂F̄

∂∇ijyβ
∇j

(
δαβ

n
− nβ

n2

) ]}
d(∇inα)

+
∑

α

{
mα

∂F̄

∂∇ijρ
+

∑

β

∂F̄

∂∇ijyβ

(
δαβ

n
− nβ

n2

) }
d(∇ijnα) . (F12)and we identify with dF̄ = dF̂:

∂F̂

∂T
=

∂F̄

∂T
,

∂F̂

∂cij
=

∂F̄

∂cij
, (F13)

∂F̂

∂nα
= mα

∂F̄

∂ρ
+

∑

β

[
∂F̄

∂yβ

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇iyβ
∇i

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇ijyβ
∇ij

(
δαβ

n
− nβ

n2

) ]
, (F14)

∂F̂

∂∇inα
= mα

∂F̄

∂∇iρ
+

∑

β

[
∂F̄

∂∇iyβ

(
δαβ

n
− nβ

n2

)
+ 2

∂F̄

∂∇ijyβ
∇j

(
δαβ

n
− nβ

n2

) ]
, (F15)

∂F̂

∂∇ijnα
= mα

∂F̄

∂∇ijρ
+

∑

β

∂F̄

∂∇ijyβ

(
δαβ

n
− nβ

n2

)
. (F16)Appendix G: Legendre Transform between F̄ and F́This alulation is similar to that one of Appendix D. We start with the total di�erentials for F̄ and F́, viz :

d(ρϕ) = dF̄ = dF́ =

=
∂F̄

∂T
dT +

∂F̄

∂yβ
dyβ +

∂F̄

∂∇iyβ
d(∇iyβ) +

∂F̄

∂∇ijyβ
d(∇ijyβ) +

∂F̄

∂ρ
dρ

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂cij
dcij (G1)

=
∂F̄

∂T
dT +

∂F̄

∂yβ
dyβ +

∂F̄

∂∇iyβ
d(∇iyβ) +

∂F̄

∂∇ijyβ
d(∇ijyβ)

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂Cij
dCij . (G2)The term with the braket, i.e., dCij , an be substituted by the relation

dCij =
1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil)dckl − 2

3

cij

ρ

(
ρ0

ρ

)2/3

dρ (G3)



A higher gradient theory of mixtures for multi-omponent materials 47following the alulations shown in Eqs. (D2-D4). The resulting total di�erential for dF̄ an be used toidentify the oe�ients ∂F̄/∂T, . . . , ∂F̄/∂cij . In partiular it follows that:
∂F̄

∂Ξ
=

∂F́

∂Ξ
, Ξ = {T, yβ ,∇iyβ ,∇ijyβ ,∇iρ,∇ijρ} (G4)and

∂F̄

∂ρ
= −2

3

Cij

ρ

∂F́

∂Cij
,

∂F̄

∂ckl
=

1

2

(
ρ0

ρ

) 2

3

(δikδjl + δilδkj)
∂F́

∂Cij
. (G5)

Appendix H: Legendre Transform between ̂̂
F and FAording to the funtional representations introdued in Eq. (126) we write for the total di�erentials of

ρϕ (α = 1, . . . , ν and β = 1, . . . , ν − 1):
d(ρϕ) = d

̂̂
F =

∂
̂̂
F

∂T
dT +

∂
̂̂
F

∂ρα
dρα +

∂
̂̂
F

∂∇iρα
d(∇iρα) +

∂
̂̂
F

∂∇ijρα
d(∇ijρα) +

∂
̂̂
F

∂cij
dcij (H1)

= dF =
∂F

∂T
dT +

∂F

∂cβ
dcβ +

∂F

∂∇icβ
d(∇icβ) +

∂F

∂∇ijcβ
d(∇ijcβ)

+
∂F

∂∇iρ
d(∇iρ) +

∂F

∂∇ijρ
d(∇ijρ) +

∂F

∂ρ
dρ +

∂F

∂cij
dcij . (H2)The highlighted terms must be substituted by the expressions dρα, d(∇iρα) and d(∇ijρα). Analogously tothe Eqs. (F3-F5) and (F6-F8) one �nds:

ρ =
∑

α

ρα ⇒ dρ =
∑

α

dρα , (H3)
∇iρ =

∑

α

∇iρα ⇒ d(∇iρ) =
∑

α

d(∇iρα) , (H4)
∇ijρ =

∑

α

mα∇ijnα ⇒ d(∇iρ) =
∑

α

d(∇ijρα) , (H5)and
cβ =

ρβ∑
α ρα

⇒ cβ =
̂̂
Cβ(ρα) , (H6)

∇icβ = ∇i

(
ρβ∑
α ρα

)
⇒ ∇icβ =

̂̂
C

i
β(ρα,∇iρα) , (H7)

∇ijcβ = ∇ij

(
ρβ∑
α ρα

)
⇒ ∇ijcβ =

̂̂
C

ij
β (ρα,∇iρα,∇ijρα) . (H8)



48 T. Böhme, W. Dreyer, F. Duderstadt, and W.H. MüllerThus we derive in the same manner as in the Eqs. (F9-F11):
dcβ =

∑

α

∂
̂̂
Cβ

∂ρα
dρα =

∑

α

(
δαβ

ρ
− ρβ

ρ2

)
dρα , (H9)

d(∇icβ) =
∑

α

∂
̂̂
C

i
β

∂ρα
dρα +

∑

α

∂
̂̂
C

i
β

∂∇iρα
d(∇iρα) =

∑

α

∇i

(
δαβ

ρ
− ρβ

ρ2

)
dρα +

∑

α

(
δαβ

ρ
− ρβ

ρ2

)
d(∇iρα) ,(H10)

d(∇ijcβ) =
∑

α

∂
̂̂
C

ij
β

∂ρα
dρα +

∑

α

∂
̂̂
C

ij
β

∂∇kρα
d(∇kρα) +

∑

α

∂
̂̂
C

ij
β

∂∇klρα
d(∇klρα)

=
∑

α

∇ij

(
δαβ

ρ
− ρβ

ρ2

)
dρα + 2

∑

α

∇j

(
δαβ

ρ
− ρβ

ρ2

)
d(∇iρα) +

∑

α

(
δαβ

ρ
− ρβ

ρ2

)
d(∇ijρα) .(H11)Eqs. (H3-H11) an be inserted into Eq. (H2). A following omparison of the oe�ients between the Eqs.(H1) and (H2) allows to identify the �nal relations:

∂
̂̂
F

∂T
=

∂F

∂T
,

∂
̂̂
F

∂cij
=

∂F

∂cij
, (H12)

∂
̂̂
F

∂ρα
=

∂F

∂ρ
+

∑

β

[
∂F

∂cβ

(
δαβ

ρ
− ρβ

ρ2

)
+

∂F

∂∇icβ
∇i

(
δαβ

ρ
− ρβ

ρ2

)
+

∂F

∂∇ijcβ
∇ij

(
δαβ

ρ
− ρβ

ρ2

) ]
, (H13)

∂
̂̂
F

∂∇iρα
=

∂F

∂∇iρ
+

∑

β

[
∂F

∂∇icβ

(
δαβ

ρ
− ρβ

ρ2

)
+ 2

∂F

∂∇ijcβ
∇j

(
δαβ

ρ
− ρβ

ρ2

) ]
, (H14)

∂
̂̂
F

∂∇ijρα
=

∂F

∂∇ijρ
+

∑

β

∂F

∂∇ijcβ

(
δαβ

ρ
− ρβ

ρ2

)
. (H15)




