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1 Technische Universitdt Berlin, Institut fiir Mechanik (LKM), Sekr. MS-2, Einsteinufer 5, 10587 Berlin, Germany

(Dezember 2007)

A theory of mixture for multi-component materials is presented based on a novel, straightforward method for the exploitation of the
Second Law of thermodynamics. In particular the constitutive equations for entropy, heat and diffusion flux as well as the stress tensor
are formulated as a consequence of the non-negative entropy production. Furthermore we derive the established GIBBs equation as
well as the GiBBs DuniwMm relation which also follow from the formalism. Moreover, it is illustrated, how local mechanical strains due
to eigenstrains or external loadings, modify the free energy and, consequently, change the chemical potentials of the components. All
consecutive steps are illustrated, first, for simple mixtures and, second, for a system containing two different phases. So-called higher
gradients of the concentrations are considered, which take the nonuniform composition into account. It will also become apparent that
more/other variables of modified/different physical problems beyond the illustrated ones can be easily treated within the presented
framework. This work ends with the specification to binary alloys and with the presentation of various numerical simulations.

1 Introduction

The quantitative description of diffusion processes in solid mixtures represent an ongoing and important
aspect in modern materials science. The reason for this is evident, since there is a continuously increasing
demand in strength and lifetime of today’s engineering materials (e.g., lead-free solders or nickel-base
alloys) which are permanently subjected to aging processes. One aspect of aging is given by diffusion in the
bulk resulting in formation and growth of precipitated (dis)ordered phases. Accompanying phenomena are
phase separation by spinodal decomposition and nucleation as well as coarsening by OSTWALD-ripening
both of which considerably change the internal microstructure of the materials and, consequently, their
global behavior.

A review of the literature shows that the theoretical description of diffusion processes in mixtures has
a history of more than 150 years. In 1855 Fick proposed to treat diffusion analogously to FOURIER’s law
of heat conduction. The resulting first and second F1cK’s laws allow the characterization of “downhill”
diffusion, i.e., of material transfers from high to low concentrations. However, they are not suitable to
explain “uphill” diffusion, such as nucleation and spinodal decomposition during which concentrations
gradients are amplified. Although the latter processes are well-known from the experimental point of view,
cf., Ostwald (1900), a commonly accepted general theory for the effective prediction of interfaces, phase
boundaries and other diffusion-induced inhomogeneities in solids, in particular under the consideration of
arbitrary conditions (e.g., thermal misfits, local stresses, etc.), is still a pending problem.

However, there are various pioneering works in the literature dedicated to uphill diffusion. Already Gibbs
(1892) was concerned about the conditions for the stability and formation of “discontinuities” in liquids
and solids. However, it seems that the first popular theoretical work stems from Becker & Déring (1935)
in which they present a statistical model for the nucleation of liquid droplets. Becker (1937) also published
a molecular model in order to describe the formation of superstructures and precipitations within binary
solids. Based on that work Hillert (1961) developed a one dimensional model for the qualitative predic-
tion of the nonuniform concentration field by spinodal decomposition and nucleation in «inhomogeneous
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solids» (sic!). This approach was generalized by Cahn & Hilliard (1958)'. They first presented a general
phenomenological theory of spinodal decomposition and nucleation adding interfacial energy contributions
to the free energy by means of concentration gradient terms in order to characterize the nonuniform con-
centration field. The resulting CAHN-HILLIARD equation, cf., Cahn (1961, 1968), allows for an explicit
simulation of the formation and growth of (coarsening) phases separated by smooth interfaces and denotes
the starting point for so-called Phase Field Models (PFM). >From then on phase field equations were
studied from different point-of-views, e.g. Langer (1971), and one finds a multitude of modifications, cf.,
Giacomin & Lebowitz (1996), extentions, e.g. Allen & Cahn (1979), and generalizations, Gurtin (1996).

Parallel to this chronology so-called Sharp Interface Models (SIM) were developed in which the nonuni-
form system is assumed to involve well-defined phases separated by sharp interfaces whose motion is deter-
mined by the jump conditions following from the balances on discontinuities. It is reasonable to postulate
that the SIM equations must follow from the equations according to the PFM. For that reason one has to
reduce “suitably” the finite width of the smooth interfaces into sharp interfaces which is usually done by
transforming the corresponding equations to the limit case of infinite width, Gurtin & Lusk (1999), Dreyer
& Wagner (2005). However, note that it is also possible to treat a nonzero interface width within the SIM
framework, Elder et al. (2001). A “subgroup” within SIM are so-called LSW theories, named after the sem-
inal works of Lifshitz & Slyozov (1961) and Wagner (1961). They start from the GIBBS-THOMSON effect
and investigate the temporal development of the radius distribution of spherical precipitations embedded
in supersaturated solutions. Due to a dissolving process they found that the average radius 7(¢) increases
with ¢~1/3 whereas the number of precipitates N (t) reduces with ¢t~!. Thus bigger inclusions grow at the
expense of smaller ones. On the other hand experimental investigations could not reflect these predictions
quantitatively, cf., Ardell & Nicholson (1966). For example, the theoretically predicted distribution function
is too narrow and the coarsening rate depends on the precipitate’s volume fraction, originally assumed to
be infinitely small. However, according to these shortcomings various improvements were developed, cf.,
Voorhees (1985).

Nevertheless, in view of the ongoing miniaturization, e.g., in microelectronic solders, questions about the
impact of local mechanical fields on diffusion increasingly raised. Indeed, Cahn (1961, 1968) incorporated
ad hoc a separate elastic energy term for isotropic solids. However, consequences on the interfacial energy
contributions or eigenstrain effects due to a misfit between the different phases did not enter the theory.
These shortcomings were, in fact, later partially diminished by Larché & Cahn (1982). They modified the
elastic energy expression by a concentration dependent stiffness matriz but questions about the influence
of strains to the interfacial energy remain.

Regardless of the open questions the focus has recently changed to quantitative numerical simulations
initiated by the fast increasing computational capacities. The applied algorithms are mainly based on dis-
crete FOURIER transforms, Wang & Khachaturyan (1995), or finite elements, Garcke et al. (2001), in order
to solve the governing PDEs. In particular PFMs have been applied to simulations of the microstructure in
solders, cf., Dreyer & Miiller (2000), Ubachs et al. (2004) as well as to solidification problems, Boettinger
et al. (2002).

In the present work we want to turn the attention back to the theoretical aspects of diffusion. Our
purpose is to provide both a general and a systematic theoretical framework in order to investigate nonuni-
form mixtures subjected to thermo-mechanical fields. We start with the classical local balance equations for
mass, momentum and internal energy density and exploit the Second Law of Thermodynamics in order to
deduce the required constitutive relations for the diffusion flux, the stress tensor and the heat flux. For that
reason we propose five statements of an entropy principle, which reflect the “undisputed elements” within
the already existing principles (cf., Section 3.4). For the sake of transparency and in order to emphasize
the potential of the presented procedure we, first, consider a single phase of a mixture and illustrate the
consistency of the obtained results with classical thermodynamics. Second, we turn the attention to mul-
tiphase and multicomponent solids including so-called higher gradients into the domain of the constitutive
equations and demonstrate how the classical results change, due to the heterogeneities of the material. We

1Here the work of HILLERT appears before the work of CanN and HiLLiARD, because HiLLERT already derived the formulae in 1956 in
his PhD thesis.
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end with the application of the theory in order to predict the phase evolution within the binary case study
alloy Ag-Cu.

2 Symbols and Notation

For better readability we present various symbols, that are frequently used. Additional symbols, which are
used only occasionally are explained when required. Furthermore throughout this work the sum convention

zhyt = Zg’zl x'y’ holds!.

quantities of motion
Xi

' = x'(X7,1)

ut =zt — X1

vl =dz'/dt = it

F = 0x (X* t)/0X7
J =detF7 >0

CY = F™F™ A detC¥ = J?

¢ = J723CH A detcd =1
ol

tij — J(Fzm)_l

O.mn(an)_l

thermodynamical quantities
v

ac{l,...,v}
Nq
N =3 -1 Na
N

n=3 1M
Yo = N /N = No/N

mp = 1.66-1072" kg
M,

Mo = mpyM,

m=>"_ Namq

Pa = Mg Ny

p= 2;21 MmaNg

M = M(ya) = > 0y MaYa
Ca = Pa/p = NaMa/(nm)
T,pV

€1

p=e—Tn
Yv=9p+p/p

Pa

Ja

T4

q

2

I'We use the index notation of Cartesian vectors (v = v?) and tensors (e.g., T = T%). Furthermore throughout this paper an upper index
does not refer to contravariant coordinates. Rather it is used to avoid confusion with indices characterizing a particular constituent.

LAGRANGE position (cartesian)
current position

displacements

(barycentric) velocity

deformation gradient

JACcOBIan

right CAUCHY-GREEN tensor
unimodular right CAUCHY-GREEN tensor
CAUCHY stress tensor

2nd P10LA-KIRCHHOFF tensor

number of components of the mixture
label for the constituents

number of particles of the component «
total number of particles of the mixture
particle density of component «

particle density of the mixture

Mole fraction/particle concentration of o

1/12 of the carbon 12 isotope (reference mass)
molecular weight (dimensionless)

molecular mass (in kg) of component «

total mass (in kg)

mass density of component «

total mass density of the mixture

mean molecular weight of a mixture particle
mass concentration of component «

(absolute) temperature, pressure, total volume
energy, entropy per unit mass

HELMHOLTZ free energy per unit mass

GIBBS free energy per unit mass

chemical potential (in J/particle) of component «

particle diffusion flux of component «
mass diffusion flux of component «
heat flux
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3 Some Elements of Nonequilibrium Thermodynamics

3.1 Description of Motion and Deformation

In order to measure the motion and deformation of a body a reference state is required, in which the
position of the material points is referred to the coordinates X*. The symbol z* denotes the position at
time ¢ of that material point which is at X"* in the reference configuration, and the function

z=x"(t, X" X% X?) (1)

is called the motion.
The function x* can be used to determine the barycentric velocity v as well as the displacement U" of
the material points, viz.:

X' (t, X7)

vé(t,Xj) = o

and U'(t, X7) = x'(t, X7) — X7 . (2)

Furthermore the displacement gradient H% and the deformation gradient FJ are defined as:

and FY = 8—X =09+ HY . (3)

HY = :
X X7

Note that the quantities introduced above contain the reference position X7 as arguments, i.e., a LA-
GRANGE or material description is used. However, one can alternatively use the so-called EULER or spatial
description. We assume that the Jacobian J = det(F*) > 0, so that we may invert z* = x'(¢, X7). We
write

X'= (7Nt 27) (4)
and eliminate the Lagrange coordinates in the equations (2) and (3). We define

vtad) = (60T ah) L kaed) = U (8 (ka)

B ou’
CQxd

(F~1yi — o0’ =69 — pi . (5)

W = HY (1, (Y (tah)) S

and call the newly introduced quantities the EULER or spatial description.
Next we introduce as measures of strain the right CAUCHY-GREEN tensor, C*, and the GREEN strain
tensor, G:

CY =F™F™ and GY = 5(6’” — o). (6)
Furthermore we introduce the unimodular right CAucHY-GREEN tensor, gij, because it is useful to split
C" into a pure volume-changing, J 2/3 and into a volume-preserving part, ¢/, which describes pure changes
of the shape of the body:
CU = J?Bc with det(cV)=1. (7)
3.2 Balance Equations and Mass Diffusion Flux

In order to investigate mixtures, in particular the temporal change of the internal composition, the partial
mass density po(z?,t) of the different constituents, the barycentric velocity v*(x7,t) (in case of liquids) or the
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displacements u'(27,t) (in case of solids), and the internal energy density pe(z7,t) of the thermodynamical
system need to be determined. These fields are used in the partial mass balance, the momentum balance
and in the internal energy balance which read in reqular points in case of absence of external forces and
energy supplies:

Opa _ O(pavlh)

5% = g + 77 (partial mass balance) , (8)
ag: = —% (pvjvi — O'ij) (momentum balance) , 9)
dpe ov'

= —% (pev? +¢’) + 0" (internal energy balance) . (10)

ot oxJ
Note that the internal energy density is used instead of the temperature T" because pe appears under the
time derivative /0t in Eq. (10). The temperature, which is more important from a experimental point of
view, will be defined later. In general the different components of a mixture can react chemically, which
gives rise to a production term, 74, on the right hand side of Eq. (8). Consequently the conservation of
mass does not hold for the individual component «.

By summation of Eq. (8) w.r.t. all constituents a € {1,...,v} the conservation law of mass for the whole

mixture results. We write:

dp _ A(pv')
- _ i 11
ot ox? (11)
with 3 o0 S parh, @i, ST =0. (12)
a=1 a=1 a=1

An alternative form of Eq. (11) is given by J = pp/p where pg represents the mass density of the reference
state, cf., Miiller (1985a). This relation follows by integrating Eq. (11) and by using the relation d.J/dt =
J - 0vt /02t cf., Eq. (A2).

The mass diffusion fluz characterizes the mass transport resulting from the deviation between the partial
velocity of the component a, v?,, and the barycentric velocity and is defined as:

v
J (def) pa(vl, — v which implies Z J =0, (13)
a=1

by means of Eq. (12)2. The definition of the mass diffusion flux, viz. Eq. (13)1, can be used in order to
rewrite Eq. (8) in the following form:

0 Ipavt + JL
Pa _ _ (Pav + o) + 75 (alternative partial mass balance) . (14)

ot ox?

3.3 Particle Diffusion Flux

A general mixture theory of solids should also allow for the treatment of vacancies which may be considered
as massless constituents. Therefore it is more practical to examine the balance of the individual particle
densities nq(z',t) instead of Eq. (8). By means of p, = myn, we find:

on O(navl) ~
= - with TP = mT Z MaTy = 0. (15)
a=1

ot ox*
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The particle diffusion fluz is defined analogously to Eq. (13), viz.:
gh = na(vlh, —v") and  JL=majl > majl=0. (16)
a=1

Hence Eq. (15) can be written correspondingly to Eq. (14):

Ong _8(navi + %)
ot ozt

+ 75 (alternative partial particle balance) . (17)

It is worth mentioning that the sum ) 7/ is not necessarily zero: due to chemical reactions an overall
particle conservation of the mixture does not hold.

We use the quantities that occur under the time derivative in the balances, viz. {pa or ng, v’ or u?, pe},
as primary variables. Beyond these variables further quantities, so-called constitutive quantities, such as
ol ¢', Ji, ji and rg/", occur. They must be specified by means of constitutive equations which relate
them to the variables and their derivatives in a material-dependent manner. The resulting so-called field
equations represent a system of Partial Differential Equations (PDE) for the variables, which, in turn, can

be solved with initial/boundary conditions.

3.4 Entropy Principle

Clausius introduced the concept of entropy in the 19th century (cf., Dreyer et al. (2000) for a detailed
overview of the physical and historical background). Originally his objective was to establish a rational
basis to Carnot’s study which had lead to an upper bound for the maximal work that can be produced
by a heat engine. Clausius was aware of many serious errors in Carnot’s paper, which he had to correct
at first. The most prominent error concerns the fact that even the conservation law of energy, the 1% Law
of Thermodynamics, is found to be violated, i.e. Carnot assumed that the heat that is needed to produce
mechanical work is conserved during the process. Surprisingly, Carnot’s final result is correct and Clausius
re-derived it from the simple axiom: Heat cannot flow by it itself from a colder body to a hotter body. This
is the first version of the 2™ Law of Thermodynamics. Based on his axiom Clausius, however, derived a
further law that goes far beyond the characterization of efficiencies of heat engines. Nowadays this law is
called the 2™ Law of Thermodynamics (2"% law), and it reads without a contribution from radiation:

ds _ Q d 1 .
B 4 = av > = inidA . 18
a=7 O af Vo an (18)

The inequality concerns an arbitrary body with volume V', whose surface 9V may exchange heat with
the environment with rate Q at a homogeneous temperature 7. By means of this version of the 2"d Law
Clausius introduced a new additive quantity, which he called the entropy of the body. The equality sign
holds in equilibrium and in non-equilibrium the variation of the entropy is larger than Q/T

After some generalizations, which we will explain in the following, the entropy inequality is used today
for many purposes. Among them we have: (i) it restricts the admissible class of constitutive functions, (ii)
it establishes stability criteria for thermodynamic processes, (iii) it may guarantee uniqueness of initial
boundary value problems, (iv) it controls the approach to equilibrium of a technical system and it gives
the possible equilibria.

In this paper we focus on the materials science point-of-view, and here the Eq. (18) is rather impracti-
cable and the question about a local form of the inequality must be posed. However, the usual procedure
(REYNOLD’s transport theorem) that transforms Eq. (18)2 into a local form fails since the temperature
stands outside the integral. In other words, the question about the local form of the (non-convective part
of the) entropy flux ¢ occurring in Eq. (35); arises.

Various attempts were undertaken in the past to find a general form for the entropy flux. The most
obvious way is to simply “write” the temperature 1" under the integral. The resulting equation is called the
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CLAUSIUS-DUHEM inequality:

d g'n' dpn L q
- av > — A = =l iyd) >0, 19
a J, V= fw T 5 Vil )2 (19)

Consequently the entropy flux is ¢ = ¢'/T, cf., Colemann & Noll (1963), or Green & Naghdi (1969).
However, this form of ¢’ already fails in case of ideal gases, cf., Dreyer et al. (2000), or binary fluid mixtures,
cf., Miiller (1968). This shortcoming was, as far as we know, in a systematic manner first remedied by the
seminal works of Miiller (1968) and, later, Liu (1972). Here, in contradiction to the preliminary definition of
the local form of ¢*, the entropy flux is considered to be a material-dependent quantity and thus relies on a
constitutive law whose explicit form results from the exploitation of the 2nd law according to the strategies
of Miiller and Liu. However, recent investigations show that the explicit determination of the entropy flux
by means of the eponymous method of Liu, which uses the balance equations as constraints during the
exploitation of the 2nd law, might become impossible or at least very subtle if complex materials are under
consideration, for example those that need higher derivatives in their constitutive laws. In such a case the
entropy density and entropy flux may do not form a unique pair, c¢f., Faciu & Molinari (1996). In particular
it is a priori not clear, as to whether only the balances or, additionally, higher derivatives of the balances
must be considered. Therefore we present a revision of the entropy principle based on five, well accepted
statements, which - in an astonishing simple, but general way - allows to exploit the 2nd law in order to
examine the constitutive relations for complex materials. It avoids the difficulties of the existing methods by
prescribing a particular form of the entropy production, ¢, based on established thermodynamical concepts.

3.4.1 Simple One-dimensional Example: Thermoelasticity with Strain Gradients . In this section
we give a simple illustration how an a priori assumption on the entropy flux can be avoided in order to
base the entropy principle on firm grounds.

To this end we consider a one-dimensional thermo-elastic body with reference mass density pg = 1kg/m?3,
whose state at time ¢ is given by the fields internal energy density, e(t,z), or temperature, T'(¢,z), and
the displacement u(t,z) which we consider as the basic variables. In this section x denotes a LAGRANGE
coordinate.

The field equations for the variables rely on the equations of balance for momentum and internal energy

do dq
U———=0, é+ —=0tU,. 20
For abbreviation we indicate in this section the spatial derivatives of the displacement by u,, 4., and so
on.

In order to end up with a closed set of field equation we have to relate the two quantities stress, o, and
and heat flux, ¢, which are not among the basic variables, via constitutive laws to the variables and their
derivatives. Within the setting of a phase field model, a popular constitutive law for the stress to describe
phase transitions in a thermo-elastic body is given by

0= 00(67 UCC) - a(eu uac)ua:xm - b(e, ux)uiza (21)

where o is a non-monotone function of u, of van der Waals type and a and b are not specified in more
detail at this moment. The constitutive law for the heat flux will be given later on.

As we shall see, the structure of the system (20) with (21) is already sufficiently rich to allow an interesting
consequence. We start the following discussion with the introduction of a function that relates the entropy
density s to the variables and their derivatives, viz.

s = h(e, Uz, Ugy, Ugpza)- (22)

We do not discuss here how to obtain that function. For example, it could be calculated within the frame-
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work of statistical mechanics, as it is in fact usually done, cf., Bohme et al. (2007).
We now form the time derivative of s:

'*@'—Fa—h‘ +—ah ! +—8h J (23)
5= 6@6 Ouy e gy Haz oy TR Hawr:

and proceed with the elimination of é by means of the balance equation (20)s. Next the product rule is
used to rearrange terms. The result is:

0 (on (P 9 on . . on Y,

<8h 0 Oh 0* 0Oh Oh > 0 Oh

_ T I ) g 24
Oty 8x8um+8x2 Guzm+ ¢ ) ta x (24)

This identity forms the basis to establish the entropy inequality by two definitions, Clausius’ axiom and a
conclusion.

1. We define the (absolute) temperature, T', and subsequently define the entropy flux, ¢, according to:

1 on g (0oh @ on .  Oh
T g0 ™ =7~ (aum - %—au> e+ G (25)

2. We satisfy Clausius’ axiom, according to which heat cannot flow by itself from a cold to a hot place, by:

oL

L >y 26
qax — ) ( )
i.e., the heat flux must be antiparallel to the temperature gradient.

3. The identity (24) is linear in the velocity gradient 1u,, however, it can arbitrarily chosen to construct an
arbitrary solution of the system (20) and (21). In particular, it can be chosen so that the last line of (24)
becomes negative. This can only be avoided by the requirement that the factor of 4, in (24) must vanish,
1.€.

Oh 0 0h 0% Oh

o
Z - i . 27
T Ou,  Ox Oupy 012 OUyys (27)
Thus the identity (24) has turned into the entropy inequality:
i+90 5, (28)
ox

which results here as a consequence of the field equations and some additional assumptions: (i) The defini-
tion (25); of the temperature in non-equilibrium is the same as in equilibrium. (ii) The entropy production
is of the form irreversible flux x driving force, which is in a thermoelastic body the heat flux times the
derivative of 1 / T'. (iii) The constitutive functions for the stress and for the heat flux, are restricted by
(27), and (26), respectively, so that the field equations imply a further equation of balance, viz. (28), with
a non-negative production.

Note that the described strategy requires in particular, as a prerequisite, the identification of the irre-
versible fluxes and the corresponding driving forces in the system of field equations. These are those that
are known to be zero in equilibrium.

We now proceed to exploit the consequences of the entropy principle concerning the constitutive laws for
the stress and the heat flux. We start from the assumption that the entropy density (22) is given by the



A higher gradient theory of miztures for multi-component materials 9

representation

1
s = ho(e,ug) — Ea(e,ux)uim + (e, ug) gy - (29)

In order to describe two existing phases, the function hg(e,u;) is non-concave with respect to u,, and
a > 0, so that the homogeneous body has maximal entropy.
The exploitation of (25)2 and (27) then yields the entropy flux

¢ = (Oé + ’Y/)u:r:xux — YUzz , (30)

and the constitutive function for the stress
/ ! 1 / " 2
— = —hy— (@4 27 )uggs — E(a + 29"z, . (31)

A comparison of this result with (21) implies that we have 0o = —Th{, a = T(a+27') and b = T (a/+27").
We conclude that the entropy principle requires that the coefficient functions a and b are not independent
of each other but must satisfy

b= —a' (32)
A further important conclusion is that the alternative choices (o # 0,y = 0) or (o = 0,y # 0) lead to the
same stress-strain relation. Thus there is no unique correspondence between the chosen entropy/entropy
flux pair and the constitutive law for the stress.

Finally we give the constitutive law for the heat flux by the simplest possibility to satisfy the inequality
(26), which is the classical FOURIER law

or
q=—ro_ with x>0. (33)
Note that Dunn & Serrin (1985) obtained a different law for the heat flux because they relied their treatment
of the same subject on the CLAUSIUS-DUHEM inequality.

The complete procedure to change from the energy density e to the temperature 7' as a variable is
described in detail in Section 4.2.1.

3.4.2  Statement of the Entropy Principle. The entropy principle presented here consists of four parts:

1. We postulate the existence of the constitutive quantities called entropy density, pn, and entropy flux,
¢". The constitutive relation of pn has the form:

m=3S (Variables, (functions of) derivatives of the variables) , (34)

in which the variables are the arguments of the time derivatives of the balances. All constitutive equa-
tions are of this type but, by abandoning the Principle of Equipresence (Truesdell & Toupin 1960a),
the arguments can differ.

2. There exists a local entropy balance

dpn  O(pno* + ¢F)
ot oxk

=( with (>0 (dissipationinequality) . (35)

The constraint of Eq. (35)2, viz. the non-negative entropy-production (, represents the Second Law of
Thermodynamics.
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3. We define the absolute temperature to be:

1 taeh Opn (36)
T Ope
which corresponds to the concept of the integrating factor within classical thermodynamics.
4. (a) Analogously to the concept of thermodynamical fluxes (F.) and driving forces (D,) known from
the Thermodynamics of Irreversible Processes, Eckard (1940), we postulate the following form for the
entropy production:

=Y ED. , . {jforJfol.d) . (37)
z

JSJISS (with 0¥ = ol '+ O’dlss) gives the dissipative, also called irreversible, contribution to the stress.

Note that there Was no such part in the example of the last section. It is well known, Eckard (1940),
that the driving forces corresponding to the fluxes in (37) are

D. = {V(@),v@w,via/n}, (38)

The newly introduced quantities u, are the chemical potentials, see Section 4 for their definition in the
current study.

(b) For equilibrium the fluxes F, vanish, i.e., F;|cq = 0, which, in turn, guarantees the absence of
dissipation, i.e., (|eq = 0, within equilibrium. Hence it follows that (|eq is minimal. Relying on the
assumption that the F, depend on the D, we may conclude that D,|.q = 0 holds additionally.

3.4.3 The Role of the 2nd Law. The field equations (balances + constitutive relations) represent a
system of partial differential equations for the determination of the variables. Such a solution must satisfy
the 2nd law (cf., Statement 2 of the last paragraph) and consequently the constitutive relations must be
constructed such, that the 2nd law follows for any solution of the field equations.

For that reason we interpret the balances (9, 10,14) as a system of algebraic equations, in which the right
hand sides can be chosen arbitrarily in order to calculate the left hand sides, see also Alt & Pawlow (1996).
Due to the product rule the arbitrary terms on the right hand sides are:

ov' Vi 0pa O0J, ) ; ol 9o . Ope Oq" il (39)
p()é?axl'? Y 8"1:17 a"L‘Z, a7p7 8 ]> a:rj Y /0 78561;’6,’1:2" .
partial mass balance momentum balance internal energy balance

Alternatively, in order to investigate particle diffusion (cf., Section 3.3), one must consider the balances (9,
10,17). Hence the quantities p,, J: and 74 in Eq. (39) must be replaced by n,, j, and 77.

Thus one has to construct the constitutive relations such that the 2nd law follows for an arbitrary choice
of the list of elements in Eq. (39) representing an arbitrary solution of the balances.

4 Investigations of a Single Phase

4.1 Exploitation of the 2nd Law for non-reacting, thermo-elastic Solids

In what follows we consider a thermo-elastic solid mixture consisting of v non-reacting components, i.e.,
afflss =0= 0" = JZ{ and 7 = 0. In particular we assume for the constitutive function of the entropy den—
sity pn in Eq. (34) a quite simple form, for which we need, as we shall see, four alternative representations:

PWZS(P@”H;-- , Ny, C ) S(T7n17" , Ny, C ):S(T yla"'uyl/—lapvcij) :S(Taylw"?yV—hOij) (40)
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pe identifies the thermal variable whereas the symbols n,, a € {1,...,v}, and ¢ characterizes the com-
position and the deformation of the solid. Note that ¢¥ only contains five independent elements due to the
relation det ¢ = (J=%/3)3.J%2 = 1 whereas C% in Eq. (40), incorporates siz independent elements. The set
{p,c} can be used alternatively instead of C%, which is reasonable since p and C*¥ are not independent
due to the relation pg/p = J = det F¥ = det v/CJ (cf., Section 3.2).

The alternative representations of the Eqs. (40);1_4 give pn by v + 6 arguments and will be needed for
different purposes. For instance we will see that the function S is extremely useful for the exploitation of
the 2nd law whereas the sets of arguments in S, S and S can be used for the definition of the chemical
potential y, or for the calculation of the pressure p and the stresses t%.

In what follows we write for the entropy balance in Eq. (35); by means of the product rule:

oS . 9SS ot 9

o gt o ¢ (a1)
DY

The expressions A and B can be re-written using Eq. (40); and the chain rule, viz.

08 _ 98 dpe Z 08 na 98 9 08 _ 98 dpe Z 08 Ona 98 oc
ot 8pe ot “ Ong Ot ocii ot dxt Ope Oxt < Ong 83# Ockl ozt -

(42)

The terms dpe/0t and On, /0t in Eq. (42); can be substituted by the right hand sides of the according
balances, Egs. (10) and (17). The resulting equation as well as the Eqs. (42)2 and (36) can be inserted into
Eq. (41). It follows:

11 9 : v =08 [ 0(nav' +j9)
= |- J B B
¢ T|: Oxd (PEU +Q)+Uelaji|+2318na|: I :|
S [ dck! i@ckl . 1 0pe “. IS Ong N A Ve
* Ockl ( ot T ort > v (f@xi +;% Or + Sag;i + 9 (43)
=dc*t/dt

cHl (def) ekt

The expression under the brace, d;c* = +v “% , stands for the total temporal derivative of c*
and can be replaced by the relation (cf., Appendix A):

2 o’ o' oo o
Kkl “ 2/3YY ~kl 2/3Y°Y 7k il 7l ik ) 44
&t = —3J pI O+ J~ 90 <F "+ F7'F ) (44)

Rearrangement and reduction of the terms in Eq. (43) yield:

0 (g d 08\ 0 (08 oy
C_@Gﬁ T Z]aﬁna>+;]a&ri <8na>+q ozt +

a=1
Q
0vl (ol o ik il L gt ik OS L pe &~ IS o oS
Z7 | Zel ik il g i _PE Yo /3 1kl Y9 > 4

in which the symbol 6% stands for the KRONECKER symbol. Note that all terms that are linear in v? vanish,
and, therefore, Eq. (45) is in agreement with the Principle of Objectivity formulated by Colemann & Noll
(1963).
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The arrangement of Eq.(45) presumes a priori knowledge on the entropy production ¢ according to
Statement 4 of Section 3.4. In particular we arrange the expression Q to be of the form )  F,D, and
extract the terms linear in dv'/dx? due to the arbitrary list elements in Eq. (39). Now we define the
entropy flux ¢ as:

& (def) ¢' aS
=) L - 46
R (40
Thus the parenthesis of the first summand in Eq. (45) vanishes and we obtain the form:

Px+Q>0 , YxeR = P=0 A Q>0, (47)

with the abbreviations x = 9v’/dx7 for the velocity gradient and P = [...] for the bracket of the fourth
term. The conclusion in Eq. (47) results since Eq. (47); is linear in x, which can be arbitrarily chosen.
Therefore we can violate the inequality except for the case P=0 A Q > 0.

Finally the definition of the entropy flux in Eq. (46) remedied the aforementioned flaw within the works of
Coleman & Noll (1963) and Green & Naghdi (1969), in which the entropy flux is assumed to be ¢' = ¢*/T.
The flux ¢* in Eq. (46) additionally incorporates diffusional contributions, which corresponds to the results
of Miiller (1985b).

4.2 Selected Results

4.2.1 Heat Fluz and Diffusion Fluz. As a consequence of Eq. (45) and (47) we conclude:

q 81/T - aaxZ <_> >0. (48)

A further evaluation of Eqs. (48) requires the substitution of the experimentally unmanageable expression
08 /0n, by a measurable physical value. For this reason we introduce the following functional representa-
tions for the HELMHOLTZ free energy density py according to Eq. (40):

pg0:.7}(pe,n1,...,n,,,cij) :ﬁ(Tvnla"'anlMCij) :f(Tﬂ/lv"'?yV*l)pvcij) :f(T?yla"'vyllflaCij) )

(49)
and define the chemical potential o as:
(def) OF
=/ = 50
fhe o (50)
Moreover, the LEGENDRE transform as outlined in Appendix B yields:
aS 1 OF
=22 =t (51)

8_na_ T Ong T

By additionally applying the mass conservation of Eq. (16)3, ji = Z” 1 me jﬁ the following form of Eq.
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(48) is obtained:

,.al/TJrz”:,ia(a_S)_ a1/ Zl o(22p _m)/T

T gy = ljaaazi Ong
Ko Hs
=q aQEZ Zmﬁj’g O > 0. (52)

The simplest way to achieve a non-negative expression for the right hand side of Eq. (52); 2 is to choose

q, Uzﬂss, jg or Jé = mgjé such that quadratic expressions in 61/1T, 8(m"“”/£” 1o)/T o, 8(””/m”5§."/m”)/T
with positive coefficients result. If thermo-diffusion coupling (LUDWIG-SORET and DUFOUR effect, cf., de

Groot (1960)) is neglected we put:

—1 ms _ -1 * *
I8 pe okl » R pé dxd 1 8303 ’
6=1 6=1
. . " (def)
with the alternative definition p}, "=~ jiq/mq and furthermore:
OF(T,py,...,pv,¢7) 1 OF
NZ: ( ) P1, y Pvy € )___ 7 O[:{l,...,V}. (54)

0pa, Mg Ong

Note that the material-specific, positive definite diagonal matrices Mﬁjéa B” and k% in Eq. (53) are not

necessarily constant and, in general, can depend on the same arguments used in the Eqgs. (40/49).

By means of the chain rule, viz. aalijT = —%%, Eq. (53)3 changes to ¢' = —/?cij(T)%, with §9(T) =

kY /T2 If kY = const this equation is called FOURIER’s law of heat conduction in which the symbol &%
denotes the matrix of thermal conductivity. On the other side Egs. (53)1 2 reveals that the diffusion flux is

proportional to the gradient of the difference of the chemical potentials p, or p},. The matrices M[% and

BZ§ are often called mobilities.

4.2.2  Mechanical Constitutive Equations. In order to determine the pressure and the stress tensor we
consider the condition P = 0 in Eq. (47). The trace of 0" defines the pressure. One obtains from Eq. (45):

L ogg 1 —2/3 mk ml ml rmk 08 pe . 2/3 ikl 08
=—- = - T(F™F F"F —+T - = - a=— — .(55
p=-30 =3/ ( + )ackl LR U <" On, 3‘] g | -659)
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Note that C* and ¢* are symmetric since CT = (FTF)” = F'F A ¢ = const - C holds. Therefore the
terms containing 0S/0ck! vanish and it follows by means of Egs. (B6) and (C6)s in Appendix B,C:

Y oS
I o
p P C;n -
v ~ v — v v—1 —
(App. B) OF (App.C) oF oF 5 Np
- - aay = - oMo —=— ax 0 — —= o6
ppE D Mg, ST TR OB 5, (07 =0) 60
-0
OF 209
= — . 57
PeErgs = PG, (57)

The 2nd PIOLA-KIRCHHOFF stress tensor ¢/ can be also expressed by a partial derivative of the
HELMHOLTZ free energy. For this purpose we use the definition of ¢¥ in Section 2 and analyze the constraint
P = 0 with respect to Eq. (45):

tij _ J(Fim)—lo_mn(an)—l

oS , , . - oS
1/3 jk gil gl sik in\—1/jn\—1 _ _ 2/3 kl
—J T[a 5t 4 895 }akl JT (Fim) =1 (Fin) ( pe § ana C ackl>
=(Ci)-
oS y .S S
1/3 ij)—1 Yo 2/3 vkl 99
—2J T + J(C) <p<p+T§ jna a+3J TC add). (58)

This equation can be further simplified by successively applying the LEGENDRE transforms of Appendix
B, C and D. One obtains:

yi (AppB.O) J1/3g]; J(Ci)! <p<p _ paf _ §J—2/3Ckl%>
(App. D) 2J1/368é’7;fl <@>2/3+J(Cz‘j)— < 4+ 2 J2/3 kla%il Ckl%(émkénl +6nk5ml)%‘in>
= 2J ;Cjz. + J(C) M pp) = 2J ;g’m @ +2Jp 880” + J(C7) " (py)
— a2 ;ij ~ 9 aacia' . (59)

For the last step in Eq. (59) we used the relation 9p/0C% = agu ((det”W) = —£2(det C) /2 8Cu (det C) =
—2(det C)~1/2(C¥)~t = —£(CV)~!

4.2.3 GiBBS-DUHEM Relation and GIiBBS Equation. In order to underline the power of the present
entropy principle we additionally derive two important equations of thermodynamics, namely the GiBBS-
DuHEM relation and the GIBBS equation. The first one follows directly from Eq. (56)s:

p + o= Zn 8na = —;naua ., (G1BBS-DUHEM equation) . (60)
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The latter one relates the HELMHOLTZ free energy density to the entropy, stresses and chemical potential.
Therefore we consider the total differential d(py) = dF:

OF OF OF .
cnp¢)::-—-dT4-§:-7;-dna e (61)

For the coefficients 8]:'/5)T and 8]:"/8cij, and 8]:"/871& we apply the LEGENDRE transforms of Appendices
B, C and D; it follows:

OF B 0 (a4 &\ (App.B) OF _
3.7:" (App.C) OF o 8Q0 (App.D) 2/3 8@ (59) 1 —1/34ij
o1 o Paer  — Macn Tl T (63)

In particular Eq. (63)2 holds since p and ¢ are independent arguments within F. Thus we can finally
write:

1 o &
d(pp) = —pndT + §J_1/3t” de + Z’“O‘ dne , (GIBBS equation) . (64)

a=1

Eq. (64) can be used for the direct identification of pn and p, but cannot be used for the calculation of ¥
since the constraint det ¢ = 1 < (c¢)~!dc¥ = 0 holds. For the identification of the pressure and the 2nd
Piola-Kirchhoff tensor one needs the Gibbs equation - according to Egs. (57) and (59) - in terms of ¢ and
. Here a straightforward calculation yields the two alternative forms of the GIBBS equation:

dF = pdg + @dp = gidT gf dc¥ —|—Za—dy5
o dp = —pdT + %dp + %%’chij 42 Z gyf dyg | (65)
and
dF = pd + ¢dp = g—]T:dT+ ;C]; dCcv + Zl 8jrdyﬁ
& dg=—ndT + 22 9409 + - Z OF dy,g (66)

Egs. (65) and (66) allow for a direct identification of p and ¢¥ as partial derivatives of @ or ¢, respectively.
However, the prize we pay is loss of the closed form for the chemical potential p,. Furthermore Eqs. (64,
65) can be used for the liguid matter, where for purely volumetric deformations ¢’ = 67 < dc¥ = 0
holds. Consequently, one obtains from (64) for mixtures: d(pp) = —pndT + > padns and from (65) for
pure liquids: dp = —ndT + (p/p?)dp, which matches the classical results of thermodynamics, cf., Miiller
(1985¢).
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4.2.4  Splitting of the Free Energy into a Mechanical and a Chemical Part'. In order to study diffusion
processes in thermo-elastic solid mixtures one needs an explicit expression for pp that allows to determine
the chemical potentials p, or p according to Eqs. (50,54), which are necessary during calculation of the
diffusion fluxes ji or J¢ in Eq. (53)1 2.

(I) Concept. We start with the observation that the deformation of the solid results from two independent
effects, viz.:

1) (inelastic) deformations, resulting from internal diffusion processes (e.g., misfits, which follow from the
redistribution of the atoms) and from temperature changes (i.e., thermal expansion),

2) elastic deformations resulting from the change of the stress state according to the application of external
loadings.

In order to distinguish between these processes we consider three different states, characterized by temper-
ature, particle concentrations, and deformation gradient, namely (T, yg, F*7) with 8 = {1,2,...,v — 1}.
These states are specified by the settings indicated in Table 2.

Table 2.: Specification of the three states required for the distinction between inelastic and elastic defor-
mations in a multi-component thermo-elastic, diffusive solid.

reference state Sy intermediate state S, current state S
temperature T' | Tj T. =T T
composition yg yg yZ =g Yg
deformation gradient F¥ | Fy/ = 6% FY Fi

Furthermore the following conditions for the CAUCHY stresses, ¢/, and for the deformation gradient,
F* | are formulated for the transformations between the states, cf., Figure 1:

ot {: —]5(5? L const. , for Sy — S, and i {Z Fij , for So — S, (67)
+ —po for S, — S =Fy, for S, —S "’

in which p is the reference pressure. N

In summary, the deformation gradient Fy’ represents the inelastic part of the deformation at constant
reference stress, whereas Fjlj contains the pure elastic deformation. It is important to note that neither
the concentration, i.e., the distribution of the constituents over the lattice sites, nor the temperature do
change for S, — S, ¢f., Figure 1.

Finally we note that chemical experiments, especially phase equilibria measurements, typically refer to
the state S, or, with other words, the process, which is observed during the experiment is given by the
transformation Sg — S,.

(II) Mass densities, particle densities, concentrations, and Jacobians. Now we calculate for the three

different states Sg, Si, and S the mass densities pg, p« and p, and the Jacobians J,, Je and J in terms of
concentrations and particle densities. For the mass densities we obtain (see also Section 2):

po=mm-no- ML) , pe=mu-n.-Mya) , p=mpg-n-My) (68)

1This paragraph is based on preliminary considerations by Dreyer & Duderstadt (2004).
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reference state

a

total deformation, F%

control volume

Vo

ij
Fi
ol = —]5(5”

intermediate state

eg.,
diffusion

or thermal
erpansion

control volume

Vi# Vo

current state

control volume V' £ V,

FY

el

ol # —pb'i

arbitrary, elastic
deformation

Figure 1.: Three states of a multi-component thermo-elastic diffusive solid. (a) The reference state S
with the reference temperature 7', the reference composition yg, and the reference (undeformed) strain

state described by Foij = 6. (b) The intermediate state S, with T, = T, yz = yg, and FY for So — S..
(c) The current state S with 7', yg, and F/ for Sy — S and Fglj for Sy — S.

and the calculations of the Jacobians yields:

| M (/9 |
7,90 qep i — 20 _ Mla) mo g e g i
pe M(ya) n. T
| I— |
0 (ya)

>From Eq. (69) the multiplicative decomposition of the Jacobian J directly follows:

J = Jads .

(70)

(II1) Relations between the deformation gradients. In addition to Eq. (70) there is a corresponding
decomposition of the total deformation gradient . If the concept of the three introduced states Sg, Sk,

and S is accepted then we have

ij _ ik kg
FY =FyFY.

(71)
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The proof of Eq. (71) directly follows from the three motions of the body (see Section 3.1):

o=y X7) . Xi=aan X)), 2=t XD, (72)
so that by virtue of the chain rule we may write

_ ax’ _ 8Xél X"
0XJ  0Xk 90X
L 1 | M|
=FY =F

Fi

(73)

(IV) Example. At this point we briefly consider an example to illustrate the deformation that might lead
to the intermediate state, characterized by F’. At first we consider isotropic thermal expansion. Usually
the thermal expansion coefficient is measured without considering any changes of the composition within
the body, cf., James et al. (2001), or Pignatiello et al. (2007). In this case we may write

no no Vi 3
Je = —=—=—=1 T — Tt , 74
ys) 2 =0 = ¥ 1 (T - Ty) (71

=1

where « denotes the linear thermal expansion coefficient. In other words, the change of the volume from
Vo to Vi is measured.

If we now consider a process that incorporates thermal expansion and diffusion, then we have to use in
the model

.. no % 3

Jo =det FY = V(yﬁ)n— = V(yﬁ)vo =v(ys) 1 +a(T —Tp)]” . (75)
Next we investigate the case of anisotropic thermal expansion with diffusion. Instead of the volume of the
body we now have to determine experimentally the deformation gradient, which relies, in analogy to the
above equations, on the ansatz:

F9 = v(yg)3 69 + (T - Tp)] . (76)
(V) Two second P1OLA-KIRCHHOFF & CAUCHY stress tensors. According to Section 2 the CAUCHY
stress tensor can be written as:
1

ol — szijntmn 7 ol — Y g{nFejanmn 7 (77)
el

where ¢ refers to the reference state Sp and 2% to the intermediate state S,. A combination of Eq. (7T7)1,2
yields the relation:

£ = J(F T E e (78)

(VI) St. VENANT-KIRCHHOFF law. The ST. VENANT-KIRCHHOFF law relates a second PIOLA-
KIRCHHOFF stress tensor to the elastic strains, cf., Truesdell & Noll, (1965a). Since for the case illustrated
in Figure 1 the elastic deformation starts at S, and ends in S, we have to formulate that law for z". It
reads:

- PR
2 = —pIa(Cq")7 + GRIN(T yg) (CYf —0)  with CYf = FYFEY (79)

where the symbol K%k = K7kl — Kiilk — kG stands for the stiffness matrix, which is generally assumed
to be a function of T" and yg.
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However, in order to calculate the free energy density by means of the exploitation of the 2nd law, cf.,
Eq. (59), we also need to know the second PIOLA-KIRCHHOFF stress tensor ¢*. By inserting Eq. (79) into
Eq. (78) we find after some rearrangements of terms:

1
9 = —pJ (O™ + SKIH(T,yp) (CF = CH(T,yp) ) (80)
with the definitions:
ka‘l ka:le ’ Ck‘l _ ka:le and Kljkl _ J*(F*—l)lm (F*—l)jn(F* )kp(F )lqunpq (81)

The Jacobian J, as well as the deformation gradient FY depend on temperature 1" and on the concentrations
ys, cf., Eas. (76) and (75), thus C¥ = C¥ (T, yg) and K'¥ = Kk (T, y5) depend on the same variables.
The newly introduced quantity C¥ is often called misfit strain or eigen-strain.

(VII) Chemical and mechanical part of the free energy. According to the decomposition of the deforma-
tion gradient in Eq. (71) we now present a decomposition of the HELMHOLTZ free energy into a chemical
part and into a mechanical part, which refers, in this context, to the elastic deformations. We assume that
the HELMHOLTZ free energy can be represented by two additive contributions

0= (pmech + (pchem (82)
If the total HELMHOLTZ free energy is given, we identify those two contributions by the definitions:

def s . def’ ..
@Chem (_e) SO (T7 Yty 7111/713013 = Ci]) 3 (pmeCh (_e) (10 (T Ui, - - 'ayl/fhczj) - @Chem . (83)

The chemical part of the HELMHOLTZ free energy is typically obtained from measurements of phase equi-
libria under the pressure p or by calculations within the settings of statistical mechanics. The mechanical
part, ™" which is exclusively related to the elastic deformations during the transformation S, — S, is
calculated from a given stress-strain relation, which is here given by Eq. (59). To this end recall that Eq.
(80) depends on the variables {T,v1,...,y,_1,C%} using the relation J = j(C'kl) = y/det C};. Therefore
we can insert Eq. (80) into Eq. (59) and integrate the result w.r.t. C¥. We obtain

K L) (oo — iy (04— M) = L [(Ty) — J] + KToy). (89

5(T, yg, CV) =
AT ys ) 80 2

in which K and pJ./po denote integration “constants” because they depend exclusively on the variables
{T,y1,...,y,_1}. Furthermore we made use of the relation (C~1)% = (det C*)~19g:; (det C*).
Thus, one finds for the functional representation of py:

B Kijkl (T, y,@)

ij ij J*(T?/B) .
7 (CT=al) (et - - (f >+P/C(Tayﬁ)7 (85)

with p = p(C) = po/J(C™). The mechanical part, po™*® must vanish for the case C* = C¥ and J = J,.
Thus we conclude:

ppmech _ mech _ M(Cm — Y (CH — k) — <M 1) : (86)
8J /
p(,OChem — f"chem — /5/C(T, yﬁ) . (87)

In order to calculate the chemical potentials, u,, according to Eq. (50), we have to rewrite JFmech/chem jp)
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terms of {T,nq, ¢} with a = {1,...,v}. By means of the relations
p=pe) = mana , J=J(ne) = <2, (88)
P Za MaNa
O = J2Bi |y = ga(ne) = =2 | (89)

we reformulate Eq. (85) as follows:

ﬁ _ j:mech + ﬁchem _

KT, 98) [ so3 i i . (T, )
== 1\ dp) /345 _ (g A 2/3 kIl ~klip s * _
S (J e’ = CJ(T, yﬁ)) (J ¢ = CA(T, yﬁ)) +PK(T, 95) — (7J 1) , (90)

which now may be differentiated w.r.t. n,. As a result we find for the chemical potentials:

(def) E (K”kl) OUB  ij  uigy (ikl ikl % ij i\ (kL okl
Ha = Gpa =BT mg (O TONET -G = E(CY = G) (O = 6
Kz]kl 2ma 8:{)5 y .
'Lj o
o (3mecv - o) e - e

Kk 2maq kiv OUp ij ij
8J<3pc (C)ana)(c - )
J. 0yp , 093
— a 91
p(Jana+J p0>+mlc+plcana (91)

where the symbol (¢)’ stands for the derivative 90 /0ygs. Furthermore we have 0fz/0na = (67 — y3),
which follows directly from Eq. (89)s.

4.3 Comparison with the Literature: GIBBS and HELMHOLTZ Free Energy, Specific Strain Energy,
Complementary Strain Energy, and Theorems of CASTIGLIANO

Finally we compare some of the derived equations with the literature. We specialize to compressible pure
substances and start with the corresponding alternative form of the GIBBS relation in Eq. (66):

1
dp = —ndT + 20 tvdcY (92)
1 1
& dw* = —ndT — —CYdt"Y  with w* (deh o ——t7C" (93)
2p0 2po

where ¢ = @(T,CY) and w* = @*(T, V).

Note that Eq. (93) - in which we temporarily call the introduced quantity w* the strain potential -
holds solely, if the stress strain relation is invertible!. Furthermore Eq. (92) and (93) imply the following
hyper-elastic relations for the stresses and strains:

8@ Ty a g
e =17 2p08t” = —C% . (94)

2po

LA popular counter-example are rubber balloons, cf., Miiller & Strehlow (2004).
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Another version of the GIBBS relations can be found by using the definition for the first PionLa KIRCH-
HOFF stress tensor:

R (95)

and the differentiation rule dC% = (dF*)F* + F*¥AF* . Then one obtains from Eq. (92):

1 ..
dp = —ndT + %p”dF” (96)
1 . 1 ..
< dw* = —ndT — —FYdp” with w* (deh) o— —pYFY (97)
Po P0o
where ¢ = @(T, F7) and w* =w *(T, p/). Hence follows:
0P g ow* g
magls =1 i = o

It is worth mentioning that @(T, F¥) cannot depend on all nine independent coefficients of F% due to
the Principle of Objectivity, c¢f., Colemann & Noll (1963). In particular ¢ only depend on six components
following from symmetric combinations of F¥, e.g., C = FTF.

Landau & Lifschitz (1966) used a third form of the GIBBS relations to be obtained with the linearization
dC¥ z~ d(2e¥ + §%) = 2de¥ and tY = ¥ in Eq. (92). Consequently they found (in our notation):

1 ..
dp = —ndT + %Uzjdsw (99)
* L 552 4 sl 5 (def) L 4 ij
& dw* = —ndT — —edo"  with" w* =" ¢ — —a"e" | (100)
Po Po
where ¢ = @(T,&¥), w* = w*(T, ") and furthermore
0P . o> .

POSG = a’ . po i —e¥. (101)

The energetic formulations for the stresses and strains in Eqs. (94,98,101) are frequently found in literature,
e.g., Truesdell & Noll (1965b), and can be interpreted as the continuum mechanical version of the first and
second theorem of CASTIGLIANO, cf., Becker & Biirger (1975). The quantities ¢ and w* are typically called
the (mass-)specific strain energy® and the complementary specific strain energy.

In this context we point out that there is a considerable confusion about the meaning of w* in the
literature. So, for instance, Landau & Lifschitz (1966), Becker & Biirger (1975) and Truedsell & Toupin
(1960b) wrongly identify the complementary specific strain energy w* with the GIBBS free energy 1. In
turn, Landau & Lifschitz (1966) are puzzled that their definition of the GIBBS free energy for solids does
not agree with the “classical” ones, 1 = ¢ + p/p, used in fluid thermodynamics. This irritation is remedied
within the present work, in which - for solids as well as for liquids - the same definition holds for the GIBBS
free energy, viz.:

kk 1 .. .. 1 .. ..
¢:<p+§ with  p= =T = — 90T = — Ly (102)

!Note that the definitions of w* in Eq. (100)2 is not equivalent to the ones in Eqgs. (97,93)2 due to the performed linearization. This is
evident replacing in, e.g., Eq. (93)2 the term ¢t*7C*% by the linearized form o (2" + §*7).
2 Another notation frequently found is specific stored energy.
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Note that for the case of solids this form of the GIBBS free energy cannot be derived from the LEGENDRE
transforms performed in the Eqs. (92,93), (96,97) and (99,100).

3

5 Multiphase Mixtures

5.1 Exploitation of the 2nd Law by Considering Higher Gradients

In this section we consider materials that consist of different phases. First of all, one has to clarify of which
nature the various occurring phases are and which physical quantity can be used for their characterization.
Note that multi-phase materials are manifold. The phases can vary for instance in their compositions,
e.g., Ag-rich a- or Cu-rich -phases in eutectic Ag-Cu below the eutectic temperature, or in the lattice
structures, e.g., ferrite (a-phase, BCT) and austenite (y-phase, FCC) in iron.

According to the Introduction we turn the attention to diffusion-induced phase transformations, such as
spinodal decomposition, nucleation and subsequent coarsening in non-reacting, multi-component, elastically

stressed solids (7} = 0 and ol = g) Consequently the occurring phases differ in its composition, i.e.,
in the partial particle densities ny,...,n,. Therefore we must incorporate phase boundaries containing
considerable gradients V;nq, Vijna, ... etc. (o = {1,...,v}), and we modify the functional representation

of pn according to Eq. (40) as follows:

p1 = S(p67 Nas, Vma, vijna; CU) = S(T, Neay Vma, Vz‘jnag CIJ) =

The index o« = {1, ...,v} and 8 = {1,...,v — 1} were used as abbreviations. The expressions A and B of the
dissipation inequality, Eq. (41), are now re-written analogously to Eqs. (42)1 2:

9 _ 98 ope | 98 9V z”: 08 Ona 08 OVina 08 0Vina (109
ot Ope Ot 0 Ot L=\ Ing Ot IVing Ot OVijng Ot
oS  8S dpe IS Ak I~ [ BS Ong 0S  OVing 0S  OVina

- = _ — - . . _ 1
92 Ope oz | oM g +azl <8na 92 OVine 0x | OVgn. O (105)

The terms Jpe/0t and On,, /Ot are substituted in the same manner as in Section 4.1, namely by the right
hand sides of Eqs. (10,17). The additional terms 0V;n, /0t and 0V;;n, /0t are replaced by the right hand
side of the differentiated partial particle balance, Eq. (17), viz.:

OV ina 0 ;0ng o' 95,
ot ok [” ozt Mg T axi]
vt Ony, i 0?ng Ong, OV’ 9%t 0? jg
T 0z 0z | 0xidrk  Ouk 0xi | Oxidzk 0wzt (106)
OViina 0%v' Ong ' 9?ng . Ong Png OV
ot 0xF0xl 0x'  0xF Oridxl | Ox'dxtOxl  Oxkoxl Ozt
ong 0% O30 9340

— . - . - — . 107

drF Dziozl | 0ridrkorl | 9ridzkdrl (107)
Note, that Eq. (104) gives directly rise, which balances and which differentiated balances must be considered
during the exploitation of the 2nd law. Indeed, this fact remedies the aforementioned shortcoming of Liu’s
procedure, cf., Section 3.4. Here the occurring temporal derivatives of Eq. (104) occur due to Statement 1
of the Entropy Principle, proposed in Section 3.4, and depend on the choice of the arguments in Eq. (103);.
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By inserting Egs. (10, 17, 106, 107) into Eq. (104) one obtains for the entropy production ¢ according to

Eq. (41):
0 & q 81/T -
C_T T Z_: 0‘8331 ( >

' Ug —2/3( ik il ik 75l oS ij [ PE & - oS 2 2/ 4kl S

+63;J ?_’_J (F F +F F )akl 6 ?—S"‘az::lnaa—na"‘gt] C @

. 0SS [ v on,  Ong O % %5t

- Z@ P9 Tk T Y5 %

et Ving I@x ox . I@x 8.17I . ox*Ox . I@a: ox .

=a =b =C =d

B Z oS ( 9%t Ong vt 9%ng, ?n, OV
0

L Vo \ 025021 0x7 | OaF 0202 | 0akdal at
—e —f =g
8na 82’Ui 83’Ui 83]1
_— . ) « 1
zaxk Ozt ! +no‘amzaxkaxl +8x18xk8xl > (108)
=h =i =

The first four summands correspond to the result in Eq. (45). In what follows one has to include the
HG-terms 8 —(a+...+d)and BV >—(e+...+]) “suitably” into the first three rows of Eq. (108), which

will later be used in order to define the entropy ﬂux ¢, the diffusion flux j%, and the mechanical constitutive
relations. For this reason we use the following strategy according to the previous section:

a) Rearrange the diffusion flux terms (d) and (j) such that terms linear in j and linear in the divergence
operator 9/0x" will result.

b) Transpose the velocity terms (a-c) and (e-i) in such a way that terms linear in 9v®/dz" and Ov'/dx7 or
terms linear in 9/9z%, respectively, will result.

>From the first item one finds:

38 @ = 2 |2 oS \ oS ok 0 | o [ 85 (109)
OV ina = 0u |2 ak OV ing OVing 0xk Jagri | ok OVing ’
85 T 0 08\ %o 0 oS '\ 9 (9 08
OViimna V= g Ja g koL OViina Ox! dxk \ OViing Oxk \ 02! ) OViing
;0 92 oS
+]a@ laxkaxl <8Vklna>] ’ (110)

According to the second “strategy point” we re-arrange as follows:

LB g0 (08 om0 o [ ok o8 .
OV Ny, Y92t 9k \ OV ing Oxk 02t OVin,  Oxt " 52k OV e, iNa |
oS o' |dng 0 oS ?n,  OS o [ovkon, S
_ (e+f) =0 | Do T S - = , (112)
OViina oxk | 0xt Ox! \ OVina 0x'0x! OV ng Ozt \ 9zl 82k OV ng
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LB ey D [t (8 ) 8 o ( o
OV na g azi | " 0ak 9l OV OV jing Ok Mag T
ot 02 oS
T ag g . 11
N g ko (avklna> (113)

Eq. (109-113) can be substituted into Eq. (108). By means of the EULER-LAGRANGE derivative:

00 (def) 00 20 20
m n 8na Vk‘avkna—i_vm 8Vkma (114)

and the partial particle balance in the form:

. (def) Ong | Ona (a7) W' DjY
e = ot v ari Y0zt 9z (115)

we finally write for the entropy production (:

0 4 3S — oS 0 oS
C_axi{¢ T za:]a Ng +§O;7’La OVing Oz <8Vlma>]
" O ovt Ong  OS
+ Z ox! avhna Z oxk oxl 8Vkina}

8/T Z
O‘@xz N

8vi Zel 2/3( ik il ik gl 88 - 8”& ag _i GS
8 j{ + J- (F F"+ F""F )a Kl Ot 3ana ozl

v

Z e — 54
Ox'0x! 8V jiNa

pe & N~ OS s w08 || o
a S+%:na5na 27 ol =0 (116)

Indeed, the calculations leading to Eqgs. (109-113) are lengthy but easily reproducible. In particular the
divergence term of Eq. (113) was arranged in this form because of the last two summands of the divergence
term in Eq. (110) and keeping the partial particle balance of Eq. (115) in mind. In the same manner one
can combine the last term of Eq. (111) and the second part of the divergence term in Eq. (109).

5.2 Entropy, Heat and Diffusion Flux and Mechanical Constitutive Equations

Eq. (116) can now be exploited in the same manner as in Section 4.1. First, we define the entropy flux
such that the divergence term of the first two rows vanishes:

O Entropy flux:

¢i:%+§j o=

oS 0 One S ol dn, S
_— . (11
OVing Oxl <8Vlma>] Z 0xl OV ing Z Oxk 9zl OV ing (117)
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Consequently the remaining equation takes the form P -x 4+ Q > 0, V(x = V7v%); and it follows P = 0 and
Q > 0. In particular it holds that:

01T < a 5S
v , 'Z > 11
’L] 14 14 "
J —2/3 F]kFll F’LkF]l o 9 a Na
=T + 8ckl Ea: ox'’ 8V iNa Ozt 8Vﬂna Z Oxt0x! avﬂna
s =S J 230kt o5 119
- T T Z na— T3 9 | (119)

Eq. (118) and (119) represent important results which allow to derive the constitutive equations for the
heat flux, the diffusion flux and for the stresses in multi-component, multi-phase solid mixtures. The partial
derivatives of S must be substituted using the different functional representations of the HELMHOLTZ free
energy (¢ =1,...,vand f=1,...,v—1):

F([E Na, Vi nayvz]nav ) F(T Na, Vi na,V”na, )
= F(T, ys, Viys, Vijys: Vip, Vijp, p, ) = F(T,ys, Viys, Vijys, Vip, Vijp, C7) (120)

and applying the LEGENDRE transforms of Appendix E - G.
As an example we consider the heat and the diffusion flux in Eq. (118). To this end we define the chemical
potential pi, in multi-phase mixtures according to Eq. (50) and (54) as:

fio (det) OF/T o M e 0F/T 1 6F/T
T  ng T  0pa  Ma ONg

(121)

with the alternative functional representation of the HELMHOLTZ free energy pp = @(T, Pas Vipas Vijpa, )
and the EULER-LAGRANGE derivative introduced in Eq. (114).

In order to guarantee a non-negative entropy production in Eq. (118) we choose 5% and ¢’ such
that quadratic expressions result, cf., Section 4.2. The LEGENDRE transform in Appendix E yields
6S/0nq = —8(F/T)/ény. Therefore we find (without thermo-diffusion coupling):

O Diffusion flux:

5 ij 0T \m, v i i O (1 — p3)
gh=>_ M oo and Jy=) B~ (122)
5=1 5=1
O Heat fluz:
. - 91/T
b =kY 843' (FOURIER’s law) | (123)

where the symbols Mﬁ%, Bzﬁjé and k% stand for the (positive definite) coefficients of the mobility and
conductivity matrix. Moreover, the sums range from 1 to v —1, and the difference of the chemical potentials
occurs due to the incorporation of the constraints j!, = — Eg } %]ﬁ or J, =— EE;} JZ;, respectively.
Note that the higher gradients do not enter the classical FOURIER’s law in Eq. (123) whereas the diffusion
flux incorporates higher gradients due to the re-definition of the chemical potentials in terms of the EULER-

LAGRANGE derivative according to Eq. (121).
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The mechanical constitutive equations, e.g., for the pressure p or the 2nd PIOLA-KIRCHHOFF tensor t9
follow in an analogous manner as illustrated in Section 4.2, i.e., from the exploitation of Eq. (119) and the
LEGENDRE transforms examined in the Appendices E - G .

5.3 An Instructive Example: Isothermal Diffusion in Binary Mixtures

5.3.1  Preliminary Remarks on the Chemical Potential. As we shall see below it may be practical to

express the chemical potential i, or i, in terms of §F/dys or (ﬁ/éc/j, respectively. To this end we consider
the LEGENDRE transform in Appendix F and write for the case of isothermal diffusion (i.e., T = const):

(121); OF (App.F) ax T
= — = e 124
fa g /\221 Sy < n n2> (124)

Thus one obtains for the difference term in Eq. (122);:

ms A M dsxn M
™ v T 9r ) 12
M Z(Sm(n > Z(Sy,\<n n2> (125)

Note that the calculation of Eq. (124), directly follows by applying the relations of Eqs. (H13-H15) to the
three summands of the EULER-LAGRANGE derivative defined in Eq. (114).

For the consideration of the alternative definition of the chemical potential p} in Eq. (121)2 one needs
the LEGENDRE transform between the following functional representations of py:

pp =F(T, pa, Vipa, Vijpa:c?) = F(T, ¢4, Vicg, Vijcg, Vip, Vizp, p,c) (126)

where « = 1,...,v and = 1,...,v — 1. By means of the relations derived in Appendix H the following
relations hold:

= — v—1 _

. (121); OF (App.H) OF OF <5o¢/\ p)\>

» (2 ) 08 LSO (Qax P2 127
pa op Zléq p P (127)

and for the difference term in Eq. (122)s:
2 Oox 0F 05p _ 10F
—_ . 12
Z5CA ( ) Z5CA ( ) 25(3/\ p pocs (128)

Note that the variational derivatives §F/6p and 5?/5;} vanish in the difference of the chemical potentials
in Egs. (125, 128).

5.3.2  Particle Diffusion Fluz. In what follows we specify to a binary mixture A-B characterized by
the following relations:

n=nx+ng , Ys=1—ya. (129)
For the case of isothermal diffusion as defined before, Eq. (122); reduces to:

., 2 (ann — pa)
IA= T oxJ

and ji = —Z—f;jg . (130)
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The difference of the chemical potentials reads according to Eq. (125):

ma ma (5F 51@‘ (125) ma oF OBA Na oF OAA nA
mp'? T MA T g ong  ona | mpoya\.n, n2) oya\n  nZ
0
1 6F (m
noya \'ms

Thus a combination of Eq. (131) and (130); yields for the particle diffusion fluz of component A:

4 MY, . T1 6F App.G) MY, |1 §F
Jh ==V [—— (m—‘;yAerB)] e TAags [—— <%yA+yB>

132
T noysa \m T noya \mp (132)

)

in which the diffusion flux of component B is determined by the relation of Eq. (130)s.

5.3.3  Mass Diffusion Fluz. Analogously to Eq. (129) and (130) we write for the total mass density,
the mass concentrations and the mass diffusion flux of component A:

p=patps , ca=1l-cp (133)

and with Eq. (122)2

Ji_ B, 0ty — 1)
i

7 o with Jh = —J4 . (134)

By using the relation of Eq. (128) the difference of the chemical potentials reduces to:

o OF OF 2 OF (dma_pa) _0F (dan _pa) _ _1OF o
Mo lA = Sps " opa dea\ p p2) Sea\p  P2) T poea
=0

Hence we finally obtain from Eq. (134) and (135) and the LEGENDRE transforms in Appendix G and H:

.. > . . <&

. Bl . [(16F . B, _.[16F

T __Af [ 1 AA P 1
JA T \% p(SCA and JB T \Y% p(SCB 5 ( 36)

< ..
in which we used the functional representation: pp =F (T, cg, Vicg, Vijcg, Vip, Vijp, C*7).
Eq. (136) implies that, in contrast to the ‘multiphase-field approach’ of Eiken et al. (2006), the relation

p(pfy —ph) =9 I<E>‘ /deg = =6 I<E>‘ /éca holds ezclusively, if the mass concentration cg is used, otherwise the
relations in Eq. (132) must be considered.

5.3.4  Ezpansion of the Free Energy Density. In order to investigate Eq. (136) in more detail the

<
question arise, how [ depends on the higher gradients, e.g., V,c, V;jcg, Vip, and V;;p. To this end we
follow the strategy of Cahn & Hilliard (1958) and expand the HELMHOLTZ free energy into a TAYLOR series
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around the homogeneous (i.e., no gradients) state!:

g IF, OF 1 0°F
F = Fo(T, g, C v v 5P Gien-Vies o+ ... 137
o(T,cB,CY) + NV ren kCB + OV en WCB + 5 OV eendVien kCB - VicB + (137)
~— ~— ~——
(CE Weh _ w (42D o pit

where the introduced so-called Higher Gradient Coefficients (HGCs) depend on the temperature T, the
(homogeneous) composition cg, and the strain tensor C%, i.e., I¥ = I¥(T,cg,CY), a* = " (T, cg, CY),
and b = V¥ (T, cp, C¥). Furthermore we neglect in Eq. (137) the higher gradients V;p and V;;p, since
they do not enter the diffusion flux in Eq. (136).

The HGCs in Eq. (137) characterize the (smoothly) changing composition within the phase boundaries
and are directly linked to the surface tensions between the different phases, ¢f., Dreyer & Wagner (2005).
Moreover, they can be ezactly determined by means of microscopic theories taking interatomic potentials
into account, e.g., LENNARD-JONES potentials (¢f., Dreyer & Miiller (2003)) or Embedded-Atom-Method
potentials (¢f., Bohme et al. (2007)). For instance it follows in the case of cubic lattices (due to the periodic
arrangement of the crystal) that [¥ = 0 and in case of no lattice deformations that a* = a - 6% and
bkl =b- 5kl.

The HELMHOLTZ free energy of the homogeneous state (e.g., of the melt), Fy, consists of a pure chemical
part and a pure mechanical part: Fo = them + ]F(r)neCh, cf., Section 4.2.4. The chemical part can be found
from phase equilibrium data, typically provided by thermodynamical databases, e.g., MTdata (1998). The
mechanical part follows from the integration of the stress-strain relation as explained for the case of the
ST. VENANT KIRCHHOFF law in Section 4.2.4.

5.3.5  Extended Diffusion Equation. For the investigation of the temporal and spatial evolution of the
mass concentration field ¢g = ¢(z',¢) within a non-reacting elastic solid mixture we rewrite Eq. (14) by
means of the relation p, = cqp as follows:

de o _
Pae " or

0 (partial mass balance) , (138)

where we put J]’é = J' and used the total temporal derivative d;c = Oiec + Ui(Vic). In order to calculate the
EULER-LAGRANGE derivative 0F/dc in Eq. (136) we obtain by means of Eq. (137) and ¥ = 0:

OF _0Fy _od e o oc oe OF e OF .
dc  Oc dc 0zk0xz! ~ Oc Oxkoxt *  9(dc/Ox™) ozt 7 0(0%c/dxmOzn) '

(139)

Thus it follows by virtue of the chain rule:

0 OF o™ dc Oc obm 90T e , 0%
_ e G0 oym 14
D <8(80/8xm)> 2 5c am 0xl 200 am oal T2 amaal (140)
0? OF B _82am” dc dc  da™ d9?c 9 9%a™ 9C™* Oc
dxmPzn \ 0(0%¢/0xmdxn) ) O dx™ O dc dx™mdxm  ~ OcOCTS dx™ dan
2 mn op TS mn 2,7s
_ 9%a™ 9CPICTs  da™m 0°C ' (141)

oCorCrs gx™ Jx™ oC™s Qx™mOx™

<
n the following we write by convenience F =F.
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The relation (139)1-(140)+(141) defines the variational derivative 6F/dc. Consequently one obtains for the
diffusion flux in Eq. (136)2 by using the abbreviation A% = % + b

J = ,%w‘ 1 % _ oM d%c B DAL 9e @
T p\ Oc Oxkox! Oc Ozk Ox!
AR 9 oCmn 92a  ocor oc™m Pakl 320mn>]

T 290 ook oxl | 800 92k oal | 90 dkad (142)

Eq. (138) and Eq. (142) represent the Extended Diffusion Equation (EDE). It is a non-linear Partial
Differential Equation (PDE) of fourth order for the concentration field ¢(z',¢) and can be interpreted as
the generalization of the Cahn-Hilliard equation.

5.3.6 Numerical Example: Spinodal Decomposition and OSTWALD Ripening in Eutectic Ag-Cu.

Assumptions and Restrictions. In order to reduce the computational effort we restrict in what follows to
linear elastic solids subjected to small deformations and use for the functional representations the linearized
strains €7 instead of the right CAUCHY-GREEN strain tensor C¥, i.e., Fg = Fo(T, ¢,e¥), a*' = a*(T, ¢, %),
W = bP(T, ¢, e), and A¥ = AM(T, ¢, V). Moreover, corresponding to small deformations we approximate
the first and second P10LA-KIRCHHOFF tensor, p*/ and t¥, by the CAUCHY stress tensor, o™, which implies
that the differences between the reference configuration and the current configuration are ignored. By using
a LAGRANGEian description, cf., Section 3.1, the primary variables are the concentration field c(X7,t) and
the displacements U*(X7t), which are determined by:

de | o' .
Pod—j + i = 0 (partial mass balance) 8?{3’ _

0 (static momentum balance) (143)

and for which the following constitutive equations hold:

6(F8hem —i—IF{)neCh) gl d%c B IAF 9e e
Oc 0XkoXx! Oc 90Xk oX!

HAFL §e Pemm H2akt  §eop pemn dakl  §2gmn

J' = —poMY(T\V?

-2 — — 144
Oemn 9Xk XU Peoremn 9Xk XU Pemn 9XkOX! | (144)
i .. OF dakt 9% bkt dc  oc 145
PEROTR 50 = Tl T 9 oxFOX! | 92 OXF OXT (145)
: ij (Hooxe) ijkl Kl Kl mech _ 1 _ij (nij _ ij ij _ l/arri 4
with o7, = KR(T, ¢) (eM — o AT), Fp = 30" (9 — aYAT) and €7 = 3(U'/0X7 +

8Uj /OX*. Moreover, the alternatively introduced mobility M% is given by the redefinition p2M¥(T) =
B, /T with [M#¥] = [m®/Js]. In order to solve the PDE system (143-145) for the unknown variables ¢
and U® numerically we restrict the simulations to three cases:

a) 1D-simulations without local thermo-mechanical strains, i.e., algllast =kl —oMAT =0, V{k,1}.
b) 1D-simulations under the presence of one-dimensional local thermo-mechanical strains! (“line strains”),
Qe e = Celast FONEM =0, V{k, 1} = {k,l|k-1>0}.

¢) 2D-simulations without local thermo-mechanical strains.

The restriction to line strains according to Case b) requires overestimated stresses in order to avoid defor-
mations in the second and third dimension. However, this 1D-case enables us to find a closed expression
for the strains eqjast = Eelast (X, 1) with X = X! To this end we assume linearity for the stiffness Kk and

1This strain state denotes the one-dimensional equivalent to the two-dimensional case of plane strains.
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for the thermal expansion coefficient o within the smoothly changing phase boundary between the two
equilibrium phase «a and j3, viz.:

- _ - e - _ igkl Kl _ g — C(X7 t)
Ee)=(1-0(c)Ea+O(c)Zp , Ea/p=1{K) 30050 , Oc)= T (146)

For cubic lattice structures (as given for Ag, Cu and Ag-Cu) all elements of the stiffness matrix vanish
except for KM = K22 = K3, K12 = K13 = K23 and K* = K% = K% (VoiaT notation), cf., Table 4.
By assuming in Eq. (145) 0}/, to be the leading term one obtains from HOOKE's law:

ol = [KH - @(C)(Kél - Kél)] (e — tAT) (147)
0% = [K§? = 0(c) (K3 — K37)] (€' — o AT) (148)
o33 — [KéS _ @(c)(Ké:)’ B Kég’)] (€1 — oMAT) and o2 g3 _ 28 _ (149)

>From the static balance of momentum, i.e., 90 /0X7 = 0, and with the dependencies o!' = (X)),
02?2 = 0?2(X), and 0% = ¢33(X) one obtains for the only non-trivial solution:

11
CiiLX =0 = o= og = const. (150)

and consequently for the elastic strains, ¢f., Eq. (147) and for the mechanical part of the HELMHOLTZ free
energy:

2
11 90 mech 1 99
€elast — ) IFO =35 . (151)
11 _ cs—c(Xit) (711 11 _ F—c(Xot) (711
K5 — oo (K — Kl 2R - SR (K - K

Egs. (151)12 can be directly used to substitute the FRh- and the e”-terms in Eq. (144). In order to
solve the resulting EDE one needs reliable material data, in particular for (i) the chemical part of the
HELMHOLTZ free energy them, (ii) the stiffness matrix Ké}ﬁ and the thermal expansion coefficients a'!

(iii) the mobility M%¥, and (iv) the HGCs a*!, b*, and AF!. For this reason we consider the eutectic binary
alloy Ag-Cu at 1000 Kelvin and put A = Ag, B = Cu, and ¢ = ccy.

Materials Data I. Chemical Part of the Free Energy'. In order to determine them we use the
commercial MTdata™ database, MTdata (1998), which provides a field of discrete values them(c,-),
¢i = {0,0.01,0.02,...,0.99,1} from phase equilibrium measurements. In order to obtain a closed func-
tional form of these data required for computation and for the encoding we simply perform a polynomial
fit according to the MARGULES-ansatz

Fi™™(c) = (1 = ¢)ga + cgy + geRT [clnc + (1 — ) In(1 — )] + (1 —¢) pae + xu(l —¢)] ,  (152)

where R = 8.314 [J/(mol K)| stands for the universal gas constant. The fit parameters g4, gs, ge, X1, and
x 17 have no physical meaning and are compiled in Table 3 together with the resulting equilibrium con-
centrations, c¢,/g, following from the common tangent rule and the spinodal concentrations, csll;g, resulting
from the roots of 9?F§"°™ /dc2. The corresponding curves are displayed in Figure 2.

Materials Data II. Mobility, Stiﬂ"nesg, and Thermal Empqnsion Cpeﬁicient. By comparing the first
and second Fick’s law, i.e., dyc = —0J"/0X" with J* = —D"(dc/0X7) with the EDE for the limit case

1Note that the most databases, e.g., MTdata (1998), make no difference between the HELMHOLTZ and the GIBBs free energy.
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Table 3.: Fit parameters according to the MARGULES-ansatz and characteristic concentrations.
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Figure 2.: Free energy density and its second derivative as functions of the mass concentration for a
temperature of 7' = 1000 K.

of classical Fickian diffusion (no mechanical and HGC terms) one obtains the following relations between
the diffusion coefficients D" and the mobility M :

- . H2Fchem . Dij
ij _ A 10 ij _ _alB
DU = M o MY = ol . (153)
oc? C=Ca/p

The diffusion coefficients for the pure substances DiAjg/Cu = DAg/cuéij can be eagily found in the literature,

e.g., Brandes & Brook (1992), where they are measured by means of tracer experiments w.r.t Cu in Ag
and vice versa. Obviously the sign of the mobility depends on the curvature of IFBhem, which is positive
outside of the spinodal area (enclosed by the spinodal concentrations) and negative for ¢}’ < ¢ < &5F. In
particular a negative mobility gives rise for “uphill” diffusion (e.g., spinodal decomposition), during which
concentrations gradients are amplified.

As indicated by the equilibrium concentrations, c,/g, cf., Table 3, the equilibrium a- and (-phases are

extremely Ag- or Cu-containing. Therefore it is reasonable to approximate for the equilibrium phases:

[1]
[1]

0a~Zag and  Egm~Eq,  with 2= {K' o' MY} (154)
In order to determine the corresponding values within the phase boundaries we assume a linear dependence

according to Eq. (146). Table 4 and 5 finally shows the according quantities used during the simulations.

Materials Data III. HGCs. The coarsening rate is crucially influenced by the HGCs and, consequently,
their exact knowledge is an essential requirement for a quantitative investigation. In particular values which
are too high lead to overly high coarsening rates and vice versa. Unfortunately the HGCs are extremely
poorly documented, and, even if found, they are frequently ad hoc estimates the source of which is not
clear. Furthermore we could only find constant HGCs so that Eq. (144) would reduce to the first two terms
within the brackets.

Due to these shortcomings a theoretical framework based on atomic interactions (namely Embedded-
Atom-Method (EAM) potentials) was developed which allows the calculation of the HGCs as functions of



32 T. Béhme, W. Dreyer, F. Duderstadt, and W.H. Mdiller

Table 4.: Stiffness matrix of pure silver and copper in GPa and VOIGT notation, Source: Kittel (1962).

Kfjl 11 22 33 23 31 12 Kfjl 11 22 33 23 31 12
Ag Cu

11 168 121 121 0 0 0 11 124 94 94 0 0 0
292 121 168 121 0 0 0 292 94 124 94 0 0 0
33 121 121 168 0 0 0 33 94 94 124 0 0 0
23 0 0 0 75 0 0 23 0 0 0 46 0 0
31 0 0 0 0 75 0 31 0 0 0 0 46 0
12 0 0 0 0 0 75 12 0 0 0 0 0 46

Table 5.: Diffusion, mobility, and thermal expansion coefficients for the pure substances Ag and Cu Source:
Brandes & Brook (1992), MTdata (1998), Winter (2007).

D,, [m?/s] Dg [m?/s] My, [m5/Js] Mg [m5/Js] all [1076/K] ag (107 /K]

1.01 x 10~ 4.09 x 10°1° 7.25 x 10725 3.65 x 10725 18.9 16.5

c and ¢ Béhme et al. (2007). In particular it is shown that the HCGs take the form:

62

0 iy g of) Dak!
al(e,e ) = —k(0) 5L MM (e,e) W) = k(o) M (e ) AR S g

dc '
HM (c,e7) = Bf!(c) + ™ @Y () + eI (c) | (156)

(155)

where the functions q)lgl , @m”kl , and &5 gkl represent combinations of the different contributions to the
interatomic potentials and depend exphc1t1y and implicitly (via the equilibrium lattice parameter R = R(c))
on ¢. Obviously, H* contains a linear term w.r.t. €, and, consequently, the HGCs are not symmetric with
respect to positive or negative strains. Therefore we can distinguish between the effects of compressive and
tensile loadings during the diffusion simulations. Figure 3 (first row) shows the HGCs a!!, b'!, and A
calculated from the EAM approach for the ‘line strain’ case € = ¢ - 696117,

The functions used for the calculations of the curves in Figure 3 are very lengthy and extremely time-
consuming. In order to optimize the computation time we perform a bilinear interpolation of the form:

E(c,e) =kZ e+ kZ-ct+kn-c-ct+ky with Z={a' b .
= K K k= k5 h Hoptt Al 157

in which the fitting procedure must be performed separately for positive and negative strains. To this
end we use the atomistically calculated HGCs of Figure 3 (first row) at the ad hoc chosen points (c, &) =
{(¢a,0), (cs,0), (ca, £0.2), (c3, £0.2)}. Figure 3 (second row) displays the according interpolated functions.
The fit parameters introduced in Eq. (157) are compiled in Table 6.

Brief Remarks on the Numerical Realization. For the numerical treatment we, first, transformed the
EDE to a dimensionless form by replacing X*, Fo, and ¢ by the dimensionless quantities Xl IE‘O and ¢ using
the relations, c¢f., Li & Miiller (2001):

. ~ Wy Mg t
Xi=2 | Fy=-2 , =08 _ 158
L T L2(cg —ca)  to (158)

in which the factors L, Wq, and ty must be “appropriately” chosen. Table 7 shows the corresponding values
that were used during the simulations.
The resulting dimensionless EDE is implemented in a FORTRAN 90 program. Moreover, the spatial
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Figure 3.: 1st Row: Various HGCs calculated by means of the embedded-atom-method, c¢f., Bohme et al.
(2007). 2nd Row: Interpolated HGCs.

Table 6.: Interpolated coefficients for the HGCs as bilinear functions of ¢ and e.

= k= in N k= in N kZ in N k5 in N

e > 0 (tensile loading)

all —3.79.10710 8.74 .10~ 11 —6.40 - 10711 4.04-10711
pit —5.22-10710 4.72-10711 1.64 - 10710 5.84 .10~
Al —5.74-10710 3.74-10711 1.50 - 10710 1.53-10710
£ < 0 (pressure loading)

all —1.11-1079 8.74-10~11 1.91-1010 4.04-10"11
plt —1.52-107° 4.72-10~1 7.77-10710 5.84 .10~ 11
Al —-1.10-107° 3.74-10711 3.80-10710 1.53-10710

derivatives are discretized by finite differences (with N grid points in 1D and N x N grid points in 2D, cf.,
Table 7) and replaced by an algebraic expression in FOURIER space, cf., Dreyer & Miiller (2000). For the
required discrete FOURIER transforms we use the free available FFTPACKbS package, cf., Hairer & Wanner
(2002). The time integration is performed by means of an explicit EULER method with the constant time
step At and, partially, by an implicit and time adaptive RUNGE-KUTTA procedure using the free available
RADAU package, cf., Schwarztrauber & Valent (2004).

1D-Simulations. Figures 4-6 display the spinodal decomposition and coarsening process along a “line”
in Ag-Cu at 1000 Kelvin. We started with an eutectic homogeneous concentration profile (ceyy = 0.29)
disturbed by a slight fluctuation in order to enforce the unstable state to decompose. The outermost
dashed lines represent the corresponding equilibrium concentrations of the a- and (-phase, whereas the
innermost ones identify the spinodal concentrations, cf., Table 3. Obviously, the system immediately begins
to decompose for small simulation times. When the whole mixture reaches the equilibrium concentrations
coarsening proceeds such that the bigger phases grow at the expense of the smaller ones.
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Table 7.: Numerical parameters used during the simulations.

Simulations | Uy in GJ/m3  27L in pum to in sec N (NxN) Al
1D (strain-free) | 0.1 0.06 2.105 256 0.04-1076
D (5000 MPa) | 0.1 0.06 2.105 256 0.04-10°¢
1D ( 5000 MPa) | 0.1 0.06 2.105 256 0.02 - 1076
2D (EULER, 1 fluc.) | 0.1 0.05 1.462 128 x 128 0.1-107°
2D (EULER 16 fluc.) | 0.1 0.05 1.462 128 x 128 0.1-107°
D (RADAU) | 0.1 0.05 1.462 128 x 128 —
° Sr?orlzo;?gl p051|510| on 230 20 ° Sr?orlzo;togl p051|510| on 2!30 20 ° Sr?orlzoﬁ?gl posllstow on 2!30 20
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Figure 4.: One-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000 K
(strain-free case).

At this point it is worth mentioning that the total simulation times are in the range of some minutes,
which is notedly shorter w.r.t. the experimental observations of these phenomena, cf., Miiller & Bohme
(2006). The reason for that are the extremely small HGCs used during the simulations. In fact, typical
values found in literature are much larger, cf., Ubachs et al. (2004)!, which is more convenient from the
numerical point-of-view and results in greater time steps Af. However, in some rare cases there are also
similarly small HGC values reported in the literature, cf., Kiipper & Masbaum (1994),2 in which the
simulation times are also extremely short.

Furthermore smaller HGCs result in a sharper phase boundary width and, consequently, the discretization
N must be chosen sufficiently large, whereas the simulated volume element 27 L must be chosen small in

!Here the authors used a constant value of yc = kA? = 1-107° N (in their notation).
2Within this work the authors considered an Al-In system and chose a constant HGC of 4 = 2 - 107!0 N (in their notation).
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Figure 5.: One-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000 K
(tensile loading of o¢g = 5000 MPa).

order to model the interface boundary realistically,? cf., Table 7. In particular, the discretization of N = 256
yields approximately 9 grid points within the phase boundary as illustrated in Figure 7 (second row, left).
From this fact we calculate:

256 grid points = 0.06 um < 9grid points = 2.1nm = 21 A, (159)

o
which corresponds to approximately 7 atomic distances (rag = 2.88 A) and reflects a realistically sharp
interface boundary.

The impact of the HGCs on the interface width is illustrated in Figure 7 (second row), in which we varied
the magnitude of A'! under the constraint of 9A!'/dc = const. The corresponding coarsening behavior
is displayed in Figure 7 (first row), in which the larger interfaces widths result in faster coarsening rates.
From the phenomenological point-of-view this fact is clear since sharper interfaces increase the separation
of the different phases and, thus, decrease their interaction and, in turn, their coarsening behavior.

Finally the application of very large loading regimes during the simulations illustrated in the Figure 5
and 6 is noticeable. This was done in order to investigate the effect of thermo-mechanical stresses within
manageable computational times. Indeed, tensile and compressive stresses increase the coarsening rate. In
particular, it seems that pressure loading has a stronger influence on coarsening than tensile loading.

2D-Simulations. For the two-dimensional simulations we start with a eutectic homogeneous concentration
profile disturbed by one, two and 18 fluctuations as indicated in Figure 8. We use a spatial discretization of
N x N = 128 x 128 so that approximately 4-5 grid points are within the phase boundary. Figure 9 and 10
displays the obtained micrographs and the decomposition and coarsening process, in which the white areas
belong to the Cu-rich f-phase. In particular, we performed — as already in the one-dimensional simulations
— an explicit EULER method for the time integration.

3See also Brandmair (2007) for a detailed study of the different numerical parameters.
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Figure 6.: One-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000 K
(pressure loading of o9 = —5000 MPa).
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Figure 7.: The impact of the magnitude of the HGCs on the phase boundary width and on the coarsening
rate. 1st Row: Coarsening stages after 20000 loops (strain-free case) using a HGC of AM = Al = All =
2- AL\ and AM =4 ALl 1. 2nd Row: According zoomed interface areas.

Note that the 2D-simulations are extremely time-consuming and, consequently, we searched for opti-
mization possibilities. To this end we realized the time integration by means of a time-adaptive Implicit
RunGE-KuTTA (IRK) method provided by the RADAU routine, cf., Hairer & Wanner (2002). The corre-
sponding simulations are illustrated in Figure 11. Unfortunately the complex IRK procedure increase the
computational time considerably, which cannot be compensated by the larger time steps At. Therefore the
investigated coarsening stages are much smaller than the corresponding ones in Figure 9 and 10. In particu-
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Figure 8.: Initial concentration profiles used for the two-dimensional simulations.

lar the final stage in Figure 11 corresponds approximately to the right graph of the first row in Figure 9 and
10. Finally, Figure 12 documents the adaptive time steps adjusted by the RADAU routine. Obviously At
continuously decreases during the spinodal decomposition process and remains relatively constant during
coarsening with Af =~ 1.4 - 107%. From the numerical point-of-view this fact may be interesting since it
eventually allows some conclusion about the impact of the different terms of the EDE.

0 20 40 60 80 100 120 0 20 40 80 100 120 80 100 120

0 20 40 60 80 100 120 80 100 120 0 20 40 60 80 100 120 80 100 120

Figure 9.: Two-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000 K
without thermo-mechanical loading by using the explicit EULER method (one initial fluctuation).From
upper left to lower right: after ¢ = 0.005; 0.01; 0.015; 0.035; 0.1; 1; 2.1; 4.9.

6 Conclusion and Outlook

In this work a thermodynamically consistent theory was presented, which allows modeling of diffusion
processes in multicomponent (solid) materials and the accompanying phenomena of phase transition and
phase evolution, in particular under the presence of local thermo-mechanical strain fields.

We started with a brief historical overview about the development of diffusion theories and discuss
existing shortcomings and open questions within the models and approaches. In particular we pointed out
that the existing entropy principles - such as Liu’s method of LAGRANGE multipliers - yield non-unique or
questionable relations for the entropy flux ¢’. Due to these arguments we presented five statements for an
entropy principle, which form the undisputed elements of the existing principles.
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Figure 10.: Two-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000 K
without thermo-mechanical loading by using the explicit EULER method (16 initial fluctuation). From
upper left to lower right: after ¢ = 0.004; 0.006; 0.015; 0.04; 0.06; 0.1; 1.5; 4.3.
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Figure 11.: Two-dimensional simulation of spinodal decomposition and coarsening in Ag-Cu at 1000
K without thermo-mechanical loading by using the time adaptive implicit RUNGE-KUTTA method
provided by the RADAU routine (two initial fluctuation). From upper left to lower right: after { =
0.0038; 0.0077; 0.0088; 0.0131; 0.0163; 0.0217; 0.0307; 0.0486.

In order to stress the feasibility of the principle we, first, investigated a single phase, which corresponds
to the case of classical mixtures, and derived the constitutive equations for the entropy, heat, and diffusion
flux as well as for the pressure and the second P10LA-KIRCHHOFF stress tensor. Moreover, we also derived a
GIBBs-DUHEM and various GIBBS relations and demonstrated the consistency with the results of classical
thermodynamics of fluid mixtures. Furthermore the additive decomposition of the HELMHOLTZ free energy
@ = @mech 1 pehem an 4 of the chemical potential p = p™e" 4+ 4™ was introduced, motivated by the
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Figure 12.: The time step adaption of the RADAU routine during the simulation illustrated in Figure 11.

observation that the mass density p within a diffusive solid mixture can change by two independent effects:
(a) elastic lattice deformations (mechanical effect) and (b) redistribution of atoms by diffusion (chemical
effect).

Second, we exploited the entropy principle for multi-phase mixtures by means of the incorporation of so-
called higher gradients. In particular, we turned the attention to the diffusion flux and derived an extended
diffusion equation, which represents - in combination with the partial mass balance - a generalization of
the well-established Cahn-Hilliard equation. The HGCs depend here on the concentration and the local
thermo-mechanical strains, which lead to additional contributions to the diffusion flux. Finally we specified
to the binary case and exemplarily presented numerical studies w.r.t. the brazing solder alloy Ag-Cu.

The introduced thermodynamical approach can be used as a general framework in order to obtain the

constitutive relations for different classes of materials. We specified to non-reacting (rg/" = 0) mixtures

and to the elastic case (Uzﬂss = 0). However, an extension to reacting materials under, e.g., plastic defor-

n
4

mations can be performed by considering the production term and the dissipative term aéjiss during

the exploitation of the 2nd law. In particular, Uleiss contributes the the entropy production, c¢f., Eq. (37),
and, thus, it can be treated analogously to the diffusion flux or the heat flux. Furthermore the numerical
investigation of mechanical loading to the two-dimensional case as well as three-dimensional simulations
are planned for future studies.
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Appendix A: Proof of Equation (44)

The following relation holds between the derivatives of the reduced right CAUCHY-GREEN tensor ¢* and
the CAUCHY-GREEN tensor C* according to Section 2:
) d /. _ 2 g oy
P (J 2/3Clcl) _ 2B oM o gm2/30kL (A1)
dt 3
Moreover we have the identity:
j=4 (det F7) = 9 (det F9) | F* = [(det Fiy(F~1)k ot _ ot (A2)
dt OF*k ox! Ok
and
. d . . o™ ov™
kl mk rrml mk pml mk roml ml mk
=3 * oxt T axi
o™ ox* _ . ov™ ox® _ . o' ( Ko il —_—
=9 S = o5 (FIEE 4 FILEE) A3
dr* OXF dz* 9X! 97 * (A3)
The result of Egs. (A3) and (A2) can be inserted into Eq. (A1). We finally find:
2 a’Ui avi . . . .
Kl 4 4—2/300 i —2/30V" ( Gk il jl zk)
=—-J - J - FINEY 4+ FIFY) A4
¢ 3 ox? + oxJ + (A4)
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Appendix B: LEGENDRE Transform between S and &

We start with the functional representation S of the entropy density pn and write for the total differential:

d(pn) =dS = d(pe) + E — dna 88} 2 (B1)
. 08 oS oS

—d8 = = 2 B2

A4S = o dT + o, dng + 5 de¥ (B2)

with gfe = 1/T. Furthermore it holds with pe = é(T, N1y.en, Ny, C9):

. 0€ "L O€ o€
d(pe) = d€ = 37 dT + 2 o dng + et

2 (B3)

The term d(pe) in Eq. (B1) can now be substituted by the left hand side of Eq. (B3). By means of the
definition of the absolute temperature, Eq. (36), one obtains:

1 0& oS 1 0& oS 1 € y
- _ _ - _ - _ ]
d(pn) = 7 4T+ Z <8na + Tana> dna + (8&1 + T&d’j) de (B4)
~—~— =1
—2a$ - .

and we identify with d(pn) = dS :

s 10¢ 08 _ 98 10¢ 08 _9S  10¢ (B5)
O  TOT ° 0Ong, Ong TOn, = Oci  dci  Toci’

Since the variables T and n,, are independent within the domain of S one can, in particular, find from Eq.
(B5)s the relation (6 # a):

aS 1 [ 8¢ aS 1 0F 10
05 _ _1(0¢ 05 _ 107 _ 10(py) . (B6)
ong Ong Ong T Ong T Oong, T cii
Appendix C: LEGENDRE Transform between F and F
Recall the functional representations shown in Eq. (49)2 3. Consequently we can write:
. OF OF OF | .
= = — — dc¥ 1
d(pp) = dF = = dT z::l e dng + 575 de (C1)
= v—1
- O0F oOF oOF OF
= dF = —dT —d —d — dc¥ C2
aT +ﬁ§ay5 st 5, P e °° (€2)
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Obviously the transfer from F to F requires the substitution of dyg and dp by dn,. For this reason we

calculate:
v v ap 14
p(ny,...,ny) = azzjl MaNe = dp = g %dna = glmadna (C3)
ng 8y5 - 50‘5 ng
e Ny) = =—— = dyg = d dng .
(C4)
Egs. (C3) and (C4) can be inserted into Eq. (C2). We obtain:
NSy ng OF . 4
T e iy 2
d(py d - Z a5~ Z o0, ( n2) dng + 57 de (C5)
By comparing the coefficients between Egs. (C1) and (C5) results
OF OF oOF OF 2 OF (5% ng oF  OF
@ _ 9L L = my— = (—-= , — = — C6
ar — oT = Ona " op +; dys ( n n2> dcii — Ocli (C6)
Appendix D: LEGENDRE Transform between F and F
According to Eq. (49)3 4 we write:
8}' 8]:' .
d = d.7:— —dT d * C2
(o) = + Z ys + R (C2)
, OF y
= dF dT+Z dyﬁ++ 507 407 (D1)
Hence we have to substitute dp and d¢” by means of dC%. For this reason we find
2/3 ij i
ij( ij ij Po i ocv aCy
C(c, p) = J*3c = < ) = doV = 8kldckl o dp, (D2)
L 9CT (@u=c) 1 0 Lo\ st | sk
h - - Z] ]t — _ Y (2 ] ] (2 D
wit ek 5 5ok = (C + O 2([) (077" + §7%6") (D3)
ij 9 i 2/3
and 297 _ f—c— < > (D4)
op
Insertion of Egs. (D2)s, (D3) and (D4) into Eq. (D1) results in:
, v—1 , , 2/3 i 2/3
1 . oo 2l
oOF oF oF 1 <@) (5zk‘5jl +5]k51l)dckl _ gc_ <@> dp (D5)
p\p

d(pp) = o 4T+ > a5 dys + 565 )
A=1
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Comparison of Egs. (C2) and (D5) yields for the coefficients:

OF OF OF  OF

OF _0F  oF _0F  OF _ 2c7 ()"’ oF
or —oT ' dyg dys = Op  3p \p oc 7’
OF 1 9F (po SA Gl | siksil

Appendix E: LEGENDRE Transform between Sand §

According to the functional representations in Eq. (103); 2 the following total differentials are formulated
(a=1,...,v):

S oS oS , oS y oS ..
= = — _ 1 1) 1]
d(pn) =dS 8p6d(p6) + 8nadno‘ + 8V"nad(v Na) + 8Vijnad(v Na) + 5 de (E1)
. 0S oS oS 4 oS g oS . ..
— - _ _ = ? ) 2]
dS = T + Bnadna—f- avmad(v Na) + awnad(v na) + 5 7de7 (E2)

5. = 1/T. The total differential of the internal energy
pe

with the definition of the absolute temperature 08
density pe = IE(T, Ny Ving, V¥ng, ¢i?) in Eq. (E1) can be replaced by means of:

. OE Ok OR : OR . Ok .
— — _ _ __ g - () " Ad,9
d(pe) = dE 8TdT—I— 8nadna+ 8V’inad(v Ne) + 6Vijnad(v Ne) + 8cijdc . (E3)
Hence it follows from Eq. (E1):
- 10E 1 0E  8S 1 OE dS ;
S =7apdT + (T e Ona) Ao + (T ONVing GVina) d(Vina)
1 OE dS g 1 0E oS .
- ij - ij
N (T Nine awm) HV ) (T g * acw) de? (B4)

Since T and n, are independent arguments within the functional representations E and S we identify:

#® _10E 06 _o0F L 06 oF
or  ToT Ong  Ong OVing  OVing
oS oF oS  oF
OVing  OVin, ' oci ol (E5)

where F(T, ng, Ving, Viing, ¢) is the functional representation of the HELMHOLTZ free energy density pe.
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Appendix F: LEGENDRE Transform between [ and F

Using the representations in Eq. (120) we find the following total differentials (o« = 1,...,v and g =
1,...,v—1):

. OF OF OF . oF y oF .
= [ - ? o 1] 17
d(pp) = dF 8TdT + e, o —dng + OVin, d(V'na) + OViing d(VYn4) Ocii (F1)
_ JF OF OF < OF g OF
=dF = —dT + — dyg +——d(Viyz) +———— d(V7y5) +=—d
a7t gy, W8+ vy, AV W) +agi, AV ) 450 de
7 ) » y
— (V! (VY _dc . F2
+ v, (V'p) +ava (V) tod (F2)

Now the terms with brackets must be “suitably” replaced by expressions of dng, d(Ving,) and d(V¥n,,).
For this reason we write as follows:

p= Zmana = dp= Z madne , (F3)
VZ,O — Z mavina = Z mCV CV 9 (F4)
Vip= Z moVing, = d(VYp) Z mad(Vin (F5)
Furthermore holds:
ng .
Yp = = ys=Yp(na), (F6)
Za Na
Viys = V" < 2 > = Viyg = Y5(na, Ving) (F7)
Za Na
Viyg = VY (27:6%) = Viys =Y (ne, Vine, Vina) (F8)

and after a straightforward calculation:

5P n
Y’ (5 n )

i N _ 3 B iy i _ng _ng i

d(Vyg)—Za dno‘+28V’n d(Vna)—Za:V <n n2>dna+za:<n n2>d(v =)
(F10)

i 8%?? 8\3{? k 8?? Kl

A(VYy) = Y —Edna+ Y s=—d(VFina) + ) sop—d(VFne)
7 9 B ] 5045 ng % 5046 nﬁ %
= ZQ:VJ (—n - 2) dng +2) V7 (—n - §> d(Vina) + <—n — 5 ) d(Vna)
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Substituting the underbracket terms in Eq. (F2) by the results in Egs. (F3-F5) and (F9-F11) yields:

OF OF (6% ng OF _, (6°°  ng OF .. (0% ng
t2 {maa—p " Z {&uﬂ <— - —> T iy Y (7 - W) T vy, Y (7 B ﬁ) } }d”a
OF OF §ob ng OF 58 ng .
—— : — — L) 42— — =L Na
T Sl (5 3) i (-3

%ﬂ wa ZLQiﬁ@f—ﬁﬁ}awma' (F12)

and we identify with dF = dF-

oF  OF oF  OF
oT ~oT ' dci  dci 1)
Rl OF OF (6°F g OF _, (00 ng OF . (%% g
= m— — (== _yi(—— -2 —vi(—_2) |, (F14
Oneg " 8p+§[8yﬁ< n n2>+8V1yﬁv ( n n2>+8VUyﬁv ( n n2>] (F14)
oF OF OF  [6°F  ng OF 5% g
Ving oVip * Z {awyﬁ < n n2> * GVUygv < n n2>] (F15)
o §oB ng
— = 2. Fl
OViin, vw Z 3v11y6 ( nz) (F16)

Appendix G: LEGENDRE Transform between F and )

This calculation is similar to that one of Appendix D. We start with the total differentials for F and F, vz

d(pp) = dF = dF =

0 g OF
——d(V¥ —d
+8va5 (V7ys) + 25

Y (G1)

R o g
)

K d(vijp)+£dcij : (G2)

IF 7
'pd(v P+ oViip 0CY L—

The term with the bracket, i.e., dC%, can be substituted by the relation

i _ L (po A i siksiha k267 (po 2/3
A0 = = (P2) 7 (sikait 1 gikgityact — 2 (P0) g, (@3)
2\p 3p \p



A higher gradient theory of miztures for multi-component materials 47

following the calculations shown in Egs. (D2-D4). The resulting total differential for dF can be used to
identify the coefficients OF /0T, ...,0F /Oc*. In particular it follows that:

OF OF _ R
==z 0 == Ty V'ys, Vs Vip, Vo) (G4)
and
oF C” oF OF 1 (po : ot sil shjy OF
or T Z (PO (iRl 4 silgki . G5
dp 3 p oCu ’ 9cHM 2 <p> ( o0 )

Appendix H: LEGENDRE Transform between Fand F

According to the functional representations introduced in Eq. (126) we write for the total differentials of
pp(a=1,....,vand f=1,...,v—1):

2 9F OF OF . ) g oF ..
=dF = —dT + —dp, : e _ Tpa) + =—dc¥ H1
d(pp) a7l t apad” + av%d(v Pa) + 8V”pad(v pa) + 507 (H1)
- OF OF OF . OF y
—dF = —dT + —d AV d(vi
T o mia. +3Vz0ﬂ.(v_cm. T ovi 3 ._(v_.cﬁ)
F . F g OF aﬁ
AV _d(V Z H2
+ v (V'p) +ava (V) S0 455 (H2)

The highlighted terms must be substituted by the expressions dp,, d(Vips) and d(V¥p,). Analogously to
the Egs. (F3-F5) and (F6-F8) one finds:

P:Zﬂa = dp:zdpa, (H3)
Vip = Z Vipe = d(V'p) Zd , (H4)
Vilp = Zmavijna = d(Vip) Z d(VYp,) , (H5)
«
and
=t = = Colpa) . (H6)
Za pa

Vieg =V’ ( Ps ) = Vieg = Chlpa: V'pa) | (H7)

Za pOé
Vieg = VY <Zp6p ) = VWes = @g(pa, Ve V9 pa) . (H8)
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Thus we derive in the same manner as in the Egs. (F9-F11):

aC 58 p
deg = E dea =) (7 - p—i) dpa (H9)
oc;, aci /508 58 |
3 Py ; PB PB i
§ dpa + E 8Vi,oad(v Pa) = E \ (7 - ﬁ) dpa + E <7 - ?) d(V'pa) ,
(H10)

oy aC oCH
i B8
d(Vep) = § j dpa+§ :avk d(VF¥pa) +§ avkl d(V*pa)
[ sap . [ §aB . sap g
=y v (7 - 'Z—ﬁ) dpo +2 V) (— - P_g) d(Vipa) + (— - p—§> d(Vpg) .

PP
(H11)

Egs. (H3-H11) can be inserted into Eq. (H2). A following comparison of the coefficients between the Eqs.
(H1) and (H2) allows to identify the final relations:

oF oF  oF oF
o _ o - H12
or oTr ° 0cy  Oci (F12)
@_@+Z@ 7 b OF wi (07 _ps OF i (90 _ps (H13)
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oF  OF oF (6  pg oF . (69 py

- - S YA R W v (A H14

OVipa OVip +§ﬁ: [WZ% < p pQ) " W”Cﬁv ( p pQH ’ ()

OF

57 ps
— — == . H15
OViip, 8V”p Z 8V” % < p? ) (H15)





