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Abstract

Increasing the spatial resolution in functional Magnetic Resonance Imaging (fMRI)

inherently lowers the signal-to-noise ratio (SNR). In order to still detect functionally

significant activations in high-resolution images, spatial smoothing of the data is re-

quired. However, conventional non-adaptive smoothing comes with a reduced effective

resolution, foiling the benefit of the higher acquisition resolution. We show how our

recently proposed structural adaptive smoothing procedure for functional MRI data

can improve signal detection of high-resolution fMRI experiments regardless of the

lower SNR. The procedure is evaluated on human visual and sensory-motor map-

ping experiments. In these applications, the higher resolution could be fully utilized

and high-resolution experiments were outperforming normal resolution experiments

by means of both statistical significance and information content.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has become the most informative tool

for in-vivo examination of human brain function on small spatial scales. It is nowadays

utilized both in research as well as in clinical applications such as diagnosis and treat-

ment of brain lesions. Now that fMRI reached a spatial resolution of about a millimeter

and thus approaches a fundamental organizational scale of brain functions, namely corti-

cal columns, it is expected that pushing the technique to higher resolutions will provide

even improved insights into brain function in the near future. However, high-resolution

fMRI has an intrinsically lower signal-to-noise ratio (SNR) than lower resolution methods,

entailing challenges on experimental setup as well as on data analysis. A significant re-

cent discussion in this Journal [Kriegeskorte and Bandettini, 2007a, Kleinschmidt, 2007,

Kriegeskorte and Bandettini, 2007b] showed the importance of addressing these questions

in a systematic way.

Since MRI image SNR is proportional to the sample volume per image

voxel [Edelstein et al., 1986], the signal detection situation is impaired at higher spatial

resolution. In order to enhance signal detection and to weaken the severe multiple test

problem, spatial smoothing is common [Forman et al., 1995, Lowe and Sorenson, 1997].

However, the application of conventional, non-adaptive smoothing methods such as Gaus-

1



sian filters leads to an effective spatial resolution that is comparable to the situation when

the data is acquired at a lower spatial resolution but better SNR. One could therefore con-

clude that it is better to acquire fMRI data at lower resolutions [Scouten et al., 2006] due

to the inherent SNR loss at higher resolutions. Since physiological noise is proportional

to the signal strength, which in turn decreases with decreasing voxelsize, the situation at

higher resolutions could possibly be improved beyond previously described physics-based

limits [Triantafyllou et al., 2006]. Nonetheless, conventional data smoothing is intrinsi-

cally not suitable as a technique to utilize the benefits of higher resolution. Therefore, a

smoothing procedure would be desirable that does not lower the effective resolution but

nevertheless provides enhanced signal detection capabilities. Recently, we proposed such a

structural adaptive smoothing method based on the Propagation Separation (PS) approach

[Tabelow et al., 2006, Tabelow et al., 2008], which overcomes the drawbacks of non adap-

tive smoothing. The same intention inspired [Harrison et al., 2007, Harrison et al., 2008]

to use spatial priors derived from the Laplace-Beltrami diffusion framework.

In this contribution we will show that with using our smoothing method the potential of

functional imaging at higher resolution can be more fully utilized, which is demonstrated

on a visual localizer experiment and a sensory-motor experiment. In both experiments we

find that high-resolution scanning combined with structural adaptive smoothing clearly

outperforms no smoothing and Gaussian smoothing, and that the proposed procedure

enables one to take better advantage of high-resolution scanning. We believe that the

use of appropriate filtering techniques can make not only research studies more powerful

but also render clinical applications more informative, by increasing resolution without

exceeding clinically serviceable scan times.

2 Signal-to-noise ratio in fMRI

The determination of signal-to-noise ratio (SNR) in fMRI and its comparison between

experiments with differing resolution and other acquisition parameters is a non-trivial

task, both from a theoretical as well as from an experimental view. The main reason is

that the SNR depends on various parameters and conditions that often cannot be easily

held constant through different experimental settings. Another reason is that SNR depends

on physical as well as on physiological parameters, the latter one being more complex and

less well understood than the former. The main issues of SNR in fMRI can be summarized

as follows:

Noise in functional MRI can be well described by a sum of uncorrelated Gaussian

distributions of image noise of physical origin (σ0) and physiological contributions

2



(σP ) [Krüger and Glover, 2001]. Thus, the SNR, in particular in fMRI often denoted

as “time course SNR” [Triantafyllou et al., 2005, Triantafyllou et al., 2006], is given by

SNR =
S√

σ2
0 + σ2

P

, (1)

where S is the measured signal intensity in any one voxel. Since the physiologi-

cal component σP of the noise approximately scales with the signal size, i.e., σP =

λS [Krüger and Glover, 2001], one has

SNR =
S√

σ2
0 + λ2S2

=
SNR0√

1 + λ2SNR2
0

with the image signal-to-noise ratio SNR0 = S/σ0. Hence,

SNR =
1√

SNR−2
0 + λ2

. (2)

If FOVx and FOVy denote the field-of-view in x- and y-direction, respectively, Nx and Ny

the acquisition matrix size in phase and frequency direction, respectively, ∆x = FOVx/Nx,

∆y = FOVy/Ny, and ∆z the three voxel dimensions, BW the frequency bandwidth,

and Nav the number of averages, the image SNR is given by [Edelstein et al., 1986,

Parker and Gullberg, 1990, Sijbers, 1998]

SNR0 = κ V

√
NavNxNy

BW
, (3)

with the voxel volume V = ∆x∆y∆z. The parameter κ is the proportionality factor be-

tween signal size and voxel volume, and depends on the sample properties and acquisition

parameters such as echo and repeat times. Note, that in the case of non-interleaved exci-

tation the scan time is given by Nav · TR ·Ny. Let us consider Nav = 1 and BW = 1 in

arbitrary units. Thus, we have

SNR =
1√

κ−2V −2N−1
x N−1

y + λ2
(4)

which reduces to SNR = κV
√

Nx

√
Ny = SNR0 in case of absence of physiological noise

(λ = 0). Due to the two dimensional image acquisition, we henceforth assume a constant

slice thickness ∆z.

Within these specifications we compare the SNR in acquisitions with a low and a high

spatial resolution. If for the low resolution acquisition we set V = 1 in arbitrary units and

Nx = Ny = 64, we have

SNR−1
low =

√
κ−2/4096 + λ2 . (5)
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# ∆x ∆y V Nx Ny FOVx FOVy Time SNR−2 nSNR0

1. 1 1 1 64 64 64 64 1 κ−2/4096 + λ2 1

2. 0.5 0.5 0.25 256 256 128 128 4 κ−2/4096 + λ2 1

3. 0.5 0.5 0.25 128 128 64 64 2 κ−2/1024 + λ2 0.5

4. 0.5 0.5 0.25 64 64 32 32 1 κ−2/256 + λ2 0.25

5. 1 1 1 128 128 128 128 2 κ−2/16384 + λ2 2

Table 1: Signal-to-noise ratio (SNR) and scan time for various acquisition resolutions and fields-

of-view (FOV), assuming free choice of other imaging parameters calculated from Eq. (4). All

other imaging parameters are assumed constant. The numbers for nSNR0 in the rightmost column

represent the SNR as normalized to the first row of the table and as would be measured in phantoms,

i.e., without physiological noise components (λ = 0). All values are given in arbitrary units.

A high resolution scan with twice the resolution in both in-plane dimensions would then

result in a voxel volume V = 0.25. There are two possibilities to achieve doubled resolution,

with different effects on the SNR (see Table 1): shrinking the field-of-view and increasing

the matrix size. We do not discuss here, nor is it important for the results, when or

whether these alternatives are meaningful. We simply point to the fact that the first two

rows of Table 1 result in the same SNR. However, this comes at the cost of quadrupled

scan time! Furthermore, as indicated in the last row of Table 1, for each low resolution

scan, there is a parameter setting yielding the same resolution but a doubled SNR in case

of no physiological noise. Not all settings can always be realized in two acquisitions with

different parameters for the same experiment, since scan time and sample coverage are

effected by the choice of resolution as well.

Shrinking the field-of-view inherently comes with a loss of SNR [Edelstein et al., 1986,

Scouten et al., 2006] using the same scan time. This can be seen in the fourth row of

Table 1 as compared to the first row, where with the same matrix size but half field-of-

view as in the low resolution acquisition the SNR at the higher resolution is only one

quarter of the low resolution scan, in absence of physiological noise (λ = 0). Therefore, for

the experiments described in this paper, we achieve higher resolution by only increasing

the matrix size keeping the field-of-view constant, although this strategy increases the

scan time or, alternatively, reduces coverage. One could now argue that this comparison

between a lower and a higher resolution is misleading since it somehow hides the costs for

achieving a higher spatial resolution with passable SNR. There are three reasons for us

doing so. First, it is a natural setting, if one is interested in a high spatial resolution for

a given field-of-view. Second, for the main result of this paper, namely the achievement

of structural adaptive smoothing in high resolution fMRI, the specific settings are not
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relevant, since the smoothing bandwidth of the algorithm can be chosen in a completely

different way as for common Gaussian filtering. This will be discussed in detail in the next

section. Third, the presence of physiological noise may improve the situation in favor of the

high resolution scan. Physiological noise cannot be neglected [Krüger and Glover, 2001],

especially at higher field strength of 3.0 T or above. According to Eq. (4), the loss in SNR

of acquisition 3 relative to acquisition 1 in Table 1 is less than 2 for λ > 0. Note, that when

comparing acquisitions 1 and 4 the loss is less than 4. Figure 1 illustrates SNR-ratios as

functions of κλ for the acquisition schemes in Table 1.
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Figure 1: Ratios between SNR’s (top) and SNR’s standardized by square root of acquisition times

(bottom) of acquisitions # 2 — 5 and acquisition # 1 as a function of κλ.
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3 Smoothing fMRI data

The loss in SNR at high resolutions can be compensated to some degree by smoothing.

Smoothing is advised generally if at least one of two conditions hold: First, the BOLD-

signals are weak such that they cannot be detected without smoothing. Second, random

field theory is used to correct for the multiple testing problem; in random field theory,

defining the thresholds for signal detection requires a certain amount of smoothness for

the assumptions of random field theory to be valid. This corresponds to the challenges

2 and 3 discussed in [Kriegeskorte and Bandettini, 2007a], which are especially important

at higher resolutions. However, non-adaptive smoothing inherently reduces the effective

resolution with significant blurring at borders of activation areas. Thus, the advantages of

high resolution scanning are diminished to some degree. If one is interested in functional

structures at higher spatial resolution, one is caught in a trap: The SNR at the high

resolution may be too low and the multiple test problem may be too severe, leaving no

multiple test-corrected activations. Non-adaptive smoothing weakens the multiple test

problem and increases the SNR, but lowers the effective resolution, such that one can

argue that a lower resolution scan with increased SNR is advisable [Scouten et al., 2006].

Recently, we proposed a structural adaptive smoothing procedure [Tabelow et al., 2006],

that overcomes the drawbacks of non-adaptive smoothing and can achieve a noise reduction

without blurring the borders and thus keeping the effective resolution of the functional

image as acquired in the scan. Here, we shortly review the main properties of our algorithm

and restrict ourselves to the case of BOLD fMRI experiments and analysis by a linear

model [Friston et al., 1995, Worsley and Friston, 1995, Worsley et al., 2002]. One could

easily translate the application of structural adaptive smoothing to other contexts, which

is beyond the scope of this paper.

Our approach for smoothing fMRI data is mainly based on the observation that the struc-

tures of interest are defined by areas in which the parameter values corresponding to the

BOLD signal are similar and differ significantly from zero. The common non-adaptive fil-

tering approaches smooth the data cube at each time step separately, without making use

of the information contained in the time series. We therefore suggested to first evaluate

the linear model

Yi = Xβi + εi (6)

for the time series Yi = (Yit)t=1...T at each voxel i [Tabelow et al., 2006]. The design

matrix X contains the expected BOLD response evaluated at scan acquisition times and

nuisance parameters such as a slowly varying drift. After performing some appropriate
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prewhitening procedure, the error vector εi = (εit)t=1...T can be assumed to have zero

expectation and to be approximately uncorrelated.

We obtain fields of least squares estimates β̂i for the parameter value βi and, what is

most important, its error variance Var β̂i. Both fields are used in our structural adaptive

smoothing procedure. First, we define a structural assumption, which should be valid for

the field of the true parameter βi. In non-activated areas the parameter value is zero, while

it differs from zero in areas which are activated during the scan. In activated areas the

parameter values are similar. Hence, our structural assumption is a local constant model

for the BOLD-parameter. Based on this assumption, we developed an iterative smoothing

algorithm for the statistical parametric map (SPM) that is based on pairwise tests of

homogeneity [Tabelow et al., 2006]. The result is a smoothed SPM where the shape and

borders of the activation structure is preserved. As a consequence, in contrast to other

non-adaptive smoothing methods, the procedure does reduce noise while preserving the

resolution of the scan.

The main parameter of our procedure, which can be defined by the user, is the maximum

achievable variance reduction or equivalently a maximum achievable smoothness. Both

can be specified by selecting a maximum bandwidth [Tabelow et al., 2006]. While over-

smoothing is avoided through construction in the algorithm as long as differences between

the parameter values of two such region are statistically significant, the largest homoge-

neous region is to be expected the non-activation area, where the parameter value does

not significantly differ from zero. We therefore can choose the maximum bandwidth much

larger than in non-adaptive smoothing (as defined by the matched filter theorem) and

achieve a larger amount of variance reduction without blurring. This has the effect of

lowering the thresholds for signal detection, since the smoothness in non activation areas,

which determine the threshold under the hypothesis of no signal, is directly proportional

to the bandwidth. We therefore expect our procedure to be efficient in particular at higher

resolutions.

To summarize the last two sections, we consider the problem of signal detection at a low

and a corresponding high resolution scan. While smoothing the high resolution scan with

common non-adaptive tools may not be able to recover the SNR even at the effective reso-

lution of the low resolution scan, our adaptive procedure does reduce the noise and hence

increases the SNR at the acquisition resolution. Thus, we directly tackle the challenges

2 and 3 mentioned in [Kriegeskorte and Bandettini, 2007a] at the desired high resolution.

In the rest of the paper we demonstrate this for artificial as well as experimental data.
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4 Examples

4.1 Artificial data

For the creation of an artificial dataset we use the numerical phantom from one of our

previous publications [Tabelow et al., 2008]. Here, we analyze this phantom at different

spatial resolutions. The basic artificial dataset consists of 64 × 64 × 26 voxels. A slice

containing activation is replicated three times in the z-direction, followed by two slices

with no activation. Voxel size in z-direction was specified as twice the voxel size within

slices. At each of these voxels a time series was created with 107 samples, stimulus onset

times at the 18th, 48th, and 78th sample with a stimulus duration of 15 samples and

2 s between two samples. The positions of activated regions within the slices and the

amplitudes of the signal are illustrated in Fig. 2.

The form and size of activation areas change

Figure 2: Location of activated regions

and size of the signal within slices with

activations for the artificial data set.

Eight different signal-to-noise ratios, in-

creasing clockwise, are coded by gray

values. Black corresponds to the ab-

sence of a signal.

radially, whereas the SNR increases clockwise.

The standard deviation of the signal is 1.25k

for k = 0, . . . , 7. Errors were generated from

white noise with a standard deviation of 10 by

first applying an AR(1) model with parameter 0.3

and following convolution with a Gaussian ker-

nel with full-widths-half-maximum (FWHM) band-

widths (1, 1, 0.5) times voxel size.

In order to simulate measurements at different

spatial resolutions, we re-created the phantom at

32 × 32 × 26, and 128 × 128 × 26 voxels, through

averaging and replicating the signal to the new res-

olution, respectively. Corresponding to our general

setting in this paper ∆z is held constant. At the

lower resolution this automatically leads to partial

volume effects since the original phantom was pro-

duced at the medium resolution. At the higher resolution the structures are larger than

the voxel size. Independent noise has been added to all datasets. According to Eq. (3)

with 32 × 32 × 26 the standard deviation of the noise was divided by 2 compared to the

value σ of the medium resolution; for 128 × 128 × 26 the standard deviation is 2σ. This

mimics the ratio of 1 : 2 for the SNR in the absence of physiological noise and a constant

FOV.
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Figure 3: Probability of signal detection in an artificial dataset at different spatial resolutions

in xy-plane as described in the text. The columns of this figure correspond to the three different

spatial resolutions mimicking matrix sizes of 32× 32, 64× 64, and 128× 128. The lower row is the

signal detection result without smoothing. The middle row is the result of our structural adaptive

smoothing procedure compared to classical Gaussian filter in the upper row.

The upper and middle rows in Figure 3 show voxelwise detection probabilities after

smoothing the SPM with a Gaussian filter and with structural adaptive smoothing in

contrast to no smoothing in the lower row. using a FWHM bandwidth of 1.5, 3, and 6

voxel sizes to achieve the same amount of smoothness in mm. The gray level corresponds to

the relative frequency of signal detection obtained by averaging over all slices that contain

activations. Signals from small areas with very low SNR ratio are practically not detected

by either method. With Gaussian filtering the shapes of the detected activation areas
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Bandwidth

1.26                    2.12                  3.85                  6.02

Figure 4: Dependency of the probability of signal detection on the maximum bandwidth of the

algorithm for non-adaptive (upper row) and structural adaptive smoothing (lower row) at constant

resolution. The bandwidth increases from left to right: 1.26, 2.12, 3.85, and 6.02. The resolution

is the medium one of the artificial example (64× 64).

are not well reproduced. In particular, concave structures are oversmoothed. In contrast

to this result, the signal detection after smoothing with structural adaptive smoothing

achieves a similar sensitivity but preserves the shape and size of activation areas.

Partial volume effects make it practically impossible to detect fine structure in the low

resolution image, although the lower noise level would permit a voxelwise analysis without

smoothing. Increasing spatial resolution shows the full potential of the structural adap-

tive smoothing method. Gaussian filtering oversmooths and thus reduces the signal in

activation areas leading to smaller sensitivity, whereas false positives occur due to over-

smoothing the signal into non-activated areas. Structural adaptive smoothing can reveal

the shape of activation areas much better at medium resolution. Further increasing the

resolution leads to more noise, but due to the increased number of activated voxels, also

to a better adaptation and thus a more or less constant level of signal detection.

Furthermore, we show in this artificial example that due to the edge conserving proper-

ties of the structural adaptive smoothing procedure, we can take further advantage from

increasing the maximum bandwidth of the iterations [Tabelow et al., 2006]. While non-

adaptive smoothing simply decreases the effective resolution, structural adaptive smooth-

ing further increases the sensitivity without compromising the shape of activation areas

(see Fig. 4).
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4.2 Experimental data

We conducted a series of experiments to verify that the improvements by structural adap-

tive smoothing can be achieved also in experimental data. After reconstruction of the raw

data and motion correction, the time series in each voxel were modeled by a linear model,

with a design matrix specifying the explanatory variables including the task indicator func-

tion convolved with a hemodynamic response function template. Drift terms were modeled

by polynomials. To account for temporal correlation, the data was whitened by using an

AR(1) model. After voxelwise estimation of the parameters, structural adaptive smoothing

was applied to the array of parameters of interest to significantly reduce the variance of the

parameter estimates. Adaptive smoothing also allows to weaken the multiple test problem

and enables to define thresholds for the test statistic. A map of t-statistics was obtained

from the smoothed parameter map. Thresholds were then defined by random field theory.

Data was processed using afni [Cox, 1996] and the package ”fmri” for R (R foundation for

Statistical Computing) [Polzehl and Tabelow, 2007, R Development Core Team, 2006].

Experiments were performed on healthy volunteers and approved by the Institutional

Review Board of Weill Cornell Medical College. Data was acquired on a 3.0 T General

Electric (Milwaukee, WI) Signa Excite MRI scanner, using two-dimensional gradient echo

echo planar imaging pulse sequences (GE-EPI) on an eight-channel head receive-only coil.

For stimulus presentation, an IFIS system (InVivo, Orland (FL)) with a video display

was used. Anatomical high-resolution scans of the whole head were acquired using a

sagittal 3D-MPRAGE sequence (kindly provided by Gary Glover, Stanford University,

CA) with acquisition matrix size 256 × 190 × 110, 24 cm FOV, 1.5 mm slice thickness,

TI/TE/TR/TD = 725 / 1.772 / 8.604 / 1400 ms, flip angle 7◦, and 2 Nex.

Experiment 1 (motor) A somatosensory motor task was performed by one male sub-

ject. For functional MRI, a GE-EPI sequence with TE/TR = 40/2000 ms was used and

20 axial slices of 4 mm thickness were acquired. We used a field-of-view of 24 cm with a

matrix size of 64× 64 and 128× 128, yielding voxel dimensions of 3.75 mm and 1.88 mm,

respectively. A task was performed in three blocks of 60 s duration; each block consisted

of 30 s task and 30 s rest. The first 4 scans before these block were discarded, yielding in

total 105 scans. The task consisted of bimanual tapping of the thumb against all fingers

of same hand, one by one and in quick succession. Note, that the setting for the higher

resolution in accordance with Table 1 lead to a larger scan time per volume.

The analysis results at both resolutions after applying a Gaussian filter and structural

adaptive smoothing are shown in Fig. 4.
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Figure 5: Three slices through the primary motor area, with matrix size and smoothing method of

(left to right) 64× 64 non-adaptive, 128× 128 non-adaptive, 64× 64 adaptive, 128× 128 adaptive,

anatomy. (Multiple test corrected p = 0.05.) Arrows mark regions that become only visible

in high-resolution images, some of them only in high-resolution images with structural adaptive

smoothing.

One observes that (i) smoothing with a Gaussian filter does not yield any new informa-

tion at the higher resolution; (ii) in the high resolution scan analyzed with structural

adaptive smoothing, more details than in the low resolution scan, analyzed with the same

method, can be seen. Therefore, the high-resolution scan, analyzed with structural adap-

tive smoothing, yields more detailed information about functional activity than the low-

resolution scan analyzed with either method.

Experiment 2 (visual) A visual experiment was performed on three subjects (one

male and two females). For functional MRI, a GE-EPI sequence with TE/TR = 30/1500

ms was used, which sampled the signal also during the gradient ramps. 20 Slices of 4.5

mm thickness and a FOV of 22 cm were acquired. The matrix size was 64× 64, 64× 128

(zero filled to 128× 128), and 128× 128, yielding voxel dimensions of 3.44 mm, 1.72 mm,
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and 1.72 mm, respectively. The varying scan time per volume was balanced by different

coverage for the three acquisitions leading to 27, 19, and 16 slices, respectively. A task

was performed in 14 blocks of 9 s duration; each block consisted of 9 s rest and 9 s task.

The first 4 scans before these block were discarded. The task consisted of looking at a

binocular stimulus, a flashing checkerboard displayed in two rectangles symmetric to the

midline.

EPI images were aligned to anatomical images with the help of field

maps [Jezzard and Balaban, 1995], using a technique for the construction of field

maps from multi-channel data. This method builds upon the insight that, although

phases for different channels are independent, field maps for different channels can only

deviate from each other by multiples of 2π, plus noise. This construction of field maps

from multi-channel data is described in the following. Phase images were acquired by

a 2D-SPGR pulse sequence (in-plane to the EPI scans, TE = 7.00 and 9.24 ms, TR =

35 ms, acquisition matrix size 256 × 256, flip angle = 30◦, 1 NEX). All eight individual

phase images per slice, corresponding to the eight channels of the multi-channel head

coil used, were acquired. Field maps were computed from all of these images and then

combined such as to minimize noise: Each field map was weighted with the power in each

image voxel and field map voxels deviating more than π/4 from the weighted mean field

map voxel were discarded, as long as field map voxels were comprised of at least three

single field map contributions. Field maps were slightly extrapolated to regions outside

the brain, de-spiked, and smoothed with a Gaussian filter of 2 mm FWHM. The final

registrations between unwarped EPI volumes and the skull-stripped field map magnitude

volumes were calculated in two steps: First, the EPI volumes were aligned with the

skull-stripped field map magnitude volume, masking out voxels with a signal-dropout

larger than 10%. Then, the skull-stripped field map magnitude volume was matched

to the skull-stripped MP-RAGE volume. The field map was computed using FSL with

FUGUE [Smith et al., 2004, Jenkinson, 2001].

The SPM’s of one subject and the three scan parameter settings after applying a Gaussian

filter and structural adaptive smoothing are shown in Fig. 6. The results for the other two

subjects are similar and not shown here.

One observes that (i) in general, smoothing increases the SNR, because the p-values for

the detected signals appear to be increased in the smoothed images. Thus, in case of

weaker signals, smoothing would be the only way to detect a signal at all. (ii) Gaus-

sian smoothing is able to increase SNR, but at the cost of effective resolution. Thus,

for Gaussian smoothing there is no advantage measuring at the higher resolution with

the accompanying loss in SNR, as described before. However, with structural adaptive

13



Anatomy         64 x 64         64 x 128       128 x 128

Structural adaptive

smoothing

No smoothing

Gaussian smoothing

Structural adaptive
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No smoothing

Gaussian smoothing

Structural adaptive
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No smoothing
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Structural adaptive
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Figure 6: Signal detection in visual experiment at different spatial resolutions. Four subsequent

slices in the visual cortex are shown. Columns from left to right: anatomical slice only, 64 × 64,

64× 128, 128× 128. upper row: structural adaptive smoothing, middle row: no smoothing, lower

row: Gaussian smoothing. Some areas with distinct differences advantages of high-resolution

images combined with structural adaptive smoothing are marked with circles.

smoothing the situation changes completely: (iii) For structural adaptive smoothing the

detected activation areas nicely match the gray matter areas of the anatomical images.

(iv) At the highest resolution, the benefits of structure adaptive smoothing become most

pronounced.

In summary, we have shown that high-dimensional fMRI can be useful to detect the shape

and location of activations more accurately than low-dimensional fMRI, in particular in
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conjunction with structural adaptive smoothing. This methodology might allow one to

tackle challenges of high-dimensional fMRI [Kriegeskorte and Bandettini, 2007a].

5 Discussion and Conclusion

Structural adaptive smoothing is capable to reveal finer activation structure in functional

MRI at higher resolutions even when the lower SNR requires smoothing to detect sig-

nals at all. Therefore, structural adaptive smoothing enables one to better take advan-

tage of higher resolution in functional imaging. We have shown that structural adaptive

smoothing is able to detect signals at high acquisition resolution due to its edge preserving

properties.

There are several advantages of acquiring functional data at higher resolutions. One

advantage is the reduction of partial volume effects as they occur at low resolutions,

which partly diminish the higher SNR at low resolution. Furthermore, low resolutions are

too coarse for the recent interest of studying functional activation at a level of small scale

organization such at cortical columns. Since the lower SNR is always against a decision

for higher resolution, advanced smoothing methods such as structural adaptive smoothing

can be a helpful tool to achieve this goal, in contrast to classical non-adaptive smoothing

methods.

It has been shown before that smoothing in general can over-compensate for loss in time-

course SNR of high resolution scans. The thorough study of [Triantafyllou et al., 2006]

showed that in particular at very high fields (7.0 T) a high-resolution scan smoothed down

to a normal resolution has an improved time-course SNR. This is by virtue of reducing

physiological noise for the price of increased thermal noise, which is comparably low at

these field strengths. In contrast, in our study we showed that it could be even advisable

to scan with a high resolution and to retain this resolution during data processing, yielding

an effectively higher resolution of statistical parametric maps. A word of caution is in place

here: Smoothing methods as used here are blind against the origin of the signal variations;

in another experiment that we performed (unpublished) about imaging ocular dominance

columns in the visual cortex, structural adaptive smoothing of high-resolution scans also

significantly increased spurious activation apparently related to motion, in particular near

the interface between gray matter and cerebrospinal fluid. Since the temporal variability of

such signals has distinct statistical properties it might be possible to identify and discard

motion induced variability to some degree.

In addition to the proposed approach here, which is based on exploiting structural in-
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fomation inherent in the EPI signal, there are at least two classes of complementary

approaches to effectively increase the resolution of statistical parametric maps: Advances

in imaging techniques to increase the sensitivity of the detection of the BOLD signal (for

an overview, see [Harel et al., 2006]), advances in MRI scanner hardware, and anatomi-

cally informed methods. In the PS approach we did not take anatomical information as

obtained from high-resolution anatomical images into account. Structure was extracted

from the fMRI data itself. We therefore neglected the information on anatomical structure

that is usually acquired in fMRI studies by high-resolution anatomical pulse sequences and

then co-registered to the fMRI data. For example, the methods of cortical surface map-

ping [Andrade et al., 2001] and anatomically informed basis functions [Kiebel et al., 2000]

increase the statistical significance of BOLD activations by restricting data evaluation to

the cortical surface. [Flandin et al., 2002] use a cortex parcellation technique, which is

believed to allow for relatively large spatial averaging informed by the anatomy and to

provide an alternative to the solution of the multiple testing problem. The problem of au-

tomatically finding optimal parameters for the smoothing kernels and avoiding the mixing

of information from distinct anatomical regions has been studied in [Grova et al., 2006].

The here proposed method should be seen as a complementary method to these anatomi-

cally informed procedures, as well as to other imaging techniques, and, if combined with

them, might improve the accuracy of estimating statistical parametric maps further.

A similar heuristics as in the PS approach has been used by Lu et al. [Lu et al., 2003,

Lu et al., 2004]. These authors identify clusters of activated voxels starting from seed vox-

els. In contrast, PS uses heuristics from scale space methods [Poline and Mazoyer, 1994,

Siegmund and Worsley, 1995].

To summarize, with structural adaptive smoothing one can better utilize the advantages

of functional MRI at higher resolutions.

Structure adaptive smoothing software used in this paper has been integrated into the

“fmri” package in R [Polzehl and Tabelow, 2007, R Development Core Team, 2006].
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