
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Improving mass conservation in FE approximations of
the Navier Stokes equations using continuous velocity
fields: A connection between grad-div stabilization and

Scott-Vogelius elements

M. A. Case1, V. J. Ervin2, A. Linke3, L. G. Rebholz4

submitted: 10 May 2010

1 Clemson University
email: mcase@clemson.edu

2 Clemson University
email: vjervin@clemson.edu

3 Weierstrass Institute for Applied Analysis and Stochastics
email: linke@wias-berlin.de

4 Clemson University
email: rebholz@clemson.edu

No. 1510
Berlin 2010

2010 Mathematics Subject Classification. 76D05 65M60.

Key words and phrases. incompressible Navier-Stokes equations, mixed finite elements, stabilized finite
elements, grad-div stabilization, Taylor-Hood element, Scott-Vogelius element.

M. Case, L. Rebholz partially supported by National Science Foundation grant DMS0914478.
V. Ervin partially supported by the US Army Research Office under grant W911NF-05-1-0380.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

This article studies two methods for obtaining excellent mass conservation in
finite element computations of the Navier-Stokes equations using continuous ve-
locity fields. Under mild restrictions, the Scott-Vogelius element pair has recently
been shown to be inf-sup stable and have optimal approximation properties, while
also providing pointwise mass conservation. We present herein the first numeri-
cal tests of this element pair for the time dependent Navier-Stokes equations. We
also prove that, again under these mild restrictions, the limit of the grad-div stabi-
lized Taylor-Hood solutions to the Navier-Stokes problem converges to the Scott-
Vogelius solution as the stabilization parameter tends to infinity. That is, in this set-
ting, we provide theoretical justification that choosing the parameter large does not
destroy the solution. A limiting result is also proven for the general case. Numeri-
cal tests are provided which verify the theory, and show how both Scott-Vogelius
and grad-div stabilized Taylor-Hood (with large stabilization parameter) elements
can provide accurate results with excellent mass conservation for Navier-Stokes
approximations.

1 Introduction

This article studies two finite element methods for approximating solutions to the Navier-
Stokes equations (NSE) that use continuous velocity fields and provide accurate ap-
proximations as well as excellent mass conservation. Under the restriction that the
mesh be created as a barycenter refinement of a triangular/tetrahedral mesh, and that
the degree k of approximating polynomial for velocity be chosen at least as large as
the dimension of the problem, k ≥ d, the ((Pk)d,Pdisc

k−1) pair (called the Scott-Vogelius
(SV) pair), has recently been shown to be inf-sup stable and admit optimal approx-
imation properties [34, 33]. Moreover, it has the fundamental physical property that,
since ∇ · (Pk)d ⊂ Pdisc

k−1 , the weak enforcement of mass conservation imposed by the
usual Galerkin finite element method for Stokes or the NSE actually enforces strong
(pointwise) conservation of mass.

The second method studied herein is the Galerkin method for the NSE with Taylor-Hood
(TH) elements and grad-div stabilization (with parameter γ). This method is well studied
in the general case [24, 26, 6, 16], and it is well known that the stabilization improves
mass conservation and relaxes the effect of the pressure error on the velocity error. We
show that on a barycenter refined mesh the TH solutions corresponding to a sequence
of grad-div parameters γn → ∞ converge to the SV solution. This provides theoretical
justification that one can choose γ significantly larger than O(1) (see [6, 22]), and still
obtain an accurate solution with excellent mass conservation, although computationally
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care for numerical roundoff error still must be taken. We also prove that on a regular
mesh, as γn → ∞ the TH solutions converge to a solution which is also pointwise mass
conservative.

Although the incompressible NSE are one of the most investigated mathematical equa-
tions [30, 31, 15, 9, 12, 7, 10, 2, 8, 28, 4], their numerical solution remains a difficult
challenge, and new methods and strategies for their solution are regularly proposed.
Nevertheless, even in the case of laminar, single phase Newtonian fluids, some impor-
tant aspects of their numerical approximation are sometimes overlooked, such as the
importance of mass conservation [26, 5, 20, 6, 22, 18, 19]. It is well-known that mixed
finite element discretizations of the incompressible NSE are prone to different kinds
of numerical instabilities, when one combines a certain discrete velocity space Xh in a
naive way with a discrete pressure space Qh. The violation of discrete inf-sup stability
[2, 7, 28] is the classical example for when the discrete pressure space is too large
in relation to the discrete velocity space. The opposite extreme is when the discrete
pressure space is too small. In this case the approximation does not adequately satisfy
the conservation of mass equation, thereby giving a poor approximation to the physical
solution. It is this second problem that is the motivation of this work.

There are a number of strategies for avoiding poor mass conservation: several ele-
ment choices are known to provide pointwise mass conservation [34, 33], discontinu-
ous Galerkin methods typically admit local mass conservation [27] (several in fact de-
liver pointwise divergence-free solutions [3]), penalization techniques such as grad-div
stabilization discussed herein reduce global mass conservation error, and a posteriori
methods can be used to enforce the conservation of mass on already computed solu-
tions [21]. For each technique, there are naturally both good features and drawbacks,
and therefore a determination of which method is “best” is certainly problem dependent.

Still, in most cases, the use of TH elements with grad-div stabilization is one of the
easiest to implement. For many years TH elements have been a popular choice of
approximating element in fluid flow simulations, and most downloadable finite element
packages have some TH elements implemented. Hence getting a TH code and adding
grad-div stabilization is typically convenient and simple. However, until now, it was be-
lieved that the improvement in mass conservation using grad-div stabilization, although
sometimes significant over usual TH solutions, was limited to an O(1) choice of the
stabilization parameter. With this limitation, one had to decide whether the provided
mass conservation was good enough, or instead if a different element choice or DG
should be used. Hence this work provides a simple solution to correct for poor mass
conservation in existing codes, and therefore may lead to TH elements being a good
choice on a much wider set of problems.

This paper is arranged as follows. In Section 2 we give notation and preliminaries, in-
cluding a brief discussion of the SV element. In Section 3 we prove that on barycenter
refined meshes and k ≥ d, grad-div stabilized TH solutions of the NSE converge to
SV solutions as the grad-div parameter tends to ∞. Discussed in Section 4 is the con-
vergence of the TH approximations as γn → ∞ on regular meshes. Section 5 presents
numerical experiments that illustrate the theory.
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2 Preliminaries

We will represent the L2 norm and inner product by ‖·‖ and (·, ·), respectively. All other
norms used will be clearly denoted with subscripts.

Recall the time dependent incompressible NSE on a polygonal (2d), or polyhedral (3d),
domain Ω, and for simplicity with homogeneous Dirichlet boundary conditions:

ut −ν∇u+u ·∇u+∇p = f, in Ω× (0,T ], (2.1)
∇ ·u = 0, in Ω× (0,T ], (2.2)

u(x,0) = u0, in Ω (2.3)
u = 0 on ∂Ω× (0,T ]. (2.4)

Here, u represents velocity, p the (zero-mean) pressure, f an external force, and ν the
kinematic viscosity.

Throughout the report, (Xh,Qh) ⊂ (H1
0 (Ω),L2

0(Ω)) will denote either the Taylor-Hood
or Scott-Vogelius element pair. For Taylor-Hood elements (Xh,Qh) are well known to
be inf-sup stable. For Scott-Vogelius elements with degree k ≥ d and the mesh be
constructed by a barycenter refinement of a quasi-uniform mesh (details in the following
section), (Xh,Qh) is inf-sup stable.

The following lemma is used in the analysis below.

Lemma 2.1. There exists a constant C∗(Ω), dependent only on the size of Ω, that
satisfies ∀u,v,w ∈ H1

0 (Ω),

|(u ·∇v,w)|+ |((∇ ·u)v,w)| ≤ C∗ ‖∇u‖‖∇v‖‖∇w‖1/2 ‖w‖1/2 (2.5)
|(u ·∇v,w)|+ |((∇ ·u)v,w)| ≤ C∗ ‖∇u‖‖∇v‖‖∇w‖ (2.6)

Proof. The first inequality follows from Holder’s inequality, Ladyzhenskaya inequalities
and the Sobolev imbedding theorem. The second follows directly from the first with the
Poincare inequality in H1

0 (Ω).

2.1 Scott-Vogelius and Taylor-Hood elements

The SV element pair is not yet very well known, and so we now give a brief description
of it. In essence, the SV pair is the same as the TH pair except that
(i) k ≥ d, where d is the space dimension,
(ii) the pressure space is discontinuous, and
(iii) the mesh is required to be a barycenter refinement of a regular mesh.
That is, polynomials of degree k and k− 1 are used to approximate the velocity and
pressure spaces respectively, with k ≥ d (which is only a restriction in 3d compared
to TH), and the mesh Th that is used must be derived from a regular triangularization
(tetrahedralization) of Ω, where each element is refined by connecting its barycenter to
the vertices. An illustration of such a refinement is given in Figure 1. With such a mesh
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construction and k ≥ d, it was proved by Zhang in [33] that the SV elements are LBB
stable under these restrictions. It is well known that the TH pair is LBB stable for this
case [7].

Figure 1: (LEFT) 2d and (RIGHT) 3d macro-element, shown with dashed lines repre-
senting barycenter refinements

We now formally define the element pairs. In space dimension d, for both TH and SV
elements we define Xh to be the space of continuous element-wise vector functions of
polynomial order k ≥ d on Th

Xh :=
{

vh ∈ [C(Ω)]d : vh|T ∈ [Pk(T )]d, for all T ∈Th , vh = 0 on ∂Ω

}
.

For Taylor-Hood, we define

QTH
h :=

{
qh ∈ L2(Ω)∩C(Ω) : qh|T ∈ Pk−1, for all T ∈Th,

∫
Ω

qhdΩ = 0
}

,

while the pressure space of the Scott-Vogelius element is only different from Taylor-
Hood’s in that its pressures are discontinuous:

QSV
h :=

{
qh ∈ L2(Ω) : qh|T ∈ Pk−1, for all T ∈Th,

∫
Ω

qhdΩ = 0
}

.

Note that the dimension of the pressure space for SV elements is significantly larger
than that for TH elements. This creates a greater total number of degrees of freedom
needed for linear solves using SV elements, however it is not immediately clear whether
this will lead to a significant increase in computational time if preconditioners such as
Augmented Lagrangian type are used [1]. The authors plan to consider this questions
in future studies.

Although the velocity spaces of the TH and SV elements are the same, the spaces of
discretely divergence free subspaces are different, and will be denoted by

V SV
h := {vh ∈ Xh : (∇ ·vh,qh) = 0, ∀qh ∈ QSV

h }
V T H

h := {vh ∈ Xh : (∇ ·vh,qh) = 0, ∀qh ∈ QT H
h } .
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The SV element is very interesting from the mass conservation point of view since
its discrete velocity space and its discrete pressure space fulfill an important property,
namely

∇ ·Xh ⊂ QSV
h . (2.7)

Thus, using SV elements, weak mass conservation via

(∇ ·uh,qh) = 0 , ∀qh ∈ Qh

implies strong (pointwise) mass conservation since we can choose the special test
function qh = ∇ ·uh to get

‖∇ ·uh‖2 = 0 .

In general, the same pressure test function cannot be used in the Taylor-Hood case,
since ∇ ·Xh 6⊂QTH

h . Hence the Taylor-Hood element only delivers discretely divergence-
free approximations uh.

The temporal-spatial discretization we study, for either TH or SV, is the Crank-Nicolson
Galerkin method, given in skew-symmetrized form by:
Find (un

h, pn
h) ∈ Xh ×Qh with Qh ∈ {QTH

h ,QSV
h } such that ∀(vh,qh) ∈ Xh ×Qh for n =

1,2, . . . ,M = T/∆t,

1
∆t

(un+1
h −un

h,v)− (p
n+ 1

2
h ,∇ ·vh)+ν(∇un+ 1

2
h ,∇vh) + γ(∇ ·un+ 1

2
h ,∇ ·vh)

+(un+ 1
2

h ·∇un+ 1
2

h ,vh)+
1
2
((∇ ·un+ 1

2
h )un+ 1

2
h ,vh) = (fn+ 1

2 ,vh) (2.8)

(∇ ·un+1
h ,qh) = 0 . (2.9)

For the discrete initial velocity, u0
h we impose zero pointwise divergence for the initial

condition for both SV or TH elements: ∀(vh,qh) ∈ (Xh,QSV
h ),

(u0
h,vh)+(λh,∇ ·vh)+(∇ ·u0

h,qh) = (u0,vh) . (2.10)

This condition is necessary for TH elements due to the Crank-Nicolson temporal dis-
cretization and our enforcement of discrete mass conservation (2.9). For the backward
Euler method, this would not be necessary. However, it is easy to implement.

Throughout we assume that the discrete approximating system of equations is uniquely
solvable. We refer the interested reader to [15, 31] for discussions on the unique solv-
ability of (2.8)-(2.9).

3 Relationship between the Taylor-Hood and the Scott-
Vogelius element

Section 2 shows the Taylor-Hood and the Scott-Vogelius element are not unrelated to
each other, as they differ only in their pressure space. But it turns out that much more
can be said. For example, it is relatively easy to show that the H1 projection of the TH
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solution to the Stokes problem into the space of divergence free functions is the SV
solution of that Stokes problem (independent of grad-div stabilization). However, the
results for the NSE are much more interesting.

We prove, under the mild restrictions under which SV elements are LBB stable, that as
γ →∞, the TH solutions to (2.8)-(2.10) converge to the SV solution. Roughly speaking,
this result can be understood in the following sense: Under the mesh restriction dis-
cussed above and with k ≥ d, the grad-div stabilized TH solutions “live between” the
TH and SV solutions, which are both LBB stable and have optimal approximation prop-
erties. Thus, raising γ significantly larger than O(1) in TH computations can provide
excellent mass conservation without “destroying” the solution.

Theorem 3.1. For ∆t sufficiently small, k ≥ d, and using a mesh constructed as a
barycenter refinement of a regular mesh, any sequence {uh}γi of TH velocity solutions
to (2.8)-(2.10) converges to the SV velocity solution as the grad-div parameter γi → ∞.
The corresponding TH “modified pressure” solutions {ph− γi∇ ·uh}γi converge to the
SV pressure solution.

Proof. We begin by noting the a priori bound on the SV and TH solutions, which can
be found by choosing the test function vh = un+1/2

h in (2.8): For 0≤ j ≤M

∥∥∥u j
h

∥∥∥2
+ ∆t

j−1

∑
n=0

(
ν

∥∥∥∇un+1/2
h

∥∥∥2
+2γ

∥∥∥∇ ·un+1/2
h

∥∥∥2
)

≤ ∆t
ν

j−1

∑
n=0

∥∥∥fn+1/2
∥∥∥2

∗
+

∥∥u0
h

∥∥2
= C(data) , (3.1)

where ‖ · ‖∗ denotes the norm in X∗, the dual space of X = H1
0 (Ω) endowed with the

norm ‖v‖X := ‖∇v‖. (For the SV solution
∥∥∥∇ ·un+1/2

h

∥∥∥ = 0.)

In addition, by assumption of the existence and uniqueness of the SV solution (which is
independent of γ) and LBB stability we have the SV pressure is bounded independent
of γ . In particular we have that for 2≤ j ≤M

∆t
j−1

∑
n=0

∥∥∥pn+1/2
SV

∥∥∥2
≤ C(data) . (3.2)

Note that from (3.1) it follows that as γ → ∞, ∇ ·un+1/2
h → 0 for n = 0, . . .M− 1. Also,

as ∇ ·u0
h = 0, then ∇ ·un+1

h → 0 for n = 0, . . .M− 1. In addition, as
∥∥∥u j

h

∥∥∥2
is uniformly

bounded, then the terms
∥∥∥∇u j

h

∥∥∥2
and

∥∥∥∇ ·u j
h

∥∥∥2
are also uniformly bounded. In these

later cases the bound will depend upon the mesh parameter h. However, as we are
discussing convergence on a fixed mesh, this dependence is not important.

Let e := uSV − uT H ∈ V T H
h , where (uSV , pSV ) and (uT H , pT H) denote the SV and TH

solutions respectively. (For convenience, in this proof we suppress the dependence on
h.)
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For v ∈V T H
h , we have that (p

n+ 1
2

T H ,∇ ·v) = 0 and thus that

1
∆t

(en+1− en,v)− (p
n+ 1

2
SV ,∇ ·v)+ν(∇en+ 1

2 ,∇v)+ γ(∇ · en+ 1
2 ,∇ ·v)

+(un+ 1
2

SV ·∇un+ 1
2

SV ,v)− (un+ 1
2

T H ·∇un+ 1
2

T H ,v)+
1
2
((divun+ 1

2
SV )un+ 1

2
SV ,v)

−1
2
((divun+ 1

2
T H )un+ 1

2
T H ,v) = 0 , (3.3)

which can be written as

1
∆t

(en+1− en,v) + ν(∇en+ 1
2 ,∇v)+ γ(∇ · en+ 1

2 ,∇ ·v)

=−(en+1/2 ·∇un+ 1
2

SV ,v) − (un+ 1
2

T H ·∇en+1/2,v)− 1
2
((diven+1/2)un+ 1

2
SV ,v)

−1
2
((divun+ 1

2
T H )en+1/2,v)+(p

n+ 1
2

SV ,∇ ·v) . (3.4)

With v = en+ 1
2 , the identity

(un+ 1
2

T H ·∇en+1/2,en+ 1
2 )+

1
2
((divun+ 1

2
T H )en+1/2,en+ 1

2 ) = 0 ,

and using Lemma 2.1, equation (3.4) becomes

1
2∆t

(
∥∥en+1∥∥2−‖en‖2)+ν

∥∥∥∇en+1/2
∥∥∥2

+ γ

∥∥∥∇ · en+1/2
∥∥∥2

= −1
2
((diven+ 1

2 )un+ 1
2

SV ,en+1/2)− (en+ 1
2 ·∇un+ 1

2
SV ,en+1/2)+(p

n+ 1
2

SV ,∇ · en+1/2)

≤ C
∥∥∥∇en+1/2

∥∥∥2 ∥∥∥∇un+1/2
SV

∥∥∥+
∥∥∥∥p

n+ 1
2

SV

∥∥∥∥∥∥∥∇ · en+1/2
∥∥∥ . (3.5)

Since the mesh is fixed, uniform boundedness, finite dimensionality of un+ 1
2

SV , and Young’s
inequality imply

1
2∆t

(
∥∥en+1∥∥2−‖en‖2)+ν

∥∥∥∇en+1/2
∥∥∥2

+ γ

∥∥∥∇ · en+1/2
∥∥∥2

≤ C
∥∥∥en+1/2

∥∥∥2
+

γ

2

∥∥∥∇ · en+1/2
∥∥∥2

+
1
2γ

∥∥∥pn+1/2
SV

∥∥∥2
. (3.6)

With
∥∥e0

∥∥ = 0, subtracting γ

2

∥∥∥∇ · en+1/2
∥∥∥2

from both sides of (3.6), then summing from
n = 0 to j−1, 2≤ j ≤M, we have

∥∥e j∥∥2
+ ∆t

j−1

∑
n=0

(
2ν

∥∥∥∇en+1/2
∥∥∥2

+ γ

∥∥∥∇ · en+1/2
∥∥∥2

)
≤C∆t

j

∑
n=0

‖en‖2 +
∆t
γ

j−1

∑
n=0

∥∥∥pn+1/2
SV

∥∥∥2
. (3.7)
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The discrete Gronwall inequality [11] then implies that (for ∆t sufficiently small)∥∥e j∥∥2
+ ∆t

j−1

∑
n=0

(
2ν

∥∥∥∇en+1/2
∥∥∥2

+ γ

∥∥∥∇ · en+1/2
∥∥∥2

)
≤ C

∆t
γ

j−1

∑
n=0

∥∥∥pn+1/2
SV

∥∥∥2

≤ C
1
γ
.

Hence, as γ → ∞,
∥∥e j

∥∥→ 0, j = 1,2, . . . ,M, i.e. uT H → uSV .

With the convergence of the velocity established, we now prove convergence of the
modified TH pressure to the SV pressure. Subtracting the TH solution from the SV
solution, and using the notation as above, we get ∀vh ∈ Xh,

((p
n+ 1

2
T H − γ∇ ·un+ 1

2
T H )− p

n+ 1
2

SV ,∇ ·vh) =
1
∆t

(en+1− en,vh)+ν(∇en+ 1
2 ,∇vh)

+(en+ 1
2 ·∇un+ 1

2
T H ,vh)+(un+ 1

2
SV ·∇en+ 1

2 ,vh)+
1
2
((∇·en+ 1

2 )un+ 1
2

T H ,vh)+
1
2
((∇·un+ 1

2
SV )en+ 1

2 ,vh)

(3.8)

Now dividing both sides by ‖∇vh‖, applying Lemma 2.1 and Cauchy-Schwarz to the
right hand side, again using that solutions are uniformly bounded, then reducing, gives

((p
n+ 1

2
T H − γ∇ ·un+ 1

2
T H )− p

n+ 1
2

SV ,∇ ·vh)
‖∇vh‖

≤C(‖en‖+
∥∥en+1∥∥). (3.9)

Since (p
n+ 1

2
T H − γ∇ ·un+ 1

2
T H ) ∈QSV

h and the restriction on the mesh and k are such that SV
elements are LBB stable, the inf-sup condition for (Xh,QSV

h ) implies∥∥∥∥(p
n+ 1

2
T H − γ∇ ·un+ 1

2
T H )− p

n+ 1
2

SV

∥∥∥∥≤C(‖en‖+
∥∥en+1∥∥), (3.10)

and thus since e→ 0, we have that∥∥∥∥(p
n+ 1

2
T H − γ∇ ·un+ 1

2
T H )− p

n+ 1
2

SV

∥∥∥∥→ 0. (3.11)

Note that since it is the time-level n + 1
2 pressures that are directly solved for in the

Crank-Nicolson scheme, it is this convergence result that is relevant, not the n or n+1
time levels.

3.1 A connection for the steady NSE problem

An analogous result as proved above holds for the steady NSE. Consider the usual
skew symmetrized finite element scheme for the NSE [15]: Find (uh, ph) ∈ (Xh,Qh) sat-
isfying ∀(vh,qh) ∈ (Xh,Qh)

ν(∇uh,∇vh)− (ph,∇ ·vh)+ γ(∇ ·uh,∇ ·vh)+(uh ·∇uh,vh)

+
1
2
((divuh)uh,vh) = (f,vh), (3.12)

(∇ ·uh,qh) = 0, (3.13)
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where Qh is either QSV
h or QT H

h . Note if Qh = QSV
h , then trivially 1

2((divuh)uh,vh) = γ(∇ ·
uh,∇ ·vh) = 0.

Theorem 3.2. If the mesh is created as a barycenter refinement of a regular mesh and
k ≥ d, then any sequence {uh}γi of TH velocity solutions to (3.12)-(3.13) converges to
the SV velocity solution as the grad-div parameter γi→∞. The corresponding sequence
of TH “modified pressure” solutions, {ph− γi∇ ·uh}γi , converge to the SV pressure.

Remark 3.1. In the case of non-unique solution, a similar proof to the one below can
be used to show that a subsequence of TH solutions will converge to a SV solution.

Proof. For notational convenience, in the proof we surpress the dependence on h.

We begin by noting the a priori bound, analogous to (3.1), for the steady state approxi-
mations.

ν ‖∇u‖2 +2γ ‖∇ ·u‖2 ≤ 1
ν
‖f‖2

∗ = C(data) , (3.14)

where, for the SV approximation, ‖∇ ·u‖= 0.

Let {γi}∞
i=1 →∞ and ui denote the corresponding T H velocity solutions to (3.12)-(3.13).

Then, as ui is a bounded sequence in a finite dimensional space, we have that there
exists w ∈ Xh such that a subsequence ui′ → w. From (3.12)-(3.13) with v = ui, q = p,
we have that

‖∇ ·ui‖ ≤
1
γi

(
‖f‖∗‖‖∇ui‖+ν‖∇ui‖2) ≤ 1

γi
C . (3.15)

As ui′ →w, then ∇ ·ui′ → ∇ ·w, (using the equivalence of norms in a finite dimensional
space), and as ‖∇ ·ui′‖→ 0, we have that

‖∇ ·w‖ = 0 , i.e. w ∈V SV
h .

Next we show that w = uSV . Consider, for v ∈V SV
h

|res(v)| = |ν(∇w,∇v)+(w ·∇w,v)− (f,v)| . (3.16)

With ei′ := w−ui′ , combining (3.12) (v ∈V SV
h ) with(3.16),

|res(v)| = |ν(∇ei′,∇v)+(w ·∇w,v)− (ui′ ·∇ui′,v)− 1
2
(div(ui′)ui′,v)|

= |ν(∇ei′,∇v)+(ei′ ·∇w,v)+(ui′ ·∇ei′,v)− 1
2
(div(ei′)ui′,v)|

≤ C‖ei′‖‖v‖ . (3.17)

As ei′ → 0 as γi′ →∞, it follows from the existence and uniqueness of the SV solution to
(3.12)-(3.13) that w = uSV . In addition, from the above argument it immediately follows
that the limit of any convergent subsequence of {ui} must be uSV .

We now show that {ui} → uSV . If {ui} 6→ uSV , then there exists an ε > 0 and a sub-
sequence {ui′} with the property ‖ui−uSV‖ > ε . However, as {ui′} is a bounded se-
quence in a finite dimensional space, it has a convergent subsequence {ui′′}. From
above we have that {ui′′}→ uSV , which contradicts ‖ui′−uSV‖> ε . Thus {ui}→ uSV .

9



With the convergence of the velocity established, the convergence of the TH modi-
fied pressure solutions to the SV pressure solution follows analogously to the time-
dependent case.

4 Convergence of the TH approximations as γ → ∞ in
the general case

In Section 3 we showed that, as the grad-div parameter, γ , goes to infinity the TH veloc-
ity approximations converge to the SV velocity approximation. The SV approximation,
as described above, requires k ≥ d and a barycenter refined mesh. In this section we
investigate the question of convergence of the TH approximations as γ → ∞ on a reg-
ular mesh and with k ≥ 2. It is known that taking γ too large in the general case can
have an over-stabilizing effect [22], although it is also known that with larger γ comes
improved mass conservation. Our intention is to further investigate this phenomena.

4.1 Limiting result

We first show that the approximations converge, and identify the limit function. Analo-
gous to the previous section, it is again a modified pressure that converges to the limit
pressure.

We consider the steady-state problem, and the extension to the time dependent case
is straight-forward, following Section 3. With the notation as introduced above, let

V 0
h := {vh ∈ Xh : ∇ · vh|T = 0 , for all T ∈Th} .

Note that V 0
h ⊂Vh, and on a barycenter refined mesh V 0

h ⊂V SV
h .

Let zh ∈V 0
h be defined by

ν(∇zh,∇vh)+(zh ·∇zh,vh) = (f,vh) , ∀vh ∈V 0
h . (4.1)

We assume existence and uniqueness of zh. (See [7, 15] for a discussion of existence
and uniqueness.) Let rh ∈ QT H

h be defined by

(rh,∇ ·vh) = ν(∇zh,∇vh)+(zh ·∇zh,vh)− (f,vh) , ∀vh ∈ (V T H
h )⊥ , (4.2)

where (V T H
h )⊥ denotes the orthogonal component of V T H

h in Xh with respect to the
innerproduct 〈v,w〉 = (∇v , ∇w). In addition, for {uh}γi ∈ Xh, let ρh,i ∈ QT H

h be defined
by

(ρh,i , ∇ ·vh) := (∇ ·uh,i , ∇ ·vh) , ∀vh ∈ (V T H
h )⊥ . (4.3)

The existence and uniqueness of rh and ρh,i follows from (Xh,QT H
h ) satisfying the LBB

condition, and the generalized Lax-Milgram theorem.
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Theorem 4.1. For any sequence {(uh, ph)}γi of T H solutions to (3.12)-(3.13) we have
that {(uh , (ph− γiρh))}γi converges to (zh,rh) as the grad-div parameter γi → ∞.

Remark 4.1. Similar to the limit case for steady NSE in section 3, if the SV solution
is not unique, then one can show a subsequence of TH solutions converges to a SV
solution.

Proof. For notational convenience, in the proof we surpress the dependence on h.

With V SV
h replaced by V 0

h , the proof that {ui}→ z follows verbatim the proof of Theorem
3.2.

Using the LBB condition, Xh = V T H
h ⊕ (V T H

h )⊥, and ei = z−ui

β‖r− (pi− γiρi)‖ ≤ sup
v∈Xh

(r,∇ ·v) − (pi,∇ ·v) + (γiρi,∇ ·v)
‖v‖X

= sup
v∈(V T H

h )⊥

(r,∇ ·v) − (pi,∇ ·v) + (γiρi,∇ ·v)
‖∇v‖

= sup
v∈(V T H

h )⊥

ν(∇ei,∇v)+(z ·∇z,v)− (ui ·∇ui,v)− 1
2(div(ui)ui,v)

‖∇v‖

≤ ν‖∇ei‖+‖ei ·∇z‖+‖ui ·∇ei‖+
1
2
‖div(ei)ui‖ .

From the boundness of z, ui, and that ei → 0 as γi → ∞, we have that (pi − γiρi)→ r.

4.2 Quality of the limit solution

We also consider in this section the quality of the limit solution. We give examples of
meshes where good results would be expected for the limit solution and where very
poor results would occur.

As the grad-div parameter γi → ∞, the TH velocity approximation uh ∈ V T H
h → z ∈ V 0

h .
So, in the limit, the TH velocity approximation is pointwise mass conservative. However
the momentum equation (3.12) only holds for vh in the lower dimensional space V 0

h .

Presented in Tables 1 are dim(Xh) (assuming homogeneous boundary conditions for
the velocity), dim(V T H

h )/dim(Xh)%, and dim(V 0
h )/dim(Xh)% for several uniform trian-

gulations of the unit square (pictures of 3×3 case shown in Figure 2). Table 2 contains
the same statistics for barycenter refined meshes. The dimensions of the spaces were
computed using the rank command in MATLAB. For both triangulations dim(V T H

h )/dim(Xh)
is approximately 87%. The dim(V 0

h )/dim(Xh) is slightly higher ( ≈ 30%) for the regular
triangulations than for the barycenter refined triangulations (≈ 24%). Thus in this case,
taking γ large will not destroy the solution, and in fact one could expect a better solution
from the general mesh than the barycenter refined one for a comparable number of
degrees of freedom.
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Figure 2: (LEFT) Regular 3× 3 triangulation of the unit square; (RIGHT) The 3× 3
barycenter refined triangulation of the unit square.

dim(Xh) dim(QT H
h ) dim(Vh)

dim(Xh)
% dim(V 0

h )
dim(Xh)

%
8×8 450 80 82.2 23.8

16×16 1922 288 85.0 27.6
20×20 3042 440 85.5 28.4
28×28 6050 840 86.1 29.2
32×32 7938 1088 86.3 29.5

Table 1: Dimensions of Vh and V 0
h for regular triangulations of the unit square.

However, it is also possible that the limit solution could be very poor in the general
case. For the mesh in Figure 3, counting degrees of freedom shows dim(V 0

h ) = 0,
which means that a divergence free velocity solution must be 0. This example shows
that care must be taken in the mesh construction to avoid such an issue if γ is taken
large.

Figure 3: An mesh that yields dim(V 0
h ) = 0
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dim(Xh) dim(QT H
h ) dim(Vh)

dim(Xh)
% dim(V 0

h )
dim(Xh)

%
4×4 354 56 84.2 18.9
8×8 1474 208 85.9 21.9

12×12 3362 456 86.4 22.9
16×16 6018 800 86.7 23.5
20×20 9442 1240 86.9 23.8

Table 2: Dimensions of Vh and V 0
h for barycenter refined triangulations of the unit

square.

5 2D Numerical Experiments

In this section we investigate the convergence theory of the previous section. We nu-
merically verify that on barycenter refined meshes with k ≥ d, that as the grad-div
parameter goes to infinity the T H approximations to NSE converge to the SV approx-
imation. We also consider the general case, and the limiting behavior of the grad-div
stabilized TH solutions there. Lastly, we discuss the choice of an optimal γ if mass
conservation is explicitly accounted for in the objective function.

5.1 Numerical Experiment 1: 2d channel flow around a cylinder on
a barycenter refined mesh

The benchmark problem of 2d channel flow around a cylinder has been studied in
numerous works, e.g. [29, 13, 14, 16], and is well documented in [29]. The domain
is the rectangle [0,2.2]× [0,0.41] representing the channel with flow in the positive x
direction, with a circle radius 0.05 centered at (0.2,0.2) representing the cylinder. No
slip boundary conditions are prescribed on the top and bottom of the channel as well
as on the cylinder, and the time dependent inflow and outflow velocity profiles are given
by

u(0,y, t) = u(2.2,y, t) =
[

6
0.412 sin(πt/8)y(0.41− y) , 0

]T

, 0≤ y≤ 0.41.

The forcing function is set to zero, f = 0, and the viscosity at ν = 0.001, providing a
time dependent Reynolds number, 0 ≤ Re(t) ≤ 100. The initial condition is u = 0, and
we compute to final time T = 8 with time-step ∆t = 0.01.

An accurate approximation of this flow’s velocity field will show a vortex street forming
behind the cylinder by t = 4, and a fully formed vortex street by t = 7. However, there
is more than one way to measure accuracy. That is, even if the vortex street forms and
the velocity vector field “appears” correct, if the velocity field does not conserve mass,
then for many applications the solution may be unacceptable.

Solutions are computed for (P2,Pdisc
1 ) SV elements and for (P2,P1) TH elements with

γ = 0, 1, 100, 10,000, all on the same barycenter refined mesh. This provides 6,578
velocity degrees of freedom, dof, and 4,797 pressure dof for the SV pressure, and 845
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Figure 4: The t=7 velocity fields, speed contours, and pressure contour plots for approx-
imations obtained using TH elements without grad-div stabilization (top), TH elements
with γ = 1 (second from top), TH elements with γ = 10,000 (third from top), and the SV
element approximation (bottom), on a barycentric mesh and k = 2. Convergence to the
SV approximation as γ increases is clear. The SV and TH with γ = 10,000 approxima-
tions are nearly indistinguishable and agree well with known results [29, 13, 14]. Some
slight differences with these and the plotted solution for TH elements with γ = 1 can be
seen in the speed contours, and the γ = 0 solution is clearly underresolved.
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pressure degrees of freedom for the TH simulation. Results of these simulations are
shown in Table 3, and Figures 4 and 5.

γ
∥∥∇uγ

T H(t = 7)−∇uSV (t = 7)
∥∥

0 5.7086
1 0.7616

100 7.9856e-3
10,000 8.5311e-5

Table 3: The table above shows convergence of the grad-div stabilized TH approxima-
tions to the SV approximation for Numerical Experiment 1.

Table 3 shows convergence of the TH approximations to the SV approximation as γ →
∞. This agrees with the theory of Section 3. Figure 4 shows the plots of the velocity
field, speed contours and pressure contours for SV and TH approximations with γ =
0, 1, 100, 10,000. The convergence as γ gets large of the TH approximations to the
SV approximation is clear.

The benefit to mass conservation of increasing γ is shown in Figure 5. Here we see
with γ = 10,000, excellent mass conservation is achieved. Also we note that for the
unstabilized TH approximation,

∥∥∇ ·un
h

∥∥ = O(1).
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L2 norm of divergence of computed velocities against time

 

 

Taylor Hood, =0
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Taylor Hood, =100
Taylor Hood, =10,000
Scott Vogelius

Figure 5: Shown above are the plots of
∥∥∇ ·un

h

∥∥ vs. time for the SV and TH approxima-
tions for Numerical Experiment 1, with varying γ .
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5.2 Numerical Experiment 2: The 3d driven cavity

In 3d, SV elements require k ≥ 3. Here we compare the (P3,Pdisc
2 ) SV approximation

with that obtained using by grad-div stabilized (P3,P2) TH elements.

x

y

x
z

y

z

 

x
 

z

0 0.5 1 1.5 2
x 10 14

 

y
 

z
1.5 1 0.5 0 0.5 1

x 10 14

y

 

 

x

5 0 5
x 10 15

Midplane velocity fields and divergence contours for Scott Vogelius elt solution   

Figure 6: We see the expected velocity profiles for the lid-driven cavity problem with
div uh close to machine epsilon.

We next consider the benchmark problem of the 3d lid-driven cavity. This problem has
been well-studied, [32, 23], and the description is as follows. The domain Ω is the
(−1,1)3 cube, for boundary conditions the top of the box (lid) is prescribed the velocity
u = [1,0,0]T with the velocity on the the sides and bottom set to zero (u = 0), and the
viscosity ν = 1/50, giving the Reynolds’ number Re = 2 ·1 ·50 = 100. We compute with
a barycenter refinement of a uniform tetrahedral mesh (as discussed in Section 2), con-
sisting of 51,119 total dof for the TH elements (46,038 velocity and 5,081 pressure) and
76,038 total dof for SV elements (46,038 velocity and 30,000 pressure). The problem is
solved directly for the steady state approximation with a Newton iteration, using as the
initial guess u(x) = 0, x ∈ Ω. Five iterations were required to converge to a tolerance
of 10−10 for each of the tests.

We compare the SV approximation and TH approximations with stabilization parame-
ters γ = 0, 1, 100, 10,000. Plots of the TH (γ = 0) and SV approximations’ midplane
velocity vector fields and divergence contours are presented in Figures 6-7. A visual
inspection of the velocity fields indicates they appear the same, and in agreement with
the known solution [32]. However, the divergence contours show these solutions are
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Figure 7: For TH with γ = 0, we see the expected velocity profiles for the lid-driven
cavity problem, with non-negligible error for div uh.

in fact quite different. While the SV solution conserves mass up to roundoff error, the
TH solution has O(1) mass conservation in the upper corners, and thus has poor phys-
ical accuracy. For the TH approximations using grad-div stabilization, we observe the
velocity vector fields look identical to TH and SV plots as in Figures 6 and 7, and the
magnitude of the divergence contours decreases as γ increases (pictures omitted).

The convergence of the TH velocity approximations to the SV velocity approximation
can be seen in Table 4, giving verification to the theory of Section 3. Also shown in this
table is the improvement in mass conservation from raising γ .

γ
∥∥∇uγ

T H −∇uSV
∥∥ ∥∥∇ ·uγ

T H

∥∥
0 1.0653 4.601E-1
1 0.2093 5.409E-2

100 0.0029 7.056E-4
10,000 2.951E-5 7.081E-6

Table 4: Convergence of the grad-div stabilized TH approximations toward the SV ap-
proximation as γ → ∞ for the Re = 100 3d driven cavity problem.
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5.3 Numerical Experiment 3: 2d flow around a cylinder on general
meshes

For our next experiment, we explore the effect of larger γ with TH elements (k = 2)
on a non barycenter refined mesh. In Section 4, we prove that velocity solutions con-
verge as γ → ∞. It has also been documented in [22] that TH solutions can numeri-
cally deteriorate for larger γ . Illustrated in Figure 8 are TH solutions corresponding to
γ = 0, 1, 100, 10,000, using a mesh that provides 7,414 velocity degrees of freedom
and 915 pressure degrees of freedom. This mesh is somewhat finer that in Experiment
1, and we see in the plot of the solution in Figure 8 that the γ = 0 solution now has a
more resolved velocity field than the unstabilized solution of Experiment 1.

From Figure 8, we note that as γ increases, the solutions appear to converge, in agree-
ment with the theory from chapter 4. However, we also see some deterioration in the
speed contour plot. Conservation of mass improves in the same manner as in Experi-
ment 1 on the barycenter refined mesh (plot omitted). Also, interestingly, we note that
the pressure solution appears to improve with increasing γ .

5.4 Numerical Experiment 4: Another take on optimal γ

Recent work with grad-div stabilization suggests that the optimal γ for many problems
is O(1) [25, 24, 16, 17, 22]. While we do not contest this conjecture, we suggest O(1)
should instead be a starting point to finding an optimal γ . Experiment 1 showed a
situation where γ = ∞ was best, and for Experiment 3, γ = 0 was best for velocity, and γ

large (>> O(1)) appeared best for pressure. Thus large variation can exist in the value
of an optimal γ . Moreover, what one considers an optimal γ can change depending on
criteria. Specifically, if mass conservation is important (as it often is) and a computed
solution’s incompressibility (or lack thereof) is factored in, e.g. if the H(div) norm is
used instead of L2, then an optimal value of γ can change significantly. Recall the
H(div) norm is defined by

‖φ‖H(div) :=
√
‖φ‖2 +‖∇ ·φ‖2.

The setup for this experiment is as follows: Using the selected NSE solution

u =
(

2x2(x−1)2y(2y−1)(y−1)
−2x(x−1)(2x−1)y2(y−1)2

)
, p = sin(x),

on the unit square domain with ν = 0.0001, h = 1/16 (non barycenter refined) mesh,
solutions were computed using k = 2 TH elements and varying values of the parameter
γ . The computed solution was then compared to the true solution, and the L2 and
H(div) norms of the error were calculated. Results are given in Table 5, and show
that the optimal γ for minimizing the L2 and H1 velocity error is O(1). However, for the
H(div) velocity and the L2 pressure errors, the optimal γ is significantly larger. In fact,
the H(div) velocity error for the γ = 100 solution is less than half of that for γ = O(1).
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Figure 8: The t=7 velocity fields, speed contours, and pressure contour plots for so-
lutions obtained using TH elements without grad-div stabilization (TOP), TH elements
with γ = 1, γ = 100, and γ = 10,000 (BOTTOM), using a general (non-barycentric)
mesh.
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γ
∥∥uγ

T H −utrue
∥∥ ∥∥uγ

T H −utrue
∥∥

H1

∥∥uγ

T H −utrue
∥∥

H(div)

∥∥pγ

T H − ptrue
∥∥

0 6.61E-2 3.28E-1 2.99E-1 8.5010E-5
0.1 5.53E-5 4.50E-3 4.77E-4 7.3178E-5
1 2.67E-5 2.12E-3 5.78E-5 7.3165E-5

10 2.72E-5 2.15E-3 2.77E-5 7.3165E-5
100 2.73E-5 2.16E-3 2.73E-5 7.3165E-5

1,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5
10,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5

100,000 2.73E-5 2.16E-3 2.73E-5 7.3164E-5

Table 5: L2, H1 and H(div) velocity errors and L2 pressure error for various stabilization
parameters for Numerical Experiment 4.

6 Conclusions and Future Directions

We have proven, and illustrated numerically, that as the grad-div stabilizaion parameter,
γ , goes to ∞ the TH approximations (k ≥ d) on a barycenter refined mesh converge to
the SV approximation. On a regular mesh we have proven that the TH approximations
converge to a pointwise divergence-free solution as γ → ∞.

Little effort is needed to incorporate grad-div stabilization into an existing finite ele-
ment approximation of the NSE. Also, due to the similarity of Taylor-Hood elements
and Scott-Vogelius elements, many existing codes using Taylor-Hood elements can be
easily converted to use Scott-Vogelius elements (provided the mesh is as specified
above). Hence we believe the two methods discussed in this paper may be of signifi-
cant interest to engineers and fluid dynamicists interested in better mass conservation
with reasonable development cost.

The “optimal” choice for γ is an interesting and open question. In [22, 6] Olshanskii et
al. investigated optimal values for γ . In [22] they remarked “ . . . the search of an optimal
γ as a trade-off between mass and energy balance in the FE system.” From their inves-
tigations, they found that an optimal value of γ ∈ [0.1,1.0] was optimal for minimizing
the L2 and H1 errors in the TH approximations. Note that for γ = O(1) in the numerical
examples presented in Section 5 the TH approximations gave ‖div(uh)‖> O(h), which
for many physical problems would be unacceptable. If so, a more appropriate physical
criteria for determining an optimal value for γ may be the H(div) norm or to deter-
mine γ which minimizes the H1 error subject to ‖div(uh)‖< tol. We plan to investigate
appropriate choices for γ in subsequent work.
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