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Abstract

A spatially resolved stochastic weighted particle method for inception–coagulation–

advection problems is presented. Convergence to a deterministic limit is briefly studied.

Numerical experiments are carried out for two problems with very different coagulation

kernels. These tests show the method to be robust and confirm the convergence proper-

ties. The robustness of the weighted particle method is shown to contrast with two Direct

Simulation Algorithms which develop instabilities.

1 Introduction

Stochastic simulation of particle formation and growth has been successfully used in a wide
range of detailed particle modelling in fields including soot [25], metal oxide particles [7], snowflakes
and their structure [18]. It can also be used for more abstract investigations such as the study
of mixture distributions in multicomponent systems [20].

In this work population balance problems representing particles undergoing inception, coag-
ulation and advection are considered. Particles take positions in a bounded domain, X of a
finite dimensional Euclidean space and the physical properties of the particles are described by
their ‘type’. A very simple type is the particle mass, but in applications more detailed particle
properties such as chemical composition, charge and aggregate structure can be of interest
[25, 15, 17, 27] and so the type space Z may be multi-dimensional and either discrete or con-
tinuous. The problem balance problem is formulated for the density of the population distribution
c, where

∫

U×A

c(t, x, z)dxdz (1)

is the number of particles with types inA ⊂ Z that are located in U ⊂ X at time t. Throughout
this work, differential operators are taken to operate only on the spatial position argument of c
and integration dz over Z is taken to be Lebesgue measure or counting measure (when Z is
discrete). The population balance problem with advection is then

∂

∂t
c(t, x, z) + u(x)∇xc(t, x, z) = I(x, z)

+
1

2

∫

z1,z2∈Z
z1+z2=z

K(z1, z2)c(t, x, z1)c(t, x, z2)dz1dz2

−

∫

z1∈Z

K(z1, z)c(t, x, z1)c(t, x, z)dz1, (2)
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where K is the coagulation kernel, u is the advection velocity and I is the inception rate. Be-
cause (2) is a first order equation, it is sufficient to specify just one boundary condition for the
region of the boundary, Γin where the flow crosses into the domain (u · ν < 0, where ν is the
outward normal)

c(t, x, z) = cin(t, x, z) x ∈ Γin. (3)

An initial condition, which for simplicity is taken as 0 is also required, but should not have any
influence on the solution behaviour for large t.

Systems of practical interest such as soot formation during combustion, often lead to spatially
inhomogeneous problems that have to be coupled to spatially resolved flow calculations. How-
ever, existing stochastic particle methods for population balance problems are mostly limited to
to problems that can be formulated in a spatially homogeneous way, possibly with time varying
coefficients [25, 7, 20, 18]. One way to bridge the gap between homogeneous and inhomoge-
neous methods is to precalculate the flow, possibly including a less sophisticated method to
approximate the effects of the particles and then to carry out stochastic simulations inside a
small volume moving along a stream line as a form of post-processing to obtain full particle dis-
tributions from spatially homogeneous simulations [1, 11, 16]. However, such a post-processing
approach means that the detailed particle properties, which would only be studied if they were
important, are not included in the underlying fluid dynamics and chemical reaction calculations,
on which they can have very significant effects [5].

The present work appears to be new in using stochastic particle methods to numerically treat
inhomogeneous coagulation–advection problems. A similar problem was studied by Rudnicki
and Wieczorek [24] using direct simulation methods, but with a ‘coagulation’ rate that was linear
in the particle concentration and so fundamentally different to the Smoluchowski coagulation
equation considered here, in which coagulation is quadratic in particle concentration. Some
previous work with theoretical and computational aspects has been done on Markov processes
to simulate coagulation–diffusion problems [10, 12, 13]. Such problems have a rather different
structure and the work focused on closed systems where mass could neither enter or leave the
system. Many engineering problems on the other hand tend to involve continuous inflow and
outflow, otherwise product or pollutant never interacts with the rest of the world. Simulations
of particle formation in flames, which were the trigger for the present work show both of these
features—mass transfer from the gas to the solid phase and outflow at the end of the flame.

Stochastic simulation methods for the Boltzmann equations for gas molecules also progressed
from homogeneous problems [3, 28, 19] to very complex inhomogeneous domains [4] where a
time independent boundary value problem solution is found by simulating the time dependent
system for a period of time that is large enough for the initial transients to become negligible.
The same strategy will be used in the present work, however there is one very significant differ-
ence between the Boltzmann and Smoluchowski (coagulation) situations: Boltzmann collisions
exchange momentum but preserve the number of particles, whereas coagulations reduce the
number of particles. This leads to some interesting numerical effects.

Applied computations that attempt to capture over a spatial domain the full particle distribution
rather than just a few integral quantities, have been carried out in a small number of cases. In
addition to [11] referred to above a finite element method was used in a post-processing step
after 3-d flow equations had been solved [14] for a crystallisation problem with one internal
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coordinate. A simple sectional approximation with one internal coordinate was used by Sun
et al. [26] to simulate soot formation and a more complex sectional approach was later used
by Zhang et al. [29]. Additional examples, including other application areas, will become more
widespread as the computational requirements become more modest in relation to the available
hardware.

The remainder of the paper is structured as follows: In §2 the simulation processes are defined
and their convergence is discussed. The numerical properties of the algorithms are explored in
§3.1 for a problem that uses the constant coagulation kernel. A much more challenging problem
is used for further tests in §3.2 and provides examples of how direct simulation methods can
become unstable. Finally, conclusions and pointers for future work are set out in §4.

2 Stochastic Particle Methods

The basic idea is shared with the long established Bird algorithm for the Boltzmann equation
[2]: use an operator splitting to simulated the free streaming (advection) part of (2) separately
from the source terms on the right hand size (coagulation and inception). These source terms
are then stochastically simulated with a population of particles divided into isolated spatial cells.
Within such cells coagulation is treated as being independent of the distances between pairs of
particles. Particle positions are not restricted to a discrete lattice (such as the cell centres), but
are continuous variables, in order to avoid advection becoming numerically diffusive.

The algorithm is valid for position space of any dimension so for simplicity it is presented here
(and later tested) for the case where X = [0, L]; this domain [0, L] is divided into ncell cells

Xi = [iL/ncell, (i+ 1)L/ncell) , i = 0, . . . , ncell − 1, (4)

with the understanding that the final cell includes its right hand end point. Write ∆xcell =
L/ncell for the length of each cell and |Xi| for the cell volume, which in this 1-dimensional case
is the same as its length. Let x̄i i = 0, . . . , ncell − 1 be the cell mid-points.

Time splitting is carried out over intervals [j∆tsplit, (j + 1)∆tsplit] so that one first simulates
the source terms from the right hand side of (2) for each cell separately and secondly updates
the position of each particle with its advective displacement over the same time interval. This
implies that coagulation is delocalised in that particles that have different positions have a pos-
itive probability of coagulating with each other, but the delocalisation is restricted to be within
one cell.

Throughout this work it is assumed that c exists with adequate regularity properties and is
unique. Integrating against continuous compactly supported test functions φ gives the following
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weak form, which is used in studying the source terms

∂

∂t

∫

X×Z

φ(x, z)c(t, x, z)dxdz + u

∫

X×Z

φ(x, z)∇xc(t, x, z)dxdz =

∫

X×Z

φ(x, z)I(x, z)dxdz

+
1

2

∫

X×Z2

[φ(x, z1 + z2) − φ(x, z1) − φ(x, z2)]

K(z1, z2)c(t, x, z1)c(t, x, z2)dxdz1dz2. (5)

For each splitting time interval, the physical particle population dynamics (2) are simulated with
a system of stochastic particles parameterised by n ∈ N:

(xj,n(t), zj,n(t), wj,n(t)) j = 1, . . . , Nn(t) (6)

where xj,n(t) ∈ [0, L], zj,n(t) ∈ Z and wj,n(t) ∈ (0, wmax]. It will eventually be seen that
wj,n/nV1 (the choice of V1 > 0, which simply rescales n is discussed below) can be interpreted
as the number of physical particles per unit volume represented by the j-th computational par-
ticle. During each splitting step particles remain within the same Xi and can only interact with
other particles also in Xi. Conditional on the initial conditions at the start of the splitting step,
the particle processes in each cell are independent.

The density c is approximated by a sum of delta functions, the locations of which (in [0, L]×Z)
are the stochastic particles [9, 23]. The approximation works in the sense that

lim
n→∞

E





1

nV1

Nn(t)
∑

j=1

wj,n(t)φ (xj,n(t), zj,n(t))1 {xj,n(t) ∈ Xi}





=

∫

Xi×Z

φ(x, z)c(t, x, z)dxdz + Err (∆xcell,∆tsplit)

∀t, i = 1, . . . , ncell, (7)

where Err (∆xcell,∆tsplit) is the discretisation and splitting error, which is a deterministic quan-
tity.

The role of n is to control the computational quality and cost of the stochastic particle method.
In the limit n → ∞ one expects the particle system to converge to a deterministic limit so
that (7) holds even without taking the expectation, although it must be noted that the n limit
does not remove the errors due to ∆xcell and ∆tsplit. Computations necessarily use finite
values of n, but larger values reduce systematic and statistical error, for a computational price.
Examination of the equations below shows that n multiplies the rate at which computational
particles are created (10) and divides the rate at which they are destroyed (12); it can thus be
used to approximately select the number of computational particles and in this way to control
computational quality and cost. An additional scaling factor for n, V1 > 0 is introduced for each
algorithm below so that n can be restricted to N. For both problems considered V1 was chosen
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so that

E





Nn(t)
∑

j=1

1 {xj,n(t) ∈ Xi}



 <
3

4
n i = 1, . . . , ncell. (8)

This is a bound on the mean number of computational particles per cell; the factor of 3
4

was
convenient for software reasons.

There are two main methods for the simulation of the stochastic particle processes within homo-
geneous cells: the Direct Simulation Algorithm (DSA) and the Stochastic Weighted Algorithms
(SWA).

2.1 Direct Simulation Algorithms

Direct simulation is so named because it can helpfully be interpreted as directly reproducing the
behaviour of small, but representative portion of the physical system. An additional approxima-
tion is inherent in direct simulation: correlations between particles are ignored. Direct simulation
is the case when wj,n(t) ≡ 1.

2.1.1 Inception

A new computational particle
(x, z, 1) (9)

is added to cell i (midpoint x̄i) at rate

nV1

∫

Z

I (x̄i, z) dz ≈
nV1

|Xi|

∫

Xi×Z

I(x, z)dxdz (10)

with x chosen uniformly in Xi and z chosen according to the density I (x̄i, z). Recall that dz
should be understood as Lebesgue measure unless Z is discrete, in which case it is counting
measure.

2.1.2 Coagulation

Coagulation jumps reduce the number of computational particles by 1 and are of the form

(xj1,n, zj1,n, 1) , (xj2,n, zj2,n, 1) → (x̃, zj1,n + zj2,n, 1) (11)

where x̃, similarly to [24], is distributed according to S(xj1,n, zj1,n, xj2,n, zj2,n, dx̃) indepen-
dently of all other parts of the Markov process and each jump of the form (11) occurs within the
cell Xi at rate

K (zj1,n, zj2,n)

nV1
1 {xj1,n ∈ Xi}1 {xj2,n ∈ Xi} . (12)

A number of definitions of S(x1, z1, x2, z2, dx̃) may seem plausible: One can try to use the
midpoint

S(x1, z1, x2, z2, dx̃) := δ(x1+x2)/2(dx̃), (13)
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but for numerical purposes (∆xcell > 0) this gradually concentrates the particle distribution
at the cell centre. A second systematic error arises since the simulation of the streaming step
moves particles towards the right hand end of a cell and then coagulation with newly incepted
particles in the simulation of the source terms moves particles back towards the centre of the
cell so that their apparent velocity is less than u. A more reasonable definition takes the form

S(x1, z1, x2, z2, dx̃) :=

p(x1, z1, x2, x2)δx1
(dx̃) + (1 − p(x1, z1, x2, x2)) δx2

(dx̃). (14)

The definitions p ≡ 1 and p ≡ 1
2

are equivalent, because all ordered pairs of indices have to
be considered for coagulation and K is symmetric. In this work the form p ≡ 1

2
is preferred,

because it explicitly preserves the symmetry of the coagulation events. This definition of S and
p the resulting algorithm is denoted “DSA1”.

One can choose to preserve, in mean, the centre of mass of the two particles by setting

p(x1, z1, x2, x2) =
m̄(z1)

m̄(z1) + m̄(z2)
, (15)

where m̄(z) is the mass of a particle of type z ∈ Z . This choice will be denoted “DSA2”.

2.1.3 Limiting Equation

The convergence of the DSA methods and a weak differential equation for their limit within each
splitting step is discussed in §2.3.1. Using the additional assumption that the limiting distribution
has a density c̃ on X ×Z (with respect to Lebesgue measure on X and Lebesgue or counting
measure on Z according to whether Z is discrete or not) then the convergence results imply
the following equations for c̃ for i = 1, . . . , ncell:

For DSA1 one has

d

dt

∫

Xi×Z

φ(x, z)c̃(t, x, z)dxdz =

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

2 |Xi|

∫

(Xi×Z)2
[φ(x1, z1 + z2) − φ(x1, z1) − φ(x2, z2)]

K(z1, z2)c̃(t, x1, z1)c̃(t, x2, z2)dx1dz1dx2dz2 (16)

and for DSA2

d

dt

∫

Xi×Z

φ(x, z)c̃(t, x, z)dxdz =

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

|Xi|

∫

(Xi×Z)2

[

m̄(z1)

m̄(z1) + m̄(z2)
φ(x1, z1 + z2) − φ(x1, z1)

]

K(z1, z2)c̃(t, x1, z1)c̃(t, x2, z2)dx1dz1dx2dz2. (17)

These equations deal with the particle population during the stochastic simulation of the source
terms from the right hand side of (5) during one splitting step. Advection does not feature be-
cause this is the other part of the splitting.
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For finite ∆xcell (16) and (17) are distinct, but formally letting ∆xcell → 0 causes the right hand
side of both equations to collapse onto the right hand side of (5).

2.2 Stochastic Weighted Algorithm

Stochastic weighted particle algorithms for spatially homogeneous coagulation problems are
presented in [23] based on the Mass Flow Algorithm of [8]. Weights are no longer identically 1,
but the algorithms are constructed such that

wj,n(t) ∈ (0, wmax] ∀j ≤ Nn(t). (18)

2.2.1 Inception

A new computational particle
(x, z, wincep) (19)

is added to cell i (midpoint x̄i) at rate

nV1

wincep

∫

Z

I (x̄i, z) dz ≈
nV1

wincep∆xcell

∫

Xi×Z

I(x, z)dxdz (20)

with x chosen uniformly in Xi and z chosen according to the density I (x̄i, z).

This weighted particle algorithm is presented and used withwincep as a constant. In this setting,
this weighted algorithm is equivalent to the Mass Flow Algorithm (MFA) [8]. The weighted algo-
rithm generalises the MFA in that wincep may be a random variable with distribution depending
on t, x and even z. This would lead to a more complex form for (20), but all other details of the
algorithm would be unchanged.

In the case of constant wincep, there is a redundancy between wincep and V1; only one of the
two parameters is necessary to fully control the algorithm. To simplify the comparison with DSA
methods, this work takes wincep ≡ 1 and uses V1 to control the algorithm as discussed in
§2. The redundancy is not immediately obvious, but it arises because coagulation changes
statistical weights multiplicatively (see the definition of w̃1 before (32)) and so all weights scale
with wincep. The definition of the coagulation rate for the weighted particle system shows that it
also scales linearly with weights and hence withwincep. Therefore changingwincep and V1 while
keeping their ratio constant has no effect on the algorithm properties.

2.2.2 Coagulation

Coagulation jumps change only one particle and are of the form

(xj1,n, zj1,n, wj1,n) , (xj2,n, zj2,n, wj2,n) →
(

xj1,n, zj1,n + zj2,n, wj1,n
m̄(zj1,n)

m̄(zj1,n) + m̄(zj2,n)

)

, (xj2,n, zj2,n, wj2,n) . (21)
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Other definitions of this jump and the conservation properties that result from different definitions
of the jump are studied in [23]. The jump 21 occurs in cell Xi with rate

K̃ (zj1,n, wj1,n, zj2,n, wj2,n)

nV1
1 {xj1,n ∈ Xi}1 {xj2,n ∈ Xi} , (22)

where K̃ (zj1,n, wj1,n, zj2,n, wj2,n) = K (zj1,n, zj2,n)wj2,n.

2.2.3 Limiting Equation

The convergence of the SWA and a weak differential equation for the limit within each splitting
step after integrating out the weights is discussed in §2.3.2. Using the same additional assump-
tion as in §2.1.3 one has the following weak equation for the density of the limiting population:

d

dt

∫

X×Z

φ(x, z)c̃(t, x, z)dxdz =

ncell
∑

i=1

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

2

ncell
∑

i=1

∫

(Xi×Z)2

[

m̄(z1)

m̄(z1) + m̄(z2)
φ(x1, z1 + z2) − φ(x1, z1)

]

K(z1, z2)c̃(t, x1, z1)c̃(t, x2, z2)dx1dz1dx2dz2. (23)

This is identical to (17) for the limiting density of DSA2 and one therefore expects that for given
∆xcell and ∆tsplit that the SWA and the DSA2 converge to the same limit as n→ ∞.

2.3 Convergence

In the first instance, these results apply for the simulation of the particle processes for one
splitting step. However, because the streaming step is deterministic, convergence at the end of
the simulation for one splitting step implies that the initial conditions for the simulation in the next
splitting step converge and hence one has a global in time convergence of the stochastic particle
simulation. A differential equation for the limit is however only available within the stochastic part
of each splitting step, excluding the streaming part of the splitting.

2.3.1 Direct Simulation Algorithms

General convergence results [8, 9, 6] imply that, for continuous functions φwith compact support

lim
n→∞

1

nV1

Nn(t)
∑

j=1

φ (xj,n(t), zj,n(t)) =

∫

X×Z

φ(x, z)ν(t, dx, dz) (24)
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where ν is characterised by

d

dt

∫

Xi×Z

φ(x, z)ν(t, dx, dz) =

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

2 |Xi|

∫

(Xi×Z)2

∫

Xi

[φ(x, z1 + z2) − φ(x1, z1) − φ(x2, z2)]

S(x1, z1, x2, z2, dx)K(z1, z2)ν(t, dx1, dz1)ν(t, dx2, dz2)

i = 1, . . . , ncell. (25)

In the case that p is symmetric, in particular when p ≡ 1
2

(DSA1), substituting the definition of
S from (14) into (25) and exploiting the symmetry leads to

d

dt

∫

Xi×Z

φ(x, z)ν(t, dx, dz) =

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

2 |Xi|

∫

(Xi×Z)2
[φ(x1, z1 + z2) − φ(x1, z1) − φ(x2, z2)]

K(z1, z2)ν(t, dx1, dz1)ν(t, dx2, dz2). (26)

In the case that p is proportional to the mass of the first particle (DSA2), that is, when (15)
holds then 1 − p(x1, z1, x2, x2) = p(x2, z2, x1, x1) and substituting into (25) and exploiting
the symmetry between (x1, z1) and (x2, z2) yields

d

dt

∫

Xi×Z

φ(x, z)ν(t, dx, dz) =

∫

Xi×Z

φ(x, z)I(x̄i, z)dxdz

+
1

|Xi|

∫

(Xi×Z)2
[p(x1, z1, x2, x2)φ(x1, z1 + z2) − φ(x1, z1)]

K(z1, z2)ν(t, dx1, dz1)ν(t, dx2, dz2). (27)

2.3.2 Stochastic Weighted Algorithm

In the same way, one sees that

lim
n→∞

1

nV1

Nn(t)
∑

j=1

ψ (xj,n(t), zj,n(t), wj,n(t)) =

∫

E

ψ(x, z, w) f(t, dx, dz, dw) , (28)

where E = X × Z × [0, wmax] is an extended state space and ψ is continuous with compact
support. The kernel f is characterised by the equation

d

dt

∫

E

ψ(x, z, w) f(t, dx, dz, dw) =

∫

E2

[

ψ

(

x1, z1 + z2,
m̄(z1)

m̄(z1) + m̄(z2)
w1

)

− ψ(x1, z1, w1)

]

×

K̃(z1, w1, z2, w2) f(dx1, dz1, dw1) f(dx2, dz2, dw2). (29)
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If one considers test functions of the form ψ(x, z, u) = φ(x, z) for φ continuous and compactly
supported on X ×Z then

lim
n→∞

1

nV1

Nn(t)
∑

j=1

φ (xj,n(t), zj,n(t)) =

∫

E

φ(x, z) ν(t, dx, dz) , (30)

where ν is defined as follows to be comparable to the same symbol in (25)

ν(t, dx, dz) =

∫ wmax

0

u f(t, dx, dz, du). (31)

With ν as defined in (31), (29) becomes

d

dt

∫

Xi×Z

φ(x, z) ν(t, dx, dz) =

∫

(Xi×Z)2

[

m̄(z1)

m̄(z1) + m̄(z2)
φ(x1, z1 + z2) + −φ(x1, z1)

]

K(z1, z2) ν(t, dx1, dz1) ν(t, dx2, dz2)

i = 1, . . . , ncell. (32)

Equation (32) is identical to (27) showing that DSA2 and the SWA described in this section have
the same limiting process as n → ∞ and in particular that limits of the SWA are solutions to
(25) with the natural interpretation of the weights given by (31).

2.4 Mass Moments

Define the unsteady local mass moments for k ∈ N by

mk(t, x) =

∫

Z

m̄(z)kc(t, x, z)dz (33)

where c is the solution to (2).

For large t, c approaches the solution of the time independent version of (2)

u∇xc(x, z) = I(x, z)

+
1

2

∫

z1,z2∈Z
z1+z2=z

K(z1, z2)c(x, z1)c(x, z2)dz1dz2

−

∫

z1∈Z

K(z1, z)c(x, z1)c(x, z)dz1 (34)

for x ∈ [0, L], z ∈ Z and with boundary condition

c(0, z) = cin(z). (35)
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In the following, the moments of this steady state c

mk(x) =

∫

Z

m̄(z)kc(x, z)dz (36)

are studied, because time averaging can be used to estimate the expectation from (7). In prac-
tice one observes simulated values of

Mn,k(t, x) :=
1

nV1

Ni,n(t)
∑

j=1

m̄ (zj,n(t))
k wj,n(t) (37)

where x ∈ Xi for many values of t in the same simulation. Samples are observed at times
j∆tsample, j ∈ N with ∆tsample = n∆tsplit for some n ∈ N. For t large enough the system
approaches a steady state and provided ∆tsample is not too small one can view successive
samples of Mn,k(t, x) for t > trelax as approximately independent realisations of a time inde-
pendent random variable Mn,k(x). This is computationally very valuable, because it reduces
the number of realisations of the Markov process that have to be generated.

3 Numerical Results

3.1 Constant Coagulation Kernel

In this section a system of lengthL = 2×10−1, Z = R
+ is taken to be mass,K(zi, zj) ≡ K0,

u ≡ 1, with K0 = 10−5 and I(x, z) = I0 × 1 {z = 1} with I0 = 3 × 108. The left (inflow)
boundary condition is cin ≡ 0.

Numerical parameters were V1 = 10−7 for DSA1&2 and V1 = 1.25 × 10−8 for the SWA.
Further parameters were ∆tsplit = 10−4, ∆xcell = 4 × 10−3 and ∆tsample = 5 × 10−3. For
inception in the SWA, wincep = 1 was used. Averaging of moments was carried out over the
time interval [0.4, 4.0] so that trelax = 0.4.

Using simple fluid mechanics style reasoning for small control volumes one derives from (34)
the following equations and solutions for the total mass moments:

u∇m0(x) = 3I0 −
K0

2
m0(x)

2, m0(0) = 0 (38)

m0(x) =

√

6I0
K0

tanh

(

√

3I0K0

2

x

u

)

(39)

u∇m1(x) = 3I0, m1(0) = 0 (40)

m1(x) =
3I0
u
x (41)

u∇m2(x) = 3I0 +K0m1(x)
2, m2(0) = 0 (42)

m2(x) =
3I0
u
x+

3I2
0K0

u3
x3 (43)
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u∇m3(x) = 3I0 + 3K0m1(x)m2(x) m3(0) = 0 (44)

m3(x) =
3I0
u
x+

9I2
0K0

u3
x3 +

27I3
0K

2
0

5u5
x5 (45)

Figures 1&2 show that all three methods considered successfully estimatemk(x) k = 0, 1, 2, 3
with averaged values ofMn,k(t, x) with n = 256. The results for n = 1024, 4096, 16384 were
similar, showing that the method converges for rather small values of n.
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(a) M0,n(x)/106
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Figure 1: First two moments for constant kernel test problem
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Figure 2: Additional moments for the constant kernel test problem

The variance of the Mn,k(t, x) samples closely approaches the 1/n scaling that is usual for
Monte Carlo methods. Detailed results are shown in Figures 3–6. DSA1&2 show very similar
behaviour, but are qualitatively different from SWA for Mn,k when k = 1, 2, 3, that is, for all

12



except the zeroth moment. For the three higher moments the relative variance for small x (where
the system is relatively empty) is much lower for the DSA methods than for the SWA. However,
the DSA methods show relative variance that increases with x whereas the SWA has relative
variance that decreases with x. The relative variances intersect close to x = 0.1, but at a point
which appears to move left with increasing k. The difference between the DSA methods and

x

1

3

10

0.00 0.05 0.10 0.15 0.20

DSA1 n=256
DSA1 n=1024
DSA1 n=16384
DSA2 n=256
DSA2 n=1024
DSA2 n=16384
SWA n=256
SWA n=1024
SWA n=16384

Figure 3: Normalised standard deviation for simulated zeroth moment of the constant kernel test

problem
√

n× var (Mn,0(x))/m0(x).

the SWA may partly be explained by the way in which the SWA weights the simulation particles
so that the larger, rarer particles are better resolved than with DSA. The price for this is poorer
resolution of small particles; smaller particles are more common (since there is continuous
inception) and so the DSA methods simulate Mn,0 better than the SWA [23]. However, while
the outperformance of the SWA for Mn,k, k = 2, 3 might be explained by the weighting, the
case of Mn,1 is more complex. From a physical standpoint, coagulation should have no effect
on how mass moves through the system, and in the absence of coagulation, one finds that, for
x ∈ Xi and upto approximations due to the finite spatial discretisation,

nV1Mn,1(t, x) ∼ Poi

(

3I0∆xcell(2i+ 1)

2u
nV1

)

(46)

so that (note x ≈ ∆xcell
2i+1

2
, the cell mid-point)

n
var (Mn,1(t, x))

m1

(

∆xcell
2i+1

2

)2 =
2u∆xcell

3I0V1(2i+ 1)
≈

u

3I0V1x
. (47)

Equation (47) should apply to the DSA results and to the SWA results with the appropriate
values of V1. These values implied by (47) are plotted as lines in Figure 4, where the SWA
shows a good match but the DSA methods are seen to quickly start generating extra variance.
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Figure 4: Normalised standard deviation for simulated first moment of the constant kernel test

problem
√

n× var (Mn,1(x))/m1(x) (symbols) and theoretical limit from inception process
(SWA solid line, DSA dashed line).

This indicates a fundamental difference between DSA and SWA coagulation, even though both
are exactly mass conserving on the grid scale. The key difference is that DSA coagulation events
increase the physical mass associated with one computational particle and remove a second,
whereas SWA coagulation events, because of their use of statistical weights, avoid the removal
of the second computational particle.

For the problem considered in this section, systematic errors are small, even for n = 256.
The optimal choice of method within the range of n studied, reduces to a question about which
can achieve a specified confidence interval for the mean value of a chosen functional with the
smallest amount of computer time. Figures 3 to 6 show that for Mn,k(x) the answer to this
question will depend on x and k and that the differences are small enough that the method
could reasonably be chosen arbitrarily rather than spending time on a detailed comparison.
However the increasing nature of the relative standard deviation for the DSA algorithms is a
cause for anxiety. A second test problem, with a strongly size dependent coagulation kernel is
now considered and it will be seen that this issue with the DSA methods becomes much more
serious.
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Figure 5: Normalised standard deviation for simulated second moment of the constant kernel

test problem
√

n× var (Mn,2(x))/m2(x).
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Figure 6: Normalised standard deviation for simulated third moment of the constant kernel test

problem
√

n× var (Mn,3(x))/m3(x).
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3.2 Additive Coagulation Kernel

In this section a system of length L = 10−1, Z = N is taken to be particle mass, K(zi, zj) =
K0 × (zi + zj), u = 1, with K0 = 1.06 × 10−2 (the parameters were originally chosen on
physical grounds) and I(x, z) = 105

1 {z = 1}.

The additive kernel is the most strongly size dependent kernel that does not, in the spatially
homogenous case, lead to the formation of infinite particles in finite time (gelling).

Since coagulation does not affect the mass of particles it is easy to see that

∂

∂t
m1(t, x) + u∇xm1(t, x) = I(1) (48)

and that
m1(t, x) = I(1)

(x

u
∧ t
)

. (49)

The steady state limit is well behaved with

m1(x) = I(1)
x

u
= lim

t→∞
m1(t, x). (50)

The numerical parameters were as follows: ∆xcell = 2×10−3, ∆tsplit = 4×10−4, ∆tsample =
4× 10−3, V1 = 1

3
× 10−3 for DSA1&2 and V1 = 2−7 × 10−2 = 7.8125× 10−5 for the SWA.

These values of V1 mean that the long run average number of computational particles in the
entire domain was just under 28n for the DSA cases and just under 20n for the SWA.

DSA moments were averaged over [0.2, 4.0], SWA over [0.2, 0.4], that is, trelax = 0.2 in both
cases but the time averaging of the DSA samples of Mi,n,k was over a much longer interval.
The extended sampling interval was chosen to make the DSA and SWA runtimes approximately
equal for the same value of n in the initial implementation of the algorithms.

The Markov chains were realised multiple times with different seeds for the pseudo random
number generator (the Mersenne twister [21]). The number of realisations was chosen to be
262144/n in order to achieve similar sized confidence intervals for all values of n.

The mean of the simulated particle concentrationMn,0(x) is plotted in Figure 7 and shows little
dependence on algorithm or n. However, time averaged values of Mn,1(x) show a surprising
lack of smoothness (contrast Equation (50)) for large x. Plots of the averagedMn,1(x) are given
in Figure 8 and both sets of DSA data show oscillations for n = 2048, 16384, but the SWA has
only the slightest deviation from the theoretical straight line, even for n = 2048. A quantitative
description of this phenomenon is provided in Table 1, which shows the mean and standard
deviation of the sampledMn,1 values and an estimated of the 95% confidence interval half width
for the sample mean calculated with the usual central limit theorem approximation. The data in
Table 1 show that the DSA2 and SWA closely approach the true value 105×0.099 = 9.90×103

(calculating at the cell centre). However, the DSA1 shows a small, but statistically significant,
difference.

Equation (47) also applies to the rescaled Mn,1(x) standard deviation for the additive coagu-
lation kernel test problem under consideration here and is compared to the simulated values in
Figure 9. This figure closely resembles the corresponding Figure 4 for the constant coagulation
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Figure 7: Mean of simulated particle concentration Mn,0(x) for the additive coagulation kernel
test problem
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Figure 8: Zoomed comparison of Mn,1(x)/103 for the additive coagulation kernel test problem
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Table 1: Confidence intervals for the mean of Mn,1 estimated from the cell [0.098, 0.1].

sample sample std. 95% conf.
n mean /103 dev. /103 int. /103

DSA1 2048 10.570 11.09 0.062
DSA1 4096 10.514 9.99 0.079
DSA1 8192 10.347 7.64 0.086
DSA1 16384 10.097 5.09 0.081
DSA1 32768 10.112 4.64 0.104
DSA1 65536 10.319 3.66 0.116
DSA1 131072 10.147 2.56 0.114
DSA1 262144 10.132 1.99 0.126
DSA2 2048 9.894 9.923 0.0220
DSA2 4096 9.854 3.271 0.0260
DSA2 8192 9.874 2.645 0.0297
DSA2 16384 9.898 2.064 0.0293
DSA2 32768 9.880 1.534 0.0345
DSA2 65536 9.890 1.143 0.0363
DSA2 131072 9.871 0.811 0.0365
DSA2 262144 9.894 0.586 0.0372
SWA 2048 9.878 0.249 0.0060
SWA 4096 9.887 0.178 0.0061
SWA 8192 9.886 0.126 0.0061
SWA 16384 9.880 0.085 0.0059
SWA 32768 9.877 0.064 0.0062
SWA 65536 9.878 0.046 0.0063
SWA 131072 9.876 0.030 0.0059
SWA 262144 9.877 0.020 0.0055
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kernel problem from the previous section. One again sees that the SWA adds little variance
beyond that which is intrinsic to the inception process, whereas the two DSA variants introduce
an ever increasing amount of noise, which in this case leads to a loss of solution quality. At
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SWA n=16384
SWA n=131072

Figure 9: Normalised standard deviation for simulated first moment of the additive kernel test

problem
√

n× var (Mn,1(x))/m1(x) (symbols) and theoretical limit from inception process
(SWA solid line, DSA dashed line).

x = 0.1 Figure 9 shows a factor of approximately 30 difference in the standard deviations of
the Mn,1(t, x) samples generated with the DSA2 and the SWA.

The problems with the DSA methods are more severe for the higher order mass moments—
considerable dependence on n can be seen for the DSA generated values summarised in
Table 2. In particular, one sees that the DSA1 means differ greatly from the DSA2 and SWA
limiting values. However, the excessive fluctuations seen in the higher moments eventually feed
back into Mn,0 as shown in Figure 10.

In Table 2 the SWA mean values appear to converge to approximately 9.1 × 107. All the SWA
values are within 3% of this value. The DSA2 values are consistent with convergence to the
same limit, as expected from §2.2.3, but it takes until n = 131072 just to reach the 3% tolerance
and to bring the sample mean within one confidence interval half width of the supposed limit.
A similar pattern is seen for Mn,3 reinforcing the impression that the SWA is generally a more
precise method than both the variants of the DSA. It is interesting to note that the SWA showed a
much more limited advantage for homogeneous problems where there was no question of where
to place computational particles after computation in the DSA [23]. This observation, along with
the differences between DSA1 and DSA2 support the conclusion that the key problem with the
DSA methods in this setting of coagulation and advection is the numerical noise generated in
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Table 2: Confidence intervals for the mean of Mn,2 estimated from the cell [0.098, 0.1].

sample sample std. 95% conf.
n mean /107 dev. /107 int. /107

DSA1 2048 10.55 50.83 0.286
DSA1 4096 16.95 123.15 0.978
DSA1 8192 20.63 100.39 1.128
DSA1 16384 19.92 61.58 0.978
DSA1 32768 31.45 105.39 2.368
DSA1 65536 40.68 134.16 4.263
DSA1 131072 40.79 82.59 3.712
DSA1 262144 48.09 99.28 6.310
DSA2 2048 2.953 3.45 0.019
DSA2 4096 4.176 4.69 0.037
DSA2 8192 5.549 5.97 0.067
DSA2 16384 6.836 6.70 0.095
DSA2 32768 7.660 6.39 0.144
DSA2 65536 8.376 5.80 0.184
DSA2 131072 8.661 4.60 0.207
DSA2 262144 8.981 3.26 0.207
SWA 2048 9.354 2.09 0.051
SWA 4096 9.273 1.42 0.049
SWA 8192 9.192 1.02 0.050
SWA 16384 9.110 0.72 0.049
SWA 32768 9.049 0.50 0.049
SWA 65536 9.105 0.48 0.047
SWA 131072 9.145 0.26 0.050
SWA 262144 9.110 0.18 0.049
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Figure 10: Normalised standard deviation for simulated zeroth moment of the additive kernel

test problem
√

n× var (Mn,0(x))/103.

the spatial distribution of mass during simulated computational events.

Mean moment values for DSA2 and SWA do not change significantly when ∆xcell is reduced by
a factor of 10 (increasing the number of cells and total number of computational particles in the
domain by the same factor). The very large errors of DSA1 are reduced by decreasing ∆xcell,
which again supports the theory that the disruption of the spatial mass during computational
coagulation events is at the root of the fluctuations observed in the DSA methods.

4 Conclusion

The present work developed from an unsuccessful attempt to extend a spatially homogeneous
Direct Simulation Algorithm for soot formation [22] to the spatially inhomogeneous case. Initial
attempts showed large instabilities and systematic errors. Investigations eventually identified
the same problems in the additive coagulation kernel test problem considered in §3.2. The key
features of the initial difficulties could be reproduced without incorporating reactions on particle
surfaces, which were accordingly excluded here in the interests of simplicity. The exclusion
of diffusion is justified as a first approximation, because soot particles are large compared to
surrounding gas molecules.

The present work shows that DSA methods are vulnerable to instabilities the manifest them-
selves first in high variance and then in systematic error when used for the simulation of coagulation–
advection problems. The SWA avoids these problems, which are much more severe for the

21



strongly size dependent additive coagulation kernel than they are for the size-independent con-
stant coagulation kernel.

Despite these fundamental differences in numerical performance, it is also shown theoretically
that both the DSA methods, as well as the SWA, converge to deterministic limits as the num-
ber of computational particles approaches infinity. This convergence behaviour was clearly ob-
served for the SWA and DSA2 in the numerical examples.

The instability with the DSA methods appears to stem from the nature of the computational
jumps that capture the effects of physical coagulation processes. During the DSA simulation of
coagulation, one computational particle becomes larger and a second (the source of the mass to
grow the first) is removed. This increases the amount of mass at the position of the first particle
and reduces the amount of mass at the position of the second particle. Selecting the order of
the coagulation partners uniformly at random makes this effect more severe than choosing the
order such that the probability of a particle being the first partner is proportional to its mass.

Weighted particle methods exploit the freedom to choose statistical weights to keep the amount
of mass constant at both points and simply alter the distribution of mass across the particle size
or type space at the location of the first particle. In the weighted particle setting coagulation
adds little noise to the first moment of the mass distribution beyond that which is intrinsic to the
inception process.

Future work will address the incorporation of surface reactions, which are important for physical
modelling purposes [22] and the refinement of the stochastic weighted particle algorithm.
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