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Abstract

We solve numerically a generalized nonlinear Schrödinger equation by using

a pseudospectral method [1]. Integration is performed by using an eight-

order Runge-Kutta scheme. The numerical method therefore di�ers from the

commonly used split-step method [2]. E�ects such as the impact of group

velocity dispersion (GVD) up to fourth-order dispersion, self phase modulation

(SPM), self-steepening and intrapulse Raman scattering can be investigated

with the code. Examples for the above e�ects are demonstrated, as well as

their interplay in the context of soliton propagation and sub-picosecond pulses.
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1 Introduction

Wave propagation in dispersive nonlinear media has become a topic of intense re-

search activities, in part stimulated by its potential application to optical �ber

communication systems. Propagation of optical pulses in monomode optical �bers

is mainly in�uenced by the group velocity dispersion and the refractive index non-

linearity. Rapid progress in ultrashort time laser technology has made it possible

that optical pulses with durations comparable to the carrier oscillation cycle can be

generated. The propagation of such ultrashort and intense pulses is then a�ected

by additional physical mechanisms, where especially higher order e�ects become

important. Highly nonlinear operating conditions or the interplay between the dif-

ferent linear and nonlinear e�ects can result in dramatic changes of the temporal

and spectral properties of the pulse.

In this paper we want to consider the propagation of pico- and sub-picosecond

pulses. The propagation of a sub-picosecond pulse is governed by a generalized

nonlinear Schrödinger equation (NLSE), which can be derived from the underlying

Maxwell equations within the slowly varying envelope approximation, see Section 2.

This means that the pulse envelope A(z; t) modulating the underlying carrier wave

exp[i(k0z�!0t)] is assumed to be slowly varying in time and space. The pulse width

has to be much longer than the carrier oscillation period and the spectral content

of the �eld has to be narrower than the carrier frequency !0 itself. This is satis�ed

for optical pulses with widths down to 10fs.

The general form of the NLSE for the complex envelope A(z; � ) of a pulse is given

by

@A

@z
= �

i

2
�2
@2A

@� 2
+

1

6
�3
@3A

@� 3
+

i

24
�4
@4A

@� 4
�

1

2
�A

+i
jAj2A� a1
@

@�

�
jAj2A

�
� ia2A

@

@�

�
jAj2

�
; (1.1)

where the initial value problem

A(0; � ) = f(� ) (1.2)

along z within a retarded time frame � = t�z=vg has to be solved. The linear terms

on the right-hand side of Eq.(1.1) are the group velocity dispersion (GVD), namely

second-order (SOD), third-order (TOD) and fourth-order dispersion (FOD) and the

attenuation term corresponding to the �ber loss �: The main contribution to the

group velocity dispersion is represented by the parameter �2, which leads in general

to a broadening of the pulse shape. TOD and FOD are higher order e�ects arising

from the wavelength dependence of the group velocity. These dispersive e�ects can

distort ultrashort optical pulses in the linear as well as in nonlinear regimes. An

important �ber parameter is the measure of power loss during the transmission

of optical signals inside the �ber, given by the attenuation constant �. The �rst

nonlinear term represents the self-phase modulation (SPM), where 
 = n2!0=cAeff ,
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n2 is the nonlinear refractive-index coe�cient, Aeff the e�ective core area and c the

speed of light. SPM results from the intensity-dependent refractive index n2 and is

responsible for a large variety of phenomena, such as spectral broadening or optical

solitons. The term proportional to a1 results from the intensity dependence of the

group velocity and causes self-steepening and shock formation at the pulse edge with

a1 = 
=!0. The last term regards the intrapulse Raman scattering and originates

from the delayed response, which causes a self-frequency shift. a2 = 
TR; where TR is

related to the slope of the Raman gain. The intrapulse Raman scattering becomes

a dominant perturbation for ultrashort pulses and is one of the most important

limitations for ultrashort pulse propagation in optical �bers.

In general a numerical approach is needed for an investigation of the generalized

NLSE. In this report we want to propose a standard numerical technique, based

on a pseudospectral method and a Runge-Kutta scheme, instead of the commonly

used split-step method. Our method will be demonstrated for the di�erent phys-

ical e�ects. The examples are chosen such that the results can be compared with

analytical and numerical results from the literature.

This report is organized as follows: Section 2 provides the derivation of the general-

ized nonlinear Schrödinger equation from the Maxwell equations. In Section 3 the

used numerical method is discussed and in Section 4 follows a brief description of

the usage of the program. Section 5 focuses on the dispersion, which arises from the

linear terms under conditions where the nonlinear e�ects are negligible. Dispersion-

induced broadening and higher-order dispersive e�ects are considered for several

pulse shapes. Section 6 is devoted to the nonlinear phenomenon SPM. The features

of SPM with and without GVD are discussed. Section 7 is dedicated in particular to

the propagation of optical solitons. The impact of the higher order nonlinear terms

self-steepening and Raman scattering is subject of Section 8 and 9 respectively.

2 Derivation of the NLSE

The derivation starts from the Maxwell equations for the classical electric and mag-

netic �elds E, H

r� E+ �0@tH = 0 (2.1)

r� H� @tD = j (2.2)

where D denotes the electric displacement subject to the linear medium response.

The nonlinear (�eld-dependent) medium response is contained in the current density

j and will be treated perturbationally in Section 2.3. The �elds E, H, D and j depend

on the three spatial variables (r) and on the time.

The �elds propagate longitudinally along the �ber axis which is the z-dimension.

The transverse plane is denoted by rt. The vacuum permeability is denoted by �0
and the vacuum permittivity by "0. The Fourier transformed quantities are indicated

by a tilde.
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2.1 Transverse Waveguiding

The �bers under consideration are longitudinally homogeneous, i.e. " = "(rt). Thus,
we want to split the Maxwell equations into a stationary transverse system and a

longitudinal dynamical system.

We choose a reference frequency !0 and seek for a wave number � and solutions E

and H having the form of a longitudinal wave:

E = e(rt)e
i(!0t��z) (2.3)

H = h(rt)e
i(!0t��z). (2.4)

The �elds e;h solve the transverse waveguide equations

rt � e(rt)� i�ez � e(rt) + i!0�0h(rt) = 0 (2.5)

rt � h(rt)� i�ez � h(rt)� i!0"0"e(rt) = 0: (2.6)

Equations (2.5) and (2.6) are restricted to monochromatic �elds (with optical fre-

quency !0) and are independent of z. rt is the transverse component of the nabla

operator and ez := (0; 0; 1)T the longitudinal unit vector. (2.5), (2.6) is an eigenvalue

problem for � and (e;h) are quadratic in �. It is supposed to contain a discrete

spectrum of guided modes. In particular, if ((Et; Ez); (Ht;Hz)) is an eigenmode with

wave number �, ((Et;�Ez), (�Ht;Hz)) is an eigenmode with wave number ��. It
corresponds to �eld components propagating in the opposite direction. Motivated

by the translational invariance along the �ber we assume no coupling between the

counterpropagating �elds. Therefore we restrict ourselves to the wave propagating

in positive z-direction (Re[�] > 0 for positive !0).

2.2 Linear Response

We con�ne ourselves to a single guided transverse mode. This is a good approxima-

tion for a single mode �ber (SMF), except cases of degenerate modes with di�erent

polarization (PMD), which is out of the scope of this paper. The possible excitation

of other modes can be taken into account by a phenomenological loss coe�cient �

later on.

The form of the equations for the mode amplitudes to be derived within this section

is independent of the transverse reference mode chosen. Using other types of modes

or reference waveguides leads to modi�ed formulas for the coe�cients. The only

important restriction is, that E, H and j are transversally single moded.

The �elds are approximated by the following ansatz

E =
1

2
A(z; t)e(rt)e

i(!0t��z) + c:c: (2.7)

H =
1

2
A(z; t)h(rt)e

i(!0t��z) + c:c:. (2.8)
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Apart from the factor exp[i!0t] this ansatz allows the �elds to vary in time, which

is a non-monochromatic behaviour. According to [3] and [4], the time derivative of

the dielectric displacement D can then be written as

@

@t
D(r; t) =

1

2
ei(!0t��z)"0e(rt)i

�
!0"(!0) +

@!"(!)

@!

���
!0

�
�i

@

@t

�
+D

�
A(z; t) + c:c:;

(2.9)

where the nonlinear dispersion operator D is de�ned as

D =

1X
n=2

1

n!

@n!"(!)

@!n

���
!0

�
�i

@

@t

�
n

: (2.10)

The latter corresponds to an expansion of the nonlinear dispersion in the frequency

domain as

!"(!) =
1X
n=2

1

n!

@n!"(!)

@!n

���
!0

(! � !0)
n. (2.11)

The coe�cients
@n!"(!)

@!n
are taken at !0 in (2.10) and in (2.11). They may depend

on r but not on the frequency. The result has to be at least a valid approximation

for an unperturbated waveguide, where an optical beam with a center frequency !0
propagates with the group velocity, rather than the phase velocity.

From now we apply the Random Phase Approximation (RPA), i.e. we neglect the

�c.c.� contributions in (2.7),(2.8) and (2.9). This is a very common approximation

which in e�ect drops fast oscillating terms from the equations.

The Maxwell equations (2.1) and (2.2) read now as

Art � e+ @zAez � e�A � i�ez � e+ i!0�0Ah+ @tA�0 � h = 0 (2.12)

Art � h+ @zAez � h�A � i�ez � h� i!0"0"eA (2.13)

�"0
@!"

@!
e@tA� i"0DeA = 2je�i(!0t��z)

The eigenvalue equations (2.5) and (2.6) for e and h provide replacements for the

terms rt � e and rt � h. The insertion yields

@zAez � e+ �0 � @tAh = 0 (2.14)

@zAez � h� "0
@!"

@!
@tAe� i"0DeA = 2je�i(!0t��z) (2.15)

The single mode ansatz is of course to restrictive for satisfying the system (2.14),

(2.15) locally. Only a transverse average of (2.14), (2.15) can be satis�ed. The

averaged equations result from projections, i.e. the scalar products with the modes

h; e respectively, integrated over the transverse plane (denoted by
R
t
drt).
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From the homogeneous waveguide equations (2.5), (2.6) the relations

� = !0

R
t
("0"e2 + �0h

2) drt

2
R
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ez � e� hdrt

; (2.16)
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Z
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"e2drt ; (2.17)
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(2.18)

(k0 = !0

c
, TE polarization assumed) can be concluded. The averaged amplitude

equation
R
t
drt ((2.14) � h� (2.15) � e) becomes:
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and will be denoted more shortly as

@zA+
@�

@!
@tA+ i

1X
n=2

�n

n!

�
�i

@

@t

�n
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�n = "0

R
t

@n!"(!)

@!n

���
!0

e
2drt

2
R
t
ez � e� hdrt

(2.21)

and

F =

R
t
2je�i(!0t��z) � edrt
2
R
t
ez � e� hdrt

=
�0!0

2�
e�i(!0t��z) �

R
t
2jedrtR
t
e2drt

. (2.22)

The coe�cients �n are usually referred to as the group velocity dispersion (GVD) in

the literature. For the unidirectional propagation one slows down within a moving

frame:

(z; t) 7�! (z; � ) with � = t�
@�

@!
z (2.23)

such that the propagation equation becomes

@zA+
�

2
A+ i

1X
n=2

�n

n!

�
�i

@

@�

�n

A = �F : (2.24)

In (2.24) the phenomenological �ber loss � has been introduced in addition.
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2.3 Nonlinear Response

The response of the �ber is supposed to have a transverse structure proportional to

the electric �eld. We express it in terms of the polarization P:

P = "0"NL(rt; z; t) �A(z; t)e(rt)ei(!0t��z); (2.25)

where � denotes the convolution with respect to time and "NL is the nonlinear

response function [2]

"NL =
3

4
�(3) e

2R
e2drt

jA(z; t)j2: (2.26)

We consider only intensity-dependent nonlinear optical e�ects by (2.26) for shortness

[5], [6]. The normalization e
2

R
e
2drt

in (2.26) is chosen such that jAj2 becomes the power

of the electric �eld.

The nonlinear response (2.26) is often divided into two contributions. One contri-

bution is due to nearly instantaneous (electronic) response and the other is due to

delayed (lattice) response (Raman-scattering):

�(3)(t; t� t1; t� t2) = �(3)
xxxx

� [(1 � fR)Æ(t� t1)Æ(t� t2) + fRR(t� t1)Æ(t� t2)]
(2.27)

where R is the Raman response and fR its relative fraction. Furthermore, the

coe�cient �
(3)
xxxx is given by

�(3)
xxxx

=
8n

3
n2 + i�2

nc

!0
(2.28)

where n is the linear refractive index, n2 the nonlinear refractive index and �2 the

two-photon absorption coe�cient [2].

The current density j = 1
2
(j+ j

�) is the time derivative of the polarization:

j = ei(!0t��z)"0

�
i!0 +

@
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P(rt; z; t); (2.29)

such that F in (2.20) becomes
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For the last step we have used � = nk0, such that
k
2

0

2�
= !0

2nc
. The coe�cient

Aeff =

 R
e
4drt�R

t
e2drt

�2
!�1

(2.31)

is known as the e�ective core area and often used as a standard �ber parameter in

the literature [2], [4]. Using Aeff a parameter 
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n2!0

cAeff

(2.32)

is de�ned, such that F can be expressed more compactly as

F =
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�
:

In the following we neglect the two-photon absorption for shortness. Expression

(2.33) is still quite general and has been used for studying femtosecond pulses [7].

For pulses longer than 10fs one con�nes to local approximations of the Raman

contribution [2], pp. 47-49. We noteZ
�

�1
R(� � �1)jA(�1)j2d�1 =

Z 1

0

R(� 0)jA(� � � 0)j2d� 0: (2.34)

Then jA(� � � 0)j2 is expanded as:

jA(� � � 0)j2 � jA(� )j2� � 0
@

@�
jA(� )j2: (2.35)

The �rst moment of the nonlinear response function is used for de�ning

TR = fR

Z 1

0

� 0R(� 0)d� 0: (2.36)

Furthermore, we note
R1
0
R(� 0)d� 0 = 1. Inserting this into (2.33) we obtain for

Eq.(2.24) the local equations
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The time derivative of the last term is usually neglected in the literature:

@
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A = �

�

2
A� i

1X
n=2

�n

n!

�
�i

@

@�

�
n

A(z; � ) (2.38)

�i

��

1�
i

!0

@

@�

�
jA(z; � )j2A(z; � )� TRA(z; � )

@

@�
jA(z; � )j2

�
:

In practise,
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A(z; � ) has to be restricted to the �rst few contribu-

tions, expressed by net coe�cients �n which are drawn from measurements. Con-

�ning to the lowest terms and taking the complex conjugate of (2.38) one arrives at

the generalized nonlinear Schrödinger Equation [2]
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; (2.39)

which is in the focus of this work. Eq.(2.39) describes the propagation of sub-

picosecond pulses in optical nonlinear �bers. It is equivalent to Eq.(1.1) with the

corresponding coe�cients a1 and a2.

For the investigations of (2.39) it is sometimes useful to introduce di�erent length

scales under which the physical mechanisms can act on the pulse evolution. The

crucial physical quantities thereby are the initial pulse width T0 and the peak power

P0. Depending on these quantities either dispersive or nonlinear e�ects may dom-

inate the evolution along the �ber. Using these length scales Eq.(2.39) may be

transformed in the normalized form:

i
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+
i sgn(�3)
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24L
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U
@

@�
(jU j2)

�
; (2.40)

with the time � = �

T0
normalized to the initial pulse width T0. The normalized

amplitude is U(z; �) = 1p
P0

exp(�z
2
)A(z; �); where P0 is the peak power of the initial

pulse. Speci�c length parameters are de�ned as

LD =
T 2
0

j�2j
; L

0

D
=

T 3
0

j�3j
; L

00

D
=

T 4
0

j�4j
; LNL =

1


P0

: (2.41)

The second-, third- and fourth-order dispersion lengths LD; L
0

D
; L

00

D
and the non-

linear length LNL provide the length scales over which the di�erent e�ects become

important for pulse evolution along a �ber of length L.
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Remarks

1. The neglect of the 2nd derivative with respect to z in the propagation equation

(2.39) is no approximation as often claimed in the literature [2].

2. If the pulses become short, their localization in the frequency domain becomes

weak. Then especially approximations like (2.27) and the truncation of higher

orders of the dispersion become increasingly questionable.

3. An adiabatic invariant of Eq. (2.39) for � = 0 is given by [8]:

I1 =

Z
jA(z; � )j2 d� (mass conservation): (2.42)

4. In the case where � = 0 and a1 = a2 = 0 the NLSE describes a Hamiltonian

system. We mention here the momentum and the total energy as the next

invariants, cf. [8]:

I2 =

Z
(A@�A

� �A�@�A) d� ;

I3 =

Z �1
2
�2 j@�Aj

2 �
i

6
�3(A

�@3
�
A�A@3

�
A�)�

1

12
�4
��@2

�
A
��2 � 
 jAj4

�
d� :

3 Numerical Method

The NLSE is a nonlinear partial di�erential equation which combines nonlinear

terms with high-order linear terms and can generally be written in the form

@A

@z
= LA+N (A) : (3.1)

Except for some speci�c cases in which the inverse scattering method or perturbation

techniques can be employed, an analytical solution for the generalized NLSE (1.1)

is not known. A numerical approach is in general necessary for the evalution of

the nonlinear e�ects. A large number of numerical methods can be used for this

purpose. These can be classi�ed into two main categories known as the �nite-

di�erence method and the split-step Fourier method. For simulating the NLSE the

split-step Fourier method is predominantly used, rather than the �nite di�erence

discretization as the split-step Fourier method is often more e�cient. In both cases

an appropriate discretization of time is needed, leading to a system of ordinary

di�erential equations

@ ~A

@z
= ~L ~A+ ~N ( ~A) : (3.2)

The split-step method bases on splitting the equation into a linear part

@ ~A

@z
= ~L ~A (3.3)
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and a nonlinear part

@ ~A

@z
= ~N ~A (3.4)

and on solving these equations alternatively. More speci�cally, it is assumed that

the dispersive and the nonlinear e�ects act independently. In the �rst step Eq.(3.4)

is solved from z to z + 1
2
h with the initial condition A(z). In the second step the

linear equation Eq.(3.3) is solved from z+ 1
2
h to z+ h with the solution of Eq.(3.4)

as the initial condition for Eq.(3.3). The solution over a short z-interval of length h

is then written in the form

A(z + h; t) = exp(
h

2
~L) exp(

h

2
~N )A(z; t) :

The operators ~L and ~N do not commute in general and this propagation from z to

z + h is a rough approximation. Based on the Baker-Campbell-Hausdor� formula

exp( ~L) exp( ~N ) = exp

�
~L+ ~N +

1

2
[ ~L; ~N ] +

1

12
[ ~L � ~N; [ ~L; ~N ]] + � � �

�
;

a higher-order accuracy can be achieved by applying an appropriate composition of

linear and nonlinear steps

A(z + h) � (3.5)

exp(c1h ~L) exp(d1h ~N) exp(c2h ~L) exp(d2h ~N) � � � exp(ckh ~L) exp(dkh ~N)A(z) ;

where ci and di are real numbers and represent fractional integration steps.

The integration method for the separated parts can in general be performed with

di�erent methods, depending on the discretization scheme which has been used.

If the in�uence of boundaries can be ignored, periodic boundary conditions can be

imposed with a discretization in the Fourier domain for the time variable. This choice

suggests the calculation of the nonlinear part by transforming the amplitude back

to the time domain, then to perform the nonlinear operations in the time domain,

and �nally transforming back to the frequency domain. The solution for the linear

part is directly achieved in the frequency domain. Consequently this method is

associated to the pseudospectral method. An exact description and an overview of

the split-step Fourier method can be found in [2]. The split-step method has the

distinction of being a stable integration scheme and has been shown to be convenient

because of its simplicity and �exibility in dealing with higher-order dispersion, the

Raman e�ect and �ltering [2]. The e�ciency depends strongly on the distribution

of step-sizes along the �ber. However, for high accuracy a high-order decomposition

of A(z) in Eq.(3.5) is needed. But the main advantage lies in the pseudospectral

method itself and therewith in the use of the Fast-Fourier transformation (FFT) [9].

In our simulations we will use a di�erent method than the most commonly used for

wave propagation in optical �bers. Instead of the split-step Fourier method, we will

use a standard dealiased pseudospectral method with a Runge-Kutta integration
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scheme [9, 1]. This method calculates also all linear operators and derivatives in

the frequency domain and performs the nonlinear multiplications in the time do-

main, with the transformations between the domains achieved by the Fast Fourier

Transformation (FFT). Nonlinear terms need a careful treatment by the spectral

method. This is due to the property of the Fourier transformation which states

that products in the time domain give rise to convolutions in the frequency domain.

Direct evaluation of the convolution sums needs O(N2) operations. The use of FFT
decreases the number of operations down to O(N log2N).

Integration along z is performed in the same step for the linear and the nonlinear

part of the equation. We use a variable Runge-Kutta scheme of order three, �ve or

eight with stepsize control depending on the accuracy as described in [10].

It is well-known that in the numerical investigations of systems of di�erential equa-

tions sti�ness can occur. The presence of higher-order derivatives in L implies higher

powers of frequencies in ~L. Already at moderately large values of the frequencies ~L
will dominate ~N and dictate a very small integration step. This sti�ness becomes

worse as the degree of the highest derivative increases. Therefore we have limited

our investigations at present to fourth-order time-derivatives.

In order to solve Eq.(1.1) we impose periodic boundary conditions with a period T

in the time domain and express A(z; � ) in terms of Fourier series as follows:

A(z; � ) =
1X

n=�1

~An(z)e
i!n� with !n = n

2�

T
; n = 0; 1; 2; : : : (3.6)

where n is the integer mode number. With the abbreviations

	 = jAj2A ; � =
@

@�

�
jAj2A

�
; � = A

@

@�

�
jAj2

�
; (3.7)

for the nonlinearities, which have Fourier expansions like A, we arrive at the analo-

gous of Eq.(1.1) in the frequency domain:

@ ~An(z)

@z
=

i

2
�2!

2
n
~An(z)�

i

6
�3!

3
n
~An(z) +

i

24
�4!

4
n
~An(z)�

�

2
~An(z)

+i
 ~	n(z) + a1~�n(z)� ia2~�n(z) ; (3.8)

with

~	n(z) =
X

l�m+k=n

~Al(z) ~A
�
m
(z) ~Ak(z)

~�n(z) = i!n
X

l�m+k=n

~Al(z) ~A
�
m
(z) ~Ak(z)

~�n(z) = i
X

l+m=n

~Al(z)!m
X

k�q=m

~Ak(z) ~A
�
q
(z) :
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These nonlinear terms are evaluated in the time domain and the overall convolution

sequence used in this code can be summarized by

~An; i! ~An

IFFT�! A; @�A
��! jAj2A = 	; A@� jAj2 = �

FFT�! ~	n; ~�n; ~�n ;

where IFFTmeans the Inverse Fourier Transformation, � is the multiplication in the

time domain and FFT means the Fourier Transformation back into the frequency

domain. However, the use of this method can lead to an alias error [1] due to the use

of a truncated Fourier series, as we will show now. The calculation of a convolution

sum

~Cn =
X

p+q=n

~Ap
~Bq (3.9)

by a pseudospectral method leads to

~Cn =
1

N

N�1X
j=0

AjBje
�i!n�j (3.10)

=
1

N

N�1X
j=0

X
jpj�N=2

~Ape
i!p�j

X
jqj�N=2

~Bqe
i!q�j e�i!n�j

=
X

jpj;jqj�N=2

~Ap
~Bq

1

N

N�1X
j=0

ei(!p+!q�!n)�j :

Using the orthogonality relation for the discrete Fourier transformation

N�1X
j=0

e�i(!n�!p)� =

�
N if n = p(modN)

0
;

equation (3.10) can be written as

~Cn =
X

p+q=n

~Ap
~Bq +

X
p+q=n�N

~Ap
~Bq : (3.11)

The second term on the right-hand side in (3.11) is the alias error which can been

seen by comparing it with Eq.(3.9). It originates from the property that ei(!n+!N )�j =
ei!n�j for all integer j; n such that the discrete grid points �j cannot distinguish the

frequency !n and its alias !n+N ; !n�2N , etc.. For any n < N=2, there always exists
a nonzero aliasing error. Therefore our simulation needs a dealiasing method [1].
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A further possible error which can occur in spectral methods is the Gibbs phenomen.

It occurs with a truncated or a discrete Fourier series in the neighborhood of a point

of discontinuity. The partial sums of a Fourier series exhibit a substantial overshoot

near these points and oscillations indicate this phenomenon. If our simulations

contain derivatives which are to steep for the simulation grid to be resolved, the

solution will exhibit discontinuities. This can be circumvented in our simulations

by applying a higher resolution, see Sec. 4.

4 Usage of the Program

The resolution of the simulation is expressed by the number of modes nt over which

the convolution term is computed and has to be a power of 2 for FFT convenience.

The number nt has to be speci�ed by the user in the �le resolution.for. When ap-

propriate, dealising is performed using the two-thirds rule [1]. With the dealised pro-

cedure the amplitude is constructed in the time domain using only modes with num-

bers between �ndt=2 and ndt=2: So the user might specify ndt in resolution.for

minding the condition 0 < ndt � 2
3
nt: Without dealiasing ndt has to be equal to nt:

After setting the resolution the program has to be compiled with 'f90 main.f -o

nlse -r8', where nlse is the name chosen for the executable code.

The data for a speci�c problem have to be provided in the �le para.dat. The

di�erent parameters and the names for the output �les have to be speci�ed according

to the structure given in Tab.(1). Changes in para.dat do not require to recompile

the program.

The initial values forA(z0; � ) can be provided by the user in a separate �le start.vec.
In this case in = 0 has to be set. Alternatively (in = 1) the initial values will be
generated according to the following parameters:

� m = 0 chirped Hyperbolic-Secant Pulse:

A(z0; � ) = A0 sech
�

�

T0

�
exp

�
� iC�2

2T 2

0

�
� m 6= 0 chirped Super-Gaussian Pulse

A(z0; � ) = A0 exp

�
�1+iC

2

�
�

T0

�2m�
:

In both cases the �le start.vec stores the initial values ~A(!n) := ~An(z0): According
to the resolution ndt the real and imaginary parts ~AR(!n); ~AI(!n) of ~A(!n) for

�ndt=2 � !n � ndt=2 will be stored in a one-dimensional array Y (i) of length

dimf := 2(ndt + 1): The convention is Y (i) = ~AR(�ndt=2 + (i � 1)=2) for i =
1; 3; : : : ; dimf�1 and Y (i) = ~AI(�ndt=2+(i�2)=2) for i = 2; 4; : : : ; dimf: Hence,

start.vec contains simply the vector Y (i); i = 1; : : : ; dimf providing initial values

in the frequency domain.

The integration along z is then performed in the frequency domain for the real array

Y (i): Output is generated for the initial condition at z0 and after every distance zout.
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type example parameter description

real*8 1.0d1 T time period (for FFT)

real*8 1.0d0 �2 SOD coe�cient

real*8 0.1d0 �3 TOD coe�cient

real*8 0.01d0 �4 FOD coe�cient

real*8 1.0d0 
 SPM coe�cient

real*8 0.01d0 a1 self-steepening coe�cient

real*8 0.01d0 a2 Raman-scattering coe�cient

real*8 0.1d0 � �ber loss coe�cient

real*8 1.0d0 A0 =
p
P0 amplitude of the initial pulse

real*8 1.0d0 T0 width of the initial pulse

real*8 0.0d0 z0 initial z-value

real*8 1.0d0 zend �nal z-value

real*8 1.0d0 zout distance for generation of output

integer 0j1 in initial value: 0 � read, 1 � generate

integer 0j1j2; : : : m pulse: 0 � sech; 1; 2; : : : � Super-Gauss

integer 0j�1j1; : : : C chirp: 0 � non, �1;�2; : : : chirped
character*40 'start.vec' �le start vector Y(i)

character*40 'vector.int' �le vector after the integration

character*40 'moden.int' �le selected integrated modes

character*40 'energ.int' �le norm and broadening factor

integer 1 n1 mode numbers of spectral component

integer 3 n2 which will be observed during

integer 7 n3 the integration in the �le moden.int

integer 9 n4

Table 1: Structure of para.dat and exemplary values

The states ~An(z); A(z) for z = z0+j�zout, j = 0; 1; : : : (depending on the distance zout
and the length of the interval [z0; zend]) are saved in �les z_**.omg and z_**.time

respectively, where ** corresponds to the value of j: These �les have the following
structure (the columns are separated by white space):

z_**.omg: The �rst item is the value of z followed by four columns. The �rst

column contains values of !n := i � 2�=T; where the integer i = �ndt=2; : : : ; ndt=2:
The subsequent columns store the associated values of ~A(!n) := ~An(z) in the form

j ~A(!n)j2; ~AR(!n); ~AI(!n) respectively.

z_**.time: The �rst item is the value of z followed by four columns. The �rst

column contains values of � running from �T=2 to T=2 in steps of size T=(nt� 1):
The subsequent columns store the associated values of jA(z; � )j2; AR(z; � ); AI(z; � )
respectively.

The �nal state ~An(zend) is stored in a �le vector.int analogous to start.vec, using
the same structure of the vector Y (i) as described above. So it might be directly

used for further integration by regarding it as start.vec.
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moden.int contains the z-evolution of the four spectral components, which are spec-

i�ed in para.dat by n1; n2; n3; n4:

energ.int contains the z-evolution of adiabatic invariants
R
jA(z; � )j2d�;

R
j ~A(z; !)j2d!

and of the broadening factor �=�0 de�ned by the variance

� = (< � 2 > � < � >2)1=2 ; (4.1)

where the n-th moment < �n > is given by

< �n >=

R
�njA(z; � )j2d�R
jA(z; � )j2d�

:

The invariants can be used for checking the correctness of the calculation in the

following sense: If in the case � = 0 (no �ber loss) the invariants are not preserved,
it is most likely that a numerical instability occurs. A common possible error is

an inadequate value for the time period T . This will be explained in the following

sections. Another possibility is the requirement of a higher resolution or more precise

values for the error tolerance. The error tolerance has to be changed directly in

main.f and requires recompilation of the program.

5 Group Velocity Dispersion

As long as the nonlinear e�ects play a minor role, the dispersive e�ects govern the

pulse propagation. This is the case for �ber lengths L � LD � LNL. For standard

telecommunication �bers the parameters at � = 1:55�m are �2 � 20ps2=km and


 � 3W�1km�1: So, LD � LNL is satis�ed, for example, in the case T0 � 1ps and
P0 � 1W. In order to investigate the dispersive e�ects alone, we deal with the

fourth-order linear Schrödinger equation

@A

@z
= �

i

2
�2
@2A

@� 2
+

1

6
�3
@3A

@� 3
+

i

24
�4
@4A

@� 4
(5.1)

throughout this section. In general, the main e�ect of dispersion is to broaden an

optical pulse as it propagates through the �ber. The solutions of Eq.(5.1) scale with

the dispersion lengths de�ned in (2.41). Therefore we will not give explicit units for

T0, �i and P0 in the following examples, except they are explicitly mentioned.

5.1 Second-Order Dispersion (SOD)

To study the e�ects of SOD alone �3 and �4 are set to zero in Eq.(5.1). The �2-term

represents the dispersion of the group velocity and varies with the wavelength. For

longer wavelengths it becomes negative (anomalous dispersion) and vanishes at the

zero-dispersion wavelength �D. SOD changes the phase of each spectral component of

the pulse by an amount that depends on the frequency and the propagated distance.
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For an unchirped Gaussian pulse (C = 0) the induced broadening does not depend

on the sign of �2; see Fig. 1 left. The pulse width increases during the propagation.

Short pulses broaden more rapidly because of their smaller dispersion length (LD �
jT0j

2
).
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Figure 1: Left: unchirped Gaussian pulse at z = 0, z = 2LD and z = 4LD for

�2 = �1; T0 = 1; P0 = 1; T = 20; nt = 512, (cf. [2] Fig. 3.1). Right: Variation of

broadening factor �=�0 with propagated distance for di�erent Gaussian pulses with

C = �2; 0; 2 where �2 > 0, (cf. [2] Fig. 3.2).

For chirped pulses one observes a di�erent e�ect. If the sign of the chirp-factor C

is the opposite of the sign of �2, the pulse initially narrows (and therefore becomes

higher), because the dispersion-induced chirp is in opposite direction to the initial

chirp. The broadening starts when the induced chirp dominates. Conversely, if the

chirp-factor and �2 possess the same sign the broadening takes place at a higher rate

than for an unchirped pulse, see Fig. 1 right. The importance of the adequate period
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Figure 2: Unchirped Super-Gaussian pulse (m = 3) at z = 0; z = LD and z = 2LD.

Left: T = 20; (cf. [11], Fig. 3.4) � oscillations are due to numerical instabilities.

Right: T = 40 (cf. [2], Fig. 3.4) � no oscillations occur.

T for the simulation can be demonstrated by the following example, see Fig. 2. We

consider an unchirped Super-Gaussian pulse with C = 0; m = 3; T0 = 1; P0 = 1;
where �2 = 1 and T = 20; 40; nt = 512 are used for the simulation. The oscillations
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of the pulse shape in the case T = 20 are due to numerical instabilities caused by

the small time period. The fast broadening of the pulse leads to such e�ects as the

pulse energy reaches the boundary of the time window.

5.2 Third-Order Dispersion (TOD)

If the pulse wavelength lies in the vicinity of the zero-dispersion wavelength �D
(�2 � 0), the �3-term provides the dominant contribution to the dispersive e�ects.

Also for ultrashort pulses (widths T0 < 1ps) the contribution of TOD can not be

neglected, because the expansion parameter �!=!0 is no longer small enough to

justify a truncation of the expansion. In general, the TOD e�ects play a signi�cant

role if L
0

D
� LD:

We consider the following example (Fig. 3) left: Unchirped Gaussian pulse with

T0 = 1; P0 = 1; where �3 = 1: The TOD-e�ect alone (�2 = 0) is compared with the

situation, where LD = L0
D
, that is, if �2 = 1:
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Figure 3: Left: unchirped Gaussian pulse for �3 = 1; �2 = 0; 1 at z = 0; z = 5L0
D
,

(cf. [2] Fig. 3.6). Right: broadening factor �=�0 along the propagated distance for

a chirped Gaussian pulse (C = �1) where �2 = 0; 1; �3 = 0; 1.

The pulse is distorted such that it becomes asymmetric with an oscillatory structure

near of its edges. These oscillations are damped signi�cantly if SOD is present, as

in the case LD = L0
D
:

The interplay between SOD and TOD may also be illustrated by the impact on

the broadening factor �=�0: We consider the evolution of a chirped Gaussian pulse

(C = �1) for �2 = 1; �3 = 1 and compare it with the situations, where �2 = 0
or. �3 = 0 at the same scale (L0

D
= 1 or LD = 1), see Fig. 3 right. In cooperation

SOD and TOD produce the highest broadening rate. In the case of �2 = 0 (at

the zero-dispersion wavelength), the chirped pulse is not initially narrowed, which

means TOD alone does not cause this e�ect in contrast to SOD. Furthermore, the

broadening rate of TOD alone is smaller than the one of SOD in the case of chirped

pulses.
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5.3 Fourth-Order Dispersion (FOD)

For ultrashort pulses (widths T0 � 10fs), the �4-contribution is expected to be of

in�uence because spectral widths of potentially more than 1000THz have to be

covered. Qualitatively, the fourth-order e�ects are quite similar to the SOD e�ects.

The impact of FOD becomes important if L00
D
is near LD or even beneath as in the

case of ultrashort pulses (keep in mind L00
D
� jT0j

4
).

If �2 and �4 have the same sign, the dispersion e�ect is qualitatively the same

as in the case of SOD alone. Therefore we �rst examine the following example:

Propagation of an unchirped Gaussian pulse with T0 = 1; P0 = 1; where �2 =
�1; �3 = 0; �4 = +1: In this case the dispersion lengths are LD = L00

D
; L0

D
= 1.

The propagated pulse is shown in Fig. 4 left at z=LD = 0; 3; 6; 9. In the calculations

T = 200; nt = 1024 have been used.

Dispersion takes place by spreading the energy of the pulse symmetrically, but the

contribution of �4 is to generate oscillations aside the center of the pulse. This results

principally from the di�erent signs of �2 and �4. Depending on the ratio of LD and

L00
D
this e�ect will be more or less important. That means, if SOD dominates, the

oscillation due to FOD will be spread out quickly as well.
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Figure 4: Left: unchirped Gaussian pulse, �2 = �1; �4 = +1 at z=L00
D

= 0; 3; 6; 9:
Right: broadening factor �=�0 along the propagated distance for a chirped Gaussian

pulse (C = �1) where �4 = 1; �2 = �1 or �2 = 0:

The in�uence of �4 in cooperation with �2 on the broadening factor is shown in

Fig. 4 right for a chirped Gaussian pulse (C = �1) with T0 = 1; P0 = 1 where

�2 = �1; 0; �3 = 0; �4 = +1: The e�ect of FOD at the zero-dispersion length on a

chirped pulse is similar to those of SOD alone, but weaker (cf. also Fig. 3 right).

In the case of LD = L00
D
the �2-term dominates such that its sign determines the

qualitative behavior of the broadening factor at the beginning.

The interplay between TOD and FOD at the zero-dispersion length is shown in

an example quite similar to the one before, see Fig. 5 left. The parameters are as

follows: Chirped Gaussian pulse (C = �1) with T0 = 1; P0 = 1 where �2 = 0; �3 =
0; 1; �4 = 0; 1: So it is L0

D
= 1 or L00

D
= 1, to which the propagated distance is
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related. Again, FOD alone has a weaker e�ect than the lower order term TOD, but

in cooperation they cause a higher broadening rate.
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Figure 5: Broadening factor �=�0 along the propagated distance for a chirped Gaus-

sian pulse (C = �1). Left: T0 = 1; P0 = 1; where �2 = 0; �3 = 0; 1; �4 = 0; 1: Right:
speci�c parameters given within the text, upper curve used �4 = 4:91 � 10�7ps4=m,

lower curve used �4 = 0 for 10fs- or 20fs-pulse.

Finally we consider an example with the speci�c values �2 = 4:08�10�3ps2=m; �3 =
6:13 � 10�5ps3=m; �4 = 4:91 � 10�7ps4=m; taken from [12]. The �rst two values

are measured at the �ber used in the experiments, but �4 is �tted to the data

according to the numerical model used there. The impact of the higher order terms

on the broadening factor will be shown in the case of ultrashort pulses T0 = 10 and
T0 = 20fs, but note that the nonlinear terms are still neglected. We do this just

to demonstrate the importance of taking FOD into account, bearing in mind that

the real evolution of such pulses will strongly depend on the nonlinearities. Clearly,

the described propagation takes place near the zero-dispersion length. For a 10fs

pulse the dispersion lengths are LD = 0:245m; L0
D

= 0:163m; L00
D

= 0:204m: So it

should be su�cient to look at the evolution of the broadening factor up to z = 1m;
see Fig. 5 right. We used a chirped Gaussian pulse (C = �1) and the parameters

T = 50ps; nt = 8192 for the simulation. The upper curves for T0 = 10fs and

T0 = 20fs represent the calculations with the given parameters. The second curves

beneath belong to the simulations with �4 = 0, all other parameters as before. It is

to be seen, that for the 20fs-pulse the di�erence is still small, but for the 10fs-pulse a

conspicuous e�ect occurs. Hence, it is worth to consider the third- and fourth-order

dispersion in the model.

6 Self-Phase Modulation (SPM)

Now we step back to the NLSE (1.1), but with a1 = a2 = 0 throughout this and

the next section. In particular nonlinear e�ects governed by 
 come into play. The

corresponding length scale LNL is independent of the dispersion length LD. LD

depends on the pulse width and LNL on the peak power (cf. Eq.(2.41)). If the �ber
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length is such that L � LNL but L � LD the nonlinear e�ect of SPM dominates.

Typical values would be for example T0 > 100ps with a large peak power P0 � 1W
and 
 = 20W�1km�1. Self-Phase Modulation is de�ned as the change of an optical

pulse due to the self-induced change in the nonlinear refractive index. A temporal

varying phase �(� ) of A(z; � ) is connected to a frequency generation:

Æ!(� ) =
@�(� )

@�
:

This implies that the instantaneous optical frequency !(� ) = !0 + Æ!(� ) di�ers

across the pulse from its central value !0. Pure SPM induces intensity- and time-

dependent phase shifts and a chirp which magnitude increases with z. New frequency

components are continuously generated, which yields a broadening of the spectrum.

The latter is illustrated by the following example (Fig. 6):
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Figure 6: Calculated SPM-broadened spectra for an unchirped Gaussian pulse T0 = 1,
P0 = 1, 
 = 1 and �n = 0 (cf. [2], Fig. 4.2).

The excitation of higher frequency components leads to multipeak spectra with the

outermost peaks becoming the most intense. The SPM-broadened spectrum depends

on the pulse shape and on the initial chirp. Fig. 7 left compares the pulse spectra

for Gaussian and Super-Gaussian (m = 3) pulses. In the calculation used for Fig. 7

the �ber length and peak power are chosen such that both spectra exhibit 5 peaks.

The spectral range for the Super-Gaussian pulse is about three times larger with

most of the energy at the central peak. An initial frequency chirp leads also to a

change in the pulse spectrum. This is illustrated in Fig. 7 right which shows the

spectra of a Gaussian pulse with positive and negative chirp (C = 5 and C = �5)
under the same conditions as in Fig. 6. A positive chirp increases the number of

spectral peaks while the opposite occurs in the case of a negative chirp.

The combination of the SPM-term with the dispersion terms (�n) leads to new

qualitative features. The most prominent is the support of soliton propagation

through the �ber which is subject to the next section exclusively.

It is useful to introduce the scaling

N2 =
LD

LNL

=

P0T

2
0

j�2j
; (6.1)
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Figure 7: Left: Comparison of SPM-broadened spectra for unchirped Gaussian

(solid) and super-Gaussian (dashed) pulses at a peak power corresponding to z =
4:5�LD (cf. [2], Fig. 4.4); Right: E�ect of initial chirp on SPM-broadened spec-

tra of a chirped Gaussian pulse with C = 5 and C = �5 (z = 4:5�LD) (cf. [2],

Fig. 4.5).

where N measures the relative importance of the SOD and the SPM e�ects. The

integer values of N are related to the soliton order [2]. Di�erent combinations can

lead to the same N . If N = 1 for example as T0 = 1ps and P0 = 1W, the calculated

results apply equally to T0 = 10ps and P0 = 10mW or T0 = 0:1ps and P0 = 100W.

The impact of SOD on SPM is illustrated by two examples for N = 1.
The �rst example (Fig. 8) is for normal dispersion (�2 = 1, 
 = 1):
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Figure 8: Evolution of the pulse shape (left) and pulse spectrum (right) over a dis-

tance z = 5LD for an initially unchirped Gaussian pulse propagating in the normal-

dispersion regime of the �ber (�2 > 0) and N = 1 (cf. [2], Fig. 4.7).

The pulse broadens much more rapidly compared to the case without GVD. In the

absence of GVD a two-peak spectrum is reached at z = 5LD.

The second example (Fig. 9) considers anomalous dispersion (�2 = �1, 
 = 1):
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Figure 9: Evolution of the pulse shape (left) and of the pulse spectrum (right) over

a distance z = 5LD for an initially unchirped Gaussian pulse propagating in the

anomalous dispersion regime of the �ber (�2 < 0) with parameters such that N = 1
(cf. [2], Fig. 4.8) .

The pulse broadens initially at a rate much lower than expected in the absence of

SPM and it approaches a steady state for z > 4LD. The spectrum narrows due to

the fact that the SPM-induced chirp is positive while the dispersion-induced chirp

is negative. The SOD and SPM cooperate with each other to maintain a chirp-free

pulse and shape the pulse in such a way that it appears to converge to a hyperbolic-

secant pulse.

In conclusion, SPM enhances the broadening rate in the normal-dispersion regime

and decreases it in the anomalous dispersion regime. Furthermore, even weak disper-

sive e�ects can lead to signi�cant pulse shaping. This will be illustrated by another

example (Fig. 10) where SPM dominates (N = 30).
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Figure 10: Evolution of the pulse shape (left) and of the pulse spectrum (right) over

a distance z=LD = 0:1 for an initially unchirped Gaussian pulse propagating in the

normal-dispersion regime of the �ber (�2 > 0) with parameters such that N = 30
(cf. [2], Fig. 4.10 and Fig. 4.11).

The pulse becomes nearly rectangular accompanied by a linear chirp. The e�ective-

ness of SOD becomes large near the pulse edges (large curvature). An oscillatory

structure near the pulse edge can be observed at about z=LD = 0:06, which is
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termed as optical wave breaking. The latter results from four-wave-mixing e�ects,

which excite higher frequencies in turn by the nonlinear interaction. Di�erent parts

of the pulse propagate at di�erent speeds. A positive initial chirp would increase

the SPM-induced chirp and optical wave breaking would set in earlier.

It turns out that even if the SPM dominates (N � 1) the SOD cannot be treated

as a perturbation. This is due to the large amount of the induced frequency chirp

imposed by SPM on the pulse which a�ects SOD, see Section 5. No optical wave

breaking occurs in the case of anomalous SOD (�2 < 0).

Also the TOD can in�uence pulse shapes and spectra signi�cantly. For the exam-

ination of pulse propagation at the zero-dispersion wavelength (�2 = 0) we de�ne
another scaling parameter

N
02 =

L
0

D

LNL

=

P0T

3
0

j�3j
; (6.2)

which measures the relative importance of TOD and SPM.

The next example (Fig. 11) considers the case N
0

= 1 and �2 = 0:
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Figure 11: Shape (left) and spectrum (right) of an initially unchirped Gaussian pulse

which propagates exactly at the zero-dispersion wavelength, such that �2 = 0; �3 >
0; N

0

= 1 and z = 5L
0

D
(cf. [2], Fig. 4.14).

The shape of the pulse shown in Fig. 11 left exhibits oscillations. The appearance

of these oscillations are caused by TOD, see Section 5. However, the intensity does

not become zero at the oscillation minima, which is due to the interplay with SPM.

As can be seen in Fig. 11 right the TOD introduces a spectral asymmetry. In the

absence of TOD a symmetric two-peak spectrum would be expected. The impact

of the interplay of TOD and SPM on the spectrum is di�erent from the interplay

of SOD and SPM in the normal dispersion case, where SOD hinders the splitting of

the spectrum.
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7 Soliton Propagation

In optical �ber communication solitons are potentially very attractive, because they

maintain their shape and their spectrum during the propagation. However, �bers

can support solitons only in the anomalous-dispersion regime (�2 < 0). Moreover,

they are disturbed by further e�ects as absorption, higher order dispersion, Raman

scattering, self-steepening and more. The latter two e�ects play an important role

for pulses shorter than 1ps and will be investigated in the next sections. Throughout
this section we will con�ne to SPM, losses and dispersion e�ects.

We consider initial value problems for solitons with the following initial condition:

A(0; � ) = Nsech(� ) (7.1)

where N is the soliton order de�ned by Eq.(6.1). Another important quantity in

this context is the soliton period zs de�ned by (cf. [4])

zs =
�

2
LD =

�

2

T 2
0

j�2j
: (7.2)

We begin with the fundamental soliton for N = 1. More speci�cally, we start with

the loss-free case � = 0 and chose �2 = �1; 
 = 1; �3 = 0; �4 = 0, see Fig. 12. In
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Figure 12: Fundamental Soliton propagation over one soliton period in a nonlinear

lossless optical �ber.

this case, the dispersion length LD is equal to the nonlinear length LNL, N
2 = 1.

The normalized equation Eq.(2.40) with � = z=LD takes the form of the standard

nonlinear Schrödinger equation

i
@U

@�
+

1

2

@2U

@�2
+ jU j2U = 0 ; (7.3)

with the fundamental soliton solution U(�; �) = sech(�) exp(i�=2). For such a �rst-

order soliton SOD and SPM balance each other, that neither the pulse shape nor

the spectrum changes along the �ber length.
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Now we take the �ber loss (� > 0) into account. The resulting pulse shapes are

shown in Fig. 13. The pulse amplitude decreases gradually due to the �ber loss.

For the lower loss the pulse width increases signi�cantly. In e�ect, the nonlinearity

is no longer strong enough to compensate the SOD e�ect, hence SOD increasingly

takes over. For the higher loss the soliton pulse amplitude decreases more rapidly

and the signal vanishes before a signi�cant broadening can take place.
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Figure 13: Fundamental soliton propagation over 10 soliton periods in a conventional

optical �ber. Left: � = 0:074, Right: � = 0:74 (cf. [13] Fig. 3 and Fig. 5).

To point out the periodicity of soliton solutions we consider the propagation of a

third-order soliton: N = 3; �2 = �1; 
 = 9; �3 = �4 = 0, which is drawn in Fig. 14.
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Figure 14: Temporal evolution over one soliton period for the third-order soliton.

Note pulse splitting near z=zs = 0:5 and soliton recovery beyond that (cf. [2],

Fig. 5.4).

We observe a periodic evolution for higher-order solitons. As the pulse propagates

along the �ber it �rst contracts to a fraction of its initial width, splits afterwards
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into two distinct pulses at the half period length and then merges again to recover

the original shape at the end of the soliton period. The spectrum is also periodic,

as to be seen in Fig. 15.
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Figure 15: Spectral evolution over one soliton period for the third-order soliton in

Fig. 14 (cf. [2], Fig. 5.5).

In conclusion, solitons survive by a balance between SPM and SOD. The SPM

generates a frequency chirp and induces spectral broadening. SOD contracts the

pulse if the pulse is positively chirped. For higher-order solitons SPM dominates

initially but SOD leads then to a contraction. Higher order dispersion is expected to

shape the spectrum asymmetrically, as discussed in Section 5.2, thereby destroying

the periodic behaviour of solitons.
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8 Self-Steepening

In this section we will consider the impact of the nonlinear term governed by a1 =
1

!0T0
on the standard nonlinear Schrödinger equation, which can cause self-steepening

in particular. Self-steepening results from the intensity dependence of the group

velocity. It a�ects ultrashort pulses of width T0 < 100fs. We consider �rst the

dispersionless case (�2 = �3 = �4 = 0) using the parameters 
 = 1 and a1 = 0:01,
shown in Fig. 16. As can be seen there, an optical shock is created on the trailing

edge of the pulse. Dispersion would dissipate the shock in e�ect, cf. [11]. Self-

steepening also induces a time-shift of the pulse center which is due to the intensity-

dependent change of the group velocity.
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Figure 16: Self-steepening of a Gaussian pulse in the dispersionless case (cf. [2],

Fig. 4.16) .

For higher-order solitons the self-steepening is breaking the degeneracy of the soli-

tons, leading to a break-up into their constituents (soliton decay), such that the

constituents propagate at di�erent speed. We illustrate this by another example for

a second-order soliton �2 = �1; 
 = 1; �3 = 0; N = 2; a1 = 0:2, drawn in Fig. 17.
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Figure 17: Decay of a second-order soliton (N = 2) induced by self-steepening (a1 =
0:2). Pulse evolution over �ve soliton periods is shown (cf. [2], Fig. 5.17).
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9 Intrapulse Raman Scattering

Now we will study the impact of a2 on the standard nonlinear Schrödinger equa-

tion, which is known as the intrapulse Raman scattering. In di�erence to the

self-steepening, Raman scattering comes from the delayed lattice response. Ra-

man scattering causes self-frequency shifts for pulse widths T0 � 1ps and shorter.

The Raman scattering ampli�es the low-frequency spectral components with high-

frequency components acting as a pump. The energy is continuously transferred

from the blue components to red components, so that it appears as a red shift of

the soliton spectrum, which increases with the distance.

See, for example, Fig. 18 which is for the parameters �2 = �1; 
 = 1; �3 = 0; N =
2; a2 = �0:01. At a �rst glance Fig. 18 seems to be similar to Fig. 17. However
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Figure 18: Left: Decay of a second-order soliton (N = 2) induced by intrapulse

Raman scattering (a2 = �0:01) (cf. [2], Fig. 5.18). Right: Pulse spectrum at z = 0
(solid) and z=zs = 5 (dashed) (cf. [2], Fig. 5.19).

there is a di�erence in the shift of the two pulses. In the case of intrapulse Raman

scattering the low-intensity pulse is advanced, whereas the high-intensity pulse is

not. In the case of self-steepening both pulses are delayed, cf. Fig. 17.

Mathematically, the Raman contribution (governed by a2) reduces the symmetry of

the propagation equation (1.1), such that invariants are lost. Consequently, there

exists no soliton solution for the full equation (1.1). Moreover, no Lagrangian can

be found for that case [8].
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10 Conclusion

We have demonstrated a numerical method for the simulation of pulse propagation

in nonlinear optical �bers. By using a pseudospectral scheme the code solves a gen-

eralized nonlinear Schrödinger equation. A non-standard derivation of this nonlinear

Schrödinger equation from the Maxwell equations has been given in this report. The

numerical solution of this equation was performed by using an eight-order Runge-

Kutta scheme with step-size control, which is more precise than the widely applied

split-step fourier method. Details of the numerical method and its implementation

have been described as well as the practical usage of the code.

Demonstrating the code di�erent e�ects of importance for the propagation of opti-

cal pulses in nonlinear �bers have been studied. In particular, the impact of group

velocity dispersion up to fourth-order dispersion, self phase modulation and their

interplay has been investigatet. As the most prominent application of this inter-

play the propagation of optical solitons has been studied in more detail. Moreover,

perturbations caused by self-steepening and intrapulse Raman scattering can be

investigated with the code, which has been demonstrated by several examples.
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A Code Description

The code is written in Fortran90 and is structured as follows. The main program,

which has to be compiled as described in Sec. 4, uses several subroutines which are

contained in separate �les. We describe in the following table the input data and

the generated output for every subroutine.

routine

file

used subroutines description

NLSE

main.f

INITIALIZE,

DOP853,

SOLOUT

the main program,

compiled as described in Sec. 4

INITIALIZE

main.f

FFT generates the initial pulse A(0; � ) as Y (i)
input: para.dat, start.vec,

output: start.time, start.omg

DOP853

dop853.f

FCN, SOLOUT explicit Runge-Kutta scheme of order 8(5,3)

with stepsize control for a system of non-

sti� �rst order ordinary di�erential equa-

tions, code is described in [10]

SOLOUT

main.f

FD, TD writes out the numerical solution during and

at the end of the integration,

input: Y (i); z0; zend; zout;
output: *.int, *.omg, *.time as de-

scribed in Sec. 4

FCN

rhs.f

FT calculates the right-hand side F (i) of Eq.

(3.8), the nonlinear terms are calculated as

products in the time domain

input: Y (i); output: F (i)
FD

fd.f

� input: Y (i);
output: k ~Ank; j ~Anjmax; !(j ~Anjmax)

FT

ft.f

FFT Fourier-Transformation of the discretely

sampled data A(z; � ) or ~An(z); processes the
normalization and storage arrangements for

the speci�c FFT used,

input/output: A(z; � ); ~An

FFT

fft.f

� standard FFT-routine as described in [9]

TD

td.f

FT transformes F (i) into the time domain,

input: Y (i);
output: Amax; � (Amax); kAk; jA(z; � )j; �=�0
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