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Introduction

In this paper we investigate nonlinear multi-parameter eigenvalue problems. This is a

new type of eigenvalue problems for nonlinear operators.

Such problems arise, for instance, in mathematical models of the coupled wave

propagation in nonlinear media [2] – [4], in particular for coupled waves at different

frequencies. This problem is a generalization of one-parameter eigenvalue problems

arising in the theory of nonlinear waveguides [5] – [6]. The eigenvalue problem is

formulated in unbounded domains, in particular on the real axis, and with transmission-

type conditions as well as conditions at infinity that contain the spectral parameters –

for example, if the coefficient in the equation preceding the nonlinear term is nontrivial

within a finite interval (0, a), a > 0, and additional conditions are required at the point

a (continuity), at the origin (boundedness), and at infinity (rate of decay). An example

considered in [2] – [4] is L(λ1, λ2)u + αB(u;λ1, λ2) = 0, where L is a linear differential

operator w.r.t. u and B is a nonlinear operator in all its arguments. We should point out

that the operators considered in [2] – [4] do not depend explicitly on the independent

variable of the problem.

In the generalization of this concept, the system of dispersion relations obtained

w.r.t. several spectral parameters can be considered as a problem w.r.t. a tuple of

eigenvalues for nonlinear operator equations and forms in this way a nonstandard

eigenvalue problem. It is worth to be mentioned that the theory of linear multi-

parameter eigenvalue problems is quite well developed (see, e.g., [1]) but to the

knowledge of the authors there is no comparable understanding of the nonlinear

situation.

The method of solution employs the transition to nonlinear integral equations [5]

– [9] by the help of the Green’s functions of the linear differential operators. After this,

the eigenvalue problems are replaced by the determination of characteristic numbers

of the integral operator-valued functions that are nonlinear both with respect to the

solution and to the spectral parameters. The latter problems are reduced to functional

dispersion equations, and their roots give the desired eigenvalues. The existence and

distribution of roots are verified.

The objective of the present work is to develop the appropriate technique to study

nonlinear multi-parameter eigenvalue problems and to prove the existence of coupled

eigenvalues (eigentuples) for a generalization of the inhomogeneous nonlinear waveguide

problem, to obtain the eigentuples – also as functions of the problem parameters (first

of all, of the nonlinearity parameter). In a next step (not yet contained here) we

aim to develop and investigate a numerical method to determine the eigentuples and

eigenfunctions of the problem.
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1. Statement of the Problem

We will consider an n-dimensional nonlinear eigenvalue problem for the system of

differential equations{
u′′i (x) + (k2i ε− λi)ui(x) = 0, −h < x < h,

i = 1, 2, . . . , n,
(1)

where ε is given by

ε(u) := 1 + a|u(x)|2

and u(x) := (u1(x), . . . , un(x))>, |u|2 :=
∑n

i=1 |ui|2. In this system, the constants a > 0

and ki ∈ R are given, whereas the vector λ := (λ1, . . . , λn)> ∈ Cn and the vector-field

u : [−h, h]→ Cn are both unknown.

The boundary conditions are
u′i(−h)− αiui(−h) = 0,

u′i(h) + βiui(h) = 0,

i = 1, 2, . . . , n,

(2)

where the coefficients

αi = αi(λi), βi = βi(λi)

are real-valued, continuous and satisfy the conditions

αi(λi) ≥ 0, βi(λi) ≥ 0, αi(λi) + βi(λi) > 0 for all λi ∈ Λi

whith certain sets Λi specified below.

In addition we need to consider the scaling conditions

u(h) = C(h), (3)

where C(h) ∈ Rn is prescribed such that C
(h)
i 6= 0, i = 1, 2, . . . , n.

Definition 1 λ is called a (scaled) eigentuple of the problem (1) – (3) if there exist

nontrivial functions ui ∈ C1[−h, h] ∩ C2(−h, h), i = 1, 2, . . . , n, satisfying the system

(1), the boundary conditions (2) and the scaling condition (3). The components λi of λ

are also called coupled eigenvalues, and the functions ui are called the eigenfunctions

of the problem (1) – (3).

Remark 1 In contrast to the linear case (i.e. a=0 in (1)), where the eigenfunctions

are unique up to multiplicative constants, here we have to fix the numbers C
(h)
i . Both

the eigenvalues and the eigenfunctions depend on these numbers. It can be shown that

the property C
(h)
i = 0 for some index i implies that ui = 0, since the boundary condition

(2) at x = h leads to a Cauchy problem with vanishing initial conditions. Therefore we

have to assume in (3) that C
(h)
i 6= 0, i = 1, 2, . . . , n.
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Proposition 1 If the problem (1) – (3) has a solution, then λ ∈ Rn and u : [−h, h]→
Rn.

Proof: Indeed, multiplying for any fixed index i the i-th equation of (1) by ui(x) and

integrating by parts, we obtain

h∫
−h

(−|u′i(x)|2 + k2i ε(u)|ui(x)|2 dx

−αi|ui(−h)|2 − βi|ui(h)|2 − λi

h∫
−h

|ui(x)|2 dx = 0.

(4)

Separating the imaginary part of (4) yields

−(Imλi)

h∫
−h

|ui(x)|2 dx = 0.

Hence Imλi = 0 if ui is a nontrivial function. Then it follows from the i-th equations

of (1) and (3) that ui is real. J
This result shows that it is sufficient to consider only the case of Rn-valued λ and

u.

The main task of the study referred to as problem P is to prove the existence of

eigentuples.

2. Integral Equations and Dispersion Equations

Using the notation

fi := |u|2ui, i = 1, . . . , n,

the system (1) takes the form

u′′i + (k2i − λi)ui = −ak2i fi, −h < x < h, i = 1, . . . , n. (5)

Next we will invert the differential operators

Li :=
d2

dx2
+ τ 2i , τ 2i := k2i − λi,

on the set {v ∈ C1[−h, h] ∩ C2(−h, h) : v′(−h) = v′(h) = 0} provided that

τi 6=
πm

2h
for all m ∈ N ∪ {0}. (6)

Under this assumption we can construct the Green’s functions for the n boundary value

problems {
LiGi = −δ (x− s) ,
∂xGi|x=−h = ∂xGi|x=h = 0.
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It is well-known that the Green’s functions have the form

Gi(x, s) =


−cos τi(x+ h) cos τi(s− h)

τi sin 2τih
, x < s ≤ h

−cos τi(x− h) cos τi(s+ h)

τi sin 2τih
, s < x ≤ h.

(7)

Remark 2 If we look at the Green’s function Gi from (7) as a function depending also

on the argument τi, then the numbers
πm

2h
defined in (6) are the poles of Gi w.r.t. this

argument.

Using the second Green’s formula we obtain

h∫
−h

(GiLiui − uiLiGi)dx = u′i(x)Gi(x, s)|x=hx=−h , (8)

and then, by (2), an integral representation

ui(s) = ak2i

h∫
−h

Gi(x, s)fi(x)dx+ u′i(h)Gi(h, s)− u′i(−h)Gi(−h, s)

= ak2i

h∫
−h

Gi(x, s)fi(x)dx (9)

+ ui(−h)αi
cos τi(s− h)

τi sin 2τih
+ ui(h)βi

cos τi(s+ h)

τi sin 2τih
.

Note that for the the case a = 0 and for given values ui(−h), ui(h) we arrive at the

solution for the linear equations (1):

ui(s) =
ui(−h)αi + ui(h)βi

2τi sin τih
cos τis+

ui(−h)αi − ui(h)βi
2τi cos τih

sin τis .

Setting s = ±h in (9), we obtain

ui(−h) = ak2i

h∫
−h

Gi(x,−h)fi(x)dx

+ ui(−h)
αi cos 2τih

τ1 sin 2τih
+ ui(h)

βi
τi sin 2τih

, (10)

and

ui(h) = ak2i

h∫
−h

Gi(x, h)fi(x)dx

+ ui(−h)
αi

τi sin 2τih
+ ui(h)

βi cos 2τih

τi sin 2τih
. (11)
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From (10) and (3) we see that

ui(−h) =

ak2i

h∫
−h

Gi(x,−h)fi(x)dx+ C
(h)
i

βi
τi sin 2τih

1− αi cos 2τih

τi sin 2τih

. (12)

Substituting the expressions (12) for ui(−h) into the formulas (11) we obtain a system

of the so-called dispersion equations

ui(h) [(τ 2i − αiβi) sin 2τih− τi(αi + βi) cos 2τih]

= ak2i τi (τi sin 2τih− αi cos 2τih)
h∫
−h
Gi(x, h)fi(x)dx

+ ak2i τiαi
h∫
−h
Gi(x,−h)fi(x)dx, i = 1, . . . , n.

(13)

Since the values of Green’s functions at s = ±h are known from (7), we can rewrite the

dispersion equations (13) in the final form

C
(h)
i gi(λi) =

ak2iQi(λ)

sin 2τih
, (14)

where

gi(λi) := (τ 2i − αiβi) sin 2τih− τi(αi + βi) cos 2τih,

Qi(λ) := (αi cos 2τih− τi sin 2τih)
h∫
−h

cos τi(x+ h)fi(x)dx

− αi
h∫
−h

cos τi(x− h)fi(x)dx.

(15)

The dispersion equations (14) are considered w.r.t. the eigentuples.

Using the expressions (12), the system (9) can be rewritten as

ui(s) = ak2i

h∫
−h

Gi(x, s)fi(x)dx

+ a
k2i αi cos τi(s− h)

τi sin 2τih− αi cos 2τih

h∫
−h

Gi(x,−h)fi(x)dx

+ C
(h)
i

[
αi cos τi(s− h)

τi sin 2τih− αi cos 2τih
+ cos τi(s+ h)

]
βi

τi sin 2τih
,

i = 1, . . . , n.

(16)

Next, we rewrite the system (16) in the operator form.

Let K(x, s) be the diagonal kernel matrix

K(x, s) := {Kij(x, s)}ni,j=1 , Kij(x, s) := δijk
2
iGi(x, s).
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Introduce the matrix integral operator Kg :=
h∫
−h
K(x, s)g(x)dx where g :=

(g1, . . . , gn)>. Set

K̃(x, s) := {K̃ij(x, s)}ni,j=1,

K̃ij(x, s) := k2i pi cos τi(s− h)Gi(x,−h),

where

pi :=
αi

τi sin 2τih− αi cos 2τih
.

Define one more matrix integral operator K̃g :=
h∫
−h
K̃(x, s)g(x)dx. Introduce a vector

h := (h1, . . . , hn)> where

hi := C
(h)
i

βi [pi cos τi(s− h) + cos τi(s+ h)]

τi sin 2τih
.

Then the system (16) can be rewritten in the form

u = aK
(
|u|2u

)
+ aK̃

(
|u|2u

)
+ h. (17)

It should be noted that K and K̃ are linear operators.

Introduce also two linear operators N := a(K + K̃) and N1 := K + K̃.

In what follows we will study the equation (17) in the space C[−h, h] :=

C[−h, h]× . . .×C[−h, h] equipped with the norm ‖u‖2C :=
∑n

i=1 ‖ui‖
2
C , where ‖u‖C :=

max
x∈[−h,h]

|u(x)|.

3. Solvability of the problem P

In order to formulate a theorem about the existence of eigentuples it is necessary to

formulate some auxiliary statements about the equation (17) (all proofs can be found

in [2]). Since the equation (17) has the same form as the analogous equation in [2], all

the statements and theorems in [2] remain valid for (17).

The following theorem provides existence and uniqueness of solution to equation

(17).

Theorem 1 Let Br0 := {v ∈ C[−h, h] : ‖v‖ ≤ r0} be a closed ball of radius r0 > 0

with the origin at zero. Assume that the two conditions q := 3ar20‖K − K̃‖ < 1 and

ar30‖K − K̃‖ + ‖h‖ ≤ r0 are satisfied. Then there exists a unique solution u ∈ Br0 of

the equation (17) (or, equivalently, of the system (16)). The sequence of approximate

solutions u(p) ∈ Br0 of equation (17) (or system (16)) defined by the iteration process

u(p+1) = aK
(∣∣u(p)

∣∣2 u(p)
)

+ aK̃
(∣∣u(p)

∣∣2 u(p)
)

+ h, p = 0, 1, 2, . . .

converges in C[−h, h] to the (unique) exact solution u ∈ Br0 of the equation (17) (or

the system (16)) for any initial approximation u(0) ∈ Br0 with the rate of geometric

progression q.
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The following theorem gives a constraint on the parameter a.

Theorem 2 Let A :=
2

3

1

‖h‖
√

3‖N1‖
with ‖N1‖ := ‖K + K̃‖ (> 0). If a ≤ A2, then

the equation(17) has a unique solution u in the ball Br∗ := {v ∈ C[−h, h] : ‖v‖ ≤ r∗},
where

r∗ := − 2√
3 ‖N‖

cos

(
1

3
arccos

(
3
√

3

2
‖h‖

√
‖N‖

)
− 2π

3

)
is a root of the equation r30 − ‖N‖

−1 r0 + ‖h‖ · ‖N‖−1 = 0.

It should be noted that A > 0 does not depend on a.

Now we rewrite equation (17) in the form u = N (|u|2u) + h.

The next theorem states that the solution of the equation (17) depends continuously

on the parameter λ.

Theorem 3 Let the matrix integral operators N = N(λ) and the right-hand side

h = h(λ) of the equation (17) depend continuously on the parameter λ ∈ Λ0 for a certain

real n-dimensional set Λ0 := Λ
(1)
0 × . . .× Λ

(n)
0 . Assume also that ‖h‖ ≤ 2

3

1√
3 ‖N(λ)‖

.

Then a unique solution u = u(λ), λ ∈ Λ0, of the equation (17) exists and depends

continuously on the parameter λ, i.e. u ∈ C(Λ0).

Now let us prove the solvability of the problem P. To this end, we consider the

dispersion equations (13).

If a = 0, we obtain the dispersion equations for the linear case of (1):

gi(λi) := (τ 2i − αiβi) sin 2τih− τi(αi + βi) cos 2τih = 0. (18)

Setting

µ
(m)
i := k2i −

π2m2

4h2
, m ∈ N,

we have that

gi(µ
(m)
i ) = (−1)m

πm

2h

(
αi(µ

(m)
i ) + βi(µ

(m)
i )

)
. (19)

Remark 3 From the formula (19) we see that the function gi alternates its sign at the

points µ
(m)
i , m ∈ N, since αi(λi) + βi(λi) > 0 by assumption.

It is possible to prove the following statement.

Proposition 2 Let ki ≥
πm

2h
, m = 1, . . . , li for a certain li ∈ N, li ≥ 2. Then there

exist at least li − 1 roots λ
(j)
i of the equation (18) where λ

(j)
i ∈

(
µ
(j+1)
i , µ

(j)
i

)
.

Proof: Let δ
(j)
i > 0, j = 1, . . . , li − 1, be sufficiently small such that

λ
(j)
i ∈ Λ

(j)
i :=

[
µ
(j+1)
i + δ

(j)
i , µ

(j)
i − δ

(j)
i

]
, j = 1, . . . , li − 1,
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and the values gi(λi) have different signs at the different endpoints of the segments Λ
(j)
i .

Under these assumptions, taking into account (19), the function gi(λi) vanishes at the

points λ
(j)
i , j = 1, . . . , li − 1. J

Now we define Λi :=
li−1⋃
j=1

Λ
(j)
i and Λ := Λ1× . . .×Λn. The following estimates hold:

∣∣∣∣k2iQi(λ)

sin 2τih

∣∣∣∣ ≤ Cir
3
00 where r00 := max

λ∈Λ
r∗.

Let C := max{C1, . . . , Cn} and

M
(1)
i := min

1≤j≤li−1

∣∣∣gi (µ(j+1)
i + δ

(j)
i

)∣∣∣ ,
M

(2)
i := min

1≤j≤li−1

∣∣∣gi (µ(j)
i − δ

(j)
i

)∣∣∣ .
Finally we set M̃ := min1≤i≤n

{
M

(1)
i ,M

(2)
i

}
and A1 := min

λ∈Λ
A(λ) , where A(λ) :=

2

3 ‖h‖
√

3 ‖N1(λ)‖
.

The following theorem is the main result of this study.

Theorem 4 Let αi(λi) ≥ 0, βi(λi) ≥ 0, and αi(λi) + βi(λi) > 0 for all λi ∈ Λi.

Assume also that 0 < a ≤ a0, where a0 := min

{
A2

1,
M̃

Cr300

}
, and that the conditions

ki ≥ πm
2h

, m = 1, . . . , li hold for certain numbers li ∈ N, li ≥ 2. Then there exist at

least (l1− 1) . . . (ln− 1) eigentuples
(
λ
[j]
1 , . . . , λ

[j]
n

)>
, j = 1, . . . , li− 1, of the problem P,

i.e. for λi = λ
[j]
i , j = 1, . . . , li − 1, i = 1, . . . , n, the problem (1) – (3) has a nontrivial

solution.

The proof of this theorem virtually repeats the proof of a similar statement from [4]. In

spite of the fact that the formulas of this paper are similar to the analogous expressions

in [4], we strengthen that their meaning is different because we consider here the case

of arbitrary n. Therefore the conclusion can be made that Theorem 4 constitutes an

essentially new result.

The proof of Theorem 4 employs the method of small parameters where the

nonlinearity coefficient a is supposed to be small.

This approach can be applied for the analysis of nonlinear eigenvalue problems

because in many physical models involving nonlinear eigenvalue problems of the type

considered in this study it is known that a is sufficiently small.
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