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ABSTRACT. We consider a family of nonlocal capillarity models, where surface tension is modeled by exploiting
the family of fractional interaction kernels |z|−n−s, with s ∈ (0, 1) and n the dimension of the ambient space.
The fractional Young’s law (contact angle condition) predicted by these models coincides, in the limit as s→ 1−,
with the classical Young’s law determined by the Gauss free energy. Here we refine this asymptotics by showing
that, for s close to 1, the fractional contact angle is always smaller than its classical counterpart when the relative
adhesion coefficient σ is negative, and larger if σ is positive. In addition, we address the asymptotics of the
fractional Young’s law in the limit case s→ 0+ of interaction kernels with heavy tails. Interestingly, near s = 0,
the dependence of the contact angle from the relative adhesion coefficient becomes linear.

1. INTRODUCTION

In this paper we consider the family of nonlocal capillarity problems recently introduced in [?], and provide a
detailed description of the asymptotic behavior of the fractional Young’s law in the two limit cases defined by this
family of problems.

Let us recall that the basic model for capillarity phenomena is based on the study of the Gauss free energy [?]

Hn−1(Ω ∩ ∂E) + σHn−1(∂Ω ∩ ∂E) + g ρ

∫
E
xn dx (1.1)

associated to the region E occupied by a liquid droplet confined in a container Ω ⊂ Rn, n > 2. In this way,
Hn−1(Ω∩∂E) is the surface tension energy of the liquid interface interior to the container, σHn−1(∂Ω∩∂E)
is the surface tension energy of the liquid interface at the boundary walls of the container, and g ρ

∫
E xn dx is

the potential energy due to gravity. The mismatch between the surface tensions of the liquid/air and liquid/solid
interfaces is taken into account by the relative adhesion coefficient σ ∈ (−1, 1). There are also situations
where one wishes to consider more general potential energies, and thus the potential energy density g ρ xn is
replaced by some generic density g(x).

The family of nonlocal capillarity models introduced in [?] replaces the use of surface area to define the total
surface tension energy of the droplet E, with the fractional interaction energy

Is(E,E
c ∩ Ω) + σ Is(E,Ω

c) .

Here Ec stands for Rn \ E and given two disjoint subsets A and B of Rn we set

Is(A,B) =

∫
A
dx

∫
B

dy

|x− y|n+s
, s ∈ (0, 1) .

This kind of fractional interaction kernel has been used since a long time. Of particular interest for us is the
result of [?, ?] (see also [?, ?]) showing that, as s → 1− and for a suitable dimensional constant c(n), (1 −
s) Is(E,E

c) → c(n)Hn−1(∂E) whenever E is an open set with Lipschitz boundary (and more generally,
for every set of finite perimeter ifHn−1(∂E) is replaced by the distributional perimeter of E). Starting from this
result one can show (see [?, Proposition 1.2]) that, similarly, as s→ 1−,

Is(E,E
c ∩ Ω) + σ Is(E,Ω

c)→ c(n)
(
Hn−1(Ω ∩ ∂E) + σHn−1(∂Ω ∩ ∂E)

)
(1.2)

whenever E is a Lipschitz subset of Ω.

In general, the nonlocal interaction Is plays a role of a fractional interpolation between classical perimeter
and Lebesgue measure, and so, in a sense, it bridges “classical surface tensions” to “bulk energies of volume
type”. More precisely, as s → 0+, one has that s Is(E,Ec) converges to the Lebesgue measure of E (up
to normalization constants), and the fractional perimeter of a set in a domain, as introduced in [?], approaches
a weighted convex combination between the Lebesgue measure of the set in the domain and the Lebesgue
measure of the complement of the set in the domain, where the convex interpolation parameter takes into
account the behavior of the set at infinity (see [?,?] and Appendix A in [?]). In this sense, the counterpart of (??)
as s→ 0+, for smooth and bounded sets E ⊆ Ω reads

Is(E,E
c ∩ Ω) + σ Is(E,Ω

c)→ c̄(n)σ |E|, (1.3)
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for a suitable c̄(n) > 0. A proof of this will be given in Appendix ??.

As a matter of fact, we stress that the case of s→ 0+ is always somewhat delicate, since the regularity theory
may degenerate (see [?,?]), the oscillations of the set at infinity may prevent the existence of limit behaviors (see
Examples 1 and 2 in [?]), the nonlocal mean curvature of bounded domains converges to an absolute constant
independent of the geometry involved (see Appendix B in [?]) and minimal sets completely stick to the boundary
(see [?]).

From the point of view of applications, nonlocal interactions and fractional perimeters have also very good
potentialities in the theory of image reconstruction, since the the numerical errors produced by the approximation
of nonlocal interactions are typically considerably smaller than the ones related to the classical perimeter (see
e.g. the discussion next to Figures 1 and 2 in [?]).

With these motivations in mind, in [?] we considered the study of the family of free energies

Is(E,E
c ∩ Ω) + σ Is(E,Ω

c) +

∫
E
g(x) dx (1.4)

parameterized by s ∈ (0, 1), with particular emphasis on the limit case s→ 1−. In fact, the full range of values
s ∈ (0, 1) has a clear geometric interest when σ = 0 and g ≡ 0. The reason is that the volume-constrained
minimization of Is(E,Ec ∩ Ω) defines a fractional relative isoperimetric problem which fits naturally in the
emerging theory of fractional geometric variational problems, initiated by the seminal paper [?] on fractional
perimeter minimizing boundaries.

We mention that models related to the functional in (??) have been numerically analized working with Gaussian
interaction kernels, see [?] and references therein.

We now come the main point discussed in this paper, which is the precise behavior of the Euler-Lagrange
equation of the fractional Gauss free energies (??) in the limit cases s → 1− and s → 0+. Let us recall the
important notion of fractional mean curvature of an open set E with Lipschitz boundary

Hs
E(x) = p.v.

∫
Rn

(1Ec − 1E)(y)

|y − x|n+s
dy , x ∈ ∂E ,

which was introduced and studied from a geometric viewpoint in [?]. If g ∈ C1(Rn) and E is a volume-
constrained critical point of the fractional Gauss free energy (??) such that Ω ∩ ∂E is of class C1,α for some
α ∈ (s, 1), then it was proved in [?, Theorem 1.3] that along ∂E the following Euler-Lagrange equation

Hs
E(x) + g(x) = λ+ (1− σ)

∫ c

Ω

dy

|x− y|n+s
∀x ∈ Ω ∩ ∂E , (1.5)

holds, where λ ∈ R is a constant Lagrange multiplier. Let us recall that in the classical case, the Euler-Lagrange
equation for the volume-constrained critical points of the Gauss free energy takes the form

HE(x) + g(x) = λ ∀x ∈ Ω ∩ ∂E , (1.6)

νE(x) · νΩ(x) = σ ∀x ∈ ∂Ω ∩ Ω ∩ ∂E , (1.7)

where HE(x) is the mean curvature of ∂E with respect to the outer unit normal νE to E and, again, λ is
a Lagrange multiplier. Equation (??) is the classical Young’s law, which relates the contact angle between the
interior interface and the boundary walls of the container with the relative adhesion coefficient.

An interesting qualitative feature of the fractional model is that the two well-known equilibrium equations (??) and
(??) are now merged into the same equation (??). In the fractional equation the effect of the relative adhesion
coefficient is present not only on the boundary of the wetted region, but also at the interior interface points,
because of the term

(1− σ)

∫ c

Ω

dy

|x− y|n+s
x ∈ Ω .
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Notice that this term is increasingly localized near ∂Ω the closer s is to 1. Moreover, in [?, Theorem 1.4], we
have shown that (??) implicitly enforces a contact angle condition, in the sense that, if Ω ∩ ∂E is a C1,α-
hypersurface with boundary having all of its boundary points contained in ∂Ω, then

νE(x) · νΩ(x) = cos(π − θ(s, σ)) ∀x ∈ ∂Ω ∩ Ω ∩ ∂E . (1.8)

Here θ ∈ C∞((0, 1)× (−1, 1); (0, π)) is implicitly defined by the equation

1 + σ = (sin θ)s
M(θ, s)

M
(
π
2 , s
) ,

where

M(θ, s) = 2

∫ α

0

[∫ +∞

0

r dr

(r2 + 2 r cos t+ 1)
2+s
2

]
dt .

Thus, as for the classical case, the contact angle does not depend on potential energy density g. Also, as s→
1−, the fractional contact angle converges to the one predicted by the classical Young’s Law (??), namely, see
again [?, Theorem 1.4],

lim
s→1−

θ(s, σ) = arccos(−σ) . (1.9)

The goal of this paper is to provide precise asymptotics for θ(s, σ) both as s → 1− and as s → 0+. As
s→ 0+, the relation between θ and σ changes dramatically, and the trigonometric identity (??) is replaced by
the linear relation

lim
s→0+

θ(s, σ) =
π

2
(1 + σ) . (1.10)

Formulas (??) and (??) are indeed part of a more general result, which goes as follows:

Theorem 1.1. If θ(s, σ) is the angle prescribed by the fractional Young’s law (??), then θ(s, ·) is strictly in-
creasing on (−1, 1) for every s ∈ (0, 1), and for every σ ∈ (−1, 1) we have

θ(s, σ) = arccos(−σ)

− 2σ log 2 + (1− σ) log(1− σ)− (1 + σ) log(1 + σ)

2
√

1− σ2
(1− s)

+ o(1− s) .

(1.11)

in the limit s→ 1−, and

θ(s, σ) =
π

2
(1 + σ)

−
[π

2
(1 + σ) log

(
cos

πσ

2

)
− Ξ

(π
2

(1 + σ)
)

+ (1 + σ) Ξ
(π

2

)]
s

+ o(s) ,

(1.12)

in the limit s→ 0+. Here we set

Ξ(α) :=

∫ α

0

t

tan t
dt , α ∈ [0, π] . (1.13)

Remark 1.2. Though not crucial for our computations, we observe that

Ξ
(π

2

)
=
π

2
log 2.

Remark 1.3. We recall from [?] that θ(s, 0) = π/2 for every s ∈ (0, 1). Thus, in the case σ = 0 correspond-
ing to the relative fractional isoperimetric problem, the fractional contact angles are all equal to the classical
ninety degrees contact angle. We also notice that, despite this fact, when σ = 0 and n = 2 half-disks are never
volume-constraints critical points of the fractional capillarity energy on a half-space. A geometric proof of this
fact will be given in Appendix ??.
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FIGURE 1.1. An approximate plot of the function (−1, 1) 3 σ 7→ θ(s, σ) for some values of s. Notice
that “the arccosine linearizes” as s goes from 1 to 0. The approximate picture is obtained by plotting
with Maxima formulas (??) (disregarding o(1 − s)) and (??) (disregarding o(s)) for some values of
s. Also, to approximatively plot the function Ξ in (??), a high order Taylor expansion of the function
t/ tan t at t = π

2 has been used.

Remark 1.4. It is easily seen that the function

2σ log 2 + (1− σ) log(1− σ)− (1 + σ) log(1 + σ)

is strictly concave on (−1, 0), strictly convex on (0, 1), and that it takes the value 0 at σ = 0, 1,−1. As a
consequence, equation (??) implies that

θ(s, σ) < arccos(−σ) ∀σ ∈ (−1, 0) , θ(s, σ) > arccos(−σ) ∀σ ∈ (0, 1) ,

provided s is close enough to 1. Correspondingly, for s close to 1, in the hydrophilic regime σ ∈ (−1, 0)
fractional droplets are more hydrophilic than their classical counterparts, while in the hydrophobic case they
are more hydrophobic. As

π

2
(1 + σ) < arccos(−σ) ∀σ ∈ (−1, 0)

π

2
(1 + σ) > arccos(−σ) ∀σ ∈ (0, 1)

the same assertions hold for s close to 0. Figure ??, which is also included with the aim of facilitating the
interpretation of the mathematical results in (??) and (??), suggests that this should be the case for every
s ∈ (0, 1).

2. PROOF OF THEOREM ??

We start with the following lemma.

Lemma 2.1. If α ∈
(
0, π2

)
, then∫ α

0

[∫ +∞

0

log
(
r2 + 2 r cos t+ 1

)
(r2 + 2 r cos t+ 1)

3
2

r dr

]
dt =

4(1− cosα) + 2
(

log(cosα+ 1)− log 2
)

sinα
. (2.1)
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Proof. To show this, given a, r > 0, we let

ρ(a, r) :=
√
r2 + 2 a r + 1

and g(a, r) :=
2 (a r + 1) log ρ(a, r)− 2 a ρ(a, r) log (a+ r + ρ(a, r)) + 2 a r + 2

(a2 − 1) ρ(a, r)
.

By a direct computation, we see that

∂rg(a, r) =
r log

(
r2 + 2 a r + 1

)
(r2 + 2 a r + 1)

3
2

.

Also,

g(a, 0) =
−2a log(a+ 1) + 2

a2 − 1
.

In addition, as r → +∞,

ρ(a, r) = r

(
1 +

a

r
+O

(
1

r2

))
,

and so

g(a, r)

=
1

(a2 − 1) r
(
1 + a

r +O
(

1
r2

)) [2 (a r + 1) log

(
r

(
1 +

a

r
+O

(
1

r2

)))
−2 a r

(
1 +

a

r
+O

(
1

r2

))
log

(
a+ r + r

(
1 +

a

r
+O

(
1

r2

)))
+ 2 a r + 2

]
=

1

(a2 − 1) r
(
1 + a

r +O
(

1
r2

)) [2 (a r + 1)

[
log r + log

(
1 +

a

r
+O

(
1

r2

))]
−2 a r

(
1 +

a

r
+O

(
1

r2

)) [
log r + log

(
2 +

2a

r
+O

(
1

r2

))]
+ 2 a r + 2

]
=

1

(a2 − 1) (1 + o(1))
[o(1)− 2 a log(2 + o(1)) + 2 a]

−→ 2a(1− log 2)

a2 − 1
as r → +∞.

As a consequence,∫ +∞

0

log
(
r2 + 2 a r + 1

)
(r2 + 2 a r + 1)

3
2

r dr =

∫ +∞

0
∂rg(a, r) dr = g(a,+∞)− g(a, 0)

=
2a
(
1− log 2 + log(a+ 1)

)
− 2

a2 − 1
=: h(a).

(2.2)

Now, for any α ∈
(
0, π2

)
, we set

H(α) :=
4(1− cosα) + 2

(
log(cosα+ 1)− log 2

)
sinα

.

Notice that
lim
α→0+

H(α) = 0.

Also, we compute that
∂αH(α) = h(cosα).

Therefore ∫ α

0
h(cos t) dt = H(α)−H(0) =

4(1− cosα) + 2
(

log(cosα+ 1)− log 2
)

sinα
.

Using this and (??) with a := cos t, we obtain (??). �
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Proof of Theorem ??. Since (??) and (??) (as well as the monotonicity property in σ claimed in Theorem ??)
are invariant for the symmetry

θ(s,−σ) = π − θ(s, σ),

we can assume that σ ∈ (−1, 0), and thus (see [?]) θ(s, σ) ∈
(
0, π2

)
. Also, whenever clear from the context,

we use the short notation θ(s) := θ(s, σ). For any α ∈
(
0, π2

]
we define the cone of opening 2α

Γα := {x = (x1, x2) ∈ R2 s.t. x2 < −|x| cosα}.

Then, for any s ∈ (0, 1] and η ∈ [0,+∞), we set

I(η, α, s) :=

∫
Γα

dz

|ηe2 − z|2+s
. (2.3)

We know that, see [?, Proof of Theorem 1.4, step three],

I(1, α, s) = 2

∫ α

0

[∫ +∞

0

r dr

(r2 + 2 r cos t+ 1)
2+s
2

]
dt (2.4)

and that the optimal angle θ = θ(s) in the Young’s law satisfies

1 + σ =
I(1, θ, s)

I
(
sin θ, π2 , s

) .
Also, by scaling (??), one sees that

I
(

sin θ,
π

2
, s
)

=
I
(
1, π2 , s

)
(sin θ)s

and thus setting

f(s, α) :=
(sinα)s I(1, α, s)

I
(
1, π2 , s

)
we have

f(s, θ(s)) = 1 + σ. (2.5)

Accordingly, recalling that θ = θ(s) and differentiating with respect to s, we find that

∂sf(s, θ(s)) + ∂αf(s, θ(s)) ∂sθ(s) = 0,

and so (being, evidently, ∂αf > 0 for α ∈ (0, π/2))

∂sθ(s) = − ∂sf(s, θ(s))

∂αf(s, θ(s))
. (2.6)

Now, to compute ∂sθ(1) and prove (??), we evaluate ∂sf(1, θ(1)) and ∂αf(1, θ(1)) and we substitute these
expressions into (??) (evaluated at s = 1). For this, we recall (see [?, end of section 4]) that

I(1, α, 1) =
2 sinα

1 + cosα
(2.7)

and therefore

∂αI(1, α, 1) =
2

1 + cosα
. (2.8)

In addition,

∂αf(s, α) =
s(sinα)s−1 cosα I(1, α, s) + (sinα)s ∂αI(1, α, s)

I
(
1, π2 , s

) (2.9)

so that, by (??),

∂αf(1, α) =
2 sinα cosα

1+cosα + 2 sinα
1+cosα

2
= sinα . (2.10)
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On the other hand,

∂sf(s, α) =
(sinα)s log(sinα) I(1, α, s)

I
(
1, π2 , s

) +
(sinα)s ∂sI(1, α, s)

I
(
1, π2 , s

) −
(sinα)s I(1, α, s) ∂sI

(
1, π2 , s

)(
I
(
1, π2 , s

))2 ,

(2.11)
and so, recalling (??),

∂sf(1, α) =
log(sinα) sin2 α

1 + cosα
+

sinα

2
∂sI(1, α, 1)− sin2 α

2 (1 + cosα)
∂sI

(
1,
π

2
, 1
)
. (2.12)

Furthermore, by (??),

∂sI(1, α, s) = −
∫ α

0

[∫ +∞

0

log
(
r2 + 2 r cos t+ 1

)
r dr

(r2 + 2 r cos t+ 1)
2+s
2

]
dt. (2.13)

Hence, by (??),

∂sI(1, α, 1) = −
4(1− cosα) + 2

(
log(cosα+ 1)− log 2

)
sinα

.

Now we insert this identity into (??) and we conclude that

∂sf(1, α) =
log(sinα) sin2 α

cosα+ 1
− 2(1− cosα)−

(
log(cosα+ 1)− log 2

)
+

(2− log 2) sin2 α

cosα+ 1

= (1− cosα)
(

log(sinα)− log 2
)
− log(cosα+ 1) + log 2 .

(2.14)

Hence, we insert (??) and (??) into (??) and we find that

∂sθ(1) =
(cos θ(1)− 1)

(
log(sin θ(1))− log 2

)
+ log(cos θ(1) + 1)− log 2

sin θ(1)
.

Since we have cos θ(1) = −σ and so sin θ(1) =
√

1− σ2, we finally conclude that

∂sθ(1) =
(σ + 1)

(
log 2− log(

√
1− σ2)

)
+ log(1− σ)− log 2

√
1− σ2

=
2σ log 2 + 2 log(1− σ)− (σ + 1) log(1− σ2)

2
√

1− σ2
.

Accordingly, as s→ 1−,

θ(s) = θ(1) + ∂sθ(1) (s− 1) + o(1− s)

= arccos(−σ)− 2σ log 2 + (1− σ) log(1− σ)− (1 + σ) log(1 + σ)

2
√

1− σ2
(1− s) + o(1− s),

which establishes (??).

Now we prove (??). To this aim, we observe that(
r2 + 2 r cos t+ 1

)− 2+s
2 = r−2−s +

κ

r3+s
, (2.15)

where

κ = κ(r, t, s) := r3+s
(
r2 + 2 r cos t+ 1

)− 2+s
2 − r = r

(
1 +

2 cos t

r
+

1

r2

)− 2+s
2

− r.

As a consequence,∫ +∞

1

r dr

(r2 + 2 r cos t+ 1)
2+s
2

=

∫ +∞

1

[
r−1−s +

κ

r2+s

]
dr =

1

s
+ κ0,
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where

κ0 = κ0(t, s) :=

∫ +∞

1

κ

r2+s
dr =

∫ +∞

1

(
1 + 2 cos t

r + 1
r2

)− 2+s
2 − 1

r1+s
dr. (2.16)

By a first order expansion, we notice that κ0 is a function which is bounded uniformly in t ∈
[
0, π2

]
and s ∈

(0, 1).

Therefore ∫ +∞

0

r dr

(r2 + 2 r cos t+ 1)
2+s
2

=
1

s
+ κ1, (2.17)

where

κ1 = κ1(t, s) :=

∫ 1

0

r dr

(r2 + 2 r cos t+ 1)
2+s
2

+ κ0(t, s). (2.18)

By construction, we have that κ1 is bounded uniformly in t ∈
[
0, π2

]
and s ∈ (0, 1).

Hence, from (??),

I(1, α, s) = 2

∫ α

0

[
1

s
+ κ1

]
dt =

2α

s
+ κ2, (2.19)

where

κ2 = κ2(α, s) := 2

∫ α

0
κ1 dt. (2.20)

We remark that κ2 is bounded uniformly in α ∈
[
0, π2

]
and s ∈ (0, 1).

Now, we observe that
lim inf
s→0+

θ(s) > 0. (2.21)

Indeed, if, by contradiction, it holds that
lim

k→+∞
θ(sk) = 0,

for some infinitesimal sequence sk, then we deduce from (??) that

1 + σ = f(sk, θ(sk)) = lim
k→+∞

(
sin(θ(sk)

)sk I(1, θ(sk), sk)

I
(
1, π2 , sk

) 6 lim
k→+∞

I(1, θ(sk), sk)

I
(
1, π2 , sk

) .

Therefore, by (??),

0 < 1 + σ 6 lim
k→+∞

2θ(sk)
sk

+ κ2(θ(sk), sk)
π
sk

+ κ2

(
π
2 , sk

) = lim
k→+∞

2θ(sk) + skκ2(θ(sk), sk)

π + skκ2

(
π
2 , sk

) = 0,

which is a contradiction, thus proving (??).

From (??), we deduce that
lim
s→0+

(
sin θ(s)

)s
= 1. (2.22)

Therefore, in light of (??) and (??),

1 + σ = lim
s→0+

f(s, θ(s)) = lim
s→0+

(
sin(θ(s)

)s
I(1, θ(s), s)

I
(
1, π2 , s

)
= lim

s→0+

I(1, θ(s), s)

I
(
1, π2 , s

) = lim
s→0+

2θ(s)
s + κ2(θ(s), s)
π
s + κ2

(
π
2 , s
)

= lim
s→0+

2θ(s) + sκ2(θ(s), s)

π + sκ2

(
π
2 , s
) =

2 lims→0+ θ(s)

π
,

which proves that

θ(0) =
π

2
(1 + σ). (2.23)
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Now, by (??),

κ0(t, 0) =

∫ +∞

1

(
1 + 2 cos t

r + 1
r2

)−1 − 1

r
dr = −

∫ +∞

1

2 cos t+ 1
r

r2 + 2 r cos t+ 1
dr. (2.24)

We also set

ϕ(r, t) :=
arctan

(
cos t+r

sin t

)
tan t

− 1

2
log

r2 + 2 r cos t+ 1

r2

and ψ(r, t) := log r − ϕ(r, t) =
1

2
log(r2 + 2 r cos t+ 1)−

arctan
(

cos t+r
sin t

)
tan t

and we compute that
∂

∂r
ϕ(r, t) =

2 cos t+ 1
r

r2 + 2 r cos t+ 1
.

From this and (??), we conclude that

κ0(t, 0) = ϕ(1, t)− ϕ(+∞, t) . (2.25)

We also remark that
∂

∂r
ψ(r, t) =

∂

∂r

[
log r − ϕ(r, t)

]
=

r

r2 + 2 r cos t+ 1
and thus ∫ 1

0

r dr

r2 + 2 r cos t+ 1
= ψ(1, t)− ψ(0, t) = −ϕ(1, t) +

arctan
(

cos t
sin t

)
tan t

.

Hence, from (??) and (??),

κ1(t, 0) =

∫ 1

0

r dr

r2 + 2 r cos t+ 1
+ κ0(t, 0)

=
arctan

(
cos t
sin t

)
tan t

− ϕ(+∞, t) =
arctan

(
1

tan t

)
tan t

− π

2 tan t
.

(2.26)

Now we point out that, for any x ∈ R,

1

2
− 1

π
arctan

(
1

tan(πx)

)
= {x},

where {·} denotes here the fractional part. As a consequence, for any t ∈
[
0, π2

]
(or, more generally, for

any t ∈ [0, π]) we have

arctan

(
1

tan t

)
− π

2
= −π

{
t

π

}
= −t.

This and (??) say that

κ1(t, 0) = − t

tan t
.

Therefore, in the light of (??) and recalling the definition in (??), we conclude that

κ2(α, 0) = −2

∫ α

0

t

tan t
dt = −2Ξ(α). (2.27)

Now we remark that

log
(
r2 + 2 r cos t+ 1

)
= log

(
r2

(
1 +

2 cos t

r
+

1

r2

))
= log r2 + log

(
1 +

2 cos t

r
+

1

r2

)
= 2 log r +

χ0

r
,

where χ0 = χ0(r, t) is bounded uniformly in r ∈ [1,+∞) and t ∈
[
0, π2

]
. Then, by (??), we obtain

log
(
r2 + 2 r cos t+ 1

)
(r2 + 2 r cos t+ 1)

2+s
2

r =
(2 r log r + χ0)

(
1 + κ

r

)
r2+s

=
2 r log r + 2κ log r + χ0κ

r + χ0

r2+s
. (2.28)
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Furthermore,
∂

∂r

1 + s log r

s2 rs
= − log r

r1+s
.

This and (??) imply that∫ +∞

1

log
(
r2 + 2 r cos t+ 1

)
(r2 + 2 r cos t+ 1)

2+s
2

r dr = 2

∫ +∞

1

log r

r1+s
dr + χ1 =

2

s2
+ χ1,

with χ1 = χ1(t, s), which is bounded uniformly in t ∈
[
0, π2

]
and s ∈ (0, 1).

Consequently, ∫ +∞

0

log
(
r2 + 2 r cos t+ 1

)
(r2 + 2 r cos t+ 1)

2+s
2

r dr =
2

s2
+ χ2,

with χ2 = χ2(t, s), which is bounded uniformly in t ∈
[
0, π2

]
and s ∈ (0, 1). From this identity and (??), we

obtain

∂sI(1, α, s) = −
∫ α

0

[
2

s2
+ χ2

]
dt = −2α

s2
+ χ3,

with χ3 = χ3(α, s) bounded uniformly in α ∈
[
0, π2

]
and s ∈ (0, 1).

Using this and (??), we have

(sinα)s ∂sI(1, α, s)

I
(
1, π2 , s

) −
(sinα)s I(1, α, s) ∂sI

(
1, π2 , s

)(
I
(
1, π2 , s

))2
=

(sinα)s
(
−2α
s2

+ χ3

)
π
s + κ̄2

−
(sinα)s

(
2α
s + κ2

) (
− π
s2

+ χ3

)(
π
s + κ̄2

)2
=

(sinα)s(
π
s + κ̄2

)2 [(−2α

s2
+ χ3

)(π
s

+ κ̄2

)
−
(

2α

s
+ κ2

) (
− π
s2

+ χ3

)]
=

(sinα)s η

(π + sκ̄2)2 ,

(2.29)

where we used the short notations κ2 = κ2(α, s), κ̄2 := κ2

(
π
2 , s
)

and

η = η(α, s) := sχ3 (π − 2α+ sκ̄2 − sκ2) + πκ2 − 2ακ̄2.

We stress that an important simplification occurred in the last step of (??).

Notice also that
η(α, 0) = πκ2(α, 0)− 2ακ2

(π
2
, 0
)
. (2.30)

Furthermore, recalling (??),

(sinα)s log(sinα) I(1, α, s)

I
(
1, π2 , s

) =
(sinα)s log(sinα)

(
2α
s + κ2

)
π
s + κ̄2

=
(sinα)s log(sinα) (2α+ sκ2)

π + sκ̄2
.

Using this, (??) and (??), we conclude that

∂sf(s, α) =
(sinα)s log(sinα) (2α+ sκ2)

π + sκ̄2
+

(sinα)s η

(π + sκ̄2)2 .

Thus, recalling also (??) and (??),

∂sf(0, θ(0)) =
2θ(0) log

(
sin θ(0)

)
π

−
2πΞ

(
θ(0)

)
− 4θ(0) Ξ

(
π
2

)
π2

. (2.31)

Now we observe that, in view of (??) and (??),

∂αI(1, α, s) = 2

∫ +∞

0

r dr

(r2 + 2 r cosα+ 1)
2+s
2

=
2

s
+ κ̃1,
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where κ̃1 = κ̃1(α, s) is a function which is bounded uniformly in α ∈
[
0, π2

]
and s ∈ (0, 1). Consequently,

recalling (??) and (??),

∂αf(s, α) =
s(sinα)s−1 cosα

(
2α
s + κ2

)
+ (sinα)s

(
2
s + κ̃1

)
π
s + κ̄2

=
s(sinα)s−1 cosα (2α+ sκ2) + (sinα)s (2 + sκ̃1)

π + sκ̄2
.

Therefore, exploiting (??) once again,

∂αf(0, θ(0)) =
2

π
.

Making use of this, (??) and (??), we find

∂sθ(0) = − θ(0) log
(

sin θ(0)
)

+
πΞ
(
θ(0)

)
− 2θ(0) Ξ

(
π
2

)
π

.

Accordingly, by (??),

∂sθ(0) = −π (1 + σ)

2
log
(

cos
πσ

2

)
+ Ξ

(
π(1 + σ)

2

)
− (1 + σ) Ξ

(π
2

)
.

From this and (??), the desired result in (??) plainly follows.

Now we check the monotonicity of the function θ(s, σ) with respect to σ. For this, we differentiate (??) (recall
that now θ = θ(s, σ)) and see that

fα(s, θ(s, σ)) ∂σθ(s, σ) = 1. (2.32)

Also, from (??), we have that ∂αI(1, α, s) > 0. Accordingly, by (??), we obtain that ∂αf(s, α) > 0. This
and (??) give that ∂σθ(s, σ) > 0, as desired. �

APPENDIX A. REMARKS ON THE SHAPE OF THE MINIMIZERS

It is interesting to remark that minimizers of capillarity problems with σ = 0, g = 0, n = 2 and Ω = H =
{x2 > 0} are not half-balls, differently to what happens in the classical case.

To check this statement, suppose, by contradiction, thatB = HBρ(0) is a critical point (here and in the sequel,
for typographical convenience, we use the short notation for intersection of setsAB := A∩B). Let x ∈ H ∂B
and denote by R the reflected half-ball with respect to the tangent line to ∂B at x. We observe that R ⊂ H
and Bc ⊃ Hc. Then, by formula (1.23) in [?], the Euler-Lagrange equation at any point x ∈ H ∂B reads as

0 =

∫
R2

1Bc(y)− 1B(y)

|x− y|2+s
dy −

∫
Hc

dy

|x− y|2+s

=

∫
BcH

dy

|x− y|2+s
−
∫
B

dy

|x− y|2+s

=

∫
R

dy

|x− y|2+s
+

∫
BcRcH

dy

|x− y|2+s
−
∫
B

dy

|x− y|2+s

=

∫
BcRcH

dy

|x− y|2+s
=: F(x),

(A.1)

where a cancellation due to the symmetry between B and R was used in the last step of this identity.

Now we evaluate (??) at p = (−ρ, 0) (see Figure ??) and at q = (0, ρ) (see Figure ??), we use some
geometric argument exploiting isometric regions of BcRcH and we obtain the desired contradiction.

To this aim, we observe that, by (??),

F(p) = 0 = F(q). (A.2)
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∂HR B

L S T T ′ M

p

S′

FIGURE A.1. Formula (??) evaluated at p = (−ρ, 0).

∂H

q

B

R

Y

T ′

X

M

TS′

S

W

L

FIGURE A.2. Formula (??) evaluated at q = (0, ρ).

On the other hand, we claim that

F(p) < F(q). (A.3)

For this, we partition BcRcH into the regions L, M , S, T , S′ and T ′ in Figure ?? and into the regions L, M ,
S, T , S′, T ′, X , Y and W in Figure ??.

We observe that the contributions coming from L, M , S and T in Figure ?? are, by isometry, exactly the same
as the ones coming from L, M , S and T in Figure ??.

Moreover, the contributions coming from S′ ∪ T ′ in Figure ?? are smaller than the contributions coming from
S′ ∪ T ′ in Figure ??, since these regions are isometric, but a reflection with respect to a vertical axis in Figure
?? takes S′ and T ′ closer to the pole.

Also, Figure ?? possesses the additional contributions from X , Y and W that are not present in Figure ??. All
in all, the contributions in Figure ?? are larger than the ones in Figure ??, and this proves (??).

Then, a contradiction arises by comparing (??) and (??), thus proving that half-balls are not critical (and, in
particular, not minimal).

APPENDIX B. PROOF OF THE ASYMPTOTICS IN (??)

.

Up to scaling, we may assume that Ω ⊆ B1. Then, from formula (3.9) in [?], we have that

lim
s→0+

s Is(E,E
c ∩ Ω) 6 lim

s→0+
s

∫
E
dx

∫
B1\E

dy

|x− y|n+s
= 0. (B.1)



13

Similarly, for any R > 1,

lim
s→0+

s

∫
E
dx

∫
BR∩Ωc

dy

|x− y|n+s
6 lim

s→0+
s

∫
Ω
dx

∫
BR∩Ωc

dy

|x− y|n+s
= 0. (B.2)

Also, from (2.2) in [?],

α(Ωc) := lim
s→0+

s

∫
Ωc∩Bc1

dy

|y|n+s
= lim

s→0+
s

∫
Bc1

dy

|y|n+s
=: c̄(n).

This and formula (3.8) in [?] give that

0 = lim
R→+∞

lim
s→0+

∣∣∣∣∣α(Ωc) |E| − s
∫
E
dx

∫
Ωc∩BcR

dy

|x− y|n+s

∣∣∣∣∣
= lim

R→+∞
lim
s→0+

∣∣∣∣∣c̄(n) |E| − s
∫
E
dx

∫
Ωc∩BcR

dy

|x− y|n+s

∣∣∣∣∣ .
From this and (??) we obtain that

lim
s→0+

∣∣∣∣c̄(n) |E| − s
∫
E
dx

∫
Ωc

dy

|x− y|n+s

∣∣∣∣
6 lim

R→+∞
lim
s→0+

∣∣∣∣∣c̄(n) |E| − s
∫
E
dx

∫
Ωc∩BcR

dy

|x− y|n+s

∣∣∣∣∣
+s

∫
E
dx

∫
Ωc∩BR

dy

|x− y|n+s
= 0,

that is
lim
s→0+

s Is(E,Ω
c) = c̄(n) |E|.

This and (??) imply (??).


