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Abstract

This report has two main goals. First, it numerically investigates three velocity-pressure
reduced order models (ROMs) for incompressible flows. The proper orthogonal decompo-
sition (POD) is used to generate the modes. One method computes the ROM pressure
solely based on the velocity POD modes, whereas the other two ROMs use pressure
modes as well. To the best of the authors’ knowledge, one of the latter methods is novel.
The second goal is to numerically investigate the impact of the snapshot accuracy on the
ROMs accuracy. Numerical studies are performed on a two-dimensional laminar flow past
a circular obstacle. It turns out that, both in terms of accuracy and efficiency, the two ROMs
that utilize pressure modes are clearly superior to the ROM that uses only velocity modes.
The numerical results also show a strong correlation of the accuracy of the snap shots with
the accuracy of the ROMs.
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1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain and let [0, T ] be a finite
time interval. Incompressible flows are modeled by the incompressible Navier–
Stokes equations (in dimensionless form) for the velocity u : [0, T ]× Ω→ Rd

and the pressure p : (0, T ]× Ω→ R

∂tu− ν∆u + (u · ∇)u +∇p = f in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,
(1)

where f models body forces acting on the flow and ν is the inverse of the
Reynolds number. System (1) has to be equipped with an initial velocity
u(0,x) = u0(x) and with appropriate boundary conditions on the boundary
∂Ω of Ω. For the concrete flow problem considered in this report, there is
no forcing term (f = 0) and the boundary can be decomposed as ∂Ω =
Γin ∪ Γ0 ∪ Γout, where the boundary parts are mutually disjoint. Problem (1)
is completed with the following boundary conditions:

u(t,x) = g(t,x) at [0, T ]× Γin inlet,

u(t,x) = 0 at [0, T ]× Γ0 solid walls,

(ν∇u− pI)n = 0 at [0, T ]× Γout outlet,

where n denotes the outer normal unit vector on ∂Ω.

In order to compute a numerical approximation of the solution of (1) with a
finite element method, (1) can be transformed into a time-continuous varia-
tional formulation, using the spaces

V = {v ∈ H1(Ω) : v = 0 on Γin ∪ Γ0}, Q = L2(Ω) .

Furthermore, let (·, ·) denote the standard inner product in L2(Ω) and let
ug(t, ·) ∈ H1(Ω) be an extension of g into Ω for all t. Then, the time-continuous
variational formulation reads: find u : (0, T ]→ H1(Ω), such that u−ug ∈ V
for all t, and p : (0, T ]→ Q such that

(∂tu,v) + (ν∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) = 0 ∀ v ∈ V,

−(∇ · u, q) = 0 ∀ q ∈ Q,
(2)

and u(0,x) = u0(x).

In finite element methods, the spaces (V, Q) in (2) are replaced by finite-
dimensional spaces (Vh, Qh) consisting of piecewise polynomials with respect
to a triangulation T h of Ω. Usually, (Vh, Qh) are equipped with a local basis,
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i.e., with a basis where each basis function has a small support such that an
easy construction of the spaces (Vh, Qh) is possible.

The use of finite element methods for the numerical solution of (2) allows
to compute more and more details of the flow field by increasing the dimen-
sion of the finite element spaces. However, the number of basis functions can
become very large, yielding large linear or nonlinear systems to be solved in
the simulations. Consequently, the numerical simulation of the flow can be
very time-consuming. In addition, the finite element basis is generally defined
independently of the solution, and it only depends on the structure of the
computational mesh. In the case that a priori information on the solution is
available, one could transfer this knowledge to the finite element space by
pre-adapting the triangulation of Ω.

Reduced order models (ROM) aim at reducing the computational cost of full
finite element, finite difference, or finite volume simulations by drastically
reducing the dimension of the solution space. The key idea of ROMs consists
in utilizing basis functions that already represent the most important features
of the solution. In contrast to finite element bases, ROM bases are global bases.
In this report, we focus on ROMs in which the basis functions are obtained
through a proper orthogonal decomposition (POD) of a set of snapshots, see,
e.g. [3,9,10,11,13,12,15,20,21,23,31,35,41]. Here, the snapshots will be obtained
from detailed numerical simulations. It is worth noticing that generally the
snapshots might even come from experimental data.

This report has the following two main goals: First, it investigates three dif-
ferent types of ROMs that compute besides the velocity also the pressure,
called here for shortness vp-ROMs. One of these vp-ROMs is, to the best of
the authors’ knowledge, new. Second, this paper investigates the impact of the
snapshot accuracy on the vp-ROM results. The motivation and background
for these two numerical investigations are presented in the following.

To motivate the use of vp-ROMs, we note that although most ROMs for in-
compressible flows do not include a pressure component, there are important
settings in which vp-ROMs are appropriate. From the practical point of view,
the pressure is needed in many computational fluid dynamics applications, e.g.,
the simulation of fluid-structure interaction problems and the computation of
relevant quantities, such as drag and lift coefficients on solid bodies, and for
ROM simulations of shear flows [33]. Other reasons for including the pressure
are connected to the definition of ROMs. Using only the velocity ROM leads
to a comparatively simple model that can be simulated very efficiently. The
rationale behind the velocity ROM, as it can be found in the literature, is that
all snapshots are divergence-free, hence all basis functions are divergence-free
and consequently the ROM velocity is divergence-free, such that the pressure
(which acts as a Lagrange multiplier of the divergence-free constraint) is not
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needed. As it will be clarified in Section 3.1, the same rationale can be applied
in the context of finite element methods and discretely divergence-free ve-
locity fields. However, most numerical methods for computing the snapshots
do not provide pointwise divergence-free flow fields. Even for finite element
methods, the discretely divergence-free property does not hold for many pop-
ular discretizations of the Navier–Stokes equations. Such examples include the
case of using the same finite element spaces for velocity and pressure, where
a numerical stabilization becomes necessary, or pressure-correction schemes
without reconstructing the discretely divergence-free solution. Experimental
data will generally not be divergence-free as well. Altogether, the violation of
the divergence-free constraint on the snapshots is another reason for incorpo-
rating the pressure into ROMs for incompressible flow simulations. Another
reason, already pointed out in [7], is that the availability of the pressure en-
ables the computation of ROM residuals. Residuals are often needed in stabi-
lized discretizations, e.g., for stabilization with respect to the violation of the
inf-sup condition or with respect to dominating convection. And finally, the
Navier–Stokes equations are sometimes equipped with boundary conditions
that include the pressure such that the pressure might be necessary for this
reason.

One can find in the literature different proposals for incorporating the pres-
sure, or an approximation of the pressure, into the ROM. One class of vp-
ROMs consists in defining a ROM pressure that only uses the velocity POD
modes [16,33]. One vp-ROM from this class, denoted by VMB-ROM, will be
investigated in our numerical studies.

A second class of vp-ROMs employs pressure POD basis functions in addition
to the velocity POD basis functions. The pressure POD basis functions can
be computed separately from the velocity POD basis functions (i.e., the de-
coupled approach) [33], or together with them (i.e., the coupled, monolithic
approach) [7,42]. In this study, we utilize the decoupled approach. Two vp-
ROMs that employ a pressure POD basis will be investigated in this report.
The first vp-ROM in this class, here denoted by PCM-ROM, is based on the
approach proposed in [1]. The second vp-ROM, called SM-ROM, is, to the best
of the authors’ knowledge, novel. This new vp-ROM uses a residual based sta-
bilization mechanism for the incompressible Navier–Stokes equations. Overall,
three vp-ROMs will be considered in the numerical studies. VMB-ROM and
PCM-ROM solve the same equation for the pressure but in different finite-
dimensional spaces. PCM-ROM and SM-ROM work in the same space, but
in these methods different equations for the pressure are solved. All vp-ROMs
can be considered as a postprocessing step to a velocity ROM.

The second main goal of this paper is to investigate the impact of the accuracy
of the snapshots, and therefore of the resulting POD basis, on the numerical
results of the vp-ROMs. To motivate this investigation, we recall that, in order
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to ensure a high computational efficiency, ROMs generally employ simple, and
therefore potentially inaccurate, numerical methods. Indeed, ROMs generally
avoid the solution of nonlinear systems and use, where possible, explicit time
integration schemes, see, e.g., [4] for a detailed discussion. On the other hand,
the generation of the snapshots might be time-consuming. Considering, e.g., a
turbulent flow, then one can perform a direct numerical simulation (DNS), if
the Reynolds number is sufficiently small for this approach to be feasible, or
one can apply more or less advanced turbulence models on more or less fine
meshes for this purpose. All approaches (should) give reasonable approxima-
tions of the large and important flow structures. The main differences will be
in the resolved details of the flow. However, the DNS has to be performed on
a very fine mesh and its computing time is usually orders of magnitude higher
than of a simulation with a turbulence model on a coarser grid. And even sim-
ulations with a simple turbulence model, like the Smagorinsky model, might
be much faster than simulations with an advanced model, like a variational
multiscale method. Since ROMs aim to compute only the most important
features of the solution, and since ROMs generally utilize a simple numerical
method, the following question naturally emerges: “How strong is the impact
of the snapshot accuracy onto the accuracy of the ROM results?”

In this report, we will perform a first step in numerically investigating the
effect of the snapshot accuracy on the ROM accuracy. To the best of the
authors’ knowledge, this represents the first such numerical investigation. To
construct snapshot data of different accuracies, two approaches can be consid-
ered. The first approach uses the same numerical method, but different dis-
cretization parameters, e.g., different mesh sizes and/or different time steps.
The second approach uses the same discretization parameters, but different
numerical methods. In this study, we utilize the second approach.

The report is organized as follows. Section 2 gives a short review of the way
a basis of the ROM is obtained with POD. Several vp-ROMs are discussed in
Section 3. Section 4 presents numerical studies that compare these vp-ROMs.
These studies are performed for a two-dimensional (2D) laminar flow around
a cylinder. This example is on the one hand sufficiently simple to allow the
computation of accurate reference solutions to compare with. On the other
hand, the flow is laminar such that it is possible to focus on the two main goals
of this report without interference of additional aspects. e.g., like turbulence
modeling. The report concludes with a summary and an outlook in Section 5.

2 Computation of a ROM basis with POD

For the report to be self-contained, this section briefly presents the computa-
tion of a basis for ROMs with POD. For more details, the reader is referred
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to [21,32,36,40].

Let us consider a function u(t,x) : [0, T ] × Ω → Rd and let R ∈ N. Then,
the goal of POD consists in finding two sets {αr(t), αr : [0, T ] → R}Rr=1,
{φr(x), φr : Ω→ Rd}Rr=1 which deliver the best approximation

arg min
(αr,φr)

∥∥∥∥∥u(t,x)−
R∑
r=1

αr(t)φr(x)

∥∥∥∥∥
according to a norm which determines in which sense the best approximation
is sought. For flow problems, usually the L2(0, T ;L2(Ω)) norm is used since it
is directly related to the kinetic energy of the flow field.

In the framework of the numerical solution of partial differential equations, u
is usually given at a finite number of times t1, . . . , tM , the so-called snapshots.
For the sake of simplifying the presentation, and without loss of generality,
we assume that the snapshots are computed at equidistant time steps τ with
a finite element method. The numerical studies will use this approach. Then,
usually an approximation of the error in the (square of the) L2(0, T ) norm is
considered, e.g., by (a modification of) the composite trapezoidal rule

arg min
(αr,φr)

M∑
m=1

τ

∥∥∥∥∥u(tm,x)−
R∑
r=1

αr(tm)φr(x)

∥∥∥∥∥
2

. (3)

In this section, it will be assumed only that the norm is induced by an inner
product (·, ·). The functions u(tm,x) can be represented by a finite number of
degrees of freedom since they were computed from a discretized equation. Like-
wise, φr(x) will be represented by the same degrees of freedom. Let {xn}Nn=1

be the nodes and let {vn(x)}Nn=1 be the nodal basis with vn(xk) = δnk. Then,
the representations have the form

u(tm,x) =
N∑
n=1

u(tm,xn)vn(x), φr(x) =
N∑
n=1

φr(xn)vn(x). (4)

Thus, the data can be collected into the so-called snapshot matrix U ∈ RN×M

with (U)nm = u(tm,xn). It will be required that R ≤ rank(U). In practice, it
is usually M � N , which will be assumed also here. The function φr(x) will
be identified with its vector of coefficients (φr(xn))Nn=1.

Inserting the representations (4) into (3) and using that the norm is induced
by an inner product, the approximation problem can be written as follows
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arg min
(αr,φr)

M∑
m=1

τ
[ N∑
n=1

N∑
l=1

(
u(tm,xn)−

R∑
r=1

αr(tm)φr(xn)
)

×
(
u(tm,xl)−

R∑
r=1

αr(tm)φr(xl)
)

(vn, vl)
]
. (5)

The matrix S with Sln = (vn, vl) is symmetric and positive definite. For func-
tions v, w that can be represented in the same form as (4), the inner product
can be written as

(v, w) = vTSw, (6)

where on the right-hand side there are the vectors of the coefficients of v and
w. It is clear that the result of (5) does not depend on τ , such that without
loss of generality one can consider τ = 1.

Problem (5) is an optimization problem in RM × RN . Let {φr}Rr=1 be an or-
thogonal set of vectors from RN with respect to the inner product (6) with
‖φr‖ = 1. From Hilbert space theory it is known that then

αr(tm) = (u(tm, ·), φr) = UT
mSφr, (7)

where Um is the m-th column of U . Inserting this expression into (5) and using
the orthonormality of {φr}Rr=1, problem (5) can be reformulated as

arg min
(αr,φr),‖φr‖=1

M∑
m=1

(
u(tm, ·)−

R∑
r=1

(u(tm, ·), φr)φr, u(tm, ·)−
R∑
r=1

(u(tm, ·), φr)φr
)

= arg min
(αr,φr),‖φr‖=1

M∑
m=1

[
‖u(tm, ·)‖2 −

R∑
r=1

(u(tm, ·), φr)2

]
.

Since the first term is a given constant, (5) becomes equivalent to maximizing
the second term. The Lagrangian functional of this optimization problem has
the form

L(φ1, . . . , φR;λ1, . . . , λR) =
M∑
m=1

R∑
r=1

(u(tm, ·), φr)2 −
R∑
r=1

λr
[
(φr, φr)− 1

]
.

Optimal values can be obtained only at the stationary points

0 = ∂φrL = 2
M∑
m=1

(u(tm, ·), φr)(u(tm, ·), ψ)− 2λr(φr, ψ), ∀ ψ ∈ RN ,

0 = ∂λrL = (φr, φr)− 1,

r = 1, . . . , R. The first condition can be reformulated as follows

M∑
m=1

(u(tm, ·), φr)(u(tm, ·), ψ) =

(
M∑
m=1

(u(tm, ·), φr)u(tm, ·), ψ
)

= (λrφr, ψ)

7



for all ψ ∈ RN . This equality holds if and only if
∑M
m=1(u(tm, ·), φr)u(tm, ·) =

λrφr, which results in the eigenvalue problem in RN

UUTSφr = λrφr. (8)

Multiplying (8) from the left-hand side with S1/2, it can be readily seen that
the eigenvalue problem can be reformulated as an eigenvalue problem with
the symmetric, positive semi-definite matrix S1/2UUTST/2. Hence, all eigen-
values λr are real and non-negative. In particular, the largest R eigenvalues
are positive because of R ≤ rank(U). These are exactly the eigenvalues whose
corresponding eigenfunctions φr are sought.

The solution of (8) is generally very expensive since N is usually very large.
However, using (7) and multiplying (8) by UTS from the left-hand side leads
to an eigenvalue problem in RM

UTSUαr = λrαr, UTSU ∈ RM×M , (9)

whose solution is generally much cheaper than the solution of (8). Thus, solv-
ing (9) gives (λr, αr), r = 1, . . . , R, with orthogonal eigenvectors αr. Multiply-
ing (9) with αTr from the left-hand side, it follows that ‖Uαr‖ = λ1/2

r (αTr αr)
1/2.

Setting

φr =
Uαr
‖Uαr‖

=
Uαr

(αTr U
TSUαr)1/2

=
Uαr

λ
1/2
r (αTr αr)

1/2
, r = 1, . . . , R, (10)

one obtains with (9)

UUTSφr =
1

‖Uαr‖
U
(
UTSUαr

)
=

1

‖Uαr‖
Uλrαr = λrφr.

Thus, (λr, φr) with φr given by (10) solves (8). The approach of computing
the eigenvalues λr by solving (9) and the eigenvectors or modes φr by (10) is
called method of snapshots. It was first proposed in [36].

In practice, the POD is often not applied to the function u(t,x) itself but to
the fluctuations of that function. To this end, one has to define a temporal
mean value, e.g., by

u(x) =
1

M

M∑
m=1

u(tm,x),

which is subtracted from the snapshots, obtaining the fluctuations

u′(tm,x) = u(tm,x)− u(x), m = 1, . . . ,M.

Now, the POD is computed starting from the values u′(tm,x) instead of

8



u(tm,x). Then, the basic ansatz for the ROM has the form

uro(t,x) = u(x) +
R∑
r=1

α′r(t)φ
′
r(x) =

R∑
r=0

α′r(t)φ
′
r(x), (11)

with φ′0(x) = u(x) and α′0(t) = 1. Generally, there is no orthogonality con-
dition between u(x) and any of the functions φ′r(x). In the numerical studies
presented in Section 4, the POD was applied to the fluctuations.

3 ROMs for incompressible flows

ROM for incompressible flows is meanwhile widely used and it is an active
field of research, e.g., see [2,5,37,41] for recent publications. In the case of the
Navier–Stokes equations, the solution of the problem consists of two compo-
nents, velocity and pressure (u, p). Thus, the considerations of Section 2 apply
to u = (u, p), where here (u, p) are discrete approximations of the velocity and
the pressure. For simplicity of presentation, the discrete character of (u, p) is
not emphasized in the notation below.

The standard procedure for deriving ROMs for incompressible flows employs
the POD basis together with a Galerkin projection. Let {φ′r}Rr=1 = {(ϕ′r, ψ′r)}Rr=1

be the spatial basis obtained by applying the POD to the fluctuations, where
ϕ′r are the velocity basis functions and ψ′r are the pressure basis functions. To
simplify the presentation, the same number of velocity and pressure modes is
used. Then, the Galerkin projection of the Navier–Stokes equations (2) yields
the following ROM: Find (uro, pro) with uro − u : (0, T ]→ span{ϕ′r}Rr=1 and
pro − p : (0, T ]→ span{ψ′r}Rr=1 such that for r = 1, . . . , R,

(∂turo,ϕ
′
r) + (ν∇uro,∇ϕ′r) + ((uro · ∇)uro,ϕ

′
r)− (pro,∇ ·ϕ′r)

= (f ,ϕ′r) +
∫

Γout

(ν∇uro − proI)n ·ϕ′r ds, (12)

(∇ · uro, ψ
′
r) = 0,

and uro(0,x) is an approximation of the initial condition with the POD modes.

3.1 Velocity ROM

In many, probably even most, published reports on ROMs for incompressible
flows, only a ROM for the velocity is considered. This approach is based on the
argument that, if the snapshots are divergence-free, then also each POD basis
function ϕ′r is divergence-free, which follows from (10). This argument also
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holds in the case of a POD basis for the fluctuations, as the average velocity
u(x), being a linear combination of snapshots, is divergence-free. In fact, if uro

and {ϕ′r}Rr=1 are divergence-free, the pressure term on the left-hand sides of
the momentum equation in (12) and the continuity equation in (12) drop out.
A pressure term is still needed if the considered problem possesses boundary
conditions (near regions of interest) which include the pressure. If this is not
the case, the ROM for the velocity based on the Galerkin projection has the
following form: Find

uro = u(x) +
R∑
r=1

α′r(t)ϕ
′
r(x),

such that, for r = 1, . . . , R,

(∂turo,ϕ
′
r) + (ν∇uro,∇ϕ′r) + ((uro · ∇)uro,ϕ

′
r) = (f ,ϕ′r). (13)

Note that (13) requires only a POD for velocity snapshots. Furthermore, the
mass matrix (ϕ′s,ϕ

′
r), s, r ≥ 1, becomes the identity.

As already mentioned in the introduction, the assumption of divergence-free
snapshots is idealized. For instance, in the context of inf-sup stable finite el-
ement discretizations there are only very few divergence-free pairs of spaces,
like the Scott–Vogelius element on barycentric refined grids [43]. Most of the
inf-sup stable pairs, in particular the most popular ones like the Taylor–Hood
finite element, are only discretely divergence-free. The magnitude of the di-
vergence of the finite element solution can be even large. Indeed, the standard
finite element convergence theory shows that the L2(Ω) norm of the divergence
has the same order as the error in the L2(Ω) norm of the velocity gradient.

The reduction from (12) to (13), however, can be achieved in certain situa-
tions by using the argument that the snapshots are discretely divergence-free.
This situation holds if the finite element mass conservation equation is not
perturbed by any additional term. Moreover, the modes {ϕr, ψr}Rr=1 and the
mean values should belong to the velocity and pressure finite element spaces,
respectively. In this case, the pressure term in the ROM (12) drops out, and
(12) reduces to the velocity ROM (13). The above argument does not apply if
the mass conservation equation is disturbed by additional terms, as in the case
of finite element pairs that do not fulfill the inf-sup condition, e.g., equal fi-
nite elements for velocity and pressure, which require additional stabilizations
introducing a control on the pressure through a modification of the continuity
equation.

An essential requirement for ROMs is the computational efficiency. For this
reason, one usually avoids complicated and time-consuming numerical meth-
ods within the ROM framework, see [4] for a detailed discussion. In the numer-
ical studies in Section 4, the Crank-Nicolson scheme for the time discretization
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in combination with the IMEX scheme for the linearization of (13) was used.
Denoting the discrete times by {tk}Kk=1, the functions at those times with a
corresponding superscript, and the length of the equidistant time step by τ ,
the linearized and time-discretized velocity ROM (13) reads: Find

uk+1
ro = u +

R∑
r=1

(α′r)
k+1ϕ′r,

such that for r = 1, . . . , R, and k = 0, 1. . . .

(uk+1
ro ,ϕ′r) +

1

2
τ(ν∇uk+1

ro ,∇ϕ′r) +
1

2
τ((ukro · ∇)uk+1

ro ,ϕ′r) = (ukro,ϕ
′
r)+

+
1

2
τ(fk+1,ϕ′r) +

1

2
τ(fk,ϕ′r)−

1

2
τ(ν∇ukro,∇ϕ′r)−

1

2
τ((ukro · ∇)ukro,ϕ

′
r).

(14)

The initial condition {(α′r)0}Rr=1 for (14) can be computed by

(α′r)
0 =

(
u0 − u,ϕ′r

)
,

where u0 is a finite element approximation of the initial condition.

3.2 Velocity-pressure ROMs

To our best knowledge, the ROMs with a pressure component can be divided
into two classes, depending on if they use pressure POD modes or not. If
pressure modes are utilized, there are again two principal approaches. In the
decoupled approach, the velocity and pressure snapshots are considered sepa-
rately. Choosing the velocity POD modes with the highest kinetic energy and
the pressure POD modes with the largest L2(Ω) norm, one obtains two sepa-
rate POD bases. For this approach, it is straightforward to choose a different
number of POD modes for velocity and pressure, based on the corresponding
distribution of their eigenvalues. In the coupled approach, each snapshot, and
thus, each POD mode, has both a velocity and the corresponding pressure
component. This approach naturally yields the same number of velocity and
pressure modes. In this report, the decoupled approach will be considered.

3.2.1 A velocity-pressure ROM based on the velocity modes (VMB-ROM)

If the ROM is built considering only a POD basis for velocity, the pressure field
must be reconstructed a posteriori. There are several proposals in the literature
on how to utilize the velocity POD modes to compute a ROM for the pressure
[16,33]. These approaches are based on the pressure Poisson equation

−∆p = ∇ · ((u · ∇)u) in Ω , (15)
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which is obtained by taking the divergence of the momentum equation of the
Navier–Stokes equations (1). Equation (15) is equipped with Dirichlet bound-
ary conditions on Γout and homogeneous Neumann boundary conditions on
all other boundaries. The main idea used in [16,33] consists in approximating
u on the right hand side of (15) by uro defined by (11). Assuming that all
functions in (11) are divergence-free, one obtains the equation

−∆pro =
R∑
r=0

R∑
s=0

α′r(t)α
′
s(t)

 d∑
i=1

d∑
j=1

∂xi(ϕ
′
r)j∂xj(ϕ

′
s)i

 in Ω. (16)

Problem (16) is an equation in space, in which the functions α′r(t), α
′
s(t) act

as constants. Hence, the solution of (16) has the form

pro(x) =
R∑
r=0

R∑
s=0

α′r(t)α
′
s(t)prs(x) , (17)

with prs(x) solving

−∆prs =
d∑
i=1

d∑
j=1

∂xi(ϕ
′
r)j∂xj(ϕ

′
s)i in Ω. (18)

In what follows, the ROM (14) together with pro(x) given by (17), will be
referred to as the VMB-ROM (velocity-modes-based ROM).

Note that prs(x) = psr(x) and, thus, system (18) has only (R + 1)R/2 un-
knowns. The functions prs(x) can be computed in a preprocessing step. Thus,
the ROM pressure component pro(x) can be efficiently computed at each time
step by using (17). In [33], the term (∇pro,ϕ

′
r) was even introduced into the

momentum equation (13) to improve the results of ROMs for shear flows.

Pressure models that are linear in α′r(t) were proposed also in [16,33]. In
both approaches, minimization problems have to be solved for determining
the coefficients in the ansatz. In our opinion, these methods are less clear than
the approach leading to the VMB-ROM. For this reason, only the VMB-ROM
will be considered in the numerical investigations in Section 4.

3.2.2 A velocity-pressure ROM with pressure-correction scheme (PCM-ROM)

A different approach for incorporating a pressure into a ROM for incom-
pressible flows consists in considering a pressure-correction projection scheme
[14,38]. This semi-implicit scheme consists of two sub-steps. First, a velocity
field ũk+1

ro is computed by solving the convection-diffusion equation

1

τ
(ũk+1

ro − ukro)− ν∆ũk+1
ro + (ũkro · ∇)ũk+1

ro = 0 in Ω, (19)
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subject to the boundary conditions

ũk+1
ro = g(x) at Γin, ũk+1

ro = 0 at Γ0, ν∇ũk+1
ro n = 0 at Γout.

The use of ũkro as convection field is supported by the error analysis from [19],
see also the discussion of this topic in [18]. In the second step, the velocity
ũk+1

ro is projected onto a divergence-free space, obtaining an incompressible
velocity field and a corresponding pressure, by solving

1

τ
(uk+1

ro − ũk+1
ro ) +∇pk+1

ro = 0, ∇ · uk+1
ro = 0 in Ω, (20)

equipped with the boundary condition uk+1
ro ·n = 0 on ∂Ω. By taking the diver-

gence of the first equation of (20), the projection step (20) can be reformulated
as a Poisson equation for the pressure

−∆pk+1
ro = −1

τ
∇ · ũk+1

ro in Ω, (21)

with a homogeneous Dirichlet boundary condition on Γout and a homogeneous
Neumann boundary condition on ∂Ω \ Γout. The incompressible velocity uk+1

ro

can be computed a posteriori, after having solved the pressure Poisson equa-
tion (21), via

ukro = ũkro − τ∇pkro . (22)

In practice, substituting (22) into (19), the time iteration is formulated only
in terms of (ũk+1

ro , pk+1
ro ).

The projection scheme (19)–(21) belongs to the family of the so-called pseudo-
compressible methods. Note that ũk+1

ro is not discretely divergence-free and
that the pressure equation depends on the compressibility of the velocity field.
For this reason, equation (21) is generally not suited to compute a ROM
pressure if the POD basis for velocity is computed from a set of (discretely)
divergence-free snapshots.

The pressure correction method, however, suggests an alternative approach
for deriving a pressure equation. Taking the divergence of (19), assuming ukro
to be divergence-free and −ν∇ ·∆ũk+1

ro to be negligible, one obtains

1

τ
∇ · ũk+1

ro = −∇ ·
(
(ũkro · ∇)ũk+1

ro

)
in Ω.

Assuming that ũk+1
ro has been already computed, ũk+1

ro can be used as convec-
tion. Then, the pressure Poisson equation (21) can be written in the form

−∆pk+1
ro = ∇ ·

(
(ũk+1

ro · ∇)ũk+1
ro

)
in Ω. (23)

In [1], it was suggested to compute the ROM pressure by applying the Galerkin
projection to (23) on the pressure POD modes {ψ′r}Rr=1. This suggestion leads
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to the following method: Find

pk+1
ro = p+

R∑
r=1

(β′r)
k+1ψ′r , (24)

such that for r = 1, . . . , R,(
∇pk+1

ro ,∇ψ′r
)

=
(
∇ ·

(
(ũk+1

ro · ∇)ũk+1
ro

)
, ψ′r

)
(25)

with a homogeneous Dirichlet boundary condition on Γout and a homoge-
neous Neumann boundary condition on ∂Ω\Γout. In the numerical studies, the
ROM (14) together with (25), will be referred to as the PCM-ROM (pressure-
correction-motivated ROM).

Note that (23) is formally equivalent to (15). Although the derivations of
VMB-ROM and PCM-ROM are based on the same equation, the ROM pres-
sures of the two ROMs are computed using different discrete spaces. In the
VMB-ROM, the ROM pressure is represented in terms of the velocity POD
modes, see (18), whereas in the PCM-ROM the ROM pressure is represented
in terms of the pressure POD modes, cf. (24).

3.2.3 A velocity-pressure ROM based on a stabilization of the coupled problem
(SM-ROM)

A ROM that is based on a coupled scheme for (uro, pro), like the ROM (12),
raises the issue of the inf-sup condition for saddle point problems [17]. It seems
to be hard to address this question for the general setting of the ROM, un-
like for, e.g, finite element methods. In the latter, the approximation spaces
are specified beforehand and the corresponding discrete inf-sup condition can
be investigated a priori. In the POD-ROM framework, however, the approx-
imation spaces are problem-dependent – they are known only after having
performed the underlying finite element simulations, or even an actual physi-
cal experiment. Thus, checking beforehand whether the velocity and pressure
POD spaces satisfy an inf-sup condition is generally not possible.

In the context of finite element methods, the discrete inf-sup condition states,
loosely speaking, that the dimension of the discrete velocity space is sufficiently
high compared with the dimension of the discrete pressure space. Based on this
argument, we do not expect that an inf-sup condition is satisfied for ROMs
if the dimension of both spaces is equal to R. But even for using different
dimensions, to the authors’ best knowledge, there are no results on how to
establish an inf-sup condition. For this reason, a stabilization with respect to
a possible violation of the inf-sup condition should probably be included into
a coupled velocity-pressure ROM. Among the stabilizations for incompressible
flow problems [8], the class of residual-based approaches seems to be promising
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in our opinion, since these immediately allow in addition the stabilization of
dominant convection. These approaches are also the basis of residual-based
variational multiscale methods [6].

A popular residual-based stabilization is the SUPG/PSPG/grad-div method,
see [8] and the references therein. In this approach, the residual of the mo-
mentum equation is tested with the streamline derivative of the velocity and
the gradient of the pressure. Thus, the following stabilization term is added
to the momentum equation

sh(u,v, p, q) =
∑
K∈T h

(
∂tu−ν∆u+(u ·∇)u+∇p− f , δK,u(u ·∇)v+δK,p∇q

)
K
,

(26)
where K denotes a mesh cell of the considered triangulation T h of Ω, and
δK,u and δK,p are the stabilization parameter functions. The so-called grad-div
term is based on the residual of the continuity equation and it adds to the
momentum equation the following stabilization term

∑
K∈T h

(
∇ · u, µK∇ · v

)
K
, (27)

where µK denotes the stabilization parameter function. The SUPG term in (26)
accounts for stabilizing dominating convection, the grad-div term (27) ac-
counts for improving the discrete conservation of mass, and the PSPG term
in (26) accounts for stabilizing a violated inf-sup condition.

Note that the SUPG/PSPG/grad-div method has already been used in [7,42]
within a ROM framework. However, in [7,42] the ROM pressure was not com-
puted by solving a separate pressure equation.

One of the main requirements for a ROM is computational efficiency. From this
point of view, an explicit treatment of (26) and (27) is advantageous, see [4].
On the other hand, the stabilization of the inf-sup condition has to appear in
the system matrix in order to become effective. Thus, the corresponding term
has to be treated implicitly.

In the residual for the momentum balance (26), the viscous term is gener-
ally neglected, since it is of little importance in the interesting case of small
viscosity. Denote by

reskro =
ukro − uk−1

ro

τ
+ (ukro · ∇)ukro +∇pkro − fkro

an approximation of the residual at tk. Then, the right-hand side of the mo-
mentum equation of the coupled system at tk+1 contains the explicit stabiliza-
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tion terms

−
∑
K∈T h

δK,u
(
reskro, (u

k
ro · ∇)ϕ′r

)
K
,−

∑
K∈T h

µK
(
∇ · ukro,∇ ·ϕ′r

)
K
, r = 1 . . . , R,

(28)
where the stabilization parameters are now assumed to be piecewise constant.
In the continuity equation, the term

∑
K∈T h

δK,p
(
∇pk+1

ro ,∇ψ′r
)
K
, r = 1, . . . , R,

is included in the system matrix. Moving the velocity-pressure coupling of the
stabilization

−
∑
K∈T h

δK,p
(
resk+1

ro −∇pk+1
ro ,∇ψ′r

)
K
, r = 1, . . . , R, (29)

to the right hand side of the continuity equation, the matrix of the coupled
problem has the form Aro B

T
ro

Bro Cro

 , (30)

where Aro contains the discretization of the temporal derivative, the viscous,
and the convective term, and

(Bro)sr = (∇ ·ϕ′r, ψ′s), r, s = 1, . . . , R,

(Cro)sr =
∑
K∈T h

δK,p(∇ψ′r,∇ψ′s)K , r, s = 1, . . . , R.

Consider now the ROM matrix (30) for the case in which the snapshots are
discretely divergence-free, e.g., when they are computed with a Galerkin finite
element method with inf-sup stable pairs of finite element spaces. In this
case, the matrix Bro vanishes. Hence, instead of solving a coupled system
with matrix (30), one has to solve two decoupled equations. After having
computed the velocity, the right hand side (29) of the continuity equation can
be evaluated. If the stabilizations of dominating convection and of violating
the mass conservation (28) can be neglected, as for the flow problem considered
in Section 4, the velocity equation corresponding to (30) is the same as that in
the velocity ROM (13). For the pressure equation corresponding to (30), the
matrix is the discretization of a scaled Laplacian. If all stabilization parameters
{δK,p} were the same, a scaling would lead to the same matrix as in (23).
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Altogether, we propose to combine the ROM velocity equation (14) with

∑
K∈T h

δK,p
(
∇pk+1

ro ,∇ψ′r
)
K

=

= −
∑
K∈T h

δK,p

(
uk+1

ro − ukro
τ

+ (uk+1
ro · ∇)uk+1

ro − fk+1
ro ,∇ψ′r

)
K

, r = 1, . . . , R.

(31)
Below, the ROM (14) together with (31), will be referred to as SM-ROM
(stabilization-motivated ROM). The SM-ROM (14), (31) is, to the best of the
authors’ knowledge, new.

In (31), the stabilization parameters {δK,p} have to be chosen. Since there is no
numerical analysis for this choice in the context of ROMs, we used the guidance
provided by the standard finite element theory. In the numerical studies in
Section 4, the same number of velocity and pressure modes were used. Thus,
by analogy with the finite element setting, the SM-ROM most probably does
not satisfy the inf-sup condition and, thus, is prone to numerical instability.
For this case, following the finite element theory, we used δK,p = C hK in (31),
where C is a generic constant and hK is the diameter of the mesh cell K, [8].
Note that the value of the constant C has no effect on the SM-ROM, since
it appears on both sides of (31). Thus, without loss of generality, we used
δK,p = hK . It is also worth emphasizing that the derivation of the SM-ROM
does not rely on the velocity snapshots being divergence-free.

4 Numerical studies

First, this section presents numerical results for the three vp-ROMs introduced
in Section 3. Second, it investigates the impact of the snapshot accuracy on
the vp-ROM accuracy. The effect of the dimension of the POD basis on the
numerical results is also monitored.

4.1 The laminar flow around a cylinder

To allow a detailed discussion of the results, the numerical studies were carried
out for the well understood example of a 2D laminar flow around a circular
cylinder defined in [34]. This problem is given in

Ω = {(0, 2.2)× (0, 0.41)} \ {x : (x− (0.15, 0.15))2 ≤ 0.052},

see Fig. 1. At the boundary x = 0 the steady-state inflow condition u(x, 0) =
(0.41−2(6y(0.41 − y)), 0)T is used, at the boundary x = 2.2 the outflow (do
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nothing) condition (ν∇u − pI)n = 0 is applied, while no-slip boundary con-
ditions are prescribed elsewhere. The kinematic viscosity of the fluid is given
by ν = 10−3 m2/s. The initial condition is a fully developed flow field that has
to be computed in a preprocessing step. Based on the mean inflow velocity
U = 1 m/s, the diameter of the cylinder L = 0.1 m and the kinematic viscosity,
the Reynolds number of the flow is Re = 100. In the fully developed periodic
regime, a vortex shedding (von Kármán vortex street) can be observed behind
the obstacle, see Fig. 2.

Fig. 1. The flow domain (left) and the coarse grid (right).

Fig. 2. Snapshots of the finite element solution.

Reference values of the drag and lift coefficients at the cylinder and correspond-
ing reference intervals were defined in [34], see Table 1. These functionals were
computed as described in [24,25]. In the periodic regime, another important
characterization is the Strouhal number St, which is correlated to the fre-
quency of the vortex shedding. We are not aware of any relation between the
kinetic energy, which was the criterion used to compute the POD basis, and
these quantities of interest.

All simulations were performed with the code MooNMD [26] on a grid ob-
tained by three uniform red refinements of the coarse grid presented in Fig. 1,
where the resolution of the cylinder was improved with each refinement. The
Navier-Stokes equations were discretized in space using the inf-sup stable
Taylor–Hood Q2/Q1 finite elements, resulting in 107 712 velocity degrees of
freedom and 13 616 pressure degrees of freedom. For the time discretization,
the Crank–Nicolson time-integration scheme with the time step τ = 0.005
was employed, which showed, among simple time stepping schemes, a good
balance between numerical accuracy and computational efficiency [27,28].

4.2 Numerical methods for computing the snapshots

One of the goals of this report is to numerically investigate the effect of the
snapshot accuracy on the vp-ROM accuracy. As already mentioned in the
introduction, different numerical methods on the same grids in time and space
were employed for computing snapshots of different accuracies.
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The most expensive numerical method, denoted by SP-NONLIN, requires the
solution of a nonlinear saddle point problem at each discrete time. The nonlin-
ear problem is solved by a fixed point iteration (Picard iteration), as described,
e.g., in [24]. The second numerical method, denoted by SP-LIN, uses the IMEX
version of the Crank–Nicolson scheme, similarly to (14). Thus, the convective
term is discretized explicitly in the convective component ((uk ·∇)uk+1,v) and
all other terms are handled implicitly. SP-LIN yields one linear saddle point
problem at each time iteration. Finally, the third numerical method, denoted
by PC, removes even the saddle point character of the problem, combining
the Crank–Nicolson IMEX scheme with the standard incremental pressure-
correction scheme, which is the so-called van Kan scheme [18,39]. At each
discrete time, PC requires only the solution of one linear equation for the
velocity, where the equations for the velocity components are decoupled, and
one linear equation for the pressure. PC provides two approximations for the
velocity. Here, the non-incompressible velocity approximation which satisfies
the boundary conditions is used.

0 0.2 0.4 0.6 0.8 1
3.15

3.2

3.25

3.3

3.35

3.4

3.45

time

d
ra

g

 

 

SP−NONLIN
SP−LIN
PC

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

time

li
ft

 

 

SP−NONLIN

SP−LIN

PC

Fig. 3. Drag and lift coefficients for the finite element simulations.

Clearly, the three different numerical methods possess different numerical
costs. In the simulations for computing the snapshots, SP-NONLIN took about
1.8 times longer than SP-LIN, and SP-LIN took about 2.2 longer than PC. But
it can be also expected that the three methods exhibit differences in the accu-
racy. This expectation is met by the results presented in Fig. 3 and Table 1.
One can observe that SP-NONLIN, the numerical method with the highest
computational price, is also the most accurate one, as the results for all refer-
ence values are within the reference intervals given in Table 1. The accuracy
deteriorates for SP-LIN and for PC, but one can see that the results of SP-LIN
are still considerably more accurate than the results computed with PC. Ac-
cordingly, we obtained three sets of snapshots: very accurate ones, moderately
accurate ones, and inaccurate ones.

4.3 Impact of the snapshot accuracy on the POD modes

This section focuses on the influence of using numerical methods of different
accuracies on the POD basis.
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cmax
d cmax

l St

SP-NONLIN 3.23 1.02 0.302

SP-LIN 3.32 1.35 0.294

PC 3.43 1.65 0.288

reference results from [34] [3.22, 3.24] [0.98, 1.02] [0.295, 0.305]

Table 1
Maximal drag coefficient, maximal lift coefficient, and Strouhal number for the finite
element simulations.

From the simulations with SP-NONLIN, SP-LIN, and PC, after having col-
lected snapshots over the time interval [0, 2] for each discrete time, three dif-
ferent POD bases were generated. Figs. 4 and 5 display the norm of the mean
and of the first POD modes of the velocity and pressure fluctuations, respec-
tively. For clarity of presentation, only the most accurate (SP-NONLIN) and
the most inaccurate (PC) numerical methods are considered. Both Fig. 4 and

Fig. 4. Norm of the mean velocity (top) and the first POD modes of the velocity
fluctuations: POD basis computed from SP-NONLIN (left) and PC (right).

Fig. 5 show that, although structurally similar, the maximum and minimum
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values for the norms are quite different for the two numerical methods. One
can observe that for the velocity these differences increase with increasing
POD mode index.

Fig. 5. Mean pressure (top) and the first POD modes of the pressure fluctuations:
POD basis computed from SP-NONLIN (left) and PC (right).

Next, the POD bases are investigated in terms of the POD eigenvalues {λr},
defined in (8), and the missing energy ratio (MER) of the discarded POD
modes of the fluctuations. For a POD basis of rank R, using (7)–(9), the
MER is defined as follows

MERR =
1
2

∑M
m=1 ‖u′(tm,x)−∑R

r=1 α
′
r(tm)ϕ′r(x)‖2

L2

1
2

∑M
m=1 ‖u′(tm,x)‖2

L2

=
trace(UTSU)−∑R

r=1 λr
trace(UTSU)

= 1−
∑R
r=1 λr∑M
r=1 λr

.

Figure 6 shows {λr} and MERR for the velocity and pressure fluctuations for
the three sets of snapshots. It can be observed that the number of non-zero
POD eigenvalues is almost the same for SP-LIN and PC, but it is about twice
as high for the snapshots obtained with SP-NONLIN. Moreover, although the
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behaviors are similar for the lower modes, the POD basis computed with SP-
NONLIN displays a slower decay both in eigenvalues and MERR for R >
17. One possible explanation for this observation is that the high accuracy
snapshots capture more details of the flow than the other two sets of snapshots.
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Fig. 6. Eigenvalues and missing energy ratio of the fluctuations.

Figure 6 also shows that there are steep decreases in the eigenvalues of the
velocity POD modes, e.g., after the second and the sixth mode. Similar jumps
can be seen in the eigenvalues of the pressure POD modes after the second,
fourth, and eighth mode. Correspondingly, there are strong decreases in the
missing energy ratio. It is interesting to note that the velocity and pressure
jumps in the eigenvalues and the missing energy ratio seem not to be cor-
related. This observation supports the point of view that using a different
number of velocity and pressure POD modes might be advantageous. The
study of this issue, however, is outside the scope of this report and will not be
further pursued herein.

4.4 Assessment of the vp-ROMs

This subsection presents an assessment of the effect of the snapshot accuracy
on the three vp-ROMs introduced in Section 3 (VMB-ROM, PCM-ROM, SM-
ROM).

Theoretical error estimates in [22], see also [29,30], show that the total error
in the numerical discretization of ROMs consists of three parts: the spatial
error due to the finite element discretization, the temporal error due to the
time-stepping scheme, and the POD error due to the POD truncation. In
the present numerical investigations, however, the spatial and temporal error
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components are constant, since the mesh size and the time step are fixed.
Thus, for increasing values of R, one expects the POD error component of the
vp-ROMs to initially decrease, but then to reach a plateau where the POD
error component has the same or a lower magnitude than the spatial and
temporal error components.

The momentum equation of all three vp-ROMs investigated in this section
did not include the pressure term −(pro,∇ · ϕ′r). When the POD modes
were computed by solving a saddle point problem (SP-NONLIN, SP-LIN),
the motivation was discussed in Section 3.1. Since the snapshots are discretely
divergence-free, the term −(pro,∇ ·ϕ′r) vanishes. In the case of PC, when the
snapshots are obtained from a non divergence-free velocity field, this argument
does not hold. The impact of adding the pressure term to the vp-ROMs was
numerically tested in this case and it was found that there was no qualitative
change in the overall results. Thus, for the sake of brevity, only the results
without a pressure term in the momentum equation will be presented.

To assess the accuracy of the three vp-ROMs, the time evolution of the drag
and lift coefficient, the error in the Strouhal number, the errors in the mean
values of the drag and lift coefficient, and the error in the root mean square
(rms) of the drag and lift coefficient were monitored. Let cd,meth(t) denote the
drag value computed with a certain numerical method (finite element method
or ROM). The rms value is defined by

cd,rms =

[
1

Nτ

Nτ∑
i=1

(cd,meth − cd,meth(ti))
2

]1/2

,

where Nτ is the number of time steps and cd,meth is the mean value of the drag
coefficient for the considered method. For the lift coefficient, the rms value is
defined analogously. The rms values provide information on the magnitude of
the oscillations around the mean value.

The IMEX Crank–Nicolson scheme for the velocity ROM (14) was always
used with the time step τ = 0.005. All simulations were performed in the time
interval [0, 2] and the reference values were computed over five periods for the
lift.

4.4.1 vp-ROMs using highly accurate snapshots

The numerical results for the three vp-ROMs using the high accuracy snap-
shots from SP-NONLIN are presented in Figs. 7 – 11.

Figure 7 displays the time evolution of the drag and lift coefficients. It can be
observed that SM-ROM and PCM-ROM perform well, their results are close
to those of the underlying simulation for the snapshots, whereas VMB-ROM
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performs very poorly.
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Fig. 7. High accuracy snapshots (SP-NONLIN): time evolution of the drag coefficient
(top) and lift coefficient (bottom).

Fig. 8. High accuracy snapshots (SP-NONLIN): pressure coefficient p00(x) com-
puted with VMB-ROM (left); pressure coefficient p(x) for PCM-ROM and SM-ROM
(right).

To explain the inaccurate VMB-ROM results, note that the drag coefficient
depends mainly on the pressure at the cylinder. In the simulations with VMB-
ROM, the main contribution to the ROM pressure is p00(x), see Fig. 8, whereas
the main part of the ROM pressure for PCM-ROM and SM-ROM is p(x),
presented once more for convenience in Fig. 8. A comparison reveals that the
pressure difference between the back and the front of the cylinder is much
smaller for p00(x) than for p(x), which results in inaccurate drag forces. With
respect to the lift coefficient, the results computed with VMB-ROM are better,
but still worse than the results of PCM-ROM and SM-ROM. Since VMB-ROM
displayed similar inaccuracies in the studies with moderate and low accuracy
snapshots, we conclude that VMB-ROM is not competitive with PCM-ROM
and SM-ROM. Thus, for clarity of presentation, the further evaluation of the
numerical results will be restricted to PCM-ROM and SM-ROM.

A detailed presentation of the time evolution of the drag coefficient for PCM-
ROM and SM-ROM can be found in Figure 9. For R ≤ 2, the drag coefficient
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is almost constant (results not shown). Clear improvements in the accuracy
can be seen when going from R = 2 to R = 3 and from R = 5 to R = 6, which
correspond to jumps in the eigenvalue distribution of the velocity POD modes,
see Fig. 6. Overall, for moderate R values, i.e., 3 ≤ R ≤ 18, both the PCM-
ROM and the SM-ROM yield accurate drag coefficients, which are within the
reference intervals given in Table 1. Thus, despite of the simple schemes that
were used for the ROMs, very accurate results are computed with PCM-ROM
and SM-ROM. For higher R values, however, both vp-ROMs display numerical
instabilities. A similar phenomenon was observed in [4]. From the theoretical
point of view, this behavior is unexpected, since, as already mentioned above,
the POD error should not increase as R approaches the rank of the snapshot
matrix. We do not currently have an explanation of this effect. Its investigation
is outside the scope of this report and it will be a topic for further research. We
also note that, while displaying numerical instability for high R values, SM-
ROM and PCM-ROM are still more accurate when they employ high accuracy
snapshots then when they employ moderate and low accuracy snapshots, see
Sections 4.4.2 and 4.4.3 for comparisons.
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Fig. 9. High accuracy snapshots (SP-NONLIN): time evolution of the drag coeffi-
cient.

Figure 10 presents the time evolution of the lift coefficient for several values
of R. The general behavior is similar to that of the drag coefficient in Fig. 9.
There are, however, two minor differences. First, one needs at least R = 6
modes to get stable maximal values for the lift coefficients. Second, although
some numerical inaccuracies can be noticed for higher R values, i.e., R = 25,
one cannot see a pronounced numerical instability as that observed for the
drag coefficient and R = 25.

To better assess the accuracy of PCM-ROM and SM-ROM, Fig. 11 displays
the vp-ROMs’ errors in the Strouhal number, in the mean drag, in the mean
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Fig. 10. High accuracy snapshots (SP-NONLIN): time evolution of the lift coeffi-
cient.

lift, in the drag rms, and in the lift rms. As discussed at the beginning of
Section 4.4, one expects the POD error to decrease with increasing R, and to
reach a level where the it is dominated by the spatial and temporal errors.
For small R values, the plots in Fig. 11 follow this trend. Indeed, even if the
errors are relatively large for very small R, they quickly stabilize around small
constant values for 5 ≤ R ≤ 17. As already noticed in Fig. 9, for large R,
the error degrades, although it remains within reasonable limits. Comparing
the PCM-ROM with the SM-ROM results, one observes that SM-ROM yields
somewhat more accurate results. An important conclusion is that both SM-
ROM and PCM-ROM achieve, regardless of their simple numerical methods,
the same order of accuracy as the underlying simulation for the snapshots,
even when using a relatively low number of modes.
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Fig. 11. High accuracy snapshots (SP-NONLIN): errors in the studied functionals.

4.4.2 vp-ROMs using moderately accurate snapshots

The numerical results for PCM-ROM and SM-ROM using the moderate ac-
curacy snapshots from SP-LIN are presented in Figs. 12 and 13.
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For the drag and lift coefficients, clear improvements can be seen when going
from R = 2 to R = 3 and from R = 5 to R = 6, see Fig. 12. Like for
the snapshots from SP-NONLIN, these values correspond to jumps in the
eigenvalue distribution of the velocity modes, see Fig. 6. Overall, both PCM-
ROM and SM-ROM yield drag and lift coefficients that are as accurate as the
results of the underlying simulation for obtaining the snapshots. As opposed to
the snapshots from SP-NONLIN, neither PCM-ROM nor SM-ROM displays
numerical instabilities for higher values of R.

Figure 13 displays the PCM-ROM and the SM-ROM’s error for all studied
functionals. All errors decrease with increasing R until they reach a level
where the POD error is dominated by the spatial and temporal errors. Com-
paring PCM-ROM with SM-ROM, one observes that the PCM-ROM results
are somewhat more accurate for the mean lift coefficient and the SM-ROM
results are generally more accurate for the other quantities of interest. For all
functionals, both SM-ROM and PCM-ROM achieve the same order of accu-
racy as SP-LIN already for a small number of modes.
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Fig. 12. Moderately accurate snapshots (SP-LIN): time evolution of the drag and
lift coefficients.

4.4.3 vp-ROMs using low accuracy snapshots

Figures 14 – 15 present the results for PCM-ROM and SM-ROM using the
low accuracy snapshots from PC.

Concerning the temporal evolution of the drag and lift coefficients, Fig. 14,
the jumps in the eigenvalue distribution of the velocity modes lead again to
clear improvements when going from R = 2 to R = 3 and from R = 5 to
R = 6. To achieve a stable maximum value for the lift coefficient, 8 POD
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Fig. 13. Moderately accurate snapshots (SP-LIN): errors in the studied functionals.

modes are needed instead of 6 as for SP-LIN. Like for SP-LIN, there are no
numerical instabilities for large values of R. As for both other sets of snapshots,
the accuracy of the ROM results correlates strongly with the accuracy of the
underlying simulation for computing the snapshots.
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Fig. 14. Low accuracy snapshots (PC): time evolution of the drag and lift coefficients.

With respect to the errors in the studied functionals, displayed in Fig. 15,
most of the conclusions drawn for the snapshots from SP-LIN can be trans-
ferred to the snapshots from PC. Only the error of the mean lift coefficient is
considerably larger than for SP-LIN and SP-NONLIN. PCM-ROM and SM-
ROM yield again similar results. Whereas the mean drag is computed more
accurately with SM-ROM, the rms values were obtained more accurately with
PCM-ROM.

28



5 10 15 20 25

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

R

S
t li

ft
 e

rr
o
r

 

 

PCM−ROM

SM−ROM

5 10 15 20 25
0

0.005

0.01

R

d
ra

g
 (

m
e
a
n
) 

e
rr

o
r

 

 

PCM−ROM
SM−ROM

5 10 15 20 25

0

5

10

15

x 10
−3

R

d
ra

g
 (

rm
s
) 

e
rr

o
r

 

 

PCM−ROM
SM−ROM

5 10 15 20 25

−0.03

−0.02

−0.01

0

R

lif
t 
(m

e
a
n
) 

e
rr

o
r

 

 

PCM−ROM

SM−ROM

5 10 15 20 25

−0.1

0

0.1

0.2

R

lif
t 
(r

m
s
) 

e
rr

o
r

 

 

PCM−ROM

SM−ROM

Fig. 15. Low accuracy snapshots (PC): errors in the studied functionals.

4.5 Computational efficiency

For completeness, this section will discuss the computational efficiency of the
vp-ROMs. The computational time of a ROM can be divided into offline and
online stages. The offline stage includes the computations that have to be
performed only once, before the time iteration loop. The online stage consists
of computations that have to be repeated at each time iteration inside the loop.
For all three vp-ROMs that were investigated in this report, the ROM velocity
was computed the same way. The ROM pressure, however, was computed
differently.

The offline stage comprises the computation of the velocity modes and the
precomputation of the ROM matrices and right-hand sides, so that the ROM
online stage can be performed very fast. The ROM pressure for PCM-ROM
and SM-ROM requires the computation of the pressure modes, which repre-
sents the most time consuming part of their offline stage, and the assembling
and factorization of the matrices in (25) and (31). These procedures are not
necessary for VMB-ROM. However, the pressure coefficients prs(x) in (17)
have to be precomputed by solving (18). In our numerical experiments, for
R = 25, the computation of the (R + 1)R/2 coefficients prs(x) took about
twice as long as the computation of the R pressure modes. Thus, in the offline
stage, the computational costs of PCM-ROM and SM-ROM are lower than
those of VMB-ROM.

In the online stage, the main difference is that VMB-ROM does not require the
solution of a linear system for the pressure at each iteration, as the pressure is
recovered as a linear combination of precomputed coefficients prs(x), see (17).
Thus, it would seem that the computational cost of VMB-ROM is lower than
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the computational cost of the two other vp-ROMs. We could observe, however,
that this is not the case. In fact, the solution of theR×R linear system in PCM-
ROM and SM-ROM requires only O(R2) operations, yielding relatively low
computational times. On the other hand, the length of the vector of pressure
coefficients prs(x) used in VMB-ROM is the dimension of the pressure finite
element space, which is much larger than R. In our numerical experiments,
in the online stage, the computational times of PCM-ROM and SM-ROM
were about the same for moderate values of R (R < 15), representing between
0.02% and 0.09% of the computing time of SP-NONLIN. For the same range of
values of R, VMB-ROM was computationally more expensive, taking between
0.15% and 1.65% of the time of SP-NONLIN.

5 Summary and outlook

The first goal of this report was to discuss and compare three different velocity-
pressure ROMs. VMB-ROM uses only velocity POD modes, whereas PCM-
ROM and SM-ROM use pressure POD modes as well. SM-ROM is, to our
best knowledge, a novel model. The second goal was to perform the first step
in answering the following question: “How strong is the impact of the snapshot
accuracy onto the accuracy of the ROM results?”

Concerning the comparisons of the velocity-pressure ROMs, the main conclu-
sion drawn from the numerical investigation is that the two ROMs that utilize
pressure modes (PCM-ROM and SM-ROM) were clearly superior, both in
terms of accuracy and efficiency, to the ROM that uses only velocity POD
modes (VMB-ROM).

For studying the impact of the snapshot accuracy, three sets of snapshots were
used: of high accuracy, moderate accuracy, and low accuracy. The numerical
investigations showed that for all three velocity-pressure ROMs the accuracy
of the numerical results was strongly correlated with the accuracy of the snap-
shots. Thus, this study clearly supports the approach of performing accurate
(and probably time-consuming) simulations for computing the snapshots.

Several research directions will be pursued in future. First, we will investigate
the cause and possible remedies of the numerical oscillations observed in the
ROM results when high accuracy snapshots and a large number of POD modes
were used. Second, we will study whether the conclusions of this report carry
over to the case of structure-dominated turbulent flows. Finally, the rigorous
numerical analysis for discretizations of the new velocity-pressure ROM (SM-
ROM) will be a topic of future research.
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