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Abstract. We report on analytical and numerical studies of the magnetic
quantum oscillations of the diagonal conductivity σxx in a two-dimensional
conductor with a weak square superlattice modulation under conditions of
the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a
system differs from the conventional IQHE, in which the finite width of the
Landau bands is due to disorder only. The superlattice modulation potential
yields a fractal splitting of the Landau levels into Hofstadter minibands. For
rational flux through a unit cell, the minibands have a finite width and intrinsic
dispersion relations. We consider a regime, now accessible experimentally, in
which disorder does not wash out the fractal internal gap structure of the Landau
bands completely. We found the following distinctions from the conventional
IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are
split due to the Hofstadter miniband structure of Landau bands; (ii) the number
of split peaks in the bunch, their positions and heights depend irregularly on
the magnetic field and the Fermi energy; (iii) the gaps between the split Landau
bands (and related quantum Hall plateaus) become narrower with the superlattice
modulation than without it.
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1. Introduction

According to the theoretical predictions [1, 2], done soon after the discovery of the integer
quantum Hall effect (IQHE) [3], the Hall conductivity σxy in a two-dimensional (2D) conductor
with a weak superlattice modulation increases non-monotonically because of the complex
fractal internal structure of the Landau bands known in the literature as the Hofstadter
butterfly [4–7]. In other words, a non-monotonic sequence of quantum Hall plateaus with
increasing magnetic field was predicted. This means that the Hall conductance varies in a
nontrivial way from minigap to minigap in the Hofstadter fractal band structure.

The Hall conductivity at zero temperature, as was shown in [2], can be expressed as the
sum of two terms: σxy = σ C

xy + σ Q
xy . In a model of free electrons the first term corresponds to

the classical value of the Hall conductivity σ C
xy = ωcτσxx ∝ B (ωc = eB/mec is the cyclotron

frequency and τ is the electron scattering time). The second term σ Q
xy is purely quantum and

has no classical interpretation. Within the minigaps of the Hofstadter spectrum, σ C
xy = 0, so

that σxy = σ Q
xy . The diagonal conductivity also vanishes within the minigaps, σxx = 0, while

the quantum Hall conductance is quantized according to the rule σ Q
xy = 2e2(σ + n)/h. Here the

factor two is due to the spin, n is the Landau band index and the index

σ =
hc

e

∂ N

∂ B
(1)

can be calculated from the integrated density of states N (E, B) within the gap. This index
takes positive or negative integer values depending on the minigap in question [1, 2]. Such
behavior of the σxy differs from the monotonic step-like increase of the Hall conductivity with
increasing magnetic field typical for the conventional (without the superlattice) IQHE [8, 9],
which corresponds to the limit σ = 0. It is worth noting here that the σ in equation (1) and
related σ Q

xy = 2e2(σ + n)/h are thermodynamic quantities in the sense that they are completely
determined by the energy spectrum through the integrated density of states N (E, B). On the
contrary, the diagonal conductivity σxx is sensitive not only to the energy spectrum but also to
the mechanisms of electron propagation through a disorder potential, which are closely related
to the complex problem of localization in 2D systems. Different views and various nontrivial
thermodynamic effects in the 2D periodically modulated electron system in perpendicular
quantizing magnetic field have been discussed in the literature (see [10]–[13] and references
therein).
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A viewpoint on the Hofstadter butterfly as a quantum phase diagram with infinite phases
labeled by their quantized Hall conductances was developed in [10]. The fractal properties of the
magnetization oscillations as a function of the chemical potential in the Hofstadter 2D systems
without disorder and at zero temperature have been studied in [11]. The lip-shaped envelope of
these magnetization oscillations on all scales was also established in this paper. The Hofstadter
spectrum effects in de Haas–van Alphen (dHvA) oscillations of a 2D square lattice electron
system have been studied in [12, 13]. These thermodynamic quantum oscillations display rather
nontrivial features in the Fourier spectrum caused by the magnetic-breakdown-mixing of the
electron and hole orbits. The disorder acts on the dHvA harmonics through the standard Dingle
factors, which suppress the thermodynamic oscillations.

The influence of a weak disorder on the diagonal conductivity in the presence of a
2D superlattice modulation is more complex because of the localization of electrons and
interference of their transport with the Hofstadter spectrum effects. The electron localization
is absent in perfect periodic 2D superlattices. In contrast, in 2D spatial fractal structures
like the Sierpinski gasket, electrons are localized even without any disorder or structural
imperfections [14]. It was shown in [15] that a magnetic field applied perpendicular to these
fractals breaks the lattice symmetry of the Sierpinski gasket and delocalizes electrons. In regular
2D superlattices, the role of the magnetic field due to the rearrangement of the Landau bands
into Hofstadter butterflies is very important too. The corresponding fractal effects in oscillations
of the diagonal and Hall conductivities have been found experimentally in 2D GaAs/AlGaAs
heterostructures with a weak 2D lateral potential modulation [16]–[18]. This became possible
due to the advances in 2D superlattice fabrication.

Advances in a theoretical description of these oscillations are related only to different
thermodynamic aspects of the problem. A theoretical description of the diagonal conductivity
oscillations under conditions of the IQHE with Landau bands having a fractal internal structure
of the Hofstadter butterfly has not been published so far to the best of our knowledge. The
present paper is aimed toward filling this gap.

Magnetic field plays a crucial role in the diagonal conductivity σxx of noninteracting 2D
electrons. It is believed that without magnetic field all states are localized in 2D disordered
systems at zero temperature [19]. In the presence of quantizing magnetic field the energy
spectrum consists of the disorder-broadened Landau bands with narrow stripes of extended
states in the middle, which are responsible for the nonzero diagonal conductivity σxx in the
IQHE [8, 9]. The conductivity σxx has peaks in transitional plateau-to-plateau regions where
the Hall conductivity σxy jumps to an adjacent plateau. Both conductivities, σxx and σxy ,
demonstrate a scaling behavior in transitional regions in clean samples, but this scaling is absent
in dirty samples. A possible explanation for the phenomenon was given in a recent paper [20]
within the modified two-channel network model in which peaks and valleys of the smooth
disorder potential comprise a 2D periodic structure [21, 22]. It was shown numerically in [20]
that the width of extended states goes to zero when the overlap of Landau bands is below a
critical value. Above this critical value (i.e. with increasing disorder) extended states at the
center of Landau bands evolve gradually into a stripe of finite width in the middle between
the adjacent overlapping Landau bands. A similar effect was found in numerical simulations of
the paper [23] in which the Hall plateau diagram in the lowest Landau level (LL) split by a 2D
periodic potential into the Hofstadter butterfly has been studied on the basis of equation (1) in a
model with random δ− potential. It was shown that randomly distributed point impurities smear
the plateau-to-plateau transitions making flat plateaus between them shorter with the increase of
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disorder potential. The localization length, calculated from the size dependence of the Thouless
number [24], was found to be infinite only for energies in the middle of the plateau-to-plateau
transitions, while the rest of the states are localized. With increasing disorder the Hofstadter
minibands smear and merge into bunches. Correspondingly, the extended states of the minibands
evolve toward the center of the bunches, while minigaps between them and related plateaus in
the σxy vanish gradually (for details and more references on the localization in the Hofstadter
spectrum see [23]).

The above picture is in qualitative agreement with the experimental observations of the
paper [18] in which it was found that peaks in the diagonal conductivity σxx strongly correlate
with the plateau-to-plateau transitions of the Hall conductivity σxy . In conventional IQHE such
a type of correlation between the Hall and diagonal conductivities is well established and
regulated by the semicircle rule [25]. It is worth noting here that the quantity σ Q

xy , calculated
numerically in [23] is only a thermodynamic part of the total Hall conductivity σxy = σ C

xy + σ Q
xy.

The term σ C
xy depends not only on the energy spectrum, but also on σxx , which is sensitive to

disorder and localization, and vanishes wherever σxx = 0 as one can see from the quasiclassical
limit σ C

xy = ωcτσxx [2].
In this paper, we calculate σxx as a function of the magnetic field B and compare results

with the experiment of the paper [18] in which the resistivity ρxx(B) = σxx/(σ
2
xx + σ 2

xy) and the
Hall conductivity have been measured concurrently. The Hall plateau boundaries can be found
as well from the diagonal conductivity, because σxx equals zero within the plateaus and has
peaks in transitional regions between the plateaus.

We consider a 2D conductor with a weak square superlattice modulation under conditions
of the IQHE assuming that a disorder is small enough to suppress the fractal fine structure of
the Landau bands completely. The states within each miniband are expected to be localized,
except for a thin stripe of delocalized states at the expectation value of the energy of each band.
The number of localized states is assumed to be proportional to the total number of states in the
miniband, and the Fermi energy independent of the magnetic field. We found that the effect of
the superlattice in the IQHE regime results in a nontrivial splitting of the peaks in the σxx(B)

into bunches of peaks. The bunches are separated by plateau regions where σxx(B) = 0. The
number of peaks in a bunch and distances between them depend on the Hofstadter miniband
structure, which is governed by the position of the Fermi energy and the value of the magnetic
field. All these features are in good qualitative agreement with the experimental observations of
the paper [18].

2. Basic equations

2.1. Fractal Landau bands caused by a weak square superlattice modulation of a
2D electron gas

The energy spectrum of 2D electrons subject to a weak potential of the form

V (x, y) =
V0

4
[cos(2πx/a) + cos(2πy/a)] (2)

and a magnetic field can be written as [6, 18, 26]

En,m = h̄ωc(n + (1/2)) +
V0

8
Ẽm

(
80

8

)
exp

(
−

π

2

80

8

) ∣∣∣∣Ln

(
π

80

8

)∣∣∣∣ , (3)
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where n = 0, 1, 2, . . . is the LL index and Ẽm stands for the energies of the mth miniband of
the Hofstadter butterfly. The first term here is the Landau energy spectrum with the cyclotron
frequency ωc = h8/m Ac80, where Ac is the area of the unit cell. The second term in (3)
depends on the inverse number of flux quanta per unit cell 80/8, where 80 = hc/e is the
flux quantum. The Hofstadter butterfly is a periodic function in the flux quantum number
Ẽm(x) = Ẽm(x + 1). The width of the Landau bands is modulated by the Laguerre polynomials
Ln(π80/8), which are oscillating functions in the ratio 80/8. At zeros of the function
Ln(π80/8) = 0 (the flat band condition), the Landau bands have zero width. The Hofstadter
butterfly is only defined for rational values of the flux quantum number 8/80 = p/q, where p
and q are integers. The number of subbands in the Hofstadter butterfly (and therefore in each
LL) is q (see figure 1). We have to consider, however, that for even q the gap between miniband
m = q/2 and m + 1 vanishes, producing a pseudogap with vanishing density of states. Numerical
calculations are usually restricted to all fractions with a maximum qmax. In figure 2, a fragment
of the Landau bands in a finite energy belt around an arbitrarily chosen Fermi energy is shown.
As seen in the lower panel of figure 2, the 6th Landau band is flat at the Fermi level, because the
flat band condition Ln(π80/8) = 0 holds for this band at the chosen values of the parameter.

2.2. Magnetic oscillations in the diagonal conductivity

The energy spectrum alone cannot determine the diagonal conductivity that depends also on
the mechanisms of the electron transport. Disorder not only broadens the minibands of the
Hofstadter butterfly but also results in the localization. Numerical simulations show that in
analogy with the unmodulated 2D conductors the extended states appear approximately at
the center of minibands [23] and even the critical exponents are the same as in conventional
IQHE [27]. These facts make it possible to apply the physics and results obtained for
conventional IQHE to calculations of the diagonal conductivity in the Hofstadter problem. The
localization is a key point because only extended states within the minibands contribute to the
conductivity.

Qualitatively, the picture of conductivity at high magnetic fields is as follows. Electrons
at the Landau orbitals drift along the equipotential contours of disorder potential and hop from
one contour to another at places where these contours are close enough to make the hopping
possible. For fixed disorder potential the configuration of the equipotential contours depends on
the energy, making the electron percolation through the contours dependent on the Fermi energy.
Numerical simulations show that for low disorder strength, when Landau bands do not overlap,
only narrow energy stripes at the center of disordered bands are delocalized [8, 9], [20]–[22].
This fundamental fact makes it possible to simplify equations for the σxx in a weakly disordered
2D conductor in the perpendicular magnetic field because only extended states contribute to the
diagonal conductivity [28, 29].

In a model in which the electron scattering time τ is independent of energy (the ‘τ -
approximation’) and under the condition that temperature T � h̄/τ , the conductivity σxx can
be written as follows [28, 29]:

σxx(B) ≈ στ

h̄ωc

2πT

∑
n,m

cosh−2

(
En,m − µ

2T

)
, (4)

where

στ =
e2 NLτ 〈v2

x〉

h̄ωc
(5)
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Figure 1. Landau bands from equation (3) for the following parameters: qmax =

100, Ac = 1 is the unit cell area, Ehw = V0/2 = 5 is the width of the Landau
bands in the limit B → ∞. The Fermi energy is chosen as EF = mπ (m =

1, 2, 3, 4) in order to demonstrate a clear splitting of the peak from the highest
Landau band into m subpeaks (see figure 3).

and the average of the squared velocity is given by

〈v2
x〉 =

a2

2h̄2

∫ εmax

εmin

dε g(ε)|tε,ε|
2. (6)

En,m is the Landau spectrum (3), tε,ε is the electron matrix element for hopping between the
equipotential contours along which Landau orbitals are drifting in the perpendicular magnetic
field, a is the average distance of hopping, NL = 8/S80 is the electron density at the LL, S
is the sample area, and µ stands for the chemical potential. The shape of the density of states
(DOS) within the Landau bands is assumed to be arbitrary and given by the function g(ε). The
integral in (6) is taken over the narrow stripes of delocalized states at the center of the Landau
bands.

At low fields, h̄ωc 6 T , equation (4) yields σxx as an oscillating function of h̄ωc. Under
the condition h̄ωc/T � 1, the conductivity σxx becomes a sharply peaked function, which has
maxima when one of the LLs exactly coincides with the chemical potential, En,m = µ. The
conductivity at maxima is equal to σxx = στ

h̄ωc
2πT . At minima, as well as at all other magnetic
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Figure 2. Landau bands around the Fermi level for some higher LLs (indices
indicated by bold numbers) with and without modulation by the Laguerre
polynomial factor. (qmax = 250, Ac = 1, Ehw = 20, EF = 106.916. Notations are
the same as in figure 1.)

fields for which the chemical potential µ falls between the LLs, the conductivity σxx becomes
an exponentially small function of temperature and h̄ωc:

σxx = στ

h̄ωc

2πT
exp

(
−

|h̄ωc − δµ|

T

)
, (7)

where δµ is a separation between the chemical potential and the center of the nearest partially
filled LL. The exponential smallness of the σxx in the Hall plateau regions is a manifestation of
the localization of electrons elsewhere outside the narrow stripes of extended states. This point
is crucial for the derivation of equation (4) [28, 29].

Before closing this section an important remark is in order. In the conventional IQHE
regime, numerous experiments testify that the critical exponents of the metal-to-insulator
transition and the shape of peaks in the diagonal conductivity σxx do not depend on the LL
index n [30, 31]. In our approach this fact means that the factor στ given by equation (5) is the
same for all LLs. The latter is because the DOS g(ε) and the averaged (over the random hopping
matrix elements |tε,ε|2) velocity squared 〈v2

x〉 can be taken as independent of the LL number.
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Figure 3. Diagonal conductivity for higher Landau bands as a function of the
cyclotron frequency ωc for T = 0.5. The parameters are the same as in figure 2,
except for the half-width Ehw = 0 (bottom curve), Ehw = 20 (middle curve),
Ehw = 20 and modulation factor |Ln(π80/8)| replaced by unity (top curve).
The LL index is indicated by bold numbers.

The situation changes in the Hofstadter spectrum in which LLs split into fractal minibands
with the butterfly fine structure shown in figures 1 and 2. Under such conditions the quantities
στ in general may become dependent both on the LL and on miniband indices n, m. Because
of that, the amplitudes within the bunches of the split peaks of the conductivity σxx may have
different values. This effect is sample-dependent and cannot be described within any model of
disorder. Having this in mind, we neglect for the sake of simplicity the dependence of the στ on
the indices n, m in equation (4). We will return to this point in the discussion of our results.

3. Numerical results

Numerical results for the quantum magnetic oscillations in the diagonal conductivity σxx based
on equations (3)–(6) are shown figures 3 and 4. In figure 3 the influence of the internal miniband
structure is demonstrated. The lowest curve corresponds to the case where the superlattice
modulation is absent. In that case the diagonal conductivity displays the Shubnikov–de Haas
(SdH) oscillations at low magnetic fields ωc � 10, which at higher fields ωc > 10 gradually
cross over into a sequence of sharp peaks typical for the well-developed IQHE regime. Between
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Figure 4. Diagonal conductivity as a function of cyclotron frequency ωc for the
Landau bands shown in figure 1. The Fermi energy is EF = nπ (n = 1, 2, 3, 4
from bottom to top), and T = 0.1. The other parameters are the same as in
figure 1, except that the curves for completely flat Landau bands with half width
Ehw = 0 (broken curves) are included apart from the result corresponding to
figure 1 with Ehw = 5 (full curves).

the peaks the diagonal conductivity σxx is exponentially small. Correspondingly, the Hall
conductance σxy takes the quantized plateau values within these regions. The effect of the square
superlattice modulation is illustrated by the middle graph in figure 3 and by plots in figure 4.
One can see three basic distinctions from the conventional IQHE case. (i) The peaks in diagonal
conductivity are split: (ii) the splitting is irregular and asymmetric because of the fractal nature
of the Hofstadter energy spectrum; (iii) the gaps between the split Landau bands (and related
Hall plateaus) become narrower with the superlattice modulation than without it. The number of
peaks and their shapes within each split LL depend in a nontrivial way on the fractal Hofstadter
miniband structure of this level at the Fermi energy EF. For example, in figure 3 the peak with
the Landau index n = 6 is not split at all, because this band is flat as shown in figure 2 for the
same choice of the parameters. The peak at ωc = 10 is narrow enough so that the splitting is
unresolved in the picture. The importance of the Laguerre polynomial factor |Ln(π80/8)| for
the shape of magnetic oscillations is illustrated by the top curve in figure 3 plotted for the same
parameters as the lower curve, but without the Laguerre polynomial factor (it is replaced by
unity, |Ln(π80/8)| → 1 in calculations for this curve).
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The Hofstadter miniband structure depends on the Fermi energy value as is clearly seen
in figure 1. The corresponding effect on the conductivity is shown in figure 4 where the
conductivity σxx is plotted for different values of EF at lower temperatures than that adopted
in figure 3. We see in figures 1 and 4 that the magnetic-field range of oscillations is shifted
toward higher values with the increase of EF. The fine structure of the peaks becomes more
complex and the gaps between the split peaks grow wider for larger n.

In our numerical analysis we neglected variations of the chemical potential µ as a function
of the magnetic field and replaced it by the Fermi energy EF at zero magnetic field. Qualitatively,
this is because all states within the sequence of the impurity-broadened LLs (described by the
function g(ε)) are localized and fix the µ when thin stripes of extended states shift in the
changing magnetic field. As we see, the assumption of constant µ agrees qualitatively with
the experiment [18].

4. Summary and conclusions

In this paper we have demonstrated how the conventional IQHE oscillations of the diagonal
conductivity do change under the influence of a weak square superlattice modulation. Motivated
by recent experiments of the paper [18], we consider a regime in which disorder and temperature
do not destroy completely the Hofstadter butterfly in the Landau bands. We first calculated the
energy spectrum using equation (2). The corresponding miniband structure within the Landau
fan is plotted in figures 1 and 2.

We then use equation (4) derived in [28, 29] for calculations of the σxx in the case of
conventional IQHE under the condition T � h̄/τ . That condition (which assumes a weak
disorder since the IQHE is a low-temperature phenomenon) simplifies the equation for the
σxx but preserves all typical features in the shape of the diagonal conductivity in the IQHE
regime. This is illustrated by the lowest curve in figure 3, which plots the σxx as a function of
B in the absence of superlattice modulation. One can see that the curve picks up all the basic
ingredients of the IQHE: sharp peaks and Hall plateaus (intervals where the conductivity σxx

is exponentially small) at high fields and SdH oscillations in the low field region. If all states
within the Landau band are localized, then the velocity squared (5), the amplitudes στ , as well
as the diagonal conductivity σxx are equal to zero. Thus, equation (4) gives a correct analytical
description of the σxx in the IQHE regime.

We have shown that the square superlattice splits the peaks in diagonal conductivity in
a quasi-regular fashion. Figures 3 and 4 demonstrate the relationship between the fractal LL
splitting and the split-peak structures in the diagonal conductivity σxx under the conditions of
the IQHE. The number of peaks in the conductivity σxx(B) and their precise positions depend
on the Hofstadter butterfly structure at the Fermi energy and magnetic field B as shown in
figures 1 and 2. At the flat band condition |Ln(π80/8)| = 0, peaks in the function σxx(B)

are not split. Other peaks are split. The splitting, as one can see in figures 3 and 4, may be
symmetric or not depending on the values of the Fermi energy and magnetic field. In reality,
because equipotential contours are energy-dependent, the quantity στ may vary from miniband
to miniband making the amplitudes of the peaks in a bunch different. This effect is sample-
dependent and cannot be considered in any specific model. Because of that, only a quantitative
comparison with experiments makes sense.

Having this in mind we see that all the above mentioned features in the function σxx(B) are
in good qualitative agreement with the experimental observations of the paper [18]. In this paper,
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the resistivity was measured for large values of the Landau index under the conditions when Hall
conductivity is quantized and is much larger in value than the diagonal one, σxy � σxx . This is
clearly seen in figures 2 and 3 of the paper [18]. The resistivity ρxx(B) = σxx/(σ

2
xx + σ 2

xy) under
these conditions is simply proportional to σxx and displays features similar to ρxx(B) at every
plateau-to-plateau transition region.

In conclusion, one remark is in order. A calculation of the function g(ε) as well as a
quantitative description of localization of electrons within this function is a very complex
model-dependent problem which has not been solved so far. The strong point of our approach
is that the main results can be obtained without precise knowledge of the form of the function
g(ε) because only a thin stripe of delocalized states contributes to the diagonal conductivity
σxx . Details of the positions of extended states are also not necessary. This is important since
after more than two decades of studies, the localization phenomenon still remains incompletely
understood. Modern understanding of the localization phenomenon in the Landau bands in 2D
conductors came mainly from the numerical analysis of different models and experiments. The
current viewpoint on the problem is accumulated in the topological quantum Hall phase diagram
in the plane disorder-magnetic field, which explains a transition from the scaling to non-scaling
regime in the quantum Hall systems with the increase of disorder [20]. The scaling regime
corresponds to the case where the width of extended state stripes goes to zero, while the non-
scaling regime holds for stripes of finite sizes. The transition between these two regimes depends
on the degree of the overlap of adjacent Landau bands and has a threshold on the disorder value
that increases linearly with B. Below this critical value, only one delocalized state exists in each
Landau band, which evolves with an increase of disorder into stripes of finite width merging
into new bands at some (increasing linearly with B) value of disorder [20]. This scenario for
the evolution of extended states with disorder is very similar to that established in the numerical
simulations of the paper [23] in which the localization within the Hofstadter butterfly spectrum
has been studied. It was found that extended levels within the subbands of the split LLs get
closer as disorder increases, and contract into one at a certain h̄/τ . We used this result in our
calculations assuming that the disorder is weak enough and less than the threshold value of [20]
so that only one narrow stripe of delocalized states exists in each subband of the nonoverlapping
Landau bands. These extended states do contribute, according to equation (4), to the peaks in
diagonal conductivity σxx resolved in figures 3 and 4.

And now the last note. So far all theoretical papers on the IQHE in 2D systems with the
Hofstadter butterfly spectrum have concentrated on calculations of the Hall conductivity σxy on
the basis of equation (1), which yields only a thermodynamic part of the σxy [1, 2, 7, 23, 26]. In
view of that, knowledge of the diagonal conductivity has additional value because the peaks
in σxx determine the shape and the width of the transitional plateau-to-plateau regions in
the Hall conductivity through the term σ C

xy , which in the quasiclassical approximation equals
σ C

xy = ωcτσxx [2].
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