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Abstract Greenland ice-core data containing the 8.2 ka

event are utilized by a model-data intercomparison within

the Earth system model of intermediate complexity,

CLIMBER-2.3 to investigate their potential for constrain-

ing the range of uncertain ocean diffusivity properties.

Within a stochastic version of the model (Bauer et al. in

Paleoceanography 19:PA3014, 2004) it has been possible

to mimic the pronounced cooling of the 8.2 ka event with

relatively good accuracy considering the timing of the

event in comparison to other modelling exercises. When

statistically inferring from the 8.2 ka event on diffusivity

the technical difficulty arises to establish the related like-

lihood numerically per realisation of the uncertain model

parameters: while mainstream uncertainty analyses can

assume a quasi-Gaussian shape of likelihood, with weather

fluctuating around a long term mean, the 8.2 ka event as a

highly nonlinear effect precludes such an a priori

assumption. As a result of this study the Bayesian Analysis

leads to a sharp single-mode likelihood for ocean diffu-

sivity parameters within CLIMBER-2.3. Depending on the

prior distribution this likelihood leads to a reduction of

uncertainty in ocean diffusivity parameters (e.g. for flat

prior uncertainty in the vertical ocean diffusivity parameter

is reduced by factor 2). These results highlight the potential

of paleo data to constrain uncertain system properties and

strongly suggest to make further steps with more complex

models and richer data sets to harvest this potential.
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Abbreviations

AR(1) One-dimensional autoregressive process

BP Before present (before 1950)

CLIMBER CLIMate-BiosphERe model

CS Climate sensitivity

EMIC Earth system model of intermediate

complexity

GCM Global Circulation Model

GICC05 Greenland Ice Core Chronology, 2005

GRIP GReenland Ice core Project

iid Identically independently distributed

IPCC Intergovermental panel on climate change

ka = kyr Thousand years

LIS Laurentic ice sheet

MOC Meridional overturning circulation

NADW North Atlantic deep water

NH Northern hemisphere

pdf Probability distribution function

ppm Parts per million

SST Sea surface temperature

std Standard deviation

1 Introduction

Timing and magnitude of changes in atmospheric mean

temperature in response to changes in greenhouse gas

concentrations strongly depends on both, climate sensiti-

vity and ocean heat uptake. The magnitude of climate

sensitivity has been subject of intense research over the last

decade (e.g. Forest et al. 2002; Hegerl et al. 2006; Knutti

et al. 2002; Schneider von Deimling et al. 2006; Roe and

Baker 2007; Allen and Frame 2007), and quite some effort

has been spent on ocean heat uptake (Polzin et al. 1997;
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Ledwell et al. 2000; Collins et al. 2006; Raper et al. 2002;

Stouffer et al. 2006; Forest et al. 2008). But until now,

climate sensitivity and secular ocean heat uptake are sub-

ject to large uncertainty. On the one hand, key processes in

global circulation models need to be parameterised, giving

room for only semi-determined parameter settings. On the

other hand twentieth century’s global warming signal

makes it difficult to independently infer on climate sensi-

tivity and secular ocean heat uptake. Both are strongly

correlated as seen in twentieth century data.

In this situation it appears attractive to search for addi-

tional data sources that ideally were statistically indepen-

dent from the anthropogenically induced warming signal.

In (Schneider von Deimling et al. 2006), the relatively

large signal-to-noise ratio of the glacial to interglacial

climate transition comparison helped to reduce uncertainty

in climate sensitivity, especially to rule out high sensitivity

model versions as being inconsistent with reconstructed

glacial cooling. The key idea was to utilize a climate model

that represents both modern-day climate as well as an

alternative climate state of the past without retuning the

key uncertain parameters that would in turn affect the

magnitude of climate sensitivity. In this article we consider

whether the analogue approach could be implemented for

constraining ocean heat uptake, which strongly depends on

vertical mixing, in turn being represented in climate

models as uncertain vertical ocean diffusivity parameter.

We ask which past climatic event could have been strongly

shaped by vertical mixing and would, therefore, possibly

allow to infer on the related model parameters. We selected

the so-called 8.2 ka event for our study as it represents a

pronounced and well-dated transient climate signal that

should be strongly influenced by vertical mixing in the

Northern Atlantic Ocean.

The 8.2 ka event (or 8k event) refers to an outstanding

cooling event in paleoclimate records at approximately

8,200 years before present [BP before 1950, that is 8240

before 2000 (b2k)] (Rohling and Pälike 2005; Alley and

Ágústsdóttir 2005; Thomas et al. 2007). The event was

first reported in the Greenland ice core records as an abrupt

cooling of about 6 ± 2�C at summit, Greenland,

which lasted roughly two centuries (Johnsen et al. 1992;

Dansgaard 1993; Alley et al. 1997). Since then much has

been published about the characteristics of this event,

concerning the duration, the range, the driving mechanisms

and the implications. Thomas et al. (2007) (where one can

find a comprehensive overview over the discussion)

describes the 8.2 ka event as a 160.5 years cold period

(from about 8250 to 8090 BP), where decadal-mean oxy-

gen isotopic values of a compound of four Greenland ice

cores were below the early Holocene average (9.3–8.3 kyr

BP). The minimum of d18Oice is observed in the GRIP ice

core at a calendar date of 8190 BP, dated on the GICC05

age scale (Rasmussen et al. 2006a). During the event

d18Oice drops about 1.5 per mille, which corresponds to a

surface air temperature decrease of 3–6 K depending on

the transformation method (e.g. Johnsen et al. 1995;

Cuffey and Clow 1997; Johnsen et al. 2001). Besides

reduced Greenland temperature the northern climate dur-

ing the 8.2 ka event was characterized by a fresher and

colder North Atlantic Ocean, drier and stronger winds over

the northern Atlantic, drier monsoon regions and intensi-

fied North Atlantic trade winds, according to (Alley et al.

1997). A variety of additional paleoclimatic data from

locations in the Northern Hemisphere (NH) show climate

anomalies in the same time regime (overview of references

from Bauer et al. 2004).

When utilizing paleo data from the 8.2 ka event for a

model data intercomparison we have to choose an appro-

priate model representation of the event as well as an

appropriate subset of the available paleo data. Therefore,

we make several assumptions concerning the driving

physical processes and the temporal and spatial extension

of the event.

First of all we assume that the Earth System model of

intermediate complexity CLIMBER-2.3 is in principle able

to reproduce the 8.2 ka event. This assumption is based on

the fact that simulated Greenland temperature (Bauer et al.

2004) following a a realisitic forcing scenario of the cold

event agree reasonably with paleo data. The question of the

cause of the 8.2 ka event has been addressed by different

suggestions. The possible causes mainly discussed (e.g. in

Kobashi et al. 2007) are changes in solar irradiation, as

investigated by Muscheler et al. (2004) or Renssen et al.

(2006), and freshwater fluxes, investigated by Wiersma and

Renssen (2006), Wiersma et al. (2006), from the drainage

of glacial lakes to the northern Atlantic. In the latter case

the weakening of deep water formation in the northern

Atlantic and, therefore, reduced northward heat transport

by the Atlantic Thermohaline Circulation (THC) could

have caused the cold event (Barber et al. 1999; Clark 2001;

Rahmstorf 2002). This thesis is corroborated by the

observation of the relatively long cold event duration of

160 years which point towards the involvement of oceanic

processes. Numerous model simulations have been per-

formed (e.g. Renssen et al. 2001; Renssen et al. 2002;

Bauer et al. 2004; Wiersma and Renssen 2006; Wiersma

et al. 2006; LeGrande et al. 2006) that have been able to

reproduce an asymmetric cold event induced by freshwater

pulses of different strength and duration. Evidence of the

drainage of glacial lakes Agassiz and Ojibway in an out-

burst at about 8470 BP (14C time) (Liccardi et al. 1999;

Leverington et al. 2002; Teller et al. 2002) deliver a

plausible scenario of a strong pulse-like freshwater forcing

to the North Atlantic region for the time of interest. The

causal link between the drainage of lake Agassiz and the
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weakening of North Atlantic ocean circulation has recently

been supported by proxy records taken in the Labrador

bassin (Kleiven et al. 2008). The uncertainties in both the

timing of the cold event in ice core data and the timing of

the drainage of Lake Agazziz leave space for a prompt

response of the Greenland temperature cooling following a

freshwater pulse as suggested from various climate model

studies. Here we follow the experimental setting of Bauer

et al. (2004), who, employing a climate model of inter-

mediate complexity, were able to reproduce a cold event

with a duration that exceeded the scale of the freshwater

forcing considerably by using a pulse-like drainage of

2.6 Sv, released for 2 years.

Although we are aware of an oceanic role affecting the

cold event by changes in the meridional overturning cir-

culation leading to an hemispherical extension of climate

changes around the 8.2 event we limit our model data

intercomparison to the Greenland ice core data, due to the

poor temporal and spatial resolution of data from outside of

Greenland. Further we assume the event to be strongly

influenced by vertical mixing, which is determined by

ocean diffusivities. In reality the event might also be

influenced by other processes, not represented in CLIM-

BER-2.3. This potential structural dependence of results on

the setting needs to be countered by further, independent

analysis with other models. Therefore, our results can only

be taken as an upper bound of available information from

the specific model-data setting.

Constrained by these assumptions, by utilizing Bayesian

Analysis, we aim at an informative influence chain from

the 8.2 ka event onto ocean diffusivity parameters in a

dynamically consistent way, within the stylised world of

CLIMBER-2.3. This is to be seen as an incremental pro-

gress in systematic analysis of causes and context of the

8.2 ka event, in particular in relation to ocean diffusivity,

and its potential for future paleo data—GCM intercom-

parison projects.

2 Methods

2.1 The bayesian algorithm

A general overview of application of Bayesian Analysis

within climate science is given in Appendix 1. For our

special case of CLIMBER-2.3 the application of Bayesian

inference reads as follows: comparing numerous model

realizations of the 8.2 ka event produced by one and the

same climate system model, only differing in the values of

a number of model parameters (ocean diffusivities and

experiment related parameters) which have a high influ-

ence on the model performance at the cold event, to the

paleo records some parameter combinations might result in

an appropriate representation of the cold event while others

can be ruled out as the model output is inconsistent with the

paleo data. As the time dependence of the simulated tem-

perature response depends on stochastic freshwater forcing,

that means the resulting cold event differs in duration for

each single realization of noisy freshwater forcing, a

combination of model parameters cannot simply said to be

ruled out but every parameter value is assigned a certain

likelihood of reproducing the correct cold event duration

seen in the data. Repeating this procedure for a whole

ensemble of prior-weighted parameter values one ends up

with a distribution function on the space of parameters that

represents the probability of a certain parameter value

given the information of the 8.2 ka event.

More formally spoken the output of the model of

intermediate complexity CLIMBER-2.3 is compared to

Greenland ice-core data displaying the 8.2 ka event to

reduce uncertainty of model parameters a (i.e. a vector).

The model parameters a are chosen to contain the hori-

zontal and vertical ocean diffusivity (ahoc, av), which are

supposed to have strong influence on the model perfor-

mance at reproducing the 8.2 ka event. The comparison is

complicated by the fact that the 8.2 ka event in CLIM-

BER-2.3 does not only depend on a but also on a particular

realization g of noisy freshwater forcing. So several

transformations are applied after which the model output of

‘‘CLIMBER-2.3n’’ (the noisy version of CLIMBER-2.3)

can be compared to observations, which themselves are

aggregated to CLIMBER box scale. Bayes’ formula then

reads:

PpostðaÞ ¼
PpriorðaÞPðyjaÞR

da0Ppriorða0ÞPðyja0Þ
: ð1Þ

y denotes the observational spatiotemporal data in terms of

CLIMBER-2.3 scale aggregated fields.

Applying this method to the 8.2 ka event involves

several challanges. (1) The likelihood P(y|a) for given a is

not known a priori for CLIMBER-2.3n and therefore has to

be estimated by running an ensemble of test runs of the 8.2

ka event (i.e. realizations g of noisy freshwater forcing).

The complexity of this estimation in terms of necessary

numbers of ensemble members rises by a factor of order

10n - 1 if n is the dimension of y. To reduce the complexity

of comparison the information contained in y is reduced by

nonlinear projection of both the data and the model output

on the (scalar) duration of the cold event measured by a

least square fit of a trapezoid function to data and model

output (see Fig. 1). That duration encapsulates a major

fraction of the information contained in the original time

series y. In Bayes formula (1) the likelihood is replaced

according to PðyjaÞ ! PðT jaÞ; whereby T denotes the

extracted duration of the cold (8k) event, obtained from

trapezoidal fitting. (2) The observations are only on proxies
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of temperature instead of temperature itself and (3) the

observations are obscured by local weather noise not rep-

resented by g. Item (2) is simultaneously addressed with

item (1) by projecting onto T as the duration of the event is

not affected by the proxy-temperature transfer functions.

Item (3) is taken into account by inclusion of additive

weather noise:y ? y0: = y ? f, fi iid1 *N(0,r) and

T = T(y0). Thereby the amplitude of this Greenland

weather noise rweather can be derived from the Kriging

(Wackernagel 1995) of the Greenland ice core data (for a

detailed description of this noise model see Appendix 2).

2.1.1 Implementation of bayesian updating

The likelihood function P(T|a) is reconstructed for every a
only in a vicinity of the specific T found in the Greenland

data by a histogram of bin-size DT. Per i, indicating the

sampling of a1,…, ai,…, aI in a-space the posterior prob-

ability reads:

PpostðaiÞ �
ppriorðaiÞfiP
i ppriorðaiÞfi

ð2Þ

where

fi ¼
1

Ni

X

jk

Ind Tijk 2 T � DT=2; T þ DT=2½ �
� �

ð3Þ

with j, k denoting the index of g and f sampled in a fac-

torial design2 (as application of weather noise to the

CLIMBER output is computational cheap), Ni the number

of g and f realizations for each ai. ‘Ind’ is the indicator

function that is 1 if the Boolean argument is true and 0

otherwise, P(ai) denotes the finite probability for the

realization ai (the a domain is coarsely resolved), while p

represents respective densities in analytic form.

As one necessary test on convergence of the procedure

and optimal choice of DT, a bootstrapping (see Efron and

Tibshirani 1993) approach is implemented3. This approach

leads to optimal bin sizes DT &5 years. But the resolution

of Greenland ice core data of only 20 years prohibits

smaller bin sizes. Therefore, we adjusted the bin size DT to

this data induced minimum value of 20 years.

2.2 Model and data

2.2.1 The Greenland ice core data

The European Greenland ice core Project (GRIP) (GRIP-

Project-Members 1993), the parallel US Greenland ice

sheet project 2 (GISP2) (Mayewski et al. 1994) and the

Dye 3 (Dansgaard 1985) and North GRIP (NGRIP) ice

cores (NGRIP-Project- Members 2004) all represent the

8.2 ka event. Thomas et al. (2007) used different isotope

data to determine the duration and the structure of the 8.2

ka event. In this study only the d18Oice data were taken into

account, synchronized to the GICC05 age scale with a

resolution of 20 years as presented by Rasmussen et al.

(2006b). For the application of the Bayesian Analysis the

data are aggregated to CLIMBER-2.3 box scale4 by

‘‘Kriging’’ their mean (Wackernagel 1995). That method

generates the mean value of the CLIMBER-2.3 box under

consideration by weighting the data sets according to their

covariance matrix. Roughly, it allocates the more weight to

7200 7400 7600 7800 8000 8200 8400 8600
−10

−9

−8

−7

−6

−5

Duration T
Data

=160

time (yrs BP)

T
gr

ee
nl

an
d (

°C
)

Fig. 1 The nonlinear trapezoid fitting procedure to estimate the

duration of the cold event in Greenland data and model output. Black
curve: the Kriging Mean of the Greenland ice core data (in d18Oice

offset added to be displayed on temperature scale together with

CLIMBER-2.3 output), green curve: example CLIMBER-2.3 Green-

land temperature of the cold event with added weather noise, red
curve: trapezoid fit to Greenland data, blue curve: trapezoid fit to

CLIMBER-2.3 output

1 Identically independently distributed.

2 Implementing a factorial design means that in each parameter

dimension a sample is chosen according to an appropriate distribution

and the experimental units are then chosen as all possible combination

of values from the single dimensions; therefore a factorial design

might also be called a fully crossed design.
3 A bootstrapping of the the following ensemble is performed: the ai

whereby for any i, ai is found IndðTijk 2 ½T � DT=2; T þ DT=2�Þ
times in the ensemble. From that bootstrapping, the variance of the

final output (posterior of diffusivities or posterior in derived

observables like ocean heat uptake or climate sensitivity) z is plotted

over DT, and the minimum of that curve is identified. In order to

minimise twofold use of statistical information, sampling of

CLIMBER-2n is repeated after DT has been fixed.
4 The CLIMBER-2.3 ocean submodel uses 20 uneven vertical layers

and three longitudinal ocean boxes (Atlantic, Indic, Pacific) and has a

latitudinal resolution of 2.5�. For atmosphere and land modules the

latitudinal resolution is the same (10�). Atmosphere and land modules

consist of seven equal longitudinal sectors of 51�.
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a data source the more it is statistically independent from

the other sources.

Naturally the next step would be the transformation of

this Greenland-wide d18Oice time series into a temperature

record as the CLIMBER-2.3 output is in units of tem-

perature. As the transformation functions from d18Oice to

temperature are highly uncertain, the absolute value of a

so transformed record would be of no use for comparison

to model output. Therefore, a different approach is used:

Both the model output and the aggregated data are

transformed to the duration of the event by a nonlinear

fitting procedure of a trapezoid function, which takes the

asymmetric evolution of the cold event into account.

Thereby it is assumed that the duration T is roughly

invariant under uncertainties of the d18Oice ? T trans-

formation. For the aggregated data this fitting is shown in

Fig. 1. The non-linear fitting procedure was chosen for

several reasons: First the assumption of an equilibrium

state before and long after the cold event, only slightly

disturbed by freshwater noise, naturally leads to a linear

fitting of these periods. Second, the trapezoid fitting

serves to classify of the ‘‘event-no event’’ border more

than to rightly represent the whole time series. As for

some realisations of freshwater noise the end of the cold

event is disturbed by several fluctuations between the cold

and warm states, the trapezoid fitting is more robust than

pure smoothing methods like nonparametric fitting or

running mean. The fitting was performed by using a local

minimization algorithm within MATLAB in combination

with an iterated Monte Carlo Sampling of starting points

to address the problem of local optima. Although a global

optimum can not be guaranteed, the results proved robust

within the temporal resolution of the ice-core data. The

resulting duration of the 8.2 ka event in the Greenland

ice core data of 160 years is in good agreement with the

findings of Thomas et al. (2007).

2.2.2 CLIMBER-2.3

In this study the climate model of intermediate complexity

CLIMBER-2 version 3 is employed. CLIMBER-2.3 (CLI-

Mate-BiospERe model) is a 2.5-dimensional, low resolu-

tion climate system model designed for simulation of large-

scale processes on time scales from seasonal to millennia

and longer (Petoukhov et al. 2000). It consists of modules

describing atmosphere, ocean, sea ice, land surface pro-

cesses, and terrestrial vegetation cover. The atmosphere

module is a dynamical-statistical 2.5-dimensional atmo-

sphere model as the vertical structure of the atmosphere and

the synoptic-scale activity are parameterised. The ocean

component is composed of zonal mean ocean basins as used

by (Schmittner and Weaver 2001). The submodels are

coupled interactively without flux adjustments through

fluxes of heat and water and momentum is transferred from

the atmosphere to the ocean.

CLIMBER-2 has been evaluated against data in various

ways. The simulated climate characteristics of the atmo-

sphere and the ocean for the preindustrial climate state

agree well with observational data (Petoukhov et al. 2000).

Several sensitivity studies have been performed (Gano-

polski et al. 2001) to compare the model response to

changes in solar insolation, carbon dioxide, freshwater flux

and land cover with results of GCMs. The model response,

e.g. to a CO2 concentration increase, closely agrees with

results of GCMs. A third possible method of model testing

is the comparison of model output to paleoclimatic data.

Driven by natural and anthropogenic forcings, the tem-

perature variations of the last millenium were reproduced

(Bauer et al. 2003). Aspects of glacial (21 kyrs BP) and

mid-Holocene (6 kyrs BP) climate seen in paleo-data have

successfully been reproduced (Ganopolski et al. 1998).

Even abrupt climate changes can be reproduced (Gano-

polski and Rahmstorf 2001). Nethertheless it has to be

mentioned that the reproductions of aspects of paleo cli-

mate are not fully robust within the possible parameter

ranges and are valid in face of large uncertainties about

paleo climatic data. Therefore, large efforts in increasing

both the quality of paleo data and parameterisation of

models have to be undertaken. Bauer et al. (2004) used

CLIMBER-2 with different (solar, freshwater) forcing

mechanisms including noisy freshwater fluxes as a sub-

stitute for natural variability to reproduce a cold event in a

climate state corresponding to early Holocene conditions

around 9 kyr BP. By applying a freshwater forcing into the

northern Atlantic basin consisting of a freshwater pulse,

additive noise and different baseline fluxes which are

constrained by proxy data and modelling studies, Bauer

et al. (2004) could reproduce the amplitude and the cen-

tennial duration of the cold event. They found a depen-

dency of the cold event duration on the realization of noisy

freshwater forcing and suggested that the cold event

duration can be considerably lengthened by natural fresh-

water noise forcing after preconditioning by a freshwater

pulse and optional baseline fluxes. The essential finding is

the exitence of a metastable state of the overturning cir-

culation inbetween the ON mode with present day char-

acteristics of the circulation and the OFF mode without

MOC. The INT state has nearly the same characteristics as

the transient cooling signal from the 8.2 ka event, but is

stable against small distortions in freshwater forcing within

a hysteresis experiment.

The low computational costs of CLIMBER-2.3 allows

the creation of huge ensemble climate scenarios necessary

for the ensemble operationalisation of a Bayesian app-

roach. The CLIMBER-2.3 model was used by Schneider

von Deimling et al. (2006) in this way to constrain eleven
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internal parameters which are most influential on climate

sensitivity. The uncertainty reduction effect was pro-

pagated to climate sensitivity, to a range similar to the

IPCC estimate (1.5 –4.5�C) and thereby ruled out much

higher estimates from other simulations. Here, we combine

the methods of Bauer et al. (2004) and Schneider von

Deimling et al. (2006) to systematically compare the

model output containing the 8.2 ka event to the Greenland

ice core data.

3 Model simulations

3.1 Experimental setup

Following Bauer et al. (2004) the transient climate simu-

lations for the 8.2 ka event are started from a near equi-

librium state adapted to the boundary conditions for 9 ka

BP. These are the orbital parameters affecting solar irra-

diance (eccentricity, obliquity, and precession) (Berger

1978), the atmospheric CO2 concentration of 261 ppm and

a remnant Laurentide ice sheet on the North American

continent (Marshall and Clarke 1999). The resulting 9 kyr

climate state, reached by a 3 kyr equilibrium run per

parameter setting, is characterized by nearly the same

global and hemispherical temperatures in the annual mean

as in the preindustrial state with 280 ppm but the seasonal

temperature cycle is stronger than in the preindustrial state.

For a detailed comparison of the 9 kyr state to the pre-

industrial state in CLIMBER-2.3 see (Bauer et al. 2004). In

the simulation runs, the cold event is then forced at

8,200 years BP by a freshwater pulse released to the

northern Atlantic Ocean,5 representing a pulse-like drain-

age of melt water from the Lake Agassiz through Hudson

Bay as suggested by Teller et al. (2002) and Leverington

et al. (2002). This pulse has a volume of 1.6 9 1014 m3 and

was released very quickly (\1 year; Teller, 2007 personal

communication). For numerical stability of derivatives

within CLIMBER-2.3 the pulse duration was taken to be 2

years; that corresponds to a freshwater flux of 2.6 Sv.

Sensitivity experiments by Bauer et al. (2004) have shown,

that the cold event duration within CLIMBER-2.3 is only

weakly affected by changes in volume of the freshwater

pulse. Changes in the duration of the pulse from 1 year up

to 30 years can not reproduce cold events of appropriate

duration without inclusion of background fluxes or fresh-

water noise.

To lengthen the cold event duration to a sensible range

(see Bauer et al. 2004) and to account for short term

variability in the runoff, a noise model for natural

freshwater fluctuations and a baseline flux are added to the

surface freshwater fluxes computed by the model. The

noise is generated by a white noise model with adjustable

standard deviation (r) and a different seed for the noise

generator is chosen for each realization of a simulation

with a certain setting of parameters. Bauer et al. (2004)

showed that by including this noise, the model’s temper-

ature response strongly depends on a certain realization of

the noise. Thus this noisy version of the 8.2 ka event in

CLIMBER-2.3 calls for an ensemble approach to estimate

the influence of the different parameters.

The additional baseline flux represents enhanced runoff

from the two possible runoff routes: Hudson Bay and

St. Lawrence strait. In CLIMBER-2.3 these routes are

represented by introducing additional fluxes in the Atlantic

grid cells between 50�–70�N (Hudson) and 40�–50�N

(St. Lawrence). There exist different estimates for the

strength and the duration of these additional fluxes (Teller

et al. 2002; Clark 2001). For practical reasons, that means

reduction of dimensions, in this study only one additional

baseline flux in the grid cells between 50�–70�N (Hudson)

is introduced. As Bauer et al. (2004) showed, such an

additional baseline can prolong the duration of the cold

event considerably. The baseline flux can alter in duration

and strength and the noise may vary in amplitude (std). So

the experimental setup of the 8.2 ka simulation introduces

at least three additional uncertain parameters to deal with

(four if the uncertain early Holocene background fresh-

water forcing is also taken into account). The freshwater

forcing components introduced in the experimental 8.2 ka

setup are displayed schematically in Fig. 2 and all relevant

experimental parameters are listed in Table 1.

3.2 Sampling strategy

Within CLIMBER-2.3, 11 uncertain parameters strongly

influence key climate state properties. In principle, our

Bayesian analysis would have to address that 11 D

parameter space. However, as in this conceptual study we

address ocean properties (in particular the 8.2 ka event)

only, for the sake of transparency we confine the analysis to

the 2 D parameter space of ocean diffusivities. In the fol-

lowing we describe how we numerically address the three

ingredients of the Bayesian formula: prior, likelihood, and

integrated probability (i.e. the denominator) of observing

the climate state that nature displays.

We construct the prior in two steps. (1) First the space of

physically reasonable values for the diffusivities is chosen

as the most conservative constraint. These ranges of values

are given as expert knowledge by the constructors of

CLIMBER (see Schneider von Deimling et al. 2006). The

horizontal diffusivity at near surface depths kH = 200–

5,000 {standard value = 2,000} m2/s is directly addressed

5 Within CLIMBER this part of the northern Atlantic is represented

by the ocean grid cells from 50–70�N.

724 A. Lorenz et al.: Constraining ocean diffusivity from the 8.2 ka event

123



by the CLIMBER-2.3 variable ahoc. The vertical diffusivity

is taken to follow a vertical profile after Bryan Lewis with

CLIMBER-2.3 variable aKv = 0.5–1:5�
10�4 standard value ¼ 0:8� 10�4

� �
m2=s addressing the

diffusivity at the turning point of the profile. We call this

space the Physically plausible Domain. (2) As a second

step of including prior knowledge the insights of Schneider

von Deimling et al. (2006) are used. They applied con-

straints on the present day performance of the model to

reduce uncertainty of 11 model parameters (including the

ocean diffusivities). As an auxiliary step we would like to

obtain a qualitative impression on the shape of the 2D

domain of diffusivity parameters that comply with those

present-day climate constraints, being a subset of the

Physically plausible Domain. Accordingly an ensemble of

1,000 members is created according to a Monte Carlo

scheme with values for ahoc and aKv sampled on a loga-

rithmic scale according to a beta distribution6 (indicated by

b below) within the bounds of the Physically plausible

Domain. In order to test whether a parameter combinations

is in accordance with Present Day constraints, for any such

ensemble member an equilibrium run of 3,000 years is

performed under the boundary conditions of present day

climate. Seven of the resulting climate characteristics are

tested with respect to a set of requirements defined in

Schneider von Deimling et al. (2006) to represent tolerable

present day climate states. They contain intervals for the

annual mean values that encompass corresponding empirical

estimates.7 In Fig. 3 the parameter settings that pass

all seven constraints are indicated by green dots. The

resulting domain is called Present Day Domain. We now

assume as prior probability density: PðaÞ ¼ bðaÞ � indða 2
fPresent Day DomaingÞ (hereby ‘‘ind’’ is 1 if and only if a
lies in the Present Day Domain, and 0 otherwise). This

study now investigates a possible reduction of the bound-

aries of the diffusivities with respect not only to the

Physically plausible- but also to the markedly stronger

confined Present Day Domain.

Now the case is further complicated as the likelihood of

interest does not only depend on the 11 parameters of the

standard version of CLIMBER-2.3, here reduced to two

parameters, but also on three further parameters in our

stochastically extended version of CLIMBER-2.3: the

noise amplitude, the duration and strength of the baseline

flux. Within our incremental approach of analysis, we

would like to strictly stick to an only two-dimensional

framing of the problem. Hence we keep those three addi-

tional parameter (that we denote as c1, c2, c3) fixed as we

do for the other 9 (9 = 11 - 2) standard CLIMBER-2.3

parameters. We decide to choose ci such that they maxi-

mise the likelihood function for the standard values of a
(i.e. c as ‘‘maximum likelihood value’’). Now we need to

establish the likelihood function L that is not analytically

given for CLIMBER-2.3. In an auxiliary precursory step, L

is utilised to fix c. In principle, for any parameter combi-

nation (a, c), a histogram of duration T of the 8.2 ka event

would have to be obtained. However, in the vicinity of the

standard value for a, we numerically establish the follow-

ing approximation: Lða; cÞ � LðaÞ � Nðc1Þ � Nðc2Þ �
Nðc3Þ (N denoting a Gaussian). From that approximation

we deduce c as Gaussian means and display their numerical

values in Table 1. Independently the amplitude of fresh-

water noise r is bounded from below by data from Walsh

and Portis (1999) who delivered estimates for the standard

deviation of fluctuations in northern Atlantic freshwater

budget from evaporation and precipitation. Rescaled to the

North Atlantic region in CLIMBER-2.3 this corresponds to

a minimum standard deviation of r = 0.02 Sv (as lower

bound being consistent with what we obtained by our

maximum likelihood estimate). The histogram of cold
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Fig. 2 Components of northern Atlantic freshwater forcing within

the 8.2 ka experiment setup (all in Sv): an unknown (but relatively

constant) background freshwater forcing of 0-0.1 Sv is comple-

mented by an additional baseline stemming from advanced freshwater

runoff before and during the drainage of Lake Agassiz that ended

approx. 200 years after the pulse like drainage, that consists of a flow

of 2.6 Sv for 2 years at 8,200 years BP. The freshwater forcing is

blurred by noise (green). The resulting 5 years running mean is

shown in black

6 The distribution chosen as factorial in the ai and is of the form

PðxÞ � xð1�aiÞ � ð1� xÞð1�biÞ; hereby x being an affine transform of

log ai such that x 2 ½0; 1�: The ai and bi are chosen such that the

distribution is maximal at the standard values of ai, leading to a nearly

flat distribution in the Present Day Domain.

7 i.e. Surface Air Temperature 13.1–14.1�C; area of sea ice in the

Northern Hemisphere 6–14 mil km2 and in the Southern Hemisphere

6–18 mil km2; total precipitation rate 2.45–3.05 mm/day; maximum

Atlantic northward heat transport 0.5–1.5 PW; maximum of North

Atlantic meridional overturning streamfunction 15–25 Sv; volume

averaged ocean temperature 3–5�C; for references see Sect. 7.2 in

Schneider von Deimling et al. (2006).
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event durations (see Fig. 5) shows a dependence on the

noise amplitude as a higher noise amplitude smoothes the

histogram leading to higher likelihood for the right dura-

tion of the cold event with a maximum likelihood value at

r = 0.05 Sv. The maximum likelihood values of duration

and strength of the additional freshwater baseline were

found as D = 1,000 years and FW = 0.03 Sv. As both

parameters have a potentially strong influence on the cold

event duration in further investigations this maximum

likelihood choice has to be replaced by a more systematic

approach.

Having fixed c, we proceed to numerically establish

L(a). We now utilise a problem-adjusted version of

importance sampling Robert and Casella 1999 (i.e. denser

sampling where we can expect L to be larger) along the

following line of reasoning: about 20 samples are taken

within the 2D Present Day subdomain of the ocean diffu-

sivities (ahoc, aKv), primarily along the line (in log space)

between the parameters a-, a0 and a?. This follows the

construction of a parameter a out of the diffusivities which

is most influential on the Atlantic overturning stream

function and therefore most likely also on the 8.2 ka event

as done by Held and Kleinen (2004). To cover two

dimensions, samples are also taken along the direction

about orthogonal to a. The sampling then is iterated to

resolve more closely the small domain in which the like-

lihood is nonzero. This strategy led to an overall sampling

of 24 samples within the two dimensional diffusivity space.

For these points the likelihood of correctly reproducing

the 8.2 ka event has been established by running the 8.2

ka scenario about 300 times. This represents a total com-

putational cost of 24 (samples) 9 300 (runs per sam-

ple) 9 3 (CPU hours per run) &22,000 CPU hours. Under

usage of the standard approach for estimating the denom-

inator of the Bayesian formula (Robert and Casella 1999)

and the assumptions of quasi linear prior and the resulting

gaussian likelihood in logarithmic diffusivity space the

likelihood can simply be normalized by the sample size to

derive the posterior distribution.

4 Results

4.1 Interpretation of the 8.2 ka event in CLIMBER-2.3

The simulation of the 8.2 ka event is performed according

to the experimental setup described above. The field output

of meridional overturning circulation (MOC), potential

density and Frequency of occurrence of convection events

both, before and during the cold event are shown in Fig. 4.

The left column represents the state of the northern

Atlantic ocean before the freshwater pulse is applied. The

well known North Atlantic conveyor belt is well repre-

sented in the meridional stream function. The relatively

warm and saline water is transported north by the near

surface North Atlantic current. The potential density

q = f(T,S) (Fig. 4c, d) that depends on temperature and

salinity shows a vertical instability as the isolines proceed

vertically, thus downward convection takes place. The

Fig. 3 The two-dimensional parameter space of horizontal ocean

diffusivity ðkhÞ and vertical ocean diffusivity at the turning point of

the Bryan Lewis profile ðkvÞ with different constrained domains:

Physically plausible Domain represents the ranges of parameters for

which the model is feasible, that is the largest physically feasible

domain. The green dots represent that part of an equilibrium run

ensemble under present day conditions which passes all of the seven

present day constraints imposed by Schneider von Deimling et al.

(2006); the resulting domain in diffusivity space is called Present Day

domain. The parameter values marked by ai represent a choice of

loglinear combinations alpha of diffusivity parameters along a

dimension ½aþ � a�� that is most influential on the Atlantic

overturning circulation, as pointed out by Held and Kleinen (2004)

(and along a dimension orthogonal to ½aþ � a��Þ

Table 1 Experiment parameters of the 8.2 ka event simulation:

shown are (a) the relatively certain and (b) the uncertain nuisance

freshwater forcing parameters that are taken as their (a) known or (b)

maximum likelihood values; (c) finally the uncertain internal

parameters are listed with their initial quantiles

(a) Uncertain forcing parameter (maximum likelihood)

Amplitude of freshwater noise r 0.05 Sv

Strength of freshwater baseline FW 0.03 Sv

Duration of freshwater

baseline after 9000 BP

D 1,000 years

Early holocene backgroud forcing

relative to present day

0 Sv

(b) Certain forcing parameter

Duration of freshwater pulse 2 years

Amplitude of freshwater pulse 2.6 Sv

Timing of freshwater pulse 8200 BP

(c) Uncertain internal parameter

Horizontal ocean diffusivity ahoc 200–5,000 m2/s

Vertical ocean diffusivity aKv 0.5–1.5 9 10-4 m2/s
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water sinks down at the Iceland–Greenland ridge and flows

southward as North Atlantic Deep Water. Normally, that

means in the standard Holocene setting denoted as ON

mode of the North Atlantic Overturning Circulation, the

maximum of this circulation is located slightly north of

the Iceland-Greenland ridge at a depth between 500 and

1,000 m.

At 8.2 ka BP an enormous amount of freshwater is

released into the surface layer of the northern Atlantic.

Thus the density of the surface layer is lower than the

deeper ocean, the water column becomes stable (Fig. 4d)

and the deep convection stops immediately. As the north-

ward transport of warm saline water does not stop, the

overturning is not turned off completely but shifted

southward; the surface water now sinks at a latitude of

40–50�N (see Fig. 4b). During the event the convection is

shifted south and consists of a purely wind driven part at

the surface and a slowed overturning that reaches only

500 m downwards. The OFF mode only shows the wind

driven surface current without any convection events (not

shown).

The vertical diffusivity influences the rate of occurence

and the vertical range of mixing events. Therefore, a higher

vertical diffusivity smoothes the gradient in potential

density and reduces the instability that drives the over-

turning circulation. Thus the MOC is weaker for higher

diffusivities and recovers more slowly from the 8.2 ka

cold event. As the overturning is weakened at 8.2 ka BP,

the northward heat transport is also reduced and thus the

temperature in the northern hemisphere decreases whereas

the southern hemisphere becomes warmer due to the so

called seesaw effect (Crowley 1992). As the overturning

does not stop completely, a northward transport of warm

water below the surface continues and warm water accu-

mulates north of the original overturning area. Caused

by relatively small pertubations (from synoptic scale
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Fig. 4 Characterization of the

cold event in various state

variables in the northern

Atlantic. From top to bottom:

Atlantic meridional stream

function in Sv, potential density

in kg m-3 above 103 kg m-3

and frequency of occurrence of

convection events without (left)
and with (right) cold event in

transient 8.2 ka event

simulation. Isolines are in steps

of 3 Sv, 0.4 kg m-3 and 0.1,

respectively
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freshwater fluxes) this warm water can then restart the

circulation very quickly. This process may explain the fast

recovery of the deep overturning at the end of the cold

event. The cooling is seen strongest in the North Atlantic

region (about 5�C in Greenland temperature. The cooling is

accompanied by lesser precipitation. In this example the

cold period lasts about 250 years.

4.2 Histogram of cold event durations

Running the 8.2 ka scenario several hundred times 150–

350 for each combination of diffusivities and considering

only the duration of the cold event (computed by a non-

linear trapezoid fit) one ends up with a histogram of cold

event duration (see Fig. 5). The histogram reveals a system

of at least two different modes of duration: A short mode

around 80 years and a longer mode centred about 30 years

after the termination of the additional baseline flux used in

the experiment. This points to coexisting physical effects as

origin for the modes, represented by different factors in the

experimental setup. Sensitivity analysis on the experiment

related parameters (strength and duration of freshwater

baseline flux, amplitude of noise) and comparison of dif-

ferent model output (density- and salinity field output,

stream function) point to the following explanation: The

short mode represents the mean lifetime of the shortening

of overturning circulation, which is not altered consider-

ably by different values of freshwater strength unless the

baseline gets strong enough to completely shut down the

circulation. The second mode is clearly triggered by

the termination of the baseline flux. It seems clear that a

continuing inflow of freshwater hinders the overturning

from recovering as it smoothes the gradient in density.

The first mode centred around 80 years represents a

centennial time scale. The analysis of typical scales of

advective processes influencing the upper Atlantic provides

the appropriate centennial time scale. The characteristic

time scale for the decay of regional distortions only reaches

from annual to decadal scales and the diffusive scale of the

Atlantic reaches 1,000 years. As the advective processes

that seem to be responsible for the duration of the cold

event (i.e. they have a centennial time scale) at least have a

hemispheric spatial scale this points to an at least hemi-

spherical impact of the 8.2 ka event in CLIMBER-2.3.

Besides the resulting mean of cold event duration in

mode one is too short by a factor 2 compared to the

Greenland ice core data. As this mode was not to be altered

by adjusting the experiment related parameters it follows

that the single-pulse scenario in CLIMBER-2.3 is not able

to produce sensible high likelihood for a duration of

160 years without additional baseline flux. This leads to

different possible conclusions: Under the assumption that

nature has realized a highly probable state during the 8.2

ka event this means that either the model setting is in

general unable to realistically represent the 8.2 ka event or

if not so the one-pulse scenario can only lead to a high

likelihood by introducing additional baseline fluxes (as

done in this experiment). As an alternative one would have

to consider a multi-pulse scenario. Although the forcing

used here leads to an interesting exited mode of MOC with

a timescale indicating at least hemispherical range of the

event the question of the physical processes, structural

design and environmental conditions behind this time scale

remain open to further studies.

4.3 Uncertainty reduction in ocean parameters

From this nonlinear fits of cold event duration the corre-

sponding likelihood was computed according to Eq. 2 (see

Appendix) for all ai. The resulting data of empirical likeli-

hood are well represented by a 2D Gaussian Least Square fit.

Figure 6 shows the (red) area in diffusivity space with like-

lihood above 1/20 of maximum likelihood (for a Gaussian

distribution this corresponds to the 95% quantile of the dis-

tribution). The point of maximum likelihood and the error

bars in the diffusivities can directly be extracted: The maxi-

mum likelihood is found at a = 2,265, 0.75 9 10-4 (m2/s).

The 95% quantiles lc arise as ahoc = 1,100–3,300 m2/s and

av = 0.58–0.88 9 10-4 m 2/s. The values of av at the

turning point of the Bryan Lewis profile (at depth of

2,500 m) correspond to an interval of 1–4 9 10-5 m2/s in

the upper ocean layer (against 1–8 9 10-5 m2/s prior to

the experiment). This error bar enables different inter-

pretations: First the error bar lc can be interpreted as ratio
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Fig. 5 Example of a histogram of durations T of the cold event

for different realizations of noise g for one parameter setting:

ahoc ¼ 2; 000 m2=s; av ¼ 0:8� 10�4 m2=s;rnoise ¼ 0:06 Sv;Dbaseline ¼
1; 000 years
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of likelihood without need of any prior distribution,

thereby loosing a probabilistic measure but gaining

objectivity. Second, the Gaussian shape of the likelihood

(and thereby also of the posterior distribution) and the

assumption of a quasi-uniform prior distribution8 allows

to interpret the error bar as posterior quantile. The fitted

2D Gaussian function encloses a probability of 95%

within the part above the 1/20-level. Taking the Present

Day Domain to enclose B95% probability this represents

a reduction of uncertainty in ahoc and av of about a factor

2 (on logarithmic scale) or larger against the ranges of the

Present Day Domain (assuming locally approximately flat

prior).

5 Discussion

Comparing our resulting ranges in the vertical ocean dif-

fusivity parameter with constraints contempted by Forest

et al. (2008) we find that the spread both before (0.5–

1 cm2/s) and after (0.5–0.7 cm2/s) including the 8.2 ka

information is quite small and lies within the confidence

region of their posterior distribution (0.2–2 cm2/s) for

global mean parameter for diffusivity of mixing anomalies.

This far smaller spread may be explained by the fact that

out ensemble created to include pre-industrial equilibrium

climate as constraint was produced by only variing the

diffusivity parameters whereas Forest et al. (2008) simul-

taneously vary the diffusivity parameter and both equili-

brium and effective climate sensitivity. And as another

point of concern the principle comparability between the

parameters in the two models may be questioned as they

arise from different assumptions and the ocean models

differ in processes they resolve. In comparison to the

GCMs of the current IPCC assessment report our range of

diffusivity parameters lies within the region of extremly

small values. But Forest et al. (2008) found that these small

values are highly probable given the twentieth century

temperature data.

The success of the learning from the 8.2 ka event is

limited by different imperfections that lead to an over/

under-estimation of the learning effect and the remaining

uncertainty: (1) The number of parameters to learn on had

to be constrained leading to an underestimation of

remaining uncertainty as additional learning parameters

would add their own uncertainty. In a first iteration the

method was demonstrated by choosing only 2D learning on

the ocean diffusivities as key parameters associated with

ocean circulation changes, here with abrupt ocean

circulation changes, with all other parameters taken as

known constants. (2) The basis of comparison between

model and data was chosen as one-dimensional output,

namely the duration of the cold event as seen in the

Greenland ice core data. This approach potentially over-

estimates the remaining uncertainty as not all available

information about the event is used. (3) The strength of the

approach of directly estimating the likelihood from

ensemble runs is that no specific functional form has to be

assumed a priori; but leading to higher computational

effort.

To overcome imperfection (1) a next step would be the

inclusion of at least all of the experiment related parame-

ters (duration and strength of additional baseline flux,

amplitude of freshwater noise) and other parameters

potentially influencing the result, like the depth of the

mixed ocean layer or sea ice extend. Here the limitation of

the model data comparison can be seen clearly: We

expanded the likelihood to a third dimension by including

the strength of the baseline flux as an additional parameter

at the cost of 20 additional shots in the now three-dimen-

sional parameter space. As a result the learning effect on

the horizontal diffusivity vanishes as it strongly depends on

the baseline flux. This could have been expected as

CLIMBER-2.3 only provides a 2D ocean with an averaged

longitudinal dimension. However the learning effect on the

vertical diffusivity is only slightly weakened. Also a
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Fig. 6 Quantiles of the Gaussian fit to the empirical likelihood

[which is identical in shape to the posterior distribution Ppost (a) for

flat prior] after including the knowledge stemming from the 8.2 ka

event in comparison to the right part of the Present Day domain. The

black points represent sampling points for which the likelihood was

established by a 300 member ensemble of different noise realizations.

The coloured areas represent the quantiles of the posterior distribu-

tion. The real value of diffusivities lies within the yellow domain with

15% probability (given the experimental setup and the prior

knowledge). Thus the outer red domain represents the 95% quantile

of diffusivity values after the 8.2 ka experiment

8 Assuming quasi-uniform prior distribution the posterior probability

distribution function Ppost (a can be gained by simply normalizing the

likelihood by the number of samples ai.
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change towards a multipulse drainage of Lake-Agassiz is

possible. This would surely change the histograms of cold

event durations by adding other modes and therefore would

also change the resulting posterior pdf. Actually one could

suppose that the learning effect from the 8.2 ka event

would be diminished by assuming a multipulse freshwater

scenario with uncertain timing of the pulses as any duration

of cooling is achievable even without adding noise or an

additional baseline flux just by the appropriate series of

freshwater pulses. Therefore, the route towards a multi

pulse scenario is another possible path to be taken in future

research and hopefully the uncertainty about the freshwater

forcing in general will be reduced by further hydrological

and glaciological investigations.

It is obvious that when adding more uncertain parame-

ters the uncertainty in each single parameter rises. The

information contained in the data of the 8.2 ka event can

only be allocated amongst the parameter under consider-

ation. An extended comparison of time series of data fields

would preserve more information of the 8.2 ka event. For

instance the inclusion of additional data like reconstruc-

tions of monsoon precipitation patterns, sea surface tem-

perature or sea ice extend would increase the basis of

information available [thereby addressing (2) and (1)

simultaneously].

Hereby the key question is whether the uncertainty in

the freshwater forcing required to reproduce the 8.2 ka

event can be reduced by new modelling exercises (e.g. ice-

sheets, lakes, etc.) or by new data. This would highly

increase the potential of reducing important model

parameter uncertainty within more complex climate mod-

els by making the harvest of data on the cold event more

effective.

The uncertainty reduction in ocean diffusivities can be

linked to other important parameters like the overall

freshwater input from North America into the Atlantic and

the distance of the North Atlantic Thermohaline Circula-

tion (THC) to a shut down. The linkage has to be estab-

lished as functional dependence of the quantity in question

on the diffusivity space. A potential linkage between ocean

diffusivity, freshwater input and distance to THC shutdown

Dl will open different valuable possibilities for constraints

on uncertainties: Following Sect. 3, namely that the overall

freshwater forcing (in terms of the 8.2 ka event the known

background flux) is constant the linkage could be used to

further reduce the uncertainty of the diffusivities. Alter-

natively one could use the link to transfer the uncertainty

reduction effect on the diffusivities to a reduction effect on

the Dl and thus constraining the proximity to a THC

breakdown. Those links provide the possibility to freely

choose the parameter that is most suitable to be measured

and the one to perform a Bayesian analysis about indi-

rectly. Of course such links are only valid if one trusts the

model to rightly represent all processes involved in this

causal chain.

Finally, to solve (3), the usage of more complex models,

advanced sampling schemes and improved insights in the

processes involved in the 8.2 ka event would probably

allow to estimate the likelihood less costly (in terms of

computational cost). Whatever the state of development,

for each implementation of Bayesian Analysis a balance

between complexity in model-data comparison and com-

plexity in the uncertainty space must be found; limited by

the available computational power and the information

content in the data. When interpreting the results one has

also to keep in mind that the employed model and data

themselves set limits on how close the result can get to

reality. The results are a priori only valid inside the stylised

world of CLIMBER-2.3.

6 Summary

Employing CLIMBER-2.3 a scheme how to extract infor-

mation through Bayesian analysis from paleo-data con-

taining the 8.2 ka event was implemented to constrain

model parameters representing ocean diffusivities.

Ensemble simulations of the 8.2 ka cold event in CLIM-

BER-2.3 revealed a time scale of cooling that points

towards an at least hemispherical spread of the event. The

inability of CLIMBER-2.3 to reproduce the right duration

of cooling within a one-pulse scenario emphasizes the

importance of including additional continental runoff

around the 8.2 ka event. Within affordable costs of com-

putation the likelihood of the diffusivity parameters was

estimated from ensemble runs of the noisy version of

CLIMBER-2.3. The method led to considerable reductions

of uncertainty in the vertical ocean diffusivity (factor 2 vs.

prior knowledge). Sensitivity tests on forcing parameters

revealed weaknesses in the method and hampered the

uncertainty reduction effect on horizontal diffusivity.

The limited availability of computational power rises

constraints on the dimension of model-data comparison

and the dimension of parameter space to be investigated by

Bayesian Analysis. Due to this imperfections all results

presented here prove valid in the stylised CLIMBER-2.3

world only. The dependence of the results on the specific

modelling framework of CLIMBER-2.3 needs to be

assessed by a modelling comparison exercise. Besides this

structural uncertainty, the main assumption within CLIM-

BER-2.3, namely that the models performance at the 8.2

ka event is fully determined by ocean diffusivity parame-

ters, needs to be validated by including other uncertain

model parameters, especially the atmospheric parameters

and their influence on the sea-ice extent. Therefore this

study can only be seen as a preliminary and conceptual
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investigation of the feasibility and value of the Bayesian

assimilation scheme integrating the 8.2 ka event. A more

sophisticated treatment of the subject by using more

complex models (paleo-GCMs) and data (e.g. SST recon-

structions for equatorial Atlantic, reconstructions of pre-

cipitation in monsoon regions) will help in better

evaluating the potential of the 8.2 ka event for con-

straining important model parameters.
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Appendices

Bayesian analysis

Over the last decades, climate science has employed two

main statistical concepts to infer from data on model (or,

generally, system) properties: (1) the frequentist and (2) the

Bayesian approach (for an overview on the various pros

and cons of both approaches, see e.g. Berger 1985). For

either approach we would need to establish the likelihood

function LðajyÞ that delivers the relative plausibility of

parameter value a in view of the evidence (observational

manifestation) y. Hereby L can be chosen as LðajyÞ ¼
PðyjaÞ; i.e. the probability for the observation y under the

parameter assumption a.

Then from the frequentist approach we can derive inter-

vals of confidence (or, in a multivariate setting, areas or

volumes of confidence) on a, given the observation y, L and a

desired level of confidence. The Bayesian approach requires

(in addition to L, y) the specification of a prior probability

distribution on a,P(a). In general, P(a) represents subjective

prior knowledge on a; hereby ‘‘subjective’’ meant in the

sense of ‘‘relating to the mind of a (well-informed) subject’’

Rougier 2007 (rather than indicating distorted, non-scientific

information). Prior knowledge P and additional data repre-

sented by L are merged to the posterior distribution (repre-

senting knowledge after the observation is made) by:

PpostðaÞ ¼
PpriorðaÞPðyjaÞR

da0Ppriorða0ÞPðyja0Þ
: ð4Þ

Bayes (1783), Berger (1985), O’Hagan and Forster

(2004) (‘‘Bayes’ formula’’). Compared to the frequentist

approach, the Bayesian approach comes with the following

advantages: (1) the Bayesian posterior carries the

maximum information, given the observation (Berger

1985), (2) the output (the posterior) is a probability

distribution rather than an interval, hence it (a) can be

interpreted as new prior if additional, statistically

independent observations become available, allowing for

repeated application of Bayes’ formula, (b) can be

transformed into other quantities of interest without loss

of information, (3) the statistical procedure (i.e. Eq. 4) is

unique while in the frequentist case, the statistic becomes

(if at all) unique only after additional assumptions are

made, (4) if L is non-analytic (in particular if a is related to

data by a nonlinear mapping) then it may happen that a

well-established frequentist statistic may come of a lot of

loss of information or a case-optimised frequentist statistic

is by definition not well-established and hence lacks a

common interpretation in the community—while Bayes’

formula holds in any case.

As drawback of the Bayesian scheme it is often articu-

lated that it needs subjective knowledge and that subjective

knowledge may generically be poorly represented by a

prior distribution Walley, 1991. Quite the contrary, the

frequentist approach does not require input of a prior

(generically subjective) distribution.

The climate community has utilised both approaches.

Over the last decades, when attributing global warming to

anthropogenic CO2 emissions, mainly the frequentist

approach was followed (for an overview on concept, see

e.g. Allen and Tett 1999). Global mean temperature rise

was interpreted as a linear superposition of forcings from

competing agents, including CO2. Under the assumption of

Gaussian model—data discrepancies, ellipses of confi-

dence on the transfer coefficient vector were derived,

thereby representing error bars of linear regression

analysis.

Quite the contrary, considering climate model output as

a function of uncertain climate model parameters, one

generically deals with a nonlinear, rather complex relation,

hence several ‘‘pro-Bayesian items’’ of above list hold.

Forest et al. (2002) established a ‘‘perturbed physics

ensemble’’ (PPE) by sampling multivariate parameter

space and comparing time series of several output quanti-

ties to observation data. They used a frequentist approach

to infer on climate sensitivity, but in addition, obtained

more informative results from an approximate Bayesian

approach. Thereafter a dozen of further studies (for an

overview, see Collins and Knight 2007) Bayesian analysed

PPEs of their models. Hereby, in the practical application

of Bayes’ formula, for any of the three items of the right

hand side of the equation, conceptual and technical chal-

lenges emerge.

On the choice of the prior distribution, rather than

eliciting an expert’s prior, most authors pragmatically
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followed the ideology of ‘‘objective Bayesianism’’ (Ro-

senkrantz 1977), i.e. that in case of low prior knowledge,

consistent results are obtained if a uniform density distri-

bution or at least a distribution with a rather flat maximum

is used (‘‘non-informative prior’’). However, Bertrand

(1889) argues that this approach may lead to paradoxical

situations, in our view only to be resolved within a

generalised Bayesian concept (Walley 1991). Roughly

speaking, weak prior knowledge may be more adequately

modelled by classes of priors rather than a single

prior. Within climate science, Kriegler and Held (2005),

Tomassini et al. (2007) utilised such generalised pro-

cedures resulting in larger spans of posterior uncertainty.

For the remainder of this article, however, we stick to the

main stream of applied Bayesianism in climate science that

utilises quasi ‘‘non-informative’’ priors in cases where

explicit expert interviews on prior knowledge are lacking.

One can interpret posteriors obtained from ‘‘low informa-

tion’’ priors as low-uncertainty bounds (Held and von

Deimling 2006) on results that would have been obtained

from the more sophisticated, generalised, yet computa-

tionally much more demanding procedures described and

demonstrated in (Kriegler and Held 2005; Tomassini et al.

2007; Walley 1991).

Most Bayesian studies in climate science derive the

likelihood L from Gaussian weather fluctuations around a

slowly increasing temperature mean, estimated from

GCM runs, on the order of a thousand model years long

(see, e.g. Forest et al. 2002). The Gaussian assumption

allows to analytically express L in terms of the difference

of model and observation temperature signal (the ‘‘first

moment’’). Hereby the covariance structure (i.e. the sec-

ond moment) is silently assumed as independent of model

parameters, and model parameter values would influence

the first moments only. A more consistent approach is

followed by Wigley et al. (2005) for the special case of

an analytically tractable climate model. In the present

study, we have no reasons to assume a Gaussian likeli-

hood apriori, as the 8k event is highly nonlinear a

mechanism. Hence we choose to numerically approximate

L. As we will outline below, we identify y with the

duration T of a cold event, subject to stochastic realisa-

tions in CLIMBER-2.3. For any value of a we need to

generate a histogram as a proxy for PðTjaÞ / LðaÞ: We

would like to stress that making up the likelihood from a

nonlinear model involves an additional layer of numerical

complexity as well as conceptual self-consistency, not

addressed in most Bayesian climate model analyses so

far. Finally, Bayes’ formula requires to solve the multi-

variate integral
R

da0Ppriorða0ÞPðyja0Þ: The standard

approach is to interpret the PPE as a sample over the

multivariate parameter space such that it can be used as a

numerical approximation of that integral (Robert and

Casella 1999), an approach we also follow here. Alter-

natively, one may explicitly involve an ‘‘emulator’’ as an

approximation of the complex climate model, allowing

for a more guided selection of test runs of the complex

model (Rougier and Sexton 2007).

Applying weather noise to CLIMBER-2.3 output

To ensure the comparability of CLIMBER-2.3 output to

Greenland paleo-data, the model output has to be adapted

to the data by applying local weather noise9, not repre-

sented in the CLIMBER-2.3 output. In this study an

additive weather noise model f is suggested. The

CLIMBER-2.3 output is modified in the way: y0 ! y :¼
y0 þ f; where f is drawn iid from a normal distribution

N(0,r). The main assumption of this transformation is

that noise-driven CLIMBER-2.3 has all the necessary

variability beyond weather, reddened10 by ocean

dynamics. The noise amplitude r is transfered from the

observable weather noise in Greenland which is in terms

of d18Oice derived from the covariance of the different

data stations in Greenland to r in units of temperature T

via r2 = x2 9 rweather
2 constrained by the following

assumption:

r2
weather

ðvarðd18OiceÞ � r2
weatherÞ

¼ x2 � r2
weather

varðy0Þ ; ð5Þ

with y0 the stationary CLIMBER-2.3 output, d18Oice the

stationary (without long term trends) Greenland data, x the

transfer factor from d18Oice to temperature (under

the assumption of a simple linear transfer function).

That means the ratio of weather noise to the variance of

the timeseries without weather noise should be the same in

the model output and the data. The difference in the

Greenland data on short time scales (after long term trends

are removed) should only originate from local weather

noise. So the amplitude of this Greenland weather noise

rweather can be derived as variance from the Kriging (see

Wackernagel 1995) of the Greenland ice core data. Hereby

it is important not only to transfer r in unit but also to

rescale the amplitude properly according to the different

time resolutions Dt in data and model output (Kleinen et al.

2003):

rDtffiffiffiffiffi
Dt
p ¼ rDt0ffiffiffiffiffiffi

Dt0
p : ð6Þ

Therefore using rweather and Eq. 6 the transfer parameter

x is tuned to fulfill (5). The resulting time series r (in units

9 Hereby denoting the fraction of variability that does not correlate

with ocean variability.
10 While for white noise the amplitude is generated by a normal

distribution for each single timestep, red noise contains a memory of

amplitude of distortion from earlier time steps.
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of temperature change per year) can either be directly

applied to the CLIMBER-2.3 output for each timestep, or

one takes only the mean of r as a global noise amplitude.

In this study we used the latter approach by applying a

global amplitude of weather noise (in units of temperature

change per year).
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