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In mathematics, the term approximation usually means either interpolation on a point set or
approximation with respect to a given distance. There is a concept, which joins the two approaches
together, and this is the concept of characterization of the best approximants via interpolation. It
turns out that for some large classes of functions the best approximants with respect to a certain
distance can be constructed by interpolation on a point set that does not depend on the choice
of the function to be approximated. Such point sets are called canonical sets of best approximation.
The present paper summarizes results on canonical sets of best L1-approximation with emphasis
on multivariate interpolation and best L1-approximation by blending functions. The best L1-
approximants are characterized as transfinite interpolants on canonical sets. The notion of a Haar-
Chebyshev system in the multivariate case is discussed also. In this context, it is shown that
some multivariate interpolation spaces share properties of univariate Haar-Chebyshev systems.
We study also the problem of best one-sided multivariate L1-approximation by sums of univariate
functions. Explicit constructions of best one-sided L1-approximants give rise to well-known and
new inequalities.

1. Canonical Interpolation Sets of Best L1-Approximation

We start with the notion of a canonical set of best L1-approximation. Let μ be a positive Borel
measure defined on the compact setK ⊂ Rd such that the quantity ‖f‖1 :=

∫
K |f |dμ represents

a norm in the linear space C(K) of functions that are continuous on K. Let U be a linear
subspace of C(K).
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1.1. The Problem of Best L1(μ)-Approximation

Given a function f ∈ C(K), then we have the following.

(A) Best L1(μ)-approximation of f by elements ofU: find a function uf ∈ U such that

∥
∥f − uf

∥
∥
1 ≤

∥
∥f − u∥∥1 ∀u ∈ U. (1.1)

(B) Best one-sided from above L1(μ)-approximation by elements of U: find a function
u∗f ∈ U, u∗f ≥ f on K, such that

∥
∥
∥f − u∗f

∥
∥
∥
1
≤ ∥

∥f − u∥∥1 ∀u ∈ U, u ≥ f on K. (1.2)

(C) Best one-sided from below L1(μ)-approximation by elements of U: find a function
u∗f ∈ U, u∗f ≤ f on K, such that

∥∥f − u∗f
∥∥
1 ≤

∥∥f − u∥∥1 ∀u ∈ U, u ≤ f on K. (1.3)

Any solution uf of the approximation problem (A) is called a best L1(μ)-
approximant to f fromU. Any solution of the approximation problem (B) is called a
best one-sided from above L1(μ)-approximant to f fromU; respectively from below
for the approximation problem (C). When μ is the usual Lebesgue measure, we use
the notation L1-approximation, respectively, L1-approximant.

For qualitative results on best L1(μ)-approximation from finite-dimensional
subspaces see [1].

1.2. Lagrange Interpolation Problem

Given a function f ∈ C(K). We call a subset X ⊂ K unisolvent for U if the interpolation
problem

u(x) = f(x), x ∈ X (1.4)

possesses a unique solution u ∈ U for every f ∈ C(K).

1.3. Canonical Sets of Best L1-Approximation

Let C ⊂ C(K) be a class of functions. We say that a set X ⊂ K, which is unisolvent for U, is
a canonical set of best L1(μ)-approximation to C, if for all f ∈ C the solution of the interpolation
problem (1.4) is a best L1(μ)-approximant to f fromU. Analogously, a unisolvent set X∗ ⊂ K
for U (resp., X∗ ⊂ K) is called a canonical set of best one-sided from above (resp., from below)
L1(μ)-approximation to C, if for all f ∈ C the solution of the interpolation problem (1.4)
with X replaced by X∗ (resp., X∗) is a best one-sided from above (resp., from below) L1(μ)-
approximant to f from U. In the case of one-sided L1(μ)-approximation the interpolation
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problem (1.4) is considered in a broader Lagrange-Hermite interpolation sense: for all points
x ∈ X which are interior for K we require matching not only the values of u and f but also
the values of their first (partial) derivatives.

2. Canonical Sets of Univariate Best L1-Approximation

For details on the results in the present section see [1–6]. In the univariate case, when the
set K is an interval [a, b] and the subspace U is finite-dimensional, the problem of existence
and characterization of a canonical set is well studied and is closely related to the notion of a
Haar-Chebyshev system (see [1] for details).

2.1. Haar-Chebyshev System of Order n

A set of n functions {u1, u2, . . . , un} ⊂ C[a, b] is a Haar-Chebyshev system (T -system) of order
n on the interval [a, b] if each nontrivial linear combination of u1, u2, . . . , un has at most n − 1
zeros in [a, b]. In other words, a set of n functions {u1, u2, . . . , un} is a Haar-Chebyshev system
of order n on the interval [a, b] if it is linearly independent with respect to an arbitrary chosen
set of n distinct points in [a, b]. We say that an n-dimensional subspace U of C[a, b] is a
Haar-Chebyshev space (T-space) of order n on [a, b] if every u ∈ U, u/≡ 0, has no more than
n − 1 distinct zeros in [a, b]. Equivalently, U is a T -space of order n on [a, b], if for every
basis u1, u2, . . . , un of U there exists an ε ∈ {−1, 1} such that εdet {ui(xj)}ni,j=1 > 0 for all
a ≤ x1 < x2 < · · · < xn ≤ b. It is also often said that the basis functions u1, u2, . . . , un constitute
a T -space of order n on [a, b].

2.2. Characterization of Best L1(μ)-Approximation by Canonical
Interpolation Sets

Following [1], throughout this section we suppose that μ is a finite positive nonatomic
measure. The problem of best L1(μ)-approximation by a Haar-Chebyshev space has an
elegant solution via interpolation on a canonical set. Let U ⊂ C[a, b] be a Haar-Chebyshev
space of order n and let u1, u2, . . . , un be a basis ofU. Consider the convex cone C+(U) defined
as

C+(U) :=
{
un+1 : det

{
ui
(
xj
)}n+1

i,j=1 ≥ 0
}

(2.1)

for all a ≤ x1 < x2 < · · · < xn < xn+1 ≤ b.

Theorem 2.1. Let U ⊂ C[a, b] be a Haar-Chebyshev space of order n on [a, b]. Then the following
holds true.

(a) Uniqueness of the Canonical Set. There is a unique set of points a = x0 < x1 < · · · < xn+1 =
b such that

n+1∑

j=1

(−1)j
∫xj

xj−1
udμ = 0, ∀u ∈ U. (2.2)



4 Journal of Function Spaces and Applications

(b) Best L1(μ)-Approximation via Interpolation. Let f ∈ C+(U). Then the unique solution
uf ∈ U of the interpolation problem

uf
(
xj
)
= f

(
xj
)
, j = 1, 2, . . . , n (2.3)

is the unique best L1(μ)-approximant to f fromU.

Remark 2.2. Following Theorem 2.1, the set {xk}nk=1 is a canonical set of best L1(μ)-
approximation to the convex cone C+(U) of functions from the T -space U. In many cases
the approximating subspace U can be a kernel of a certain differential operator D, that is,
U = Ker D and the convex cone C+

D(U) of functions to be approximated can be defined by

C+
D(U) :=

{
f ∈ C[a, b] : Df(x) ≥ 0 for x ∈ [a, b]

}
. (2.4)

Remark 2.3. Note that if a canonical set of best L1-approximation exists for a functional set,
then the nonlinear problem of best L1-approximation becomes a linear interpolation problem
in this functional set.

2.3. Best L1-Approximation by Algebraic Polynomials

Denote by πn−1 the linear space of polynomials of degree ≤ n− 1. Taking into account that the
polynomial basis uk = xk−1, k = 1, . . . , n of πn−1 is a T -system of order n on any interval [a, b],
the best polynomial L1-approximant to a given function f from πn−1 can be characterized as
a polynomial interpolant to f with respect to a canonical set if f belongs to an appropriately
chosen convex cone of functions. In this direction we formulate a result due to S. Bernstein
[2, 3].

Theorem 2.4. Let f ∈ Cn[−1, 1] and f (n)(x) ≥ 0 for x ∈ [−1, 1]. Then, the polynomial pf of degree
≤ n − 1 is the unique polynomial of best L1-approximation to f from πn−1 on [−1, 1] if and only if

pf(xk) = f(xk), 1 ≤ k ≤ n, (2.5)

where the interpolation nodes xk = cos[kπ/(n + 1)], k = 1, . . . , n are the zeros of the n-degree
Chebyshev polynomial of second kind

Un(x) =
sin[(n + 1)arccos(x)]√

1 − x2
. (2.6)

Remark 2.5. By Theorem 2.4, the interpolation points xk, k = 1, . . . , n form a canonical set of
best L1-approximation from πn−1 to the convex cone

{
f ∈ Cn[−1, 1] : f (n)(x) ≥ 0, x ∈ [−1, 1]

}
. (2.7)

Note that a canonical set may change with respect to the choice of the approximating
space. For example, following Theorem 2.4, the canonical set of best polynomial L1-
approximation depends on the degree of the polynomial approximant.
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Corollary 2.6. The n-degree polynomial

Un(x)
2n

=
sin[(n + 1)arccos(x)]

2n
√
1 − x2

(2.8)

is the unique monic (with leading coefficient 1) polynomial of degree n which has a minimal L1-norm
(minimal L1-deviation) on [−1, 1].

We formulate a result on best L1-approximation by algebraic polynomials according
to A. Markov (see [2, 3] for details) that is based on the notion of a Haar-Chebyshev system.

Theorem 2.7. Let f ∈ C[−1, 1] be such that the set

{
1, x, x2, . . . , xn−1, f

}
(2.9)

is a Haar-Chebyshev system of order n+1 on [−1, 1]. Then the unique polynomial Lagrange interpolant
pf to f from πn−1 with respect to the zeros xk, k = 1, . . . , n of the n-degree Chebyshev polynomial of
second kind is the unique best L1-approximant to f from πn−1.

Remark 2.8. In the particular case f ∈ C(n)[−1, 1] and f (n)(x) > 0, x ∈ [−1, 1] of Theorem 2.4,
the set of functions {1, x, 2, . . . , xn−1, f} is a Haar-Chebyshev system of order n + 1 in [−1, 1].
Hence in this particular case, Theorem 2.4 is a corollary by Theorem 2.7. The notion of Haar-
Chebyshev system implies that f−p cannot havemore than n zeros on [−1, 1], where p ∈ πn−1.

2.4. Best L1-Approximation by Trigonometric Polynomials

Let Tn be the linear space of trigonometric polynomials of degree ≤ n. Consider the normed
linear space L1[0, 2π] of 2π-periodic functions whose absolute value has a finite integral on
[0, 2π] and equipped with the L1-norm

∥∥f
∥∥
1 :=

∫2π

0

∣∣f(θ)
∣∣dθ. (2.10)

The linear space Tn is a finite dimensional subspace of L1[0, 2π]. For a given f ∈ L1[0, 2π],
there exists a best L1-approximant t ∈ Tn (see [2] for details). Note that Tn is a Haar-
Chebyshev space of order 2n + 1 on [0, 2π). Let C̃2n+1[0, 2π) denote the linear space of 2π-
periodic functions having continuous derivatives of order 2n+1 on [0, 2π). The next theorem
[7] is a canonical set characterization of the best trigonometric L1-approximants from Tn to
functions from the convex cone

C̃2n+1
+ :=

{
f : f ∈ C̃2n+1[0, 2π), D(2n+1)f(θ) ≥ 0 for θ ∈ [0, 2π)

}
, (2.11)
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where the differential operator D(2n+1) is defined as

D(2n+1) := D
n∏

k=1

(
D2 + k2

)
, D =

d

dx
. (2.12)

Theorem 2.9. Let f ∈ C̃2n+1
+ . Then, the unique Lagrange trigonometric interpolant tf from Tn to f

at the interpolation nodes kπ/(n+ 1), k = 1, . . . , 2n+ 1 is the unique best L1-approximant to f from
Tn.

2.5. Characterization of Best One-Sided L1(μ)-Approximation

Best one-sided L1(μ)-approximation is related to the principal representations of the measure μ,
that is, to the so-called quadrature formulae of Gaussian, Lobatto, and Radau type (for details see
[1, 3–6]).

2.5.1. Quadrature Formulae of Gaussian, Lobatto, and Radau Type

LetU be a Haar-Chebyshev space of order n.

(a) If n = 2m, then there exist unique sets of points a < xG1 < xG2 < · · · < xGm < b and
a = xL0 < x

L
1 < · · · < xLm = b, and unique sets of positive numbers {aGj }

m

j=1
and {aLj }

m

j=0
such that the quadrature formulae

∫b

a

fdμ ≈ QG[f
]
:=

m∑

j=1

aGj f
(
xGj

) (
Gaussian type quadrature formula

)
,

∫b

a

fdμ ≈ QL[f
]
:=

m∑

j=0

aLj f
(
xLj

) (
Lobatto type quadrature formula

)
(2.13)

are exact for all u ∈ U.

(b) If n = 2m + 1, then there exist unique sets of points a = xR−0 < xR−1 < · · · < xR−m < b

and a < xR+0 < xR+1 < · · · < xR+m = b, and unique sets of positive numbers{aR−j }m
j=0

and

{aR+j }m
j=0

such that the quadrature formulae

∫b

a

fdμ ≈ QR−[f
]
:=

m∑

j=0

aR−j f
(
xR−j

) (
left Radau type quadrature formula

)
,

∫b

a

fdμ ≈ QR+[f
]
:=

m∑

j=0

aR+j f
(
xR+j

) (
right Radau type quadrature formula

)
(2.14)

are exact for all u ∈ U.

Let u1, u2, . . . , un be a basis of U such that det {ui(xj)}ni,j=1 > 0 for a ≤ x1 < x2 < · · · <
xn ≤ b. Hence, the set of functions {u1, u2, . . . , un} is a Haar-Chebyshev system (T -system)
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of order n on [a, b] or in other words U is an n-order T -space. The following theorem holds
true.

Theorem 2.10. Let U ⊂ C[a, b] be a T -space of order n. Then, for every f ∈ C+(U) there exist
elements of best one-sided L1(μ)-approximation from below u∗f ∈ U and from above u∗f ∈ U.
Moreover, the best one-sided approximants u∗f ∈ U, u∗f ∈ U to f and the function f satisfy

(a) QG[u∗f] = QG[f] and QL[u∗
f
] = QL[f], if n = 2m, and

(b) QR−[u∗f] = QR−[f] and QR+[u∗f ] = QR+[f], if n = 2m + 1.

In order to guarantee the uniqueness of the best one-sided L1(μ)-approximant to a
given function we need the following restriction onU.

2.5.2. Extended Haar-Chebyshev System of Multiplicity 2

A set of n functions {u1, u2, . . . , un} ⊂ C1[a, b] is an n-order extended Haar-Chebyshev
system of multiplicity 2 (n-order ET-system of multiplicity 2) on the interval [a, b] if each
nontrivial linear combination u/≡ 0 of u1, u2, . . . , un has at most n − 1 zeros in [a, b], provided
that the common zeros of u and u′ are counted twice (counting multiplicities 2). In other
words, U is an n-order extended Haar-Chebyshev space of multiplicity 2 (n-order ET-space
of multiplicity 2) on the interval [a, b], if U ⊂ C1[a, b], dim(U) = n and each nontrivial
u ∈ U, u/≡ 0 has at most n − 1 zeros in [a, b], provided that the common zeros of u and u′ are
counted twice (counting multiplicities 2).

2.5.3. Construction of Best One-Sided L1(μ)-Approximants via Interpolation on Canonical
Sets

For details on the results presented here, see [1, 3, 4] and the references given there.

Theorem 2.11. Let U ⊂ C1[a, b] be an n-order ET-space of multiplicity 2 on the interval [a, b].
Then, for every f ∈ C+(U) ∩ C1[a, b] one has the following.

(a) If n = 2m, then the unique solutions u∗f and u∗
f
of the Lagrange-Hermite interpolation

problems

u∗f
(
xGj

)
= f

(
xGj

)
, u′∗f

(
xGj

)
= f ′

(
xGj

)
, j = 1, 2, . . . , m, u∗f ∈ U,

u∗f
(
xLj

)
= f

(
xLj

)
,

(
u∗f

)′(
xLj

)
= f ′

(
xLj

)
, j = 1, 2, . . . , m − 1

u∗f
(
xL0

)
= f

(
xL0

)
, u∗f

(
xLm

)
= f

(
xLm

)
, u∗f ∈ U,

(2.15)

are the unique best one-sided from below, respectively, from above L1(μ)-approximants to f
fromU.
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(b) If n = 2m + 1, then the unique solutions u∗f and u∗f of the Lagrange-Hermite interpolation
problems

u∗f
(
xR−j

)
= f

(
xR−j

)
, u′∗f

(
xR−j

)
= f ′

(
xR−j

)
, j = 1, 2, . . . , m,

u∗f
(
xR−0

)
= f

(
xR−0

)
, u∗f ∈ U,

u∗f
(
xR+j

)
= f

(
xR+j

)
,

(
u∗f

)′(
xR+j

)
= f ′

(
xR+j

)
, j = 0, 1, . . . , m − 1,

u∗f
(
xR+m

)
= f

(
xR+m

)
, u∗f ∈ U,

(2.16)

are the unique best one-sided from below, respectively, from above L1(μ)-approximants to f fromU.

Best one-sided L1-approximant to a given function exists and is unique under some
conditions. Next theorem (for details and similar results see [3, 4, 8]) is an example in this
direction.

Theorem 2.12. Let f be a differentiable, 2π-periodic function and let Tn denote the linear space of all
trigonometric polynomials of degree at most n. Then, the best one-sided L1-approximant from above,
respectively, from below to f from Tn exists and is unique.

Remark 2.13. The set of trigonometric polynomials t∗(θ) = α cos(nθ), where −1 ≤ α ≤ 1 are
best one-sided from below L1-approximants to the continuous 2π-periodic function f(θ) =
| cos(nθ)| from Tn. Hence, continuity is not enough for uniqueness of the best one-sided L1-
approximant to be claimed.

The following theorem (see [7] for details) gives a characterization of the best
one-sided L1-approximants via canonical sets. It can be considered as a refinement of
Theorem 2.12 for functions from the convex cone C̃2n+1

+ .

Theorem 2.14. Let f ∈ C̃2n+1
+ . Let t∗f ∈ Tn be the unique interpolant from Tn to f at the interpolation

nodes 2kπ/(n + 1), k = 1, 2, . . . , n with multiplicities 2 and t∗f(0) = f(0). The interpolant t∗f to f
from Tn is the unique best one-sided from below L1-approximant to f from Tn.

Let t∗f ∈ Tn be the unique interpolant from Tn to f at the interpolation nodes 2kπ/(n+1), k =
1, 2, . . . , n with multiplicities 2 and t∗

f
(2π) = f(2π−). The interpolant t∗

f
to f from Tn is the unique

best one-sided from above L1-approximant to f from Tn.

In order to proceed with the multivariate case we remark that the above-stated
univariate results are constituted by the following prerequisites.

(1) The domain K where the functions are defined is an interval.

(2) The approximating space U in most of the cases is a kernel of a linear ordinary
differential operator D, that is,U = Ker D.

(3) The set on which certain interpolation problem is unisolvent for U consists of a
finite number of points.
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(4) The convex cone C+
D(U) of functions to be approximated is defined by

C+
D(U) :=

{
f : Df exists and Df ≥ 0 on [a, b]

}
. (2.17)

(5) The best (one-sided) L1-approximants are characterized as Lagrange-Hermite
interpolants on canonical sets.

Conditions (3) − (5) are due to the fact that U is a T -space or ET -space of multiplicity
2. It is known that there are no point-wise Haar-Chebyshev systems in the multivariate case
[9, 10] provided that the interpolation set is of finite number of points and the interpolating
spaceU is finite-dimensional. This fact is not surprising taking into account that the kernels of
linear partial differential operators are infinite-dimensional linear spaces. Therefore, the natural
interpolation sets in the multivariate case K ⊂ Rd should be nondenumerable point sets, and
more precisely, (d−1)-dimensional manifolds. Hence, an appropriate transfinite interpolation
on lower dimensional manifolds can be a basis for a canonical set characterization of the best
L1-approximants in the multivariate case. However, unlike the finite number of points in
an interval [a, b] which are topologically equivalent, there is a countless variety of possible
interpolation sets (interpolation grids) in the multivariate case and one cannot expect that
there would be a simple characterization corresponding to that in the univariate case.
Instead, one should consider pairs (U,X) consisting of an approximation space U and a
set X ⊂ K such that X is unisolvent for U. Such sets X are candidates for canonical sets in
the multivariate L1-approximation. There is no consistent general treatment of the canonical
sets of best approximation in Rd and each known result is a solution of a particular problem.
In the next sections we will discuss some of these results and we will focus on multivariate
interpolation and best L1-approximation by blending functions.

3. Algebraic Blending Functions

The linear spaceπm−1 of univariate polynomials of degree ≤ m−1 can be defined as the general
solution of the homogeneous, m-order, linear differential equation p(m)(x) = 0, x ∈ [−1, 1 ].
Hence,

πm−1 =
{
p ∈ Cm(I) :

dmp

dxm
= 0, I := [−1, 1]

}
, (3.1)

where by Cm(I) we denote the linear space of functions having continuous m-order
derivative on [−1, 1]. The linear space πm−1 is of finite dimensionm.

Let I2 = [−1, 1]2 and

Cm,n :=
{
f
(
x, y

)
: Di,jf

(
x, y

) ∈ C
(
I2
)
, 0 ≤ i ≤ m, 0 ≤ j ≤ n

}
, (3.2)

where Di,jf(x, y) := (∂i+j/∂xi ∂yj)f(x, y) is the partial derivative of f of order (i, j). Cm,n

denotes the linear space of all real valued functions having continuous partial derivatives up
to order (m,n) on I2.
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The classical univariate polynomials have a natural multivariate extension by the so-
called algebraic blending functions. Let m,n be nonnegative integer such that m + n ≥ 1. The
space Bm,n of algebraic blending functions of order (m,n) on the unit square I2 is defined as

Bm,n :=
{
h ∈ Cm,n : Dm,nh

(
x, y

)
= 0,

(
x, y

) ∈ I2
}
. (3.3)

In other words, the linear space Bm,n is the general solution of the homogeneous, (m,n)-
order, linear partial differential equation Dm,nh(x, y) = 0 on I2 or, saying it differently, the
linear space Bm,n is the kernel of the linear partial differential operator Dm,n.

Each blending function h ∈ Bm,n of order (m,n) can be represented in the form

h
(
x, y

)
=

m−1∑

k=0

ak
(
y
)
xk +

n−1∑

l=0

bl(x)yl, ak
(
y
) ∈ Cn(I), bl(x) ∈ Cm(I) (3.4)

and obviously, each such function belongs to Bm,n. Hence,

Bm,n =

{

h : h
(
x, y

)
=

m−1∑

k=0

ak
(
y
)
xk +

n−1∑

l=0

bl(x)yl, ak ∈ Cn(I), bl ∈ Cm(I)

}

. (3.5)

Note that the above representation of a function from Bm,n is not unique and the linear space
Bm,n is of infinite dimension.

4. Transfinite Interpolation by Algebraic Blending Functions

In two-dimensional case, transfinite interpolation (beyond the finite interpolation) is to
construct a simple interpolation function (blending interpolation function for example) over
a planar domain in such a way that it matches (interpolates) a given function and its partial
derivatives on curves. Transfinite interpolation is an approximate recovery of functions via
interpolation with variety of applications, for example, in geometric modeling and finite
element methods. The notion can be extended in a natural way for higher dimensions. The
Dirichlet problem is an example of a transfinite interpolation scheme in the linear space of
harmonic functions.

In contrast to the transfinite interpolation schemes, the classical interpolation schemes
are restricted to a finite or denumerable number of interpolation points. For example,
approximate recovery of a univariate function can be obtained by a univariate Lagrange
interpolation polynomial: let f ∈ C[−1, 1] and x1, x2, . . . , xm be m distinct points in [−1, 1].
Then, there exists a unique polynomial interpolant pf ∈ πm−1 to f of degree ≤ m − 1 such that

pf(xk) = f(xk), k = 1, 2, . . . , m (4.1)

with an error representation formula

f(x) − pf(x) =
f (m)(ξ)
m!

(x − x1) · · · (x − xm), x ∈ [−1, 1], ξ ∈ (−1, 1). (4.2)
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Existence and uniqueness of univariate Lagrange interpolants are closely connected with the
notion of Haar-Chebyshev system in the univariate case.

4.1. Haar-Chebyshev Systems in the Multivariate Case

Let us remind that a set of m univariate functions {u1, u2, . . . , um} ⊂ C[−1, 1] is a Haar-
Chebyshev system (T -system) of order m in [−1, 1] if each nontrivial linear combination of
u1, u2, . . . , um has at most m − 1 zeros in [−1, 1]. In other words, a set of m functions is a
Haar-Chebyshev system of order m in [−1, 1] if it is linearly independent with respect to an
arbitrary chosen set of m distinct points in [−1, 1]. The concept of a Haar-Chebyshev system
(T -system) is based on counting the zeros and it is essentially restricted to the univariate
case. It is known [9, 10] that there is no universal Haar-Chebyshev system on any set
in Rd that contains an interior point, in particular, on I2. Hence, the point-wise Lagrange
univariate interpolation scheme cannot be extended to the point-wise interpolation scheme
in the multivariate case.

However, we can extend the notion of a Haar-Chebyshev system in the multivariate
case with respect to transfinite interpolation by blending functions on grids (curves) with a
prescribed geometry. Being defined as the kernel of the differential operator Dm,n, the linear
space Bm,n of algebraic blending functions of order (m,n) shares interpolation properties of
the algebraic polynomials. In particular, Lagrange interpolation by algebraic polynomials has
a multivariate extension to transfinite Lagrange interpolation by blending functions.

4.2. Transfinite Interpolation Grid

Let

ωxm,yn
(
x, y

)
:=

m∏

s=1

(x − xs)
n∏

k=1

(
y − yk

)
. (4.3)

We define an (m,n) interpolation gridGm,n associated with the 2 point sets of distinct in each
set points xm := {xs, 1 ≤ s ≤ m} and yn := {yk, 1 ≤ k ≤ n}:

Gm,n :=
{(
x, y

) ∈ I2 : ωxm,yn
(
x, y

)
= 0

}
. (4.4)

The interpolation grid Gm,n is a set ofm vertical and n horizontal line-segments in I2.

4.3. Transfinite Lagrange Interpolation by Algebraic Blending Functions

Let f ∈ Cm,n. Let xm := {xs, 1 ≤ s ≤ m} and yn := {yk, 1 ≤ k ≤ n} be sets of distinct points (in
each case) in I. Then there exists a unique blending interpolant hf ∈ Bm,n to f , satisfying the
following transfinite interpolation conditions:

(
hf

)
|Gm,n

= f|Gm,n . (4.5)



12 Journal of Function Spaces and Applications

By using the univariate fundamental Lagrange interpolating polynomials ls,m(x), s =
1, . . . , m and lk,n(y), k = 1, . . . , n we give the following explicit construction of the unique
transfinite Lagrange interpolant to f on the grid Gm,n:

hf
(
x, y

)
=

m∑

s=1

f
(
xs, y

)
ls,m(x) +

n∑

k=1

f
(
x, yk

)
lk,n

(
y
)

−
m∑

s=1

n∑

k=1

f
(
xs, yk

)
ls,m(x)lk,n

(
y
)

(4.6)

with the error representation formula

f
(
x, y

) − hf
(
x, y

)
=
Dm,nf

(
ξ, η

)

m!n!
ωxm,yn

(
x, y

)
,

(
x, y

) ∈ I2, (ξ, η) ∈ I2. (4.7)

From the above error representation formula, for each g ∈ Bm,n we have hg = g to conclude
that for a fixed (m,n) interpolation grid Gm,n there exists a unique transfinite interpolant hf
from Bm,n to a given function f ∈ Cm,n.

In addition, the univariate concept of a Haar-Chebyshev system can be extended in the
infinite dimensional linear space of two-variable blending functions and interpolation grids
consisting of vertical and horizontal line-segments as follows: if h ∈ Bm,n satisfies h|Gm,n = 0,
then h = 0 on I2. In other words, an (m,n) blending grid cannot be a zero set of h ∈ Bm,n, h being
nonidentically zero on I2.

4.4. Haar-Chebyshev Pair of a Linear Space and a Set of Grids in the
Multivariate Case

In the one-dimensional Lagrange interpolation problem we have a finite set of points which
are similar in the sense they obey the natural ordering on the real line. In the bivariate case
we have set of grid-lines which are also similar to each other in the sense that m of them are
parallel to the one axis, and n of them, to the other. The points where the lines intersect
the coordinate axes are also naturally ordered. Each blending grid Gm,n is unisolvent in
transfinite Lagrange interpolation sense for Bm,n. On the other hand, the interpolation sets
in the bivariate (multivariate) case may have diverse geometry and we can not talk about
Haar-Chebyshev systems in general. However, we can argue that the pair of the linear space
Bm,n and the set of blending grids Gm,n

{Bm,n, Gm,n} is a Haar-Chebyshev pair on I2, (4.8)

where Gm,n is the set of all blending grids of order (m,n) in I2, consisting ofm vertical and n
horizontal line-segments.
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4.5. Transfinite Lagrange-Hermite Interpolation by Algebraic Blending
Functions

Let

Gm,n :=
{(
x, y

) ∈ I2 : ωxm,yn
(
x, y

)
= 0

}
(4.9)

be (m,n) interpolation grid associated with the point sets xm := {xμ, 1 ≤ μ ≤ m} and yn :=
{yν, 1 ≤ ν ≤ n}. The interpolation grid Gm,n consists of m vertical and n horizontal line
segments on I2. We associate with each point xμ a multiplicity sμ and with each point yν a
multiplicity jν. Let

∑m
μ=1 sμ = M and

∑n
ν=1 jν = N. Then for a given function f ∈ CM,N ,

there exists a unique transfinite Lagrange-Hermite blending interpolant hf from BM,N to f ,
satisfying the transfinite interpolation conditions

Ds,0 hf
(
xμ, y

)
= Ds,0 f

(
xμ, y

)
, s = 0, . . . , sμ − 1, μ = 1, . . . , m, y ∈ [−1, 1] ,

D0,j hf
(
x, yν

)
= D0,j f

(
x, yν

)
, j = 0, . . . , jν − 1, ν = 1, . . . , n, x ∈ [−1, 1]

(4.10)

with respect to the given (m,n) blending grid Gm,n, where as usual D0,0f = f .
Explicit construction of the transfinite Lagrange-Hermite interpolant hf to f from

BM,N is

hf
(
x, y

)
=

m∑

μ=1

sμ−1∑

s=0

Ds,0f
(
xμ, y

)
lsμ,M(x)

+
n∑

ν=1

jν−1∑

j=0

D0,jf
(
x, yν

)
l
j

ν,N

(
y
)

−
m∑

μ=1

sμ−1∑

s=0

n∑

ν=1

jν−1∑

j=0

Ds,jf
(
xμ, yν

)
lsμ,M(x)ljν,N

(
y
)
,

(4.11)

where the fundamental Lagrange-Hermite interpolation polynomials lsμ,M(x), μ = 1, . . . , m

and ljν,N(y), ν = 1, . . . , n satisfy the interpolation conditions

Dr,0lsμ,M(xκ) = δμ,κδs,r , κ = 1, . . . , m, r = 0, . . . , sμ − 1,

D0,r l
j

ν,N

(
yκ

)
= δν,κδj,r , κ = 1, . . . , n, r = 0, . . . , jν − 1.

(4.12)
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4.6. Error Representation of Transfinite Lagrange-Hermite Interpolation by
Algebraic Blending Functions in Terms of B-Splines

Let

Ω(xm,sm);(yn,jn)
(
x, y

)
:=

m∏

μ=1

(
x − xμ

)sμ
n∏

ν=1

(
y − yν

)jν , (4.13)

where sm := (s1, . . . , sm) and jn := (j1, . . . , jn). Then the following error representation formula
holds

f
(
x, y

) − hf
(
x, y

)
= Ω(xm,sm);(yn,jn)

(
x, y

)

×
∫∫1

−1
BM−1;[(xm,sm),x](v)BN−1;[(yn,jn),x](w)DM,Nf(v,w)dv dw,

(4.14)

where BM−1;[(xm,sm),x] is the normalized B-spline of degree M − 1 with knots (xm, x) of
multiplicities (sm, 1) and BN−1;[(yn,jn),y] is the normalized B-spline of degree N − 1 with
knots (yn, y) of multiplicities (jn, 1). For details on B-splines see [11–13]. As a corollary
we obtain Cauchy error representation for transfinite Lagrange-Hermite interpolation by
blending functions

f
(
x, y

) − hf
(
x, y

)
=
DM,Nf

(
ξ, η

)

M!N!
Ω(xm,sm);(yn,jn)

(
x, y

)
,

(
x, y

) ∈ I2, (ξ, η) ∈ I2. (4.15)

Note that hg = g for a blending function g ∈ BM,N . Therefore, each blending function from
BM,N can be represented as transfinite Lagrange-Hermite interpolant on a grid consisting of
horizontal and vertical line-segments.

Remark 4.1. The multivariate results which resemble the broadest extent the univariate
theory concern transfinite interpolation and best L1-approximation by algebraic blending
functions. For simplicity of the notations the results on transfinite interpolation and best L1-
approximation by algebraic blending functions are stated in the bivariate case d = 2 although
they are entirely valid in higher dimensions.

5. Best L1-Approximation by Algebraic Blending Functions

Let (F, ‖ ◦ ‖) be a normed linear space. Let U be a subspace of F. Then uf ∈ U is called best
approximant to f ∈ F fromU if for all u ∈ U

∥∥f − uf
∥∥ ≤ ∥∥f − u∥∥ . (5.1)

Let f satisfyDm,nf(x, y) > 0 on I2 and let h ∈ Bm,n. Then an (m,n) blending grid is a maximal
set of zeros for f − h in a sense that if f(x, y) − h(x, y) = 0 on (m,n) blending grid Gm,n, then
f(x, y)−h(x, y)/= 0 for (x, y) ∈ I2\Gm,n. In other words, f −h cannot vanish onGm,n∪(x0, y0),
where (x0, y0) ∈ I2 \Gm,n.
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Approximation by blending functions is useful in problems of improving the efficiency
of data transfer systems, image processing, reducing the size of the table of a function of many
variables, cubature formulae, and numerical solution of differential and integral equations.
For results on existence of best algebraic blending L1-approximants see [14, 15]. The above
notion of a Haar-Chebyshev system in the multivariate case is essential in the proof of the
next theorem (see [16] for details).

Theorem 5.1. Let f ∈ Cm,n satisfy Dm,nf(x, y) ≥ 0 for (x, y) ∈ I2. Then f possesses a unique best
L1-approximant from Bm,n that is the unique transfinite Lagrange interpolant hf to f from Bm,n with
respect to the blending grid

Gm,n =

⎧
⎨

⎩
(
x, y

)
:

m∏

i=1

n∏

j=1

(x − xi)
(
y − yj

)
= 0

⎫
⎬

⎭
, (5.2)

where xk, 1 ≤ k ≤ m and yj, 1 ≤ j ≤ n are the zeros of the Chebyshev polynomials of second kind
Um(x) andUn(y), respectively.

Remark 5.2. Following Theorem 5.1, we conclude that the blending gridGm,n is the canonical
set of best L1-approximation from Bm,n to the convex cone

{
f ∈ Cm,n

(
I2
)
: Dm,nf

(
x, y

) ≥ 0 for
(
x, y

) ∈ I2
}
. (5.3)

Note that in the above convex cone, the non linear problem of best L1-approximation becomes
a linear one.

Corollary by Theorem 5.1 is the interesting fact that the best L1-approximant to the
polynomial xmyn from Bm,n is also a polynomial, namely,

∥∥∥∥∥
Um(x)Un

(
y
)

2m+n

∥∥∥∥∥
L1(I2)

≤ ∥∥xmyn − h(x, y)∥∥L1(I2)
, h ∈ Bm,n (5.4)

and in particular the unique polynomial of minimal L1-norm (minimal L1-deviation) on I2

from the class of monic polynomials {∑m
i=0

∑n
j=0 aijx

iyj : amn = 1} is 2−m−nUm(x)Un(y).

Remark 5.3. Note that in contrast to the result in Theorem 5.1, the best uniform (Chebyshev)
approximant from B1,1 to f ∈ C1,1 satisfying D1,1f(x, y) ≥ 0 for (x, y) ∈ I2, is never unique
unless f ∈ B1,1 (see [17] for details).

6. Lagrange-Hermite Transfinite Interpolation by Trigonometric
Blending Functions

In bivariate case, transfinite interpolation by trigonometric blending functions is to construct
a blending trigonometric interpolant over a planar domain in such a way that matches
(interpolates) a given function and its partial derivatives on curves that constitute the
interpolation set. For details on the results in the present section see [7].
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Let C̃2m+1,2n+1[0, 2π)2 be the vector space of two-variable functions f(θ, η) which are
2π-periodic in each variable and

D(2m+1,2n+1)f
(
θ, η

)
:= D

(2m+1)
θ

D
(2n+1)
η f

(
θ, η

)
(6.1)

is continuous on [0, 2π)2, where D
(2m+1)
θ

= Dθ
∏m

k=1(D
2
θ
+ k2) and Dθ = ∂/∂θ is the partial

derivative with respect to θ. The vector space Btm,n of trigonometric blending functions of order
(m,n) is defined as

Btm,n :=
{
ht
(
θ, η

) ∈ C̃2m+1,2n+1[0, 2π)2 : D(2m+1,2n+1)ht
(
θ, η

)
= 0

}
. (6.2)

Each trigonometric blending function ht ∈ Btm,n can be represented in the form

ht
(
θ, η

)
=

m∑

k=0

[
ak

(
η
)
cos(kθ) + bk

(
η
)
sin(kθ)

]
+

n∑

p=0

[
cp(θ) cos

(
pη

)
+ dp(θ) sin

(
pη

)]
, (6.3)

where ak, bk, cp, and dp are sufficiently smooth 2π-periodic functions.

Remark 6.1. Note that the above representation of ht ∈ Btm,n is not unique in contrast to the
uniqueness of the corresponding representation in Tn.

Let θl1 := (θ0, θ1, . . . , θl1), 0 ≤ θ0 < θ1 < · · · < θl1 < 2π be l1 + 1 interpolation nodes
with positive integer multiplicities λl1 := (λ0, λ1, . . . , λl1) and let ηl2 := (η0, η1, . . . , ηl2), 0 ≤
η0 < η1 < · · · < ηl2 < 2π be l2 + 1 interpolation nodes with positive integer multiplicities
βl2 := (β0, β1, . . . , βl2).

6.1. Construction of Lagrange-Hermite Transfinite Interpolation by
Trigonometric Blending Functions

Let f(θ, η) ∈ C̃2m+1,2n+1[0, 2π)2. Given the interpolation nodes with corresponding
multiplicities (θl1 , λl1) and (ηl2,βl2),

∑l1
i=0 λi = 2m+ 1 and

∑l2
j=0 βj = 2n+ 1. Find a trigonometric

blending function ht,f ∈ Btm,n of order (m,n), satisfying the following Lagrange-Hermite
interpolation conditions (f (i,j) denoting the partial derivative ∂i+jf/∂θi∂ηj):

h
(i,0)
t,f

(
θs1 , η

)
= f (i,0)(θs1 , η

)
, i = 0, 1, . . . , λs1 − 1; s1 = 0, 1, . . . , l1;

h
(0,j)
t,f

(
θ, ηs2

)
= f (0,j)(θ, ηs2

)
, j = 0, 1, . . . , βs2 − 1; s2 = 0, 1, . . . , l2.

(6.4)

Theorem 6.2. Let f(θ, η) ∈ C̃2m+1,2n+1[0, 2π)2. Given the interpolation nodes with corresponding
multiplicities (θl1 , λl1) and (ηl2,βl2) such that

∑l1
i=0 λi = 2m + 1 and

∑l2
j=0 βj = 2n + 1, then there

exists a unique trigonometric blending interpolant ht,f from Btm,n (of order (m,n)) to f satisfying the
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transfinite interpolation conditions (6.4). In addition, the following point-wise error representation
holds:

f
(
θ, η

) − ht,f
(
θ, η

)
=

D(2m+1,2n+1)f(ξ, ζ)

[m!]2[n!]2
[
B1

(
θ, η

) − ht,B1

(
θ, η

)]
, (6.5)

where (ξ(θ, η), ζ(θ, η)) ∈ (0, 2π)2, B1(θ, η) := B1(θ)B1(η) and B1(θ) = θ − π, θ ∈ [0, 2π) is the
first univariate Bernoulli function.

6.2. Uniqueness of the Lagrange-Hermite Trigonometric Blending Interpolant

Suppose that there is another trigonometric blending interpolant h̃t,f ∈ Btm,n to f satisfying
the interpolation conditions (6.4). Evidently, ht,h̃t,f = ht,f . Therefore, by using (6.5)

h̃t,f − ht,h̃t,f =
D(2m+1,2n+1)h̃t,f(ξ, ζ)

[m!]2[n!]2
[
B1

(
θ, η

) − ht,B1

(
θ, η

)]
= 0

=⇒ h̃t,f = ht,h̃t,f = ht,f .

(6.6)

Lemma 6.3. Let ht,B1(θ, η) be the unique trigonometric blending interpolant from Btm,n to B1(θ, η) =
B1(θ)B1(η) satisfying the transfinite interpolation conditions (6.4) on the interpolating grid

Gl1,l2 :=

{
(
θ, η

) ∈ [0, 2π]2 :
l1,l2∏

s1=0,s2=0
(θ − θs1)

(
η − ηs2

)
= 0

}

. (6.7)

Then, [B1(θ, η) − ht,B1(θ, η)]/= 0 for each point (θ, η) /∈ Gl1,l2 .

Corollary 6.4. Let ht,f be the unique trigonometric blending interpolant from Btm,n to f ∈
C̃2m+1,2n+1[0, 2π)2 satisfying the transfinite interpolation conditions (6.4). If D(2m+1,2n+1)f(ξ, ζ)/= 0
for (ξ, ζ) ∈ [0, 2π)2, then f(θ, η) − ht,f(θ, η)/= 0 for (θ, η) /∈ Gl1,l2 .

7. Best L1-Approximation by Trigonometric Blending Functions

Consider the normed vector space L1[0, 2π]
2 of functions that are 2π-periodic in each

variable, whose absolute value has a finite integral on [0, 2π]2 and equipped with the norm

∥∥f
∥∥
L1[0,2π]

2 :=
∫ ∫

[0,2π]2

∣∣f
(
θ, η

)∣∣dA =
(
Fubini

′
s Theorem

)∫∫2π

0

∣∣f
(
θ, η

)∣∣dθ dη, (7.1)

where A is the area measure. Denote for simplicity ‖f‖1 := ‖f‖L1[0,2π]
2 . We restrict Btm,n to

Btm,n ⊂ L1[0, 2π]
2.
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Let us consider the convex cone

C̃2m+1,2n+1
+ :=

{
f ∈ C̃2m+1,2n+1[0, 2π)2 : D(2m+1,2n+1)f

(
θ, η

) ≥ 0 for
(
θ, η

) ∈ [0, 2π)2
}
. (7.2)

We construct best L1-approximants from Btm,n to functions in the convex cone C̃2m+1,2n+1
+ .

Following the interpolation problem (6.4) let θ = {iπ/(m + 1), i = 1, . . . , 2m + 1} and
η = {jπ/(n + 1), j = 1, . . . , 2n + 1}, where all interpolation nodes are of multiplicity 1.
By Theorem 6.2, there exists a unique trigonometric blending interpolant ht,f ∈ Btm,n to
f ∈ C̃2m+1,2n+1

+ on the blending grid

G̃m,n :=

⎧
⎨

⎩
(
θ, η

) ∈ [0, 2π]2 :
2m+1,2n+1∏

i=1,j=1

[
θ − iπ

(m + 1)

][
η − jπ

(n + 1)

]
= 0

⎫
⎬

⎭
, (7.3)

consisting of 2m + 1 vertical and 2n + 1 horizontal line segments. The next theorem (see [7]
for details) demonstrates that the interpolation grid G̃m,n is the canonical sets of best L1-
approximation from Btm,n to the convex cone C̃2m+1,2n+1

+ .

Theorem 7.1. The unique trigonometric blending interpolant ht,f ∈ Btm,n to f ∈ C̃2m+1,2n+1
+ on the

blending grid G̃m,n is the unique best L1-approximant to f from Btm,n.

8. Canonical Set of Best L1-Approximation on a Triangle

Another canonical set result is presented in [18], where the domain is a triangle Δ ∈ R2. The
approximating space consists of all functions that are sums of functions of the barycentric
coordinates {λi}3i=1 with respect to the vertices of Δ:

B(Δ) :=
{
h ∈ C3(Δ) : h(λ1, λ2) = h1(λ1) + h2(λ2) + h3(λ3), λ1 + λ2 + λ3 = 1, λi ≥ 0

}
. (8.1)

B(Δ) is the kernel of the differential operator ∂3 which acts on the linear space C3(Δ) and is
defined by

∂3f(λ1, λ2) :=
∂

∂λ1

∂

∂λ2

(
∂

∂λ1
− ∂

∂λ2

)
f(λ1, λ2). (8.2)

Let M := M1 ∪ M2 ∪ M3 be the union of the medians {Mi}3i=1 in Δ. The following
interpolation theorem holds true.

Theorem 8.1. Let f ∈ C3(Δ). Then there exists a unique transfinite interpolant hf ∈ B(Δ) to f
such that

(
hf

)
|M = f|M. (8.3)

Moreover, if f ∈ Cm(Δ) for somem > 3, then hf ∈ Cm(Δ) as well.
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On the basis of Theorem 8.1 and an appropriate error representation formula, the
corresponding best L1(Δ)-approximation is characterized in terms of a canonical point set.
The convex cone here is defined by another differential operator D̃ (see [18, page 456] for
details) that is represented in terms of ∂3 in a bit intricate way involving infinite series. The
canonical result of best L1-approximation reads as follows.

Theorem 8.2. Let f ∈ C3(Δ) satisfy D̃f ≥ 0 on Δ. Then, the unique transfinite interpolant hf from
Theorem 8.1 is the unique best L1-approximant to the function f from B(Δ).

Remark 8.3. By Theorem 8.2, the point set M is a canonical set of best L1-approximation on a
triangle.

9. Best L1-Approximation by Harmonic Functions

Here, we discuss results on best L1-approximation of subharmonic functions by harmonic
functions. Let B(r) denote the open ball centered at 0 of radius r > 0 in the d-dimensional
space Rd and let B := B(1) be the unit ball centered at 0 in Rd and B0 := B(2−1/d). Denote
by H(B) the linear space of harmonic functions on B and let S(B) denote the convex cone
of subharmonic functions on B. Let f ∈ C(B) be continuous on the closed unit ball and let
f ∈ S(B). A function hf ∈ C(B) ∩H(B) is called a best harmonic L1-approximant to f on B if

∥∥f − hf
∥∥
L1(B)

≤ ∥∥f − h∥∥L1(B) (9.1)

for all h ∈ C(B) ∩ H(B). The next theorem gives a canonical set characterization of the best
harmonic L1-approximants to the convex cone C(B) ∩ S(B) (see [19] for details).

Theorem 9.1. Let f ∈ C(B) ∩ S(B). Then the harmonic function hf is a best harmonic L1-
approximant from C(B) ∩H(B) to f if and only if

(i) hf = f on ∂B0 (that is, hf is a transfinite harmonic interpolant to f on ∂B0);

(ii) hf ≤ f on B \ B0.

Remark 9.2. If a best harmonic L1-approximant to f ∈ C(B) ∩ S(B) exists, then it is unique.
However, a best harmonic L1-approximant to an arbitrary function f ∈ C(B)∩S(B) need not
exist. For example, g(x, y) := x4y4 is a subharmonic polynomial on the unit disk in R2 which
does not possess a best L1-approximant from C(B)∩H(B). However obviously,D2,2g(x, y) ≥
0 and according to Theorem 5.1, a unique best L1-approximant on [−1, 1]2 to g from B2,2 exists.
For other results on best harmonic L1-approximation see [20, 21].

Remark 9.3. The constructive characterization of Theorem 9.1 is in terms of the Dirichlet
problem on ∂B0. It can be considered as a transfinite interpolation problem by harmonic
functions on the spherical interpolation grid ∂B0. The canonical set of best harmonic L1-
approximation to the convex cone C(B) ∩ S(B) on the unit ball is ∂B0.
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10. Best One-Sided L1-Approximation by Algebraic Blending
Functions

Let f ∈ C(I2). A function h∗ ∈ Bm,n is called best one-sided from above L1-approximant to f
from the linear space Bm,n if

h∗
(
x, y

) ≥ f(x, y), (
x, y

) ∈ I2,
∫

I2

(
h∗ − f) ≤

∫

I2

(
h − f) (10.1)

for all h ∈ Bm,n(I2) such that h(x, y) ≥ f(x, y), (x, y) ∈ I2. Analogously, we define best
one-sided from below L1-approximant to f from Bm,n.

This type of one-sided L1-approximation (with respect to a convex set rather than
a subspace) has been a subject of much research activity (see [1] for details). The results
in this area have mainly dealt with the case when the best approximant is from a finite-
dimensional linear space. However, as we have mentioned above, the linear space Bm,n of
algebraic blending functions of order (m,n) is of infinite dimension.

First we reformulate a general result in the particular case of Bm,n approximating linear
space (see [22, 23] for details). It shows that the canonical sets must satisfy certain conditions.

Theorem 10.1. Let f ∈ C(I2). Let

U(
f
)
:=

{
h ∈ Bm,n : h

(
x, y

) ≥ f(x, y) on I2
}
. (10.2)

Let h∗ ∈ U(f) and let Z := Z(h∗ − f) be the zero set of (h∗ − f) in I2. Then, the following are
equivalent.

(a) The blending function h∗ is a best one-sided from above L1-approximant to f from Bm,n on
I2.

(b) Gaussian property for the zero set Z holds

∫

I2
h ≥ 0 whenever h ∈ Bm,n, h ≥ 0 on Z. (10.3)

(c) The domain I2 is a quadrature domain with respect to the point set Z and the linear space
Bm,n; that is, there is a positive measure μ with support in Z such that

∫

I2
h =

∫

Z

hdμ (10.4)

for all h ∈ Bm,n.

By analogy with the canonical sets in the best L1-approximation by blending functions
one can expect that the best one-sided L1-approximants by algebraic blending functions are
Lagrange-Hermite transfinite interpolants on grids consisting of vertical and horizontal lines.
However, Theorem 10.1 and the next result (see [24] for details) show that this is not the
case: transfinite interpolation grids consisting of vertical and horizontal line-segments in I2 cannot
be canonical sets of best one-sided L1-approximation by blending functions.
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Theorem 10.2. Let m ≥ 1 and n ≥ 1. Then there exists an algebraic blending function h ∈ B2m,2n

such that it is positive on the Legendre (m,n) grid

Gm,n,L :=
{(
x, y

) ∈ I2 : Lm(x)Ln
(
y
)
= 0

}
, (10.5)

where Lm and Ln are the Legendre polynomials of degreem, respectivelyn, that is,

h|Gm,n,L > 0, (10.6)

but its integral on I2 is negative:

∫

I2
h < 0. (10.7)

Analogous result concerning best approximation by trigonometric blending functions
is published in [7].

10.1. Best One-Sided L1-Approximation by Algebraic B1,1-Blending Functions

We give a constructive characterization in terms of canonical sets for the best one-sided L1-
approximant to a function f ∈ C1,1 satisfying D1,1f ≥ 0 on I2 from the infinite-dimensional
linear space B1,1. The best L1-approximants are transfinite Lagrange-Hermite interpolants on
the diagonals of I2 as canonical sets. The occurrence of the diagonals as canonical sets of best one-
sided L1-approximation (not interpolation grids consisting of vertical and horizontal line-segments in
I2 !) is a fact which, to the best of our knowledge, has been first observed in [25].

Note that

B1,1 =
{
h
(
x, y

)
: h

(
x, y

)
= a(x) + b

(
y
)
, a ∈ C1(I), b ∈ C1(I)

}
. (10.8)

In other words, we approximate two-variable functions by sums of univariate functions on
I2.

The proof of existence, uniqueness and explicit construction of the best one-sided L1-
approximant from above and from below consists of threemain steps (see [25, 26] for details).

(A) Transfinite Lagrange-Hermite Interpolation Formula on an Appropriate Grid with an Error
Remainder Term

Theorem 10.3. Let f ∈ C1,1.
(a) The B1,1 blending function

h∗f
(
x, y

)
:= f(−1,−1) +

∫x

−1
D1,0f(t, t)dt +

∫y

−1
D0,1f(t, t)dt (10.9)
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is the unique Lagrange-Hermite transfinite interpolant to f from B1,1 satisfying the transfinite
interpolation conditions

(
h∗f

)

|Δ∗ = f|Δ∗ ,
(
grad h∗f

)

|Δ∗ =
(
grad f

)
|Δ∗ (10.10)

on the main diagonal Δ∗ of I2. Moreover, the error representation formula holds

f
(
x, y

) − h∗f
(
x, y

)
= −D

1,1f
(
ξ, η

)

2
(
x − y)2, (

x, y
) ∈ I2, (ξ, η) ∈ I2. (10.11)

(b) The B1,1 blending function

h∗f
(
x, y

)
:= f(−1, 1) +

∫x

−1
D1,0f(t,−t)dt −

∫−y

−1
D0,1f(t,−t)dt (10.12)

is the unique Lagrange-Hermite transfinite interpolant to f from B1,1 satisfying the transfinite
interpolation conditions

(
h∗f

)
|Δ∗

= f |Δ∗ ,
(
grad

)
h∗f |Δ∗

=
(
grad

)
f |Δ∗ (10.13)

on the antidiagonal Δ∗ of I2. Moreover, the following error representation formula holds:

f
(
x, y

) − h∗f
(
x, y

)
=

D1,1f
(
ρ, σ

)

2
(
x + y

)2
,

(
x, y

) ∈ I2, (ρ, σ) ∈ I2. (10.14)

The following observation is an essential fact in the proof of the next theorem. Let f
satisfy D1,1f(x, y) > 0 on I2 and let h ∈ B1,1(I2). If (f − h) = 0 on Δ∗ and (grad (f − h)) |Δ∗ =
(0, 0), then (f −h)/= 0 on I2 \Δ∗. In other words, (f −h) can not vanish onΔ∗ ∪ (x0, y0), where
(x0, y0) ∈ I2 \Δ∗.

(B) Transfinite Cubature Formulae on Δ∗ and Δ∗ with B1,1 Blending Degree of Precision
Let f ∈ C1,1. Then

∫

I2
f − 2

∫

I

f(x, x)dx = −4
3
D1,1f

(
α, β

)
,

(
α, β

) ∈ I2. (10.15)

In particular

∫

I2
h = 2

∫

I

h(x, x)dx, h ∈ B1,1. (10.16)

Analogously,

∫

I2
f − 2

∫

I

(x,−x)dx =
4
3
D1,1f

(
γ, δ

)
,

(
γ, δ

) ∈ I2. (10.17)
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In particular

∫

I2
h = 2

∫

I

h(x,−x)dx, h ∈ B1,1. (10.18)

(C) Constructive Characterization of the Best One-Sided L1-Approximants from B1,1.

Theorem 10.4. Let f ∈ C1,1 satisfy D1,1f(x, y) ≥ 0 for (x, y) ∈ I2. Then we have the following.

(a) The function f has a unique best one-sided from above L1-approximantfrom B1,1. The
unique best one-sided from above L1-approximant h∗

f
is characterized by the Lagrange-

Hermite type transfinite interpolation conditions on the main diagonal Δ∗ of I2:

(
h∗f

)

|Δ∗ = f |Δ∗ ,
(
grad h∗f

)

|Δ∗ =
(
grad f

)
|Δ∗ . (10.19)

(b) The function f has a unique best one-sided from below L1-approximant from B1,1.
Theunique best one-sided from below L1-approximant h∗f is characterized by the Lagrange-
Hermite type transfinite interpolation conditions on the antidiagonal Δ∗ of I2:

(
h∗f

)
|Δ∗ = f |Δ∗ ,

(
grad h∗f

)
|Δ∗

=
(
grad f

)
|Δ∗
. (10.20)

Proof of Theorem 10.4. We sketch the proof of (a). The proof of (b) follows the same steps.
Given f ∈ C1,1 such that D1,1f(x, y) ≥ 0 for (x, y) ∈ I2. By Theorem 10.3, h∗

f
≥ f on I2.

Consider an arbitrary blending function h ∈ B1,1 such that h ≥ f on I2. By using the transfinite
cubature formula from (B), we have

∫

I2

(
h − f) =

∫

I2

(
h − h∗f

)
+
∫

I2

(
h∗f − f

)

= 2
∫1

−1

(
h − h∗f

)
(x, x)dx +

∫

I2

(
h∗f − f

)

≥
∫

I2

(
h∗f − f

)
,

(10.21)

taking into account that
∫1
−1(h − h∗)(x, x)dx ≥ 0 which follows from h ≥ f on I2 and (h∗f)|Δ∗ =

f |Δ∗ . Hence,
∫

I2

(
h − f) ≥

∫

I2

(
h∗f − f

)
, (10.22)

for each function h ∈ B1,1 satisfying h ≥ f on I2.

Uniqueness of the Best One-Sided from above L1-Approximant from B1,1 to f in the Convex Cone
{f ∈ C1,1 : D1,1f(x, y) ≥ 0, (x, y) ∈ I2}.
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Figure 1: f(x, y) = xy and h∗
f
(x, y).

Suppose that h ∈ B1,1 is another best one-sided L1-approximant to f from B1,1. It
follows from (10.21) that f |Δ∗ = (h∗

f
)
|Δ∗ = h|Δ∗ . From h ≥ f on I2 we conclude that

(gradh)|Δ∗ = (grad f)|Δ∗ . By Theorem 10.3, h = h∗
f
. The proof is completed.

Example 10.5. Consider f(x, y) = xy,D1,1f(x, y) = 1 > 0. According to Theorem 10.4, the
transfinite Lagrange-Hermite interpolant to f from B1,1

h∗f
(
x, y

)
= f(−1,−1) +

∫x

−1
D1,0f(t, t)dt +

∫y

−1
D0,1f(t, t)dt

= 1 +
∫x

−1
t dt +

∫y

−1
t dt =

x2 + y2

2

(10.23)

is the unique best one-sided from above L1-approximant from B1,1 to f(x, y) = xy (see
Figure 1).

Example 10.6. Let f(x, y) = xpyq, x ≥ 0, p > 0, y ≥ 0, q > 0, p + q = 1. We compute
D1,0f(x, y) = pxp−1yq, D0,1f(x, y) = qxpyq−1, D1,1f(x, y) = pqxp−1yq−1 > 0 for x, y > 0.
According to Theorem 10.4, the transfinite Lagrange-Hermite interpolant to f from B1,1

h∗f
(
x, y

)
= f(0, 0) +

∫x

0
D1,0f(t, t)dt +

∫y

0
D0,1f(t, t)dt

=
∫x

0
p dt +

∫y

0
q dt = px + qy

(10.24)

is the unique best one-sided from above L1-approximant from B1,1 to f(x, y) = xpyq on [0, 1]2.
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10.2. Best One-Sided L1-Approximation by Algebraic B2,1-Blending Functions

Next theorem (see [27] for details) gives characterization of the best one-sided L1-
approximants by algebraic B2,1-blending functions in terms of transfinite Lagrange-Hermite
interpolation on canonical sets.

Theorem 10.7. Let f ∈ C2,1 and D2,1f(x, y) ≥ 0 for (x, y) ∈ I2.
(a) Let

v∗ := {(x, 2|x| − 1) : x ∈ [−1, 1]}. (10.25)

The function f possesses a unique best one-sided from above L1-approximant h∗ from B2,1. The unique
best one-sided from above L1-approximant h∗

f
to f is characterized by the simultaneous Lagrange-

Hermite type transfinite interpolation conditions:

(
h∗f

)

|v∗
= f|v∗ ,

(
grad h∗f

)

|v∗
=

(
grad f

)
|v∗ . (10.26)

(b) Let

v∗ := {(x, 1 − 2|x|) : x ∈ [−1, 1]}. (10.27)

The function f possesses a unique best one-sided from below L1-approximant h∗f from B2,1. The unique
best one-sided from below L1-approximant h∗f to f is characterized by the simultaneous Lagrange-
Hermite type transfinite interpolation condition:

(
h∗f

)
|v∗ = f|v∗ ,

(
grad h∗f

)
|v∗ =

(
grad f

)
|v∗ . (10.28)

The following two steps (see [27] for details) are essential in the proof of Theorem 10.7.

(A) Transfinite Interpolation Formulas with Remainder Term

Let f ∈ C2,1 and let h∗f and h∗f be the transfinite interpolants to f from Theorem 5.1. Then

f
(
x, y

) − h∗f
(
x, y

)
= −D

2,1f
(
ξ1, η1

)

24
(
y − 2|x| + 1

)2(
y + 4|x| + 1

)
, (10.29)

where (x, y) ∈ I2 and (ξ1, η1) ∈ I2 and

f
(
x, y

) − h∗f
(
x, y

)
=
D2,1f

(
ξ2, η2

)

24
(
y − 2|x| + 1

)2(−y + 4|x| + 1
)
, (10.30)

where (x, y) ∈ I2 and (ξ2, η2) ∈ I2.
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Figure 2: f(x, y) = x2y, h∗
f
(x, y) and h∗f (x, y).

(B) Transfinite Cubature Formulae on v∗ and v∗ with B2,1 Blending Degree of Precision

Let f ∈ C2,1. Then

∫

I2
f = 2

∫1

−1
f(x, 2|x| − 1)dx − 1

3
D2,1f

(
ρ1, σ1

)
,
(
ρ1, σ1

) ∈ I2,
∫

I2
f = 2

∫1

−1
f(x, 1 − 2|x|)dx +

1
3
D2,1f

(
ρ2, σ2

)
,
(
ρ2, σ2

) ∈ I2.
(10.31)

Example 10.8. Consider f(x, y) = x2y, D2,1f(x, y) = 2 > 0 on I2. Then, by Theorem 10.7, the
B2,1 transfinite blending interpolant

h∗f
(
x, y

)
:=

4
3
x2|x| − x2 +

1
12

(
1 + y

)3 (10.32)

to f is the unique best one-sided from above L1-approximant from B2,1 to f(x, y) = x2y.
Analogously, the B2,1 transfinite interpolant

h∗f
(
x, y

)
:= −4

3
x2|x| + x2 − 1

12
(
1 + y

)3 (10.33)

to f is the unique best one-sided from below L1-approximant from B2,1 to f(x, y) = x2y (see
Figure 2). Note that the best one-sided approximants to the polynomial f(x, y) = x2y are not
polynomials. Moreover, they have a limited C2,1-smoothness, contrary to the unconstrained
best L1-approximation by blending functions (see Theorem 5.1).
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10.3. Best One-Sided L1-Approximation by B2,2-Blending Functions

Let f ∈ C2,2 and D2,2f(x, y) ≥ 0 for (x, y) ∈ I2. Then (see [28] for details), the unique best
one-sided from above L1-approximant h∗f to f from B2,2 is the unique transfinite Lagrange-
Hermite interpolant to f on the canonical grid

x :=
{(
x, y

) ∈ I2 : |x| = ∣
∣y
∣
∣
}

(10.34)

satisfying the transfinite interpolation conditions

(
h∗f

)

|x
= f|x,

(
gradh∗f

)

|x
=
(
grad f

)
|x. (10.35)

For f(x, y) even with respect to one of the variables x or y, the unique best one-sided
from below L1-approximant h∗f to f from B2,2 is the unique transfinite Lagrange-Hermite
interpolant to f on the canonical grid

� :=
{(
x, y

) ∈ I2 : |x| + ∣∣y
∣∣ = 1

}
(10.36)

satisfying the transfinite interpolation conditions

(
h∗f

)
|� = f|�,

(
gradh∗f

)
|� =

(
grad f

)
|�. (10.37)

Surprisingly, there is no universal canonical grid for the entire convex cone

{
f ∈ C2,2, D2,2f

(
x, y

) ≥ 0,
(
x, y

) ∈ I2
}

(10.38)

concerning the best one-sided from below L1-approximation from B2,2 (see [28] for details).
The best one-sided from above L1-approximant to f has the smoothness of f . The best

one-sided from below L1-approximant to f (if it exists) is a blending transfinite spline function
with two line-segment knots {(x, 0) : x ∈ I} and {(0, y) : y ∈ I}.

Example 10.9. Consider f(x, y) = x2y2,D2,2f(x, y) = 4 > 0. Then h∗f(x, y) := (x4 + y4)/2 is the
unique best one-sided from above L1-approximant to f(x, y) = x2y2 from B2,2 and

h∗f
(
x, y

)
:=

1
2

(
x4 + y4

)
− 4
3

(
|x|3 + ∣∣y

∣∣3
)

+ x2 + y2 − 1
6

(10.39)

is the unique best one-sided from below L1-approximant to f(x, y) = x2y2 from B2,2 (see
Figure 3). Note that h∗ /∈ C3,0 ∪ C0,3. Hence, the best one-sided from below L1-approximant
from B2,2 to f does not inherit the smoothness of f .
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Figure 3: f(x, y) = x2y2, h∗
f
(x, y) and h∗f (x, y).

11. Best One-Sided L1-Approximation by Quasi-Blending Functions

The characterization result of best one-sided L1-approximation by algebraic B2,1-blending
functions (see Theorem 10.7) has a natural extension to approximation by quasi-blending
functions (see [29] for details). Define the space QBm,1 of all quasi-blending functions of
order (m, 1) by

QBm,1 :=
{
h ∈ C0,1

(
I2
)
: D0,1h

(·, y) ∈ πm−1 for a fixedy ∈ I
}
, (11.1)

where πm−1 is the space of all univariate algebraic polynomials of degree not exceedingm−1.
Any h ∈ QBm,1 can be represented in the form

h
(
x, y

)
= b(x) +

m−1∑

μ=0

aμ
(
y
)
xμ,

(
x, y

) ∈ I2, (11.2)

with a0, a1, . . . , am−1 ∈ C1(I) and b ∈ C0(I). Obviously, this representation is not unique.
The canonical sets v∗ and v∗ for the best L1-approximation by B2,1-blending functions (see
Theorem 10.7) are examples of the so-calledm-oscillating point sets.

Givenm + 1 points −1 = x0 < x1 < · · · < xm = 1. Let η ∈ {−1, 1}. A continuous function
ϕ : I → I is calledm-oscillating if

(i) ϕ(xμ) = η(−1)μ, 0 ≤ μ ≤ m ;

(ii) The restriction ϕμ := ϕ|[xμ−1,xμ] is a homeomorphism between [xμ−1, xμ] and I.

A point set Γ ∈ I2 is called m-oscillating if it is the graph of an m-oscillating function.
Them-oscillating point sets are unisolvent for the following transfinite interpolation by quasi-
blending functions.
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Let m ∈ N, f ∈ Cm,1(I2), and Γ be an m-oscillating point set associated with a given
m-oscillating function ϕ. Then, there exists a unique quasi-blending function h ∈ QBm,1

satisfying the following transfinite interpolation conditions:

h|Γ = f|Γ,
(
D0,1h

)

|Γ
=
(
D0,1f

)

|Γ
. (11.3)

We define two m-oscillating point sets which turn out to be canonical sets of best L1-
approximation by quasi-blending functions from QBm,1. Given m ∈ N and x, s ∈ (−1, 1),
consider the functions

qm(x, s) :=

⎧
⎪⎨

⎪⎩

P
((1+s)/2,−(1+s)/2)
k (x)P ((1+s)/2,−(1+s)/2)

k (−x), if m = 2k,

P
(−(1−s)/2,−(1+s)/2)
k (x)P ((1−s)/2,(1+s)/2)

k (x), if m = 2k + 1,
(11.4)

where P
(α,β)
n denote the corresponding Jacobi polynomials of degree n. Each polynomial

qm(·, s) has m distinct zeros −1 < ψ1(s) < · · · < ψm(s) < 1. Moreover, it can be shown (see
[29] for details) that the inverse functions ϕμ := ψ−1

μ : [xμ−1, xμ] → I, 1 ≤ μ ≤ m exist, are
continuously differentiable, and join together to anm-oscillating function ϕ : I → I such that
the quadrature formulae

∫

I2
f
(
x, y

)
dx dy ≈ 2

∫1

−1
f
(
s, ϕ(s)

)
ds;

∫

I2
f
(
x, y

)
dx dy ≈ 2

∫

I2
f
(
s,−ϕ(s))ds (11.5)

are exact in the space QBm,1. Let them-oscillating point sets Γm and Lm be given by

Γm :=
{(
x, (−1)mϕ(x)) ∈ I2 : x ∈ I

}
,

Lm :=
{(
x, (−1)m+1ϕ(x)

)
∈ I2 : x ∈ I

}
.

(11.6)

The next theorem shows that the sets Γm and Lm are canonical sets of best one-sided L1-
approximation from QBm,1.

Theorem 11.1. Let f ∈ Cm,1(I2) satisfy Dm,1f ≥ 0 on I2. Then the following holds.

(a) The function f possesses a unique best one-sided L1-approximant from above from QBm,1.
The best one-sided from above approximant h∗

f
is characterized by the following Lagrange-

Hermite transfinite interpolation conditions:

(i)
(
h∗f

)

|Γm
= f|Γm, (ii)

(
D0,1h∗f

)

|Γm
=
(
D0,1f

)

|Γm
. (11.7)

(b) The unique best one-sided from below L1-approximant h∗f to f fromQBm,1 is characterized
by the following Lagrange-Hermite transfinite interpolation conditions:

(i)
(
h∗f

)
|Lm = f|Lm, (ii)

(
D0,1h∗f

)

|Lm
=
(
D0,1f

)

|Lm
. (11.8)
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12. Best One-Sided L1-Approximation by Sums of Univariate Functions

Here we present a multivariate extension of Theorem 10.4 (see [30] for details). Let d ≥ 2 and
C1,d be the linear space of all differentiable functions f , defined on the d-dimensional cube
Id := [−1, 1]d and having continuous mixed derivatives

D1,1
i,j f :=

∂2f

∂xi∂xj
, 1 ≤ i < j ≤ d. (12.1)

We denote by B1,d the subspace of all d-variable functions h which are sums of univariate
ones, that is,

B1,d :=

{

h ∈ C1,d : h(x) = h(x1, . . . , xd) :=
d∑

i=1

hi(xi)

}

. (12.2)

or equivalently

B1,d =
{
h ∈ C1,d : D1,1

i,j h = 0, 1 ≤ i < j ≤ d
}
. (12.3)

Let Δ∗ := {(t, . . . , t) ∈ Id : t ∈ [−1, 1]} be the main diagonal of the d-dimensional cube Id. Let

grad f :=
(
∂f

∂x1
, . . . ,

∂f

∂xd

)
(12.4)

denote the gradient of the d-variable function f .

12.1. Transfinite Lagrange-Hermite Interpolation to a Function f ∈ C1,d from
B1,d on the Diagonal Δ∗ of Id

Theorem 12.1. Let f ∈ C1,d. Then we have the following

(a) The function h∗
f
∈ B1,d, where

h∗f(x1, . . . , xd) := f(−1, . . . ,−1) +
d∑

i=1

∫xi

−1

∂f

∂xi
(t, . . . , t)dt (12.5)

is the unique transfinite interpolant to f from B1,d satisfying the following Lagrange-
Hermite transfinite interpolation conditions:

(
h∗f

)

|Δ∗ = f|Δ∗ ,
(
grad h∗f

)

|Δ∗ =
(
grad f

)
|Δ∗ . (12.6)
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(b) The following error representation formula holds

f(x) − h∗f(x) = −
∑

1≤i<j≤d

∂2f

∂xi∂xj

(
ξ i,j

)
(
xi − xj

)2

2
, (12.7)

where x = (x1, . . . , xd) ∈ Id and ξ i,j ∈ Id.

Proof. Proof of (a). Let x = (x, . . . , x) ∈ Δ∗. Then (∂h∗f/∂xi)(x) = (∂f/∂xi)(x, . . . , x) =
(∂f/∂xi)(x) and, from here, (gradh∗

f
)
|Δ∗ = ( grad f)|Δ∗ .

Proof of (b). Let x = (x1, . . . , xd) ∈ Id. Without any restriction (with a permutation
of the variables if necessary) we suppose x1 ≤ x2 · · · ≤ xd. Consider the auxiliary function
g(x) = f(x) − h∗

f
(x). Then by (12.5), g|Δ∗ = 0 and (grad g)|Δ∗ = 0, and in view of this, for each

i, 1 ≤ i ≤ d

∂g

∂xi
(x) =

∂g

∂xi
(x1, . . . , xd) −

∂g

∂xi
(xi, . . . , xi)

= −
d∑

j=1,j /= i

(
xi − xj

)
∫1

0

∂2g

∂xi∂xj
[x1 + s(xi − x1), . . . , xd + s(xi − xd)]ds.

(12.8)

Denote xk := (xk, . . . , xk, xk+1, . . . , xd), k = 1, . . . , d, x1 = x = (x1, . . . , xd), xd = (xd, . . . , xd). By
using the representation (12.8) for ∂g/∂xi we obtain

g(x) =
d−1∑

k=1

[
g(xk) − g(xk+1)

]
= −

d−1∑

k=1

∫xk+1

xk

d

dt
g(t, . . . , t, xk+1, . . . , xd)dt

= −
d−1∑

k=1

∫xk+1

xk

k∑

i=1

∂g

∂xi
(t, . . . , t, xk+1, . . . , xd)dt

=
d−1∑

k=1

k∑

i=1

d∑

j=k+1

∫xk+1

xk

(
t − xj

)
∫1

0

∂2g

∂xi∂xj
(xs,t,k)dsdt,

(12.9)
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where xs,t,k := (t, . . . , t, xk+1 + s(t − xk+1), . . . , xd + s(t − xd)). Changing twice the order of
summation in (12.9) and applying the integral mean value theorem we obtain

g(x) =
d−1∑

i=1

d−1∑

k=i

d∑

j=k+1

∫xk+1

xk

(
t − xj

)
∫1

0

∂2g

∂xi∂xj
(xs,t,k)dsdt

=
d−1∑

i=1

d∑

j=i+1

j−1∑

k=i

∫xk+1

xk

(
t − xj

)
∫1

0

∂2g

∂xi∂xj
(xs,t,k)dsdt

=
d−1∑

i=1

d∑

j=i+1

j−1∑

k=i

[(
xk+1 − xj

)2

2
−
(
xk − xj

)2

2

]

D1,1
i,j g

(
xk,j

)

= −
d−1∑

i=1

d∑

j=i+1

D1,1
i,j g

(
ξ i,j

)
(
xξ − xj

)2

2
, ξi,j ∈ Id, 1 ≤ i < j ≤ d.

(12.10)

This completes the proof.

12.2. Transfinite Cubature Formula, Exact in the Linear Space B1,d

Let h ∈ B1,d. Then the following transfinite cubature formula holds:

∫
· · ·

∫

Id
h(x1, . . . , xd)dx1 · · ·dxd = 2d−1

∫

Δ∗
h(t, . . . , t)dt. (12.11)

Proof. Integrate (12.7) on Id for f = h ∈ B1,d, taking into account that h∗
h
= h if h ∈ B1,d and

the representation (12.5) of h∗h.

The next theorem gives a canonical set characterization of the best one-sided from
above L1-approximant from B1,d to a function, belonging to the convex cone

C+,d :=
{
f ∈ C1,d : D1,1

i,j f ≥ 0 on I2; 1 ≤ i < j ≤ d
}
. (12.12)

Theorem 12.2. Let f ∈ C+,d. Then the unique transfinite Lagrange-Hermite interpolant h∗
f
from B1,d

to f satisfying the transfinite interpolation conditions

(
h∗f

)

|Δ∗ = f|Δ∗ ,
(
grad h∗f

)

|Δ∗ =
(
grad f

)
|Δ∗ (12.13)

is the unique best one-sided from above L1-approximant to f from B1,d.

Proof. By (12.7) we conclude that f(x) ≤ h∗f(x), x ∈ Id. Taking into account the cubature
(12.11) we conclude by Theorem 10.1 that the transfinite interpolant h∗

f
to f is the best one-

sided from above L1-approximant to f ∈ C+,d from B1,d.
Uniqueness of the Best One-Sided from above L1-Approximant from B1,d to C+,d.
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Suppose h ∈ B1,d, h ≥ f on Id is another best one-sided from above L1-approximant to
f ∈ C+,d from B1,d. Then, by using (12.6) and (12.11)we obtain

0 =
∫

Id

(
h∗f − f

)
−
∫

Id

(
h − f) =

∫

Id

(
h∗f − h

)

= 2d−1
∫

Δ∗

(
h∗f − h

)
= 2d−1

∫

Δ∗

(
f − h) ≤ 0 .

(12.14)

Hence, h|Δ∗ = f|Δ∗ . However, h ≥ f on Id and from here, (grad h)|Δ∗ = (grad f)|Δ∗ . By
Theorem 12.1 we conclude that h = h∗f . The proof is completed.

Remark 12.3. According to Theorem 12.2, the setΔ∗ is the canonical point set of best one-sided
from above L1-approximation from B1,d to the convex cone C+,d.

Denote by Ed the set

Ed := {ε = (ε1, . . . , εd), εi = ±1, i = 1, . . . , d} (12.15)

of all d-dimensional vectors with entries ± 1. For a fixed ε ∈ Ed consider the ε-diagonal of
Id: Δε := {(ε1t, . . . , εdt) : t ∈ [−1, 1]}. By using the linear transformation ui = εixi, i = 1, . . . , d,
the following corollary by Theorems 12.1 and 12.2 holds.

Corollary 12.4. Let, for a fixed vector ε = (ε1, . . . , εd) ∈ Ed, the function f ∈ C1,d satisfy

εiεj D
1,1
i,j f ≥ 0 on Id, 1 ≤ i < j ≤ d. (12.16)

Then the unique Lagrange-Hermite interpolant

h∗ε ,f(x1, . . . , xd) = f(−ε1, . . . ,−εd ) +
d∑

i=1

εi

∫ εixi

−1

∂f

∂xi
(ε1t, . . . , εdt)dt (12.17)

from B1,d to f , satisfying the transfinite interpolation conditions

(
h∗ε ,f

)

|Δε
= f|Δε,

(
grad h∗ε ,f

)

|Δε
=
(
grad f

)
|Δε, (12.18)

is the unique best one-sided from above L1-approximant to f from B1,d.

Remark 12.5. Theorems 12.1 and 12.2 are common basis for well-known classical and new
inequalities. For example, the inequalities 9, 13, 16, 25, and 61 published in [31] are
corollaries from the explicit constructions (12.5) and (12.7) of the best one-sided from above
L1-approximants to appropriately chosen functions (see [30] for details). More precisely,
the right-hand side expressions of these inequalities are best one-sided from above L1-
approximants to the left-hand side ones in the sense of Theorems 12.1 and 12.2. We give
some examples.

For a set of d numbers {x1, . . . , xd} denote x∗ := min{x1, . . . , xd}, x∗ :=
max{x1, . . . , xd}.
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Example 12.6. Consider f(x1, . . . , xd) = x
p1
1 · · ·xpdd , where xi > 0, pi > 0,i = 1, . . . , d and

∑d
i=1 pi = 1. We compute

∂f

∂xi
(x) = pix

pi−1
i

d∏

j=1,j /= i

x
pj
j ;

∂2f

∂xi∂xj
(x) = pix

pi−1
i pjx

pj−1
j

d∏

k=1,k /= i,j

x
pk
k
> 0 (12.19)

for xi > 0, i = 1, . . . ,d. Then

h∗f(x1, . . . , xd) = f(x∗, . . . , x∗) +
d∑

i=1

∫xi

x∗

∂f

∂xi
(t, . . . , t)dt

=
d∑

i=1

∫xi

0
pit

pi−1
d∏

j=1,j /= i

tpj dt

=
d∑

i=1

∫xi

0
pi dt =

d∑

i=1

pixi

(12.20)

is the unique best one-sided from above L1-approximant to f from B1,d on [x∗, x∗]d. Hence,

x
p1
1 · · ·xpd

d
≤ p1x1 + · · · + pdxd (12.21)

with the case of equality only for x1 = · · · = xd. The inequality is easily extended to xi ≥ 0, i =
1, . . . , d. This is the well-known inequality between the geometric mean and the arithmetic
mean of a set of nonnegative numbers.

Example 12.7. Let f(t) be a univariate function satisfying f ′(t) + tf ′′(t) > 0 for t > 0. Then, for
the d-variable function f(x1 · · · xd),xi > 0, i = 1, . . . , d we compute

∂f

∂xi
(x) =

⎡

⎣
d∏

j=1,j /= i

xj

⎤

⎦ f ′(x1 · · ·xd)

∂2f

∂xi∂xj
(x) =

⎡

⎣
d∏

k=1,k /= i,j

xk

⎤

⎦ f ′(x1 · · ·xd) +
⎡

⎣
d∏

k=1,k /= i

xk

⎤

⎦

⎡

⎣
d∏

s=1,s /= j

xs

⎤

⎦ f ′′(x1 · · ·xd)

=

⎡

⎣
d∏

k=1,k /= i,j

xk

⎤

⎦
(
f ′(x1 · · ·xd) + (x1 · · ·xd)f ′′(x1 · · ·xd)

)
> 0

(12.22)
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for xi > 0, i = 1, . . . , d. In view of Theorems 12.1 and 12.2 the unique transfinite interpolant to
f from B1,d on [x∗, x∗]2

h∗f(x1, . . . , xd) = f(x∗) +
d∑

i=1

∫xi

x∗

∂f

∂xi
(t, . . . , t)dt

= f(x∗) +
d∑

i=1

∫xi

x∗
td−1f ′

(
td
)
dt =

1
d

d∑

i=1

f
(
xdi

)
(12.23)

is the unique best one-sided from above L1-approximant to f from B1,d on [x∗, x∗]d. Hence,

f(x1 · · ·xd) ≤ 1
d

d∑

i=1

f
(
xdi

)
(12.24)

with the case of equality only for x1 = · · · = xd.

Example 12.8. Let f(t) = (β + t)α, β ≥ 0, α > 0, t > 0. We compute

f ′(t) + tf ′′(t) =
(
β + t

)α−2
α
(
β + αt

)
> 0. (12.25)

Then as a corollary by Example 12.7, we obtain the inequality

(
β + x1 · · ·xd

)a ≤ 1
d

d∑

i=1

(
β + xdi

)α
, xi > 0, i = 1, . . . , d (12.26)

with the case of equality only for x1 = · · · = xd. Obviously, the inequality holds for xi ≥ 0, i =
1, . . . , d.

Example 12.9. Let f(t) = sin(t), t ≥ 0. We compute f ′(t) + tf ′′(t) = cos(t) − t sin(t) > 0 for
t ∈ (0, t∗), where t∗ ≈ 0.8603336 is the unique solution of the nonlinear equation cot(t) = t, t ∈
[0, π/2]. Then, following Example 12.7, we obtain the inequality

sin(x1 · · ·xd) ≤ 1
d

d∑

i=1

sin
(
xdi

)
, 0 < xi < t1/d∗ , 1 ≤ i ≤ d (12.27)

with the case of equality only for x1 = · · · = xd. Obviously the inequality holds for 0 ≤ xi ≤
t1/d∗ , 1 ≤ i ≤ d.

Example 12.10. Let the univariate function f(t) satisfy 2f ′(t) + tf ′′(t) > 0 for t > 0. Consider
the d-variable function

f̃(x1, . . . , xd) :=
∑

1≤i<j≤d
f

(
1

xi + xj

)

, xi > 0, 1 ≤ i ≤ d. (12.28)
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Computing partial derivatives of f̃ we obtain

∂f̃

∂xi
= −

d∑

j=1,j /= i

1
(
xi + xj

)2 f
′
(

1
xi + xj

)

∂2f̃

∂xi∂xj
=

2
(
xi + xj

)3 f
′
(

1
xi + xj

)

+
1

(
xi + xj

)4 f
′′
(

1
xi + xj

)

=
1

(
xi + xj

)3

[

2f ′
(

1
xi + xj

)

+
1

(
xi + xj

)f ′′
(

1
xi + xj

)]

> 0,

(12.29)

where 1 ≤ i < j ≤ d. In view of Theorems 12.1 and 12.2, the transfinite interpolant to f̃ from
B1,d on [x∗, x∗]d

h∗
f̃
(x1, . . . , xd) = f̃(x∗, . . . , x∗) +

d∑

i=1

∂f̃

∂xi
(t, . . . , t)dt

=
d(d − 1)

2
f

(
1
2x∗

)
− (d − 1)

d∑

i=1

∫xi

x∗

1
4t2

f ′
(

1
2t

)
dt

=
d − 1
2

d∑

i=1

f

(
1
2xi

)

(12.30)

is the unique best one-sided from above L1-approximant to f̃ from B1,d. Hence, the following
inequality holds:

∑

1≤i<j≤d
f

(
1

xi + xj

)

≤ d − 1
2

d∑

i=1

f

(
1
2xi

)
(12.31)

with the case of equality only for x1 = · · · = xd. In the particular cases f(t) = t and f(t) = ln(t)
we obtain the inequalities

∑

1≤i<j≤d

1
xi + xj

≤ d − 1
4

d∑

i=1

1
xi
;

∑

1≤i<j≤d
ln

1
xi + xj

≤ d − 1
2

d∑

i=1

ln
1
2xi

(12.32)

with the case of equalities only for x1 = · · · = xd.
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