
REVIEW

Transforming the study of organisms:

Phenomic data models and knowledge bases

Anne E. ThessenID
1,2*, Ramona L. WallsID

3, Lars VogtID
4, Jessica Singer5,

Robert Warren5, Pier Luigi ButtigiegID
6, James P. Balhoff7, Christopher J. MungallID

8,

Deborah L. McGuinnessID
9, Brian J. Stucky10, Matthew J. Yoder11, Melissa A. HaendelID

1

1 Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of

America, 2 Ronin Institute for Independent Scholarship, Monclair, New Jersey, United States of America,

3 Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America, 4 TIB Leibniz Information

Centre for Science and Technology, Hannover, Germany, 5 Annex Agriculture Inc., Saskatchewan, Canada,

6 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany,

7 Renaissance Computing Institute, University of North Carolina, Chapel Hill, North Carolina, United States of

America, 8 Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory,

Berkeley, California, United States of America, 9 Rensselaer Polytechnic Institute, Troy, New York, United

States of America, 10 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United

States of America, 11 Illinois Natural History Survey, Champaign, Illinois, United States of America

* annethessen@gmail.com

Abstract

The rapidly decreasing cost of gene sequencing has resulted in a deluge of genomic data

from across the tree of life; however, outside a few model organism databases, genomic

data are limited in their scientific impact because they are not accompanied by computable

phenomic data. The majority of phenomic data are contained in countless small, heteroge-

neous phenotypic data sets that are very difficult or impossible to integrate at scale because

of variable formats, lack of digitization, and linguistic problems. One powerful solution is to

represent phenotypic data using data models with precise, computable semantics, but

adoption of semantic standards for representing phenotypic data has been slow, especially

in biodiversity and ecology. Some phenotypic and trait data are available in a semantic lan-

guage from knowledge bases, but these are often not interoperable. In this review, we will

compare and contrast existing ontology and data models, focusing on nonhuman pheno-

types and traits. We discuss barriers to integration of phenotypic data and make recommen-

dations for developing an operationally useful, semantically interoperable phenotypic data

ecosystem.

Author summary

Organism traits determine the role of species in economies and ecosystems, and the

expression of those traits relies on interactions between an organism’s genes and environ-

ment. The key to predicting trait expression is having a large pool of data to derive models,

but most organism trait observations are recorded in ways that are not computational. In

this paper, intended for an interdisciplinary audience, we discuss data models for repre-

senting organism traits in a computable format. Increasing acceptance of a data model for
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traits will greatly increase the pool of available data for studying the dynamic processes

that determine trait expression. We hope that explaining these data models in a straight-

forward way and articulating their potential for accelerating discovery will increase adop-

tion of this promising data standard.

Introduction

An organism’s phenotype is the product of interactions between its genetic endowment and

environmental conditions over its lifetime, but the ability to predict phenotypes from genotype

and environmental data is limited. The models we currently have that predict organism phe-

notype from genotype rarely include environments, have lower performance on multigene

phenotypes, and often only apply to a single taxon [1–18]. The majority of existing models that

do include environmental change focus on ecosystems and are driven entirely by environmen-

tal data and organism abundance/distribution (see [19,20] for example). Genes and pheno-

types are assumed present using species observations or environmental measurements of

biological activity. The models are typically very geospatially specific, predicting results for a

single system, such as the Chesapeake Bay [21]; moreover, they reveal more about the physical,

chemical, and ecological processes happening in that system than they do about organism phe-

notypes. Such models can tell us what to expect in different scenarios and can be used to probe

specific parts of the ecosystem. We need an analogous model for predicting and explaining

phenotypic changes in organisms.

Worldwide recognition of climate change has created urgency around addressing this prob-

lem for agricultural sustainability and conservation of essential ecosystem functions [22].

Models for deriving phenotypic characteristics do not have access to sufficient gene, environ-

ment, and phenotypic data to make accurate predictions at the organism or population levels,

especially outside humans and model organisms. The problem is not only merely a lack of data

but also that extant data cannot be combined at scale, especially for phenotype and environ-

ment data that have a strong temporal component [23,24]. A mechanism to scale up data inte-

gration is needed if we aim to have a data set large enough to predictively model the

relationship between phenotypes, genotypes, and environments. In this review, we describe

the barriers to large-scale integration of phenotypic data, compare and contrast existing

semantic data models, and provide best practices for representing characteristics of organisms

using data models with explicit semantics. Although some of the methods we describe have

their origin in biomedical research, others have arisen in the ecology, evolution, and biodiver-

sity communities as a result of the particular data challenges that come with describing pheno-

types of tens or thousands of species. Work on integrating phenotypic data for humans and

model organisms is reviewed elsewhere [25–30].

Information about organismal phenotypes has been collected by thousands of observers for

a myriad of purposes over centuries. Much of this information is contained in countless small,

heterogeneous data sets [31], which are not findable, accessible, interoperable, reusable, trace-

able, licensed, or connected [32]. As a consequence, so much manual work is needed to inte-

grate and normalize these data that it is very rarely done. One way to attack this problem is to

employ a standard for describing and exchanging information about phenotypes [23,33]. Sev-

eral discipline- or taxon-specific databases have been developed in an effort to make these

many smaller phenotypic data sets available and reusable (e.g., [34,35]), but even when pheno-

typic data are available through such databases, integrating and reusing those data is a labor-

intensive undertaking [36,37].
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A “phenome” is the set of all phenotypes expressed by an organism at all life stages (e.g.,

physical phenotypes, behavioral phenotypes, etc.). It is analogous to the genome or the prote-

ome, which are the sets of all genes and proteins of an organism, respectively. Thus, phenomics

is the study of the phenome and how it is determined, especially in relation to genes and envi-

ronmental influences. Integrated computational analysis of genotype and phenotype is at the

heart of precision medicine [38], evolutionary biology [39], and plant breeding [40]. Due to

lack of computable phenotypic data, demonstrated advances are limited in portability to other

disciplines. Knowledge of cellular and molecular biology has been revolutionized by the

“omics” and were made possible by the huge quantities of standardized, computable data. Phe-

nomics holds similar promise on a whole-organism and multi-organism scale but is limited by

the lack of computable data.

Many different research disciplines, such as biodiversity science, environmental science,

agronomy, biomedicine, and phylogenetics, document characteristics of organisms and taxa.

These characteristics have been referred to as traits, phenotypes, characters, and qualities,

sometimes interchangeably or inconsistently within and between disciplines. Characteristics

of organisms have been represented using several different data models, terminologies, and

perspectives, and we will use terms according to the definitions in Box 1. The methods for rep-

resenting these concepts have arisen independently to address discipline-specific needs; there-

fore, each community has developed its own terminologies, design patterns, classes, and

properties for representing characteristics, sometimes in isolation. The interdisciplinary nature

of major societal problems such as climate change, feeding a growing population, public

health, and biodiversity conservation will be poorly served by data infrastructure that builds

Box 1. Definitions of commonly used terms

Character or trait: Any descriptor of an organism that can have multiple states/pheno-

types (e.g., “leaf shape”). In the phylogenetics community, characters are a special subset

of traits that are important for inferring the process of evolution.

Character state or phenotype: The specific state or manifestation of a character or trait

in an organism (e.g., “ovate” or “12 cm”).

Quality: Any descriptor of an organism and its multiple states. In an ontology, the states

are subclasses of the descriptor (e.g., “shape” is a parent class of “ovate”).

Value: Numerical measurement of a phenotype (e.g., “12 cm”)

Specimen: A physical object collected for research purposes. In this context, an organ-

ism, part of an organism, or collection of organisms. Specimens are often accompanied

by metadata such as time and place of collection.

Taxon concept: A hypothesis about how to group individual organisms into species or

higher-level taxa.

Ontology: An ontology is a classification of concepts in a field of knowledge, or a

domain, such as organisms or anatomical entities. Concepts are hierarchically arranged

and formally defined in a human-readable format (using text definitions) and com-

puter/machine-readable format (encoded with a knowledge representation language like

Resource Description Framework Schema (RDFS), Web Ontology Language (OWL),

and Open Biomedical Ontologies format (OBO). In addition, the relationships between

concepts are defined, which allows disparate data types to be connected in a formal way.
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barriers around data sets by discipline. Clarity is needed on how communities of practice are

representing organism characteristics to avoid and break down unnecessary silos.

Results

Challenges in phenotypic data sharing

There are multiple challenges to making phenotypic data available and interoperable, includ-

ing variable formats, lack of digitization, and linguistic problems such as ambiguity and poor

language translation [33,37,41]. We highlight 7 barriers that stand in the way of integrating

phenotypic data:

1. Many names for 1 thing, 1 name for many things (Fig 1A and 1B). Several knowledge

bases tackle this problem through their own preferred terms and/or controlled vocabularies,

Fig 1. Phenotypic data integration challenges. (A) The many names for the mountain gorilla, Gorilla beringei, resulted from years of nomenclatural acts, misspellings,

and the quirks of human language and popular culture. (B) The term “paramere” has been ambiguously used to describe 5 different parts of the male genitalia of a

gasteruptiid wasp (red). (C) The end-of-season height of a wheat plant can be described by an exact measurement or relative to a “wild type.” (D) With the exception of

microorganisms, measurements are collected from specimens but are sometimes represented as a single value representing an entire population or taxon. All 4 of these

panels represent 1 or more challenges to phenotypic data integration. Image credit: Panel A by David J. Patterson, used with permission.

https://doi.org/10.1371/journal.pcbi.1008376.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008376 November 24, 2020 4 / 24

https://doi.org/10.1371/journal.pcbi.1008376.g001
https://doi.org/10.1371/journal.pcbi.1008376


sometimes with the addition of a list of synonyms. From an ontological and data integration

perspective, this practice presents difficulty, as tracking what preferred term belongs to

which organizational context becomes difficult. Similarly, challenges arise when dealing with

different languages that use different labels for the same object (e.g., “durum” is “blé dur” in

French but “hard wheat” (a type of wheat classification) also translates to “blé dur”). Like-

wise, people use the same term to refer to many different things [42]. For example, an insect

wing, a bat wing, and a wing on an agricultural implement are all very different structures

sharing but a few characteristics (e.g., shape), yet they are all called “wing.”

2. Definitions change over time (Fig 1B). Nomenclature drift is the process by which the

meaning of a word or phrase changes over time. From a knowledge management perspec-

tive, as the scale of the information model grows, the thing, the name of the thing, and the

definition of the thing must be considered separately in order to deal with real-world com-

plexity, including drift [43]. For example, our concept of a “gene” has changed from a heri-

table unit, to a coding region of DNA, to being inclusive of all the regulatory regions and

potential transcript variants. In ontologies, best practices can control drift by using term

identifiers that are independent of the label, ensuring clear textual definitions, requiring a

new term identifier when a definition changes meaning substantially, and versioning the

ontology; however, it is still very difficult to pinpoint in time when such changes are

needed. In less formal vocabularies, there is often no way to control for nomenclature drift.

Slang, interdisciplinary pidgin, discipline-specific jargon, and context-specific vernacular

ensure that meanings will change over time as organizational cultures shift.

3. Variable observation granularity (Fig 1B). One data set may describe the phenotype of an

entire leg, while another describes the same phenotype for different parts of the leg. This chal-

lenge is only exacerbated when cells, organelles, and behaviors are included. For example, any

anatomical part can be partitioned in countless ways, so we need methods and techniques

that allow machines to actually evaluate whether descriptions differ because they refer to dif-

ferent objects or just because they (a) focus on different resolutions/scales; (b) use different

levels of generality (author 1 refers to a particular cell just as “cell,” whereas author 2 refers to

it as a neuroblast); (c) take in different frames of reference; (d) describe different parts of the

same object [44,45]; or (e) focus on the same structure at different developmental stages.

4. Variable perspective. Describing an anatomical feature from a functional frame of refer-

ence will yield a description that is substantially different from a description based on a spa-

tial, developmental, physiological, behavioral, or evolutionary point of view.

5. Heterogeneous data types (Fig 1C). Phenotypes are reported using a wide variety of data

types, including qualitative, quantitative, relative, or absolute values; and those values can

take the form of a boolean, string, integer, or real number. In some data sets, traits are mea-

sured quantitatively as absolute integers, such as “rye height = 10 cm” or “petal number = 5,”

or boolean, such as “swim bladder = False.” Other data sets report phenotypes qualitatively

as a string, relative to some canonical type (e.g., “hind leg enlarged”). This is especially true

when dealing with vernacular narratives or field observations of citizen scientists and local

experts. It is also the common practice for model organisms, where phenotypes associated

with a genetic variant are described relative to the wild type. The integration challenge pres-

ents when the same phenotypes are presented as heterogeneous types in different data sets,

(e.g., rye height = 10 cm and rye height = stunted and rye height stunted = True).

6. Specimen versus species or group data (Fig 1D). All phenotypic measurements for macro-

scopic organisms are taken from individuals, but they are not always reported or used as
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such. Often, measurements from 1 or more organisms are pooled and taken to represent

the entirety of a group to which the specimens belong, the species, a higher-level taxonomic

group, population, or other feature, like sex or life stage. Microscopic organisms can have

phenotypes reported per individual or per “strain” if in the laboratory. As a result, data can

be reported as coming from individuals (specimens), groups of individuals, or populations

(strains or species). This difference in the collection and application of data can result in

“average” phenotypes describing taxa that are not qualified with the provenance of a sample

size or measure of variation. This is highly problematic in a system that relies on precision,

because there is no way to account for error.

7. Taxonomy changes (Fig 1A). Circumscriptions of species are hypotheses, as such their def-

initions also change over time as they are tested, rejected, and refined. The hypotheses that

define how species should be defined, i.e., meta-hypotheses, are numerous, and also change

over time [46]. The nature of this scenario is not a failure of taxonomy to uniformly address

a problem; it is a reflection of the vast complexity observed in biology. The overall fluidity

inherent in taxonomy is a strong argument for tying phenotypic data to the specimen or

instance level, for if they are reported only at the species level then it is impossible (or at

least inadvisable) to interpret those data when species definitions invariably change.

Solutions exist for these barriers, but they require changes to the ways data are collected

and managed. One powerful solution is to formally represent phenotypic data using explicit

semantics, with a language such as OWL (Web Ontology Language). By logically defining the

phenotype concepts, providing text definitions and synonyms, ontologies solve the problems

of homonymy, synonymy, polysemy, and most importantly, ambiguity (barrier 1 and 2). For

example, the biomedical Natural Language Processing (NLP) community has developed sev-

eral tools that use reference ontologies (in addition to other resources) for addressing these

“word sense disambiguation” problems, enabling a machine to extract meaning from human-

readable text [47–49]. The use of ontologies (e.g., that specify that a “tibia” is a “part of” a

“leg”) can facilitate integration of data collected at variable scales (barrier 3). Likewise, ontolo-

gies that use logical definitions to maintain multiple hierarchies address the challenge of vari-

able perspective (barriers 3 and 4). For example, in the UBERON anatomy ontology [50], a

“femoral ridge” is a subclass of both “mesoderm derived structure” (a developmental perspec-

tive) and “skeletal element projection” (a spatial perspective). From a functional perspective,

any given skeletal ridge might be a subclass of “attachment site.” Ontological models can also

be used to combine qualitative and quantitative phenotypic data (barrier 5), but doing so is

not straightforward for all phenotypes. For example, the Plant Phenology Ontology (PPO) [51]

can integrate count data with categorical data about seasonal changes in plant structures such

as leaves and flowers. To give a simplified example, reasoning software could use the PPO to

recognize that a quantitative observation of “flower count = 3” also implies the qualitative

observation that “flower = present.” Other kinds of quantitative data can be transformed into

semantic qualitative annotations by a variety of systematic processes, such as having values

with a standard deviation converted into traits indicated as “large” or “short,” while preserving

the original values in the knowledge base [52,53]. Providing that the qualitative equivalences

are translated in a consistent way, the resulting intercontinental data sets allow for large-scale

analyses that were previously impossible. Overcoming the final 2 barriers (barriers 6 and 7)

requires that phenotypic data be recorded and preserved at the level of the specimen. Since

nearly all phenotypic observations of macroscopic organisms occur at the level of the individ-

ual, the challenge is to preserve that level of information in publication. For example, a

researcher can collect seven insect body length measurements in a single data set, but might
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report those lengths in a publication as a mean value (Fig 1D) and that published mean might

be the only data that survives long term [54]. Whenever data are aggregated (e.g., reported as a

species mean), standard deviation, sample size, and range, if included, would allow these data

to be used in future modeling efforts. Preserving specimen-level data also allows phenotypic

data to be reassigned whenever species boundaries change. At the microscopic level, it is pro-

hibitively difficult to describe some types of phenotypic data at the individual level. For exam-

ple, microbial functions, such as the production of certain proteins, are measured on bulk

environmental (e.g., soil or water) samples and therefore represent the product of a population

or even community. These phenotypes can often be assigned to particular strains but not to a

single microbe. In this case, preserving information about the specimen (where it came from,

any treatments) becomes crucial for data integration.

Although model organism phenotypic data are rarely described as corresponding to a speci-

men (and such specimens are rarely preserved), these data are always associated with a geno-

type. While such data are not foolproof against future changes in taxonomy, the relationship

to a known genotype does provide higher precision than simply a species name and facilitates

combining model organism phenotypic data with data from nonmodel species (e.g., [55]). The

use of ontologies to describe phenotypes is common in the model organism domain. Decades

of work in this community have resulted in a massive body of interoperable data that has had a

real impact [56–58]. We have every reason to believe that a comparable effort in other disci-

plines would be just as impactful.

Approaches to making phenotype definitions computable

There are several databases containing information about organism characteristics (Table 1).

All of the repositories and models discussed here will be grounded in some type of pattern,

based on the way they use ontologies. For a comprehensive and continuously updated list of

trait data repositories, see the Open Traits Network [37,59]. Standards and models are just as

much a product of the state of the user community as they are an expression of an efficient

way to represent data. This is apparent in many of the differences between the models dis-

cussed below.

Classes versus instances

An important concept in understanding the diversity of phenotypic data is the recognition

that some assertions are made at the “class” level (e.g., types of things) and others at the

“instance” level (e.g., individual organisms or their parts). TBox reasoning is defined as logical

entailments regarding axioms about classes and properties, whereas ABox reasoning utilizes

axioms about instances (Fig 2). The terms “TBox” and “ABox” are used in computer science

and refer to the terminological component and the assertion component, respectively. “TBox”

refers to classes, properties, and assertions about those classes and properties that are true in

the general sense; for example, that a human femur is a type of bone and is a part of a leg—this

is true for all instances of femur, bone, and leg. “ABox” refers to instances of classes and asser-

tions that are instance specific, for example, that a specific organism’s femur is 12.4 cm long.

These 2 levels of knowledge express different kinds of truths and require different representa-

tional models.

In biological domains, the TBox is often implemented as an ontology with “classes” that

describe kinds of things, like “femur,” “leg,” and “bone,” and “properties” that describe the

relationships among the classes or relationships among instances of those classes. The proper-

ties have machine-readable rules to describe how the kinds of things relate to each other (and

globally unique, persistent identifiers to that a vertebrate femur and an insect femur are not
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Table 1. Semantic knowledge bases containing information about organism characteristics.

Name� Description or Scope Format Pattern Reference

Biodiversity

Phenoscape† Vertebrate morphology OWL in RDF

Blazegraph

triplestore

EQ [35,60]

EOL TraitBank†‡ Internet aggregator of data about species Neo4j Character/Character State [61,62]

Microbial Phenotypes

Wiki‡
Web-based community resource designed to

display microbial phenotypes and the

methods used to study them.

MediaWiki Tabular, uses OMP [63] [64]

PolyTraits‡ Database on biological traits of polychaetes Relational database Character/Character State [65,66]

TRY† Global database of curated plant traits Relational database Map traits to TOP (EQ) [67] [34]

FuTRES† Functional traits of vertebrates OWL in RDF

triplestore

Measurement-Based quantitative data, trait

definitions follow EQ pattern from OBAEQ

[68]

Planteome‡ Plant genomics and phenomics GAF and SOLR EQ and DOS-DP [69]

Global Plant Phenology† Aggregator of plant phenological data OWL and JSON Measurement-Based quantitative and presence/

absence data; EQ model

[70,71]

Semantic Morph�D�Base† Repository for morphological data OWL in RDF

triplestore

Measurement-Based with connection to TBox:

Phenotype Knowledge Graphs

[72–76]

TaxonWorks† Web-based workbench for taxonomists and

biodiversity scientists

PostgreSQL

(relational database)

Class (OTU) or Measurement-Based (collection

object). Qualitative, quantitative, statistical, media,

gene, text, presence/absence, arbitrary triples (data

attributes).

[77]

World Register of Marine

Species‡
Authoritative classification and catalogue of

marine species

MS SQL relational

database with trait

module

Character/Character State [78]

Agriculture

Gramene‡ Comparative functional genomics in crops

and model plant species

MongoDB JSON-like, using PO [79] [80,81]

Sol Genomics Network‡ Clade-oriented database dedicated to the

biology of the Solanaceae family

Relational database

(chado)

Tabular, dbxref to PO [82,83]

GrainGenes‡ Comprehensive resource for molecular and

phenotypic information for wheat, barley, rye,

and other related species, including oat.

Relational database

(chado)

Tabular, using Plant TO [84] [85,86]

Annex‡ Cereals ontology OWL Measurement and Class-based [87]

CassavaBase‡ Genomic and phenomic resource for cassava Relational database

(chado)

Tabular, uses CO [88] [89,90]

AgroLD‡ Integrated data about commercially

important plants

RDF triples EQ and DOS-DP [91]

Biomedicine and Model Organisms

Monarch Initiative,

uPheno, and Human

Phenotype Ontology‡

Integrator of cross species genotype-

phenotype data including human phenotypes

and their relationship to diseases

OWL EQ and DOS-DP [28,92,93]

MGI‡ Mouse genomic and phenomic resource OWL and OBO EQ and DOS-DP [94,95]

WormBase‡ Nematode genomic and phenomic resource OWL and OBO EQ and DOS-DP [96,97]

TAIR‡ Arabidopsis genomic and phenomic resource OWL and OBO EQ and DOS-DP [98,99]

FlyBase‡ Fruit fly genomic and phenomic resource OWL and OBO EQ and DOS-DP [100,101]

XenBase‡ Xenopus genomic and phenomic resource OWL and OBO EQ and DOS-DP [102,103]

ZFIN‡ Zebrafish genomic and phenomic resource OWL and OBO EQ and DOS-DP [104,105]

Saccharomyces Genome

Database‡
Comprehensive integrated biological

information for the budding yeast

Saccharomyces cerevisiae

PostgreSQL Tabular, uses APO [106] [107]

(Continued)
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conflated). So, in the example above, that “femur” “is a” type of “bone” and “part of” a “leg;”

“femur,” “leg,” and “bone” are classes, while “part of” and “is a” are the properties. The

ABox uses the classes and properties described in the ontology to model instance data. The

Table 1. (Continued)

Name� Description or Scope Format Pattern Reference

RGD ‡ Structured and standardized data for 8 species

(rat, mouse, human, chinchilla, bonobo,

13-lined ground squirrel, dog, and pig)

Relational database

(chado), GAF, and

OBO

Qualitative, links QTLs to multiple OBO phenotype

ontologies

[108,109]

�To be included in this table, a resource must contain annotations linking traits to organisms, use a phenotype ontology, and not require login credentials.
†Includes phenotype data reported at the individual specimen level.
‡Includes phenotype data reported at the group level.

APO, Ascomycete Phenotype Ontology; CO, Crop Ontology; DOS-DP, Dead Simple Ontology Design Pattern; EQ, Entity–Quality; GAF, GO Annotation File format;

OBAEQ, Ontology of Biological Attributes-Entity Quality; OBO, Open Biomedical Ontologies format; OMP, Ontology of Microbial Phenotypes; OWL, Web Ontology

Language; OTU, Operational Taxonomic Units; PO, Plant Ontology; QTL, Quantitative Trait Locus; RDF, Resource Description Framework; RGD, Rat Genome

Database; TO, Trait Ontology; TOP, Thesaurus of Plant Characteristics.

https://doi.org/10.1371/journal.pcbi.1008376.t001

Fig 2. TBox versus ABox. The TBox (A) includes classes (kinds of things), properties (the possible relationships between classes and instances of the classes), and

assertions about the classes and properties. The ABox (B) represents instances of the classes represented in the TBox and assertions about those instances. For example,

an instance of femur in a frog specimen is 1.2 cm long. Image credit: Photo from National Museum of Natural History,Washington DC.

https://doi.org/10.1371/journal.pcbi.1008376.g002
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bridge between the TBox and ABox is the use of common classes, in this case, “femur.” In the

ABox, the data represent instances of the class “femur,” which is described in the TBox.

Semantic phenotypes encoded using Entity–Quality Formalism

Entities in ontologies may be defined by or composed of multiple other classes. For phenotypes

or traits, this is done using the Entity–Quality (EQ) Formalism [25]. This model combines

terms from anatomy ontologies (entities) and phenotype ontologies (qualities) to make an

abbreviated assertion that an anatomical entity has a particular quality (Fig 3). Entities need

not be anatomical and can include processual entities (e.g., E = “migration,” Q = “delayed”) or

physiology (e.g., E = “transpiration rate,” Q = “increased”). With additional modeling, values,

such as a numerical measurement of body length, can also be included [52,53]. This approach

to representing phenotypes originated largely in the model organism community and has been

adapted to translate phylogenetic matrices into machine-readable assertions [25,110,111].

While the EQ examples given here are straightforward, phylogenetic characters can sometimes

require very complex EQ statements because they were historically not developed with formal

logic in mind and may include multipart character states.

When such EQ-based traits are made into named classes, they are said to be “pre-com-

posed” (e.g., the “flower color” trait from the Plant Trait Ontology (TO:0000537), which is axi-

omatized as [“color” and (“inheres in” some “flower”)] where “color” comes from Phenotype

and Trait Ontology (PATO), “inheres in” comes from RO, and “flower” comes from PO).

Alternatively, one could assert that an instance of the “length” class is a quality of an instance

of the “femur” class without making a new, named class. In this latter case, femur length is

“post-composed.” These 2 approaches are logically equivalent and can be reasoned over (with

strategically placed equivalence axioms) [25]. The choice to pre- or post-compose entities will

depend on the use case and resources available for maintenance. When a defined concept is

Fig 3. EQ Formalism for categorical phenotypes versus character states. From [112]. The EQ Formalism uses ontology terms from an

anatomy ontology (green) and a trait ontology (blue) to represent a phenotype and maps to the Character/Character State model (gray). EQ,

Entity–Quality.

https://doi.org/10.1371/journal.pcbi.1008376.g003
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likely to be used many times, or if it is itself part of more complex entity definitions, then pre-

composition can assure that it is defined and used consistently each time. For a project that

requires defining many types of traits combinatorially (e.g., any material type with any qual-

ity), with zero or few instances of each combination, post-composition may work better but is

a more manual process and requires a good user interface and logical consistency rules. The

EQ Formalism can be used to construct pre- or post-composed classes, depending on the use

case.

Categorical phenotypes, for example, “shortened femur” or “delayed germination,” are

often described as relative to some wild type (e.g., associating “shortened femur” with a geno-

type implies that other genotypes have longer femurs) and can readily be represented using

EQ Formalism. As described above, the EQ Formalism can precompose phenotype classes

using an anatomy or process ontology and the PATO [113]. Qualitative phenotypes expressed

as EQ have been connected to genes, variants, and other annotations using the GAF file format

[114]. The combination of logical axioms and annotations that relate phenotypes with other

biological entities in a computable graph can be analyzed by reasoning software and semantic

similarity algorithms to answer questions. This method has been used for inferring candidates

for disease diagnosis [56] and identifying genes responsible for anatomical evolution [55].

Analysis of categorical phenotypes is very different from the analysis of quantitative pheno-

types but just as valuable.

More recently, several phenotype ontologies implemented the Dead Simple Ontology

Design Pattern (DOS-DP) ontology building process to consistently precompose classes and

represent more granular phenotypes [25,115]. This combination of EQ and DOS-DP creates

consistent and reusable phenotype ontology classes. For example, the “femur” class in

UBERON and the “length” class in PATO can be combined in a more specific trait ontology

such as Ontology of Biological Attributes (OBA) to make the precomposed class “femur

length” [length and (inheres in some femur)]. Plant ontologies follow a similar pattern using

“flower” from PO and “shape” from PATO to construct “flower shape” in the Plant Trait

Ontology (TO) [84] [shape and (inheres in some flower)]. Additional logic is needed to

include a qualitative assessment of the phenotype. For example, a “shortened femur” pheno-

type class would use “decreased length” from PATO and “femur” from UBERON [(decreased

length and (inheres in some femur) and (has modifier some abnormal))]. EQ Formalisms and

DOS-DP create consistent, logically defined phenotype classes that can be made available with

minimal maintenance cost. Without these simple design processes, ontology developers can

find themselves overwhelmed with revisions and alignments as updates reverberate through a

complicated, interconnected ontology. As a result, this pattern has seen relatively wide adop-

tion and has been used for basic research and applied purposes. For example, Phenoscape [60]

uses post-composed EQ Formalisms for identifying the underlying genetic basis of evolution-

ary change [55]. Through the use of EQ Formalisms, the Planteome project [69] allows users

to identify the genetic basis of crop diversity and differential response to environmental condi-

tions [116]. The Monarch Initiative [28], which includes uPheno [117] and the Human Pheno-

type Ontology project [93], uses precomposed EQ Formalisms for revealing genetic basis of

disease and aiding diagnosis [118]. Several model organism databases [94–105] use EQ For-

malisms to document genotype–phenotype associations in an interoperable way, and the TRY

Plant Trait Database [34] uses them to support global integration and analysis of functional

biodiversity in plants. These resources all use ontologies developed within the OBO Foundry

[119] with a set of basic development principles that helps ensure logical consistency across

projects. This kind of interoperability is what enables more complex patterns that support

computable representations of phenotype.
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Character/character states

The Character/Character State semantic model reflects the long history of research strategies

and data structures in systematics, taxonomy, and phylogenetics, which is dominated by tabu-

lar data exchange standards. Phylogenetic data (e.g., dorsal fin shape—round) are represented

in a matrix for tree-building algorithms (e.g., Mesquite [120]). Taxonomic and systematic data

are represented in a table according to a biodiversity data exchange standard, such as Darwin

Core, which was recently adapted to include a measurements and facts extension [121,122]

and represented as a property graph [123] (Fig 4). If we translate this tabular standard directly

into a semantic assertion, we necessarily include 3 classes, for example, “dorsal fin,” “shape,”

and “round” (Fig 3). Both characters and character states come from an ontology like the OBA

(characters) or PATO (character states), but this model is not fully computable because the

relationships between the classes in the data set are not defined by an ontology. This model

can include characters other than strict phenotype information, such as habitat types or tro-

phic strategies.

This model is quite flexible and capable of accommodating historical data. The biggest

advantage to this model is its compatibility with the existing infrastructure of biodiversity data-

bases that are using the Darwin Core standard. The “spreadsheet” data format is familiar to

many researchers, citizen scientists, and local experts, unlike OWL. The use of ontology classes

to define the characters and character states aids in translating these data from tables to graphs;

however, there are limitations in translating from class-based to instance-based because of the

difficulty in retaining specific collection metadata in the class-based approach [75]. The Char-

acter/Character State model is used by EOL TraitBank [124], the World Register of Marine

Species (WoRMS) [78], and PolyTraits [66] to provide phenotypic data in conformance with

existing biodiversity data exchange standards. These 3 resources are considered content aggre-

gators who bring together information from distributed data sources to present to a user in a

unified platform, such as a web site. Many of these larger aggregators, like WoRMS and EOL,

need similar data types for millions of taxa across the tree of life, which means that they priori-

tize broadly applicable traits, like mass, and sometimes must use data with less detailed meta-

data, like central tendency of a taxon mass rather than population mean with standard

deviation. In addition to data aggregation, EOL uses a simplified ontological structure as a

content navigation and access tool on their web site. The flexibility of this model and its

Fig 4. Darwin Core star schema with traits. Phenotypes can be represented in the Darwin Core star schema that consists of

separate tabular files (blue) linked together by unique identifiers for taxa, occurrences, and measurements (green).

https://doi.org/10.1371/journal.pcbi.1008376.g004
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conformance to existing biodiversity standards meets many of the content acquisition and

delivery needs of aggregators like EOL, WoRMS, and PolyTraits.

Measurement-based quantitative phenotypes

This model is an extension of the EQ Formalism that accommodates measurements from indi-

vidual specimens and is frequently utilized in tools for users to record observational data (Fig

5). Details about who, how, when, and where measurements were made can be modeled using

the Information Artifact Ontology (IAO) [125] and the Biological Collections Ontology

(BCO) [126]. The BCO was originally developed as a model for occurrence data stored in Dar-

win Core Archives but was later expanded to encompass observations, which produce trait

data [126]. Unlike Character/Character State methods, which use a tabular data structure,

Measurement-Based methods use a graph data structure, although tools exist for converting

data from tables to graphs [127]. While the EQ Formalism can contribute to a Measurement-

Based model, the latter often includes extensive metadata about the measurement process that

EQ, at its most basic, does not include. As a consequence, the graph containing the description

can be fragmented into subgraphs based on user need. Existing phenotype descriptions can

also be easily expanded with additional information by simply adding further triple statements.

Another consequence is the possibility to assign differentiated metadata to various subgraphs

of a description, which allows, for example, tracking different sources of evidence used in a

description or information about who contributed to which parts of the description [48]. Mea-

surement-Based quantitative phenotypes are used by Semantic Morph�D�Base [72–75] to

describe specimen phenotypes with very specific collection metadata, TaxonWorks [77] to

allow researchers to assert phenotype observations as needed in taxonomic research, the PPO

and Global Plant Phenological Database [70,71] to integrate citizen scientist observations for

large-scale analysis of phenology, and FuTRES [68] to describe specimen phenotypes for meta-

analysis. All of these platforms are designed for an expert user to manage detailed observation

data for research applications.

The largest volume of Measurement-Based assertions about organism phenotypes comes

from the clinical domain. A single person may have thousands of assertions about them and

be in a collection of hundreds of thousands of people. A comprehensive list of these reposito-

ries and their data models is outside the scope of this manuscript.

Discussion

Representing organismal characters in a machine-readable form brings modern data science

and computational power to the study of organismal diversity. The most common structured

representations of phenotypic data are a phylogenetic matrix, data table, or semistructured

text, but most phenotypic data are semistructured in hard-to-find supplementary files or

unstructured in narrative text or images [128]. Much of the structured data currently in knowl-

edge bases were hand curated (e.g., [129]). This means that the majority of the work to inte-

grate phenotypes at scale is in digitization and mining rather than developing semantic

models. Various strategies for automated mining of phenotypes from text, images, specimens,

and character matrices have been developed, but most are very specific to a type of text or

taxon and require significant curation of results [130–133]. Tools have been developed for the

semiautomated translation of phylogenetic matrices and text descriptions into semantic state-

ments that have been successfully used to populate knowledge bases [134,135]. While much

progress has been made in the development of tools for translating trait data into a semantic

structure, most phenotypic data are only available in human-readable form.
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Fig 5. Measurement-Based phenotype data models. (A) Semantic Morph�D�Base. Pink-bordered boxes: instances; yellow-bordered boxes: classes; gray-

bordered boxes: literals (labels or values); boxes with dashed borders: named graphs. (B) TaxonWorks. The underlying goal is to let scientists assert phenotype

observations as required for their research. Assertions are persisted in Descriptor–Observation format where subclasses of descriptor (e.g., qualitative,

quantitative, statistical, gene, free-text, and media) classify/define observations. Descriptor types anticipate downstream serialization into computable formats,

semantic or otherwise. Phenotype assertions are at the class (= Taxon concept, an “OTU” in TaxonWorks) or instance (= Collection object) level (“Entity”).

Ultimately, both levels will permit anatomical part assertions. While the approach includes improvements to the overall semantics, it still lacks specifics used

in other models (e.g., Fig 5A and 5C); however, the typed descriptor approach provides a flexible software design, whereby incremental improvements to

semantics are possible. All data are highly annotatable. Dashed boxes are features in progress. (C) Global Plant Phenological Database. Rounded rectangles

represent classes, and hexagons represent instances. The original data set (bottom of figure) indicates that there is an instance of the class/phenophase “open

flower presence,” which is a quality of an instance of “whole plant” from the PO. Because the value of the instance of measurement datum is>0, the ontology

infers that open flowers are present. Due to the subsumption hierarchy of the PO (left side of figure), the ontology can also infer that nonsenesced flowers,

flowers, and plant structures are present. IAO, Information Artifact Ontology; PATO, Phenotype and Trait Ontology; PO, Plant Ontology; OBI, Ontology for

Biomedical Investigations; OTU, Operational Taxonomic Unit; RDF, Resource Description Framework; RO, Relations Ontology; UO, Unit Ontology.

https://doi.org/10.1371/journal.pcbi.1008376.g005
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The community has not yet reached a consensus around how phenotypic data should be

modeled in semantic knowledge bases using ontologies; however, some discipline-specific best

practices have been developed. The Biolink model has been an effective meta-model for inte-

grating phenotypic data across biomedical knowledge graphs that could potentially be used in

other disciplines [136]. The Minimal Information About Plant Phenotyping Experiment

(MIAPPE) provides best practices for recording agricultural phenotyping data that can be

adapted to other types of organisms [137]. The Investigation/Study/Assay tab-delimited (ISA-

TAB) format is a framework to represent complex metadata from “omics-based” experiments

that can be represented semantically [138]. The Generic Model Organism Database project

(GMOD) developed the chado database schema, which provides shared tools, services, and

ontologies [139–141]; however, many of the GMOD repositories use a specialized trait vocabu-

lary or ontology that is not linked to any other phenotype ontology (e.g., MaizeGDB [142],

Bovine Genome Database [143], SoyBase [144], and VectorBase [145]). Despite these efforts,

ontologically supported knowledge bases are still less popular than other data structures such

as relational databases and tabular data files. The lack of tools and services for the management

and curation of phenotypic data combined with the high degree of technical expertise required

to cope with the complexity of semantic modeling is likely a major reason for this lack of adop-

tion. Despite this, there is general consensus building around the need for a shared phenotype

model, the use of terms from ontologies, and standardized methods for capturing trait obser-

vations [37].

It is unlikely that existing knowledge bases will be able to quickly redesign their systems to

adopt a new, unified model; thus, it becomes important to map across the different models.

Translation from 1 model to another can be straightforward, especially if shared ontologies or

a meta-model, such as Biolink, are used. Difficulty arises when trying to combine or transform

phenotypes reported at the individual organism level with phenotypes reported at the group

level. When possible, phenotypes should be reported at the individual level because these can

be aggregated to calculate a group-level phenotype. Breaking up group-level phenotypes into

the more granular individual-level phenotypes is not possible. One possible exception is the

reporting of traits for strains, cultures, or cultivars, wherein all individuals are supposed to be

genetically identical (but this is not always the case). In addition, reporting phenotypes for

individuals then allows integration of the phenotypes with any other metadata collected about

that individual, such as its environment, biotic interactions, or genotype. While recording data

at the individual level is preferable to the group level, this is not always possible for existing

knowledge bases with established data models and a method for mapping across models is

needed.

Ontologies and semantic knowledge bases provide a way to overcome barriers to integra-

tion at scale but are limited by the lack of supporting infrastructure to make them easy to use

in practice, which requires a balance between human usability and computational capabilities.

Essential usability components include provenance tracking and documentation of design

decisions and the collaborative decision-making process [146,147]. Resolution of the complex

conflicts that can occur as the size and scope of a knowledge base or ontology increases,

depends on third parties being able to understand design decisions, sometimes years later.

Useful provenance tracking and documentation can be achieved using Minimum Information

for Reporting an Ontology (MIRO) guidelines [147], established best practices for defining

and labeling ontology classes [148,149], provenance and attribution ontologies such as the

Provenance Ontology (PROV-O) [150], Scientific Evidence and Provenance Information

Ontology (SEPIO) [151], and Contributor Role Ontology (CRO) [152], and the built-in ver-

sioning and issue tracking in environments like GitHub. Terminology registries such as Bio-

Portal [153], Linked Open Vocabularies [154], and AgroPortal [155] aggregate important
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provenance information and metrics that can aid the user in finding an appropriate ontology.

A portal like Ontobee [156], which shows how classes are used in logical axioms across several

ontologies, helps the user understand how to use a class in creating an EQ Formalism, for

example. The availability of ontology registries enables knowledge engineers to record ancil-

lary data in a machine-accessible manner. This is important because as the complexity of a

knowledge base grows so does the amount and variety of ancillary data, that would otherwise

be entered as a string in a comment field. Lastly, repositories also provide a forum for the com-

munity evaluation of the ontologies while supporting the discovery of other actors and projects

that have the very same specific ontological domains.

Lastly, the complexity of ontologies requires documentation in addition to standard

approaches [157–159], such as term definitions targeted to different audiences, e.g., domain

experts, ontology engineers, and developers. The complexity of semantic structures makes

documentation that reflects both the contents and organization of the system, in addition to

the intent of the designers, a requirement for long-term, sustainable use of ontological

resources. Essential to the success of an ontological resource or knowledge base is a vibrant

user community, which requires infrastructure to support active engagement of the communi-

ties these semantic resources are meant to serve. The value of proper documentary procedures

and provenance information cannot be overstated in the ontological field as they provide the

ability to justify axioms, permissible intellectual property usage, and the authoritativeness of

the information used to build the ontology.

This paper discusses 3 different phenotypic data models, EQ Formalism, Character/Charac-

ter State, and Measurement-Based. The EQ Formalism and Measurement-Based models are

closely related in that they both have significant logical semantics. The Measurement-Based

approach links specific values to specimens, rather than linking averages to taxon concepts,

and thus is more easily adaptable to taxonomic changes that can rearrange the assortment of

specimens (and their phenotypes) within taxa. Conversely, the Character/Character State

model is much more straightforward for individual researchers, is more closely conformant to

existing biodiversity standards, and can represent qualitative and quantitative data for a class

or an instance in a similarly straightforward manner. As a result, numerous data sets are devel-

oped for aggregators using the Character/Character State model that may not be made confor-

mant to any other standard. Thus, we recommend development of a workflow for passing data

from individual researchers to content aggregators using the Character/Character State model

that can be translated to OWL semantics using a Measurement-Based or EQ approach. Such a

workflow would include transforming small data sets to conform to an aggregator standard

(similar to the process EOL TraitBank currently uses) and then transformation of these data

into OWL semantics. Significant work is required to develop the infrastructure to support this

workflow including expanding the coverage of ontologies and semantic data models, develop-

ing an interface for data access, and creating a governance model for long-term sustainability

and maintenance of the resource. This workflow is dependent on source data sets being prop-

erly licensed for sharing and reuse [160], which may require significant negotiation [161].

Such an effort would be hugely valuable for phenotypic data integration and the capture of

“dark data” [31]. In this context, we agree with the open science principles put forward by the

Open Traits Network [37], especially the development of a “trait core” that can apply life-wide,

and would add the recommendations to build on the existing meta-modeling efforts of the

Biolink model and the ontology design patterns successfully being used within the OBO

Foundry family of ontology projects. These standards have already been successfully used to

overcome the barriers to data integration listed above to integrate phenotypic data from model

organism databases [28]. Standardization of phenotype representations using DOS-DP [115]
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directly or indirectly via Biolink model mapping, will take the state-of-the-art from just aggre-

gating distributed trait data sets, to truly integrating them.
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