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Abstract
Here we present a general approach for the description for the frequency dependent dielectric
tensor coefficients for optically anisotropic materials. Based on symmetry arguments we show that
the components of the dielectric tensor are in general not independent of each other. For each
excitation there exists an eigensystem, where its contribution to the dielectric tensor can be
described by a diagonal susceptibility tensor. From the orientation of the eigensystem and the
relative magnitude of the tensor elements, the dipole interaction distribution in real space can be
deduced. In the limiting cases, the oriented dipole approach as well as the tensor of isotropic and
uniaxial materials are obtained. The application of this model is demonstrated exemplarily on
triclinic K2Cr2O7 and the orientation and directional distribution of the corresponding dipole
moments in real space are determined.

1. Introduction

The optical response of a material is determined by its dielectric function (DF) and the knowledge of that is
important for the design, fabrication and understanding of optoelectronic devices. Also the DF gives a
deeper understanding of the physical properties of the material, like transition energies and phonon
energies [1]. In order to obtain insight into the nature of the polarizability, the DF is usually decomposed
into its excitations and the contribution of each excitation is described by using a model dielectric function
[2]. For crystals with an orthorhombic symmetry or higher, this decomposition of the DF can be easily
done for each tensor component independently from each other, since for these crystals the DF can be
diagonalized for all energies simultaneously. The dielectric axes, i.e. the axes given in the framework of the
diagonalized tensor, coincide with those given by crystal axes. As a consequence, all excitations are aligned
along directions defined by the crystal axes.

In contrast to that, for monoclinic and triclinic materials the DF cannot be diagonalized in general. Only
in the transparent spectral region, the DF can be diagonalized but not for all energies simultaneously and
the orientation of the eigenvectors (normal modes) depends on the wavelength. Furthermore, despite both
the real as well as the imaginary parts of the DF are each represented by symmetric tensors, they have
different eigensystems, and the excitations are no longer aligned along directions defined by the
crystallographic axes. We note, that the DF of a monoclinic form can be block-diagonalized, i.e. into a 2 × 2
matrix and a scalar along the crystallographic symmetry-axis. The excitations along and perpendicular to
the symmetry axis can be described independently of each other. In the last years, materials with a
monoclinic and triclinic crystal structure went into focus of research, like Ga2O3 [3–6], CdWO4 [7, 8],
Y2SiO5 [9], α-PTCDA [10], pentacene [11], BiFeO3 [12], K2Cr2O7 [13], CuSO4· 5H2O [14]. Due to the
above mentioned problem in the decomposition, most of these works are limited to the determination of
the line shape of the DF tensor elements only. Furthermore, the tensor elements are often treated
independently of each other which can lead, from a technical point of view, to a large correlation between
the tensor elements and to unphysical results.
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In order to explore the nature of the polarizability in such materials in the infrared spectral range, Born
proposed a model which takes into account the orientation of the dipole moment of the phonons with
respect to the laboratory system [15, 16]. This oriented dipole approach assumes that each excitation which
contributes to the DF has a dipole moment of a well-defined direction which does not necessarily coincide
with the crystallographic axes. The magnitude and dispersion of the DF tensor elements can be then
deduced by a rotation of the susceptibility of the framework of the excitation into the laboratory system [5]
or by a projection of the dipole orientation [3]. Both approaches lead to the same result. The
decomposition of the DF into its components and their orientation can for instance be used in order to
explain the different optical properties of the polymorphs, e.g. the polymorphs of calcium carbonate, i.e.
calcite and aragonite [17]. By means of the oriented dipole approach, the phonon properties of optically
anisotropic materials were already investigated [3, 5, 8, 9, 13, 14, 18, 19]. Recently, the generalization of this
approach for electronic excitations, such as excitons, which can be used up to the UV spectral range was
demonstrated on β-Ga2O3 by using ellipsometry [5, 6].

However, such model can only be applied for transitions which have a well-defined orientation of the
dipole moment, as it is typically the case for phonons or excitonic contributions. This requirement is not
fulfilled in general for all materials especially if excitations cannot be resolved separately due to the
energetical overlap. Furthermore, as known from microscopic band theory, different k-points and different
bands can contribute in general to a definite transition energy in real crystals which leads to an angular
smearing of the dipole orientation of the corresponding excitations.

In this work we present a general approach for the description of the DF by using the dipole interaction
distribution (DID) of each excitation. Based on symmetry arguments and without making any assumption
on the nature of the polarizability we show that the components of the dielectric tensor cannot be
independent of each other. For each excitation there exists an eigensystem, where its contribution to the DF
can be described by a diagonal susceptibility tensor. The relative magnitude of the diagonal elements are a
measure of the corresponding DID in real space. In the limiting cases, the oriented dipole approach as well
as the DF for isotropic and uniaxial materials is obtained. The application of this model is exemplarily
demonstrated for triclinic K2Cr2O7 and the DID of the involved excitations in real space are deduced.

2. Theory

The DF is in general complex-valued and the real and imaginary part of each tensor component is
connected with each other by the Kramers–Kronig relation [20]. This can be easily seen by the fact that the
macroscopic polarisation (P) induced by the electromagnetic wave is given by

P(t) = ε0

∞∫
−∞

(ε(τ) − 𝟙) E(t − τ)dτ , (1)

with E, ε and ε0 being the electric field, the DF, which is in general a tensor, and the vacuum permittivity,
respectively. Equation (1) has to be fulfilled for all directions of the electric field. If we choose the electric
field in such a way, that it is aligned along an axis of the coordinate system, then each component of the
polarisation vector depends only on one tensor component of the DF, i.e.

Pi = ε0(εij − δij)Ej and Ek = 0, (2)

for k �= j and δij being the Kronecker delta. From causality it follows that the induced polarisation cannot
appear before the stimulus, i.e. P(t) = 0 and thus for each component εij − δij = 0 holds for t < τ . If we
further transform the polarization from the time domain into frequency domain, we obtain

P(ω) = ε0

∫
E(τ)eiωτ

[∫
(ε(τ) − 𝟙)eiω(t−τ) dt

]
dτ (3)

and

εij(ω) = ε∗ij(−ω) (4a)

ε1,ij(ω) = ε1,ij(−ω) (4b)

ε2,ij(ω) = −ε2,ij(−ω). (4c)

The index 1 and 2 indicates the real and imaginary part of the tensor component of the DF, respectively.
From the application of Cauchy’s theorem, which connects real and imaginary part of the Fourier
transformation of analytical functions, and equation (2) we obtain the validity of the Kramers–Kronig
transformation for each component individually.

2



New J. Phys. 22 (2020) 073041 C Sturm et al

In the following we will deduce the relation between the components of the DF. In order to explore the
nature of the polarisability and to extract the properties of the involved transitions, the susceptibility and
thus the contribution of each transition to the DF is described by a model function χi (see e.g. references [2,
21, 22]), which represents the susceptibility of the excitation. The exact line shape of χi depends on the
nature of the involved transitions. Without making an assumption of the relation between the individual
tensor components of the DF, we define ε as the experimentally determined tensor of the DF referred to the
coordinate system defined by x, y and z and assume that each component can be described by a sum of
model functions, i.e.

εij(E) = δij +

Nij∑
n=1

χn,ij(E), (5)

where δij describes the vacuum contribution to the DF and Nij the number of contributions to εij. Note, at
this point we do not explicitly imply that each model function has to appear in each component. Summing
up transitions which have a similar line-shape and differ only in their magnitude of the individual
components of the susceptibility tensor, equation (5) can be written in matrix form as

ε(E) = 𝟙+

N∑
k=1

Akχ̃k(E), (6)

with χ̃k being a normalized complex-valued scalar function and Ak a matrix, the so-called amplitude
matrix, describing the line-shape and the magnitude of the susceptibility tensor of the nth transition,
respectively. The symbol 𝟙 represents the unit matrix and N the number of contributions to the
susceptibility which differ in their line-shape. Note, the amplitude matrix Ak does not depend on the
energy.

Since in monoclinic and triclinic crystals, due to the non-orthogonal angle between two or all
crystallographic axes, there does not exist a well defined Cartesian coordinate system, so a coordinate system
defined by x, y and z is chosen arbitrarily. In case of monoclinic crystals, only one axis of the Cartesian
coordinate system can be aligned along the symmetry axis. Therefore, the determined DF could be also
referred to a coordinate system given by x′, y′ and z′. The DF in this system is denoted by ε′. Similar to ε, in
the (x′, y′, z′)-coordinate system the components of ε′ can also be described by model functions, resulting in
a similar expression as given in equation (5) for ε′. Since the dielectric response must be independent of the
choice of coordinate system and thus fulfills transformation properties, the tensors for the two coordinate
system are connected by each other by

ε = Rε′R−1, (7)

where R is the rotation matrix which transforms a vector from one into the other coordinate system. If we
now compare the tensor components of ε and ε′ with each other and take into account that they are related
with each other by equation (7) we can deduce:

(a) The components of ε or rather ε′ cannot be described independently of each other. This can be seen by
the fact, that if we assume that the components of ε can be described independently of each other, then
the components of ε′ consist of a linear combination of all components of ε, i.e. ε′ij =

∑
nkm aijkmχn,km

and the coefficients of aijkm are then determined by the rotation of the two coordinate systems against
each other. Thus, the components of ε′ij cannot be independent of each other. As we assumed that the
components of ε are independent of each other, this would imply that there is a well-defined Cartesian
coordinate system defined by (x, y, z) where all tensor components of the DF are independent of each
other. However, this is in contradiction to the fact that in triclinic and monoclinic crystals, due to the
non-orthogonal angles between the crystallographic axes, no well-defined Cartesian coordinate system
exists and thus the components of the DF are not independent of each other in any Cartesian
coordinate system.

(b) The amplitude matrix An is symmetric, since the DF is a symmetric tensor (in the absence of magnetic
fields) [23], and thus the contributions of each excitation to the DF as well.

(c) In general, each transition which is contributing in a given framework to an off-diagonal element of the
DF contributes also to at least two diagonal elements in the same framework, i.e. at least two diagonal
elements of An are non zero. The amplitudes of the contribution can differ for each component.

(d) As mentioned above, the amplitude matrix An is a real-valued symmetric matrix. Since a real-valued
symmetric matrix can be diagonalized, for each transition there exists a coordinate system in which the
amplitude matrix An is a diagonal matrix. Note, only one An,ii has to be non-zero. Thus, for each
transition exist only 3 independent amplitude parameters describing the magnitude of the contribution
to the DF. This is also reflected by the fact that a 3 × 3 matrix has three invariants with respect to a
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similarity transformation, namely its trace, determinant and the sum of the minors. As mentioned in
equation (6), the contribution of each excitation to the susceptibility tensor is given by χn = Anχ̃n with
χ̃n being a scalar function, the susceptibility tensor χn is diagonalizable for all energies as well. If we
choose the xx-element as the non-zero component, the susceptibility tensor of the nth excitation in its
eigensystem can be written as

χD
n (E) = AD

n χ̃n = Anχ̃n(E)

⎛
⎝1 0 0

0 fn,y 0
0 0 fn,z

⎞
⎠ , (8)

with An being a real-valued scalar, describing the magnitude of the contribution of the nth excitation to
the χD

n,xx in its corresponding eigensystem. The abbreviations fn,y and fn,z are real-valued and describe
the different weights of the components for the nth transition. Since the contribution to the
susceptibility tensor of each transition is described by a Kramers–Kronig consistent function, the ratio
between the imaginary and real part for all components of the susceptibility tensor for a given
transition is the same and thus fn,i is a real valued number. If we further choose the coordinate system
in such way that the xx-component has the highest amplitude and take into account that the imaginary
part of χD

ii has to be positive, since otherwise gain would be present, which is impossible without the
presence of additional excitation, not considered here. Thus it holds 0 � fi � 1.

Taking these considerations into account, the entire DF in the x–y–z-system is given by

ε(E) = 𝟙+
∑

n

Rnχ
D
n (E)R−1

n , (9)

with χD
i representing the susceptibility of the nth excitation in the eigensystem of the excitation. The

rotation matrix Rn transforms the susceptibility tensor of the nth excitation from its eigensystem into the
laboratory system and depends on the Euler angles φn, θn and ψn. Note, although the susceptibility tensor
for each excitation is diagonalizable for all energies simultaneously, the entire DF is not diagonalizable in
real and imaginary part simultaneously.

In the following we show that the coefficients fi defined by equation (8) can be interpreted as a measure
for the DID in real space of the corresponding excitation. We consider, that each transition contributing to
the DF consists of an ensemble of microscopic excitations with similar transition energy, amplitude and
broadening but different orientation. If these microscopic excitations are discretely distributed in real space,
e.g. if they are aligned along crystallographic axis, the coefficients fi are given by

fy =

∑
i

r2
i,y∑

i
r2

i,x

and fz =

∑
i

r2
i,z∑

i
r2

i,x

, (10)

with ri,j being the jth component of the direction vector of the ith microscopic excitation.
In the case that the microscopic orientations are continuously distributed in real space, e.g. the

excitations cannot be spectrally resolved due to an spectral overlap the microscopic excitations or different
k-points and bands contribute to the excitation, then the sum in equation (10) has to be replaced by an
integral. In the excitation framework the orientation of the microscopic excitations can be described by


r =

⎛
⎝ cos α

sin α cos β

sin α sin β

⎞
⎠ , (11)

where α and β represents the polar and azimuthal angle. If g = g(α,β) represents the distribution of the
orientation of the microscopic excitations, the weighting factors are given by

fy =

π∫
−π

αm,β∫
0

g(α,β)cos2 β sin2 α dαdβ (12a)

fz =

π∫
−π

αm,β∫
0

g(α,β)sin2 β sin2 α dαdβ (12b)

N =

π∫
−π

αm,β∫
0

g(α,β)cos2 α sin α dαdβ, (12c)

with αm,β being the maximum polar angle for a given azimuthal angle β.

4
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Figure 1. Schematic of the directional distribution of an excitation which is marked in blue. The symmetry axes is aligned
parallel to the x′-axis.

Since the exact distribution of the microscopic excitation is not known and to reduce the number of
required parameters as well as the correlation between these parameters, we assume for simplicity a uniform
distribution around the x′-axis, i.e. g(α,β) = 1 and that the microscopic dipole orientations are within a
cone which describes in the y′–z′-plane a superellipse with its major axis parallel to the y′- and z′-axis. The
relation between αm,θ and β is then

sin β = k

√
(sin αy sin αz)k

(sin αm,β sin αy)k + (cos αm,β sin αz)k
. (13)

The angles αy and αz represent the opening angles of the cone described by the microscopic excitations in
the x′–y′ and x′–z′-plane, respectively (figure 1). For k = 2 the cone would describe an ellipse in the
y′–z′-plane. The weighting factors fi of the susceptibility tensor in the eigensystem are then given by

fy =
8

N

π∫
−π

(2 + cos(αm,β))sin4
(αm,β

2

)
cos2(β)dβ (14a)

fz =
8

N

π∫
−π

(2 + cos(αm,β))sin4
(αm,β

2

)
sin2(β)dβ (14b)

N =

π∫
−π

1 − cos3(αm,β) dβ. (14c)

If αy = αz = π/2, i.e. the microscopic transitions are equally distributed in all directions, we get
fy = fz = 1. In this case the susceptibility tensor reduces to a scalar as it is the case for isotropic materials.
For uniaxial materials the transitions are equally distributed in one plane only, e.g. the x–y-plane, but have
no contribution to the other direction, i.e. fy = 1 and fz = 0. For an excitation which is well defined along
the x′-direction αy = αz = 0 holds and thus fy = fz = 0 which is then equivalent to the dipole ansatz
approach [3, 5, 14–16]. Hence, the quantities fy and fz are a measure for the DID of the transition in the
x–y- and x–z plane, respectively, and P = (fy + fz)/2 is a measure for the distribution of the dipole
interaction in the entire space. For P = 1 the dipole moments are equally distributed in the entire space as
expected for isotropic materials whereas P = 0 represents the case where the dipole moment is oriented
along a single well-defined direction.

By using R(φn, θn,ψn) = Rz(φn)Rx(θn)Rz(ψn) [24, 25], where the index denotes the mobile rotation axis,
the symmetry axis of the dipole moment distribution of the nth transition in the laboratory system is given
by


r =

⎛
⎝cos(φn) cos(ψn) − cos(θn) sin(φn) sin(ψn)

cos(ψn) cos(θn) sin(φn) + cos(φn) sin(ψn)
sin(φn) sin(θn)

⎞
⎠ . (15)

For the case fy = fz = 0 this vector
r represents the orientation of the dipole in the oriented dipole
approach. It is interesting to note, that although the orientation of a dipole pointing in an arbitrary
direction can be represented by two angles, for tensors describing the rotation of the respective tensorial

5
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Figure 2. (a) Schematic of the unit cell of K2Cr2O7. The investigated faces are highlighted by the rectangles. (Image created by
VESTA (reference [27]).) (b) Schematic of the investigated sample and the chosen sample coordinate system.

property in space three angles are needed. Here, the third angle ψ is required for the additional revolution
around the dipole direction. Thus, by using the orientated dipole approach, three Euler angles have to be
considered for triclinic materials. Note, for monoclinic crystals due to symmetry considerations two Euler
angles are sufficient. In this case the DF consists of a preferred direction and the excitations are oriented
either parallel or perpendicular to this direction.

3. Experimental

We exemplarily demonstrate the application of the model presented in section 2, on K2Cr2O7 bulk single
crystals, which were grown at room temperature by evaporation of a saturated K2Cr2O7 solution. The
infrared properties of this crystal and details of the crystal preparation can be found in [13]. K2Cr2O7 has a
triclinic crystal structure and belongs to the C1

i space group. The lattice constants and the angles between
the crystallographic axes are [26]

a = 1.336 nm b = 0.737 nm c = 0.744 nm

α = 90.75◦ β = 96.21◦ γ = 97.96◦,

where α, β and γ are the angles between the crystallographic b and c-axis, a and c-axis and a and b-axis,
respectively. A schematic of the unit cell is shown in figure 2(a).

For the determination of the DF, we investigated the optical response of the natural growth faces (001),
(100) and (210) by generalized spectroscopic ellipsometry. In doing so, the change of a polarization state of
a light beam after reflection on the sample surface is determined. Since K2Cr2O7 is a triclinic material,
mode conversion, i.e. change of light polarized perpendicular (s) to the plane of incidence into light
polarized parallel (p) to the plane of incidence (and vice versa), takes place and the change of the
polarization state can be expressed by a 4 × 4 Müller matrix (MM, M) which connects the Stokes vector of
the incident (Sref ) and reflected light (Sinc) by Sref = MSinc [2, 28]. The MM can be represented by a matrix
of 2 × 2 block matrices. The diagonal block matrices are mainly connected to the reflection coefficients for
the s- and p-polarized light, whereas the off-diagonal ones are a measure for the above mentioned mode
conversion. For the analysis, the MM is normalized to M11 since this element is related to the total reflected
intensity.

By using a dual rotating compensator ellipsometer all 15 elements of the normalized MMs in the
spectral range from 0.747 eV up to 6.30 eV were determined for the above mentioned growth faces. For
each face we used angles of incidence of 50◦, 60◦ and 70◦ and rotated the sample around the surface normal
of each face from 0◦ to 315◦ with an increment of 45◦. Additionally, we took measurements for in-plane
rotation angles of 30◦ and 60◦. The orientation of the sample with respect to the laboratory system was
described by using Euler angles (φ, θ,ψ) in the zxz-notation [24]. In the following we choose the sample
coordinate system in such way, that the x–y plane coincides with the (100) plane of K2Cr2O7 and the x-axis
is within the (001) plane. A schematic of the sample and the chosen coordinate system is given in
figure 2(b).

In order to extract the DF from the recorded MM, all sample orientations were analyzed simultaneously
by using a layer stack model consisting of a semi infinite substrate, representing the bulk properties of
K2Cr2O7, and a surface layer. The DF of the surface layer was described by using a Bruggeman effective
medium approach [29] where the DF of the substrate layer, i.e. K2Cr2O7, is mixed with that of void with the
ratio of 1 : 1. For simplicity, only the diagonal elements of the DF of K2Cr2O7 were used in order to

6
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calculate the optical properties of the surface layer. The thickness of the surface layer was estimated to be
about 50nm.

For the determination of the DF we analyzed at first the transparent spectral region and described each
component of the DF independently from the other one by means of a Cauchy approximation, i.e.√
ε1,ij = A + B/λ2 + C/λ4 and ε2,ij = 0, where the Cauchy parameter A describes the low energy limit and

B and C the curvature of the refractive index. In doing so, a first guess of the DF, the thickness of the surface
layer and the Euler angles were estimated. In a second step, in the entire spectral range for each energy the
DF was determined, while keeping all other wavelength independent parameters constant, like the thickness
of the surface layer. In the final step, all parameters were analyzed simultaneously and the DF of K2Cr2O7

was obtained by using a wavelength-by-wavelength analysis, i.e. the components of the DF were obtained
for each wavelength independently from each other. The only global parameters were the constant Euler
angles as well as the surface thicknesses for each face. In doing so, no assumption regarding the line shape
and the involved electronic transitions had to be made. Note, a Kramers–Kronig relation (KKR) between
the real and imaginary part of the tensor elements has not been enforced in this analysis. This is not
required since intensity and phase information from the ellipsometric measurements allow to retrieve the
real and the imaginary parts independently. For the minimization of the mean square error between the
experimental and calculated Müller matrix, we use the differential evolution algorithm implemented in
BlackBoxOptim package for Julia with a subsequent minimization of the best population by using a BFGS
algorithm [30].

In order to get a deeper understanding of the line shape the DF deduced by wavelength-by-wavelength
analysis was parameterized by model dielectric functions. Thereby, the onset of the absorption was
described by using a critical point function for parabolic band–band transitions (CPM0) developed by
Adachi [31] with

χM0(E) =
A

E1.5
0 ξ2

(
2 −

√
1 + ξ −

√
1 − ξ

)
(16)

and
ξ = (E − iΓ)/E0, (17)

where A, E0 and Γ being the amplitude, central energy and broadening of the transition.
It was shown, that the optical properties of K2Cr2O7 are mainly determined by the presence of the

dichromate ions (Cr2O7) which cause a charge transfer from the ligands to the metal ions [32, 33]. The line
shape of these transitions were described by Gaussian oscillators, i.e. the susceptibility was described by

χGauss
1 (E) =

∞∫
−∞

E′χGauss
2 (E′)

E − E′ dE′ (18a)

χGauss
2 (E) = A

(
e−4 ln(2)(E−E0)2/Γ2 − e−4 ln(2)(E+E0)2/Γ2

)
. (18b)

The integral of the real part of the susceptibility of χGauss represents the Kramers–Kronig relation and
results in a Dawson function [34].

4. Results

The experimentally determined Müller matrix is exemplarily shown for selected orientations and for an
angle of incidence of 60◦ in figure 3. In the whole investigated spectral range of the MM spectra broad peaks
are observable which indicate the presence of absorption in the investigated spectral range. Furthermore,
for all orientations we observe non-vanishing block-off diagonal matrix elements. This demonstrates the
presence of mode conversion and thus signifies the optical anisotropic character of the material. The
calculated Müller matrix by using the wavelength-by-wavelength approach as described in section 3 is
shown by red solid lines which yield a good agreement with the experimental spectra.

From the best match between the calculated and experimental MM, the DF was deduced and is shown
in figure 4(a) in the chosen laboratory coordinate system as indicated in figure 2(b). It should be
mentioned, that although not directly included in the wavelength-by-wavelength analysis, a numerical
analysis by using Kramers–Kronig consistent b-spline functions [35] yields that all obtained tensor elements
fulfill the KKR (figure 4(a)). On the one hand this corroborates the validity of the expected KKR for each
tensor element as stated above and on the other hand demonstrates the quality of the fit. Note, the analysis
of the deduced components of the DF by means of the b-spline functions was only used in order to verify
the validity of the KKR. The b-spline functions were not considered in the further analysis.
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Figure 3. Experimental (symbols) and calculated (red lines) spectra of the Müller matrix for an angle of incidence of 60◦ and
two different orientations. The Euler angles φ, θ and ψ are given in the brackets.

Figure 4. (a) The dielectric function of K2Cr2O7 in the laboratory coordinate system of figure 2b determined by the
wavelength-by-wavelength analysis (black symbols) and by using a b-spline function (blue line) as well as a model dielectric
function by means of the oriented dipole approach (red solid line). The contribution of the electronic transitions to the dielectric
function are exemplarily shown for ε2 as grey dashed lines. (b) The dipole orientation distribution for each oscillator. The centre
of the dipole orientation distribution is indicated by the blue arrow. In (a) and (b), the orientation of the sample coordinate
system with respect to the crystallographic one is schematically shown in figure 2(b).

As expected for a triclinic material, all six tensor components of the DF are non-zero and there exists no
set of Euler angles where the complex non-diagonal tensor components vanish for all energies. This is in
line to the results obtained in the infrared spectral range [13]. This is in contrast to monoclinic and
orthorhombic structures where at least one set of Euler angles can be found so that two or all three
off-diagonal elements vanish, respectively. Only for an energy of E ≈ 2 eV there exists a coordinate system
where two off-diagonal elements vanish. Thus, at this energy the shape of the DF is similar to that of a
monoclinic system. Interestingly, the diagonal elements εxx and εyy are quite similar. This indicates, that in
the given laboratory system the anisotropy in the x–y-plane is only weakly pronounced. This is also
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Table 1. The parameters of the excitations deduced from the line shape analysis. The band–band
transition and the Gaussian oscillators are denoted by CPM0 and Gi, respectively. The opening
angles αi where calculated by equation (14) assuming an unweighted orientation distribution.

A (eV) E0 (eV) Γ (eV) fy fz φ (◦) θ (◦) ψ (◦) αy (◦) αz (◦)

CPM0 3.65 2.45 0.03 0.93 0.8 221.0 42.9 12.5 88 80
G1 0.52 2.62 0.7 0.38 0.34 36.8 105.5 259.2 62 58
G2 1.26 3.09 0.41 0.31 0.2 226.2 72.1 275.4 59 46
G3 0.86 3.32 0.4 0.61 0.0 246.0 147.1 281.1 83 0.0
G4 0.28 3.64 0.32 0.79 0.68 232.7 111.0 119.8 85 75
G5 0.43 3.95 0.35 0.37 0.22 342.6 89.6 263.8 64 47
G6 0.76 4.18 0.44 0.45 0.04 234.5 59.5 268.2 78 20
G7 0.6 4.41 0.65 0.82 0.62 156.1 120.9 51.3 85 70
G8 0.58 5.28 1.22 0.88 0.86 116.6 86.3 81.8 86 84
G9 1.15 6.0 0.97 0.46 0.08 250.4 49.0 278.5 77 28
G10 0.47 6.38 0.8 0.74 0.0 316.4 161.9 52.7 79 0.0

Table 2. Parameters of the UV model dielectric function describing the
contributions of the high energy transition to the dielectric function in the
investigated spectral range (pole function).

εxx εyy εzz εxy εxz εyz

Apole 1.43 1.21 1.02 0.16 1.06 —
Epole (eV) 7.0 6.7 6.8 6.5 6.6 —
Γpole (eV) 0.9 0.5 0.7 0.2 0.2 —
Apole 11.3 10.9 11.6 −0.2 −1.7 0.5
Epole (eV) 10.9 10.2 10.6 7.1 7.7 7.2

reflected by the weak pronounced off-diagonal tensor element εxy, which is almost one order of magnitude
smaller than εxz and εyz (figure 4(a)).

In order to obtain a deeper insight into the distribution of the electronic transitions, the DF deduced by
the wavelength-by-wavelength analysis was described by means of model dielectric functions as described in
section 2. A good description can be obtained by using a band–band transition and Gaussian oscillators.
The entire model dielectric function is then given by equation (6). For the determination of the
corresponding parameters we analyzed all tensor elements simultaneously and used for the minimization of
the objective function a differential evolution algorithm. By using this approach a good agreement between
the tensor components of the DF obtained by the wavelength-by-wavelength analysis and model dielectric
functions is obtained (figure 4(a)). This line-shape analysis yields that the DF is mainly determined by
transitions described by Gaussian oscillators which we attribute to the transitions caused by the charge
transfer from the ligands to the metal ions of the dichromate ions. Due to the spectral overlap of the
band–band transitions with the higher excitations as well as of the broadening of band–band transition it
was not possible to determine the band gap energy for a well-defined polarization. Thus an averaged
band-gap energy of about E ≈ 2.45 eV was determined. This is also reflected by the amplitude matrix of the
susceptibility tensor in the eigensystem of the excitation which holds similar values for all diagonal elements
( fy ≈ 0.93 and fz ≈ 0.8) indicating that the polarization dependence of the band gap energy is quite small.

As mentioned above, the line shape of the diagonal elements of the DF are similar and instead of a
well-defined dipole direction for the higher excitations only a direction of an ensemble of excitations can be
determined. This is also reflected by the diagonal elements of the corresponding weighting matrix of the
susceptibility in the eigensystem which are similar and indicate a broad directional distribution of the
involved transitions. We attribute this finding to the relatively large broadening of these transitions and thus
the large spectral overlap with the energetically neighbored excitations. Only for the oscillators G3, G6, G9

and G10 a significant inhomogeneous directional distribution was obtained, i.e. the directional distribution
in the x–z-plane differs strongly from that one in the x–y-plane. Especially the oscillator G3 and G10 are
distributed in a plane only. The determined properties of the susceptibility tensors in the eigensystem and
its orientations with respect to the laboratory system for each excitation are summarized in table 1.

A similar line shape analysis can be obtained by using the dipole approach as it was demonstrated for
monoclinic materials [3, 5, 6]. However, this would enhance the numbers of required oscillators and thus of
the involved parameters. It also would lead to a strong correlation between the parameters and making the
interpretation difficult. Note, a description of each component of the DF independently from the other one,
although as explained above not physically correct, will not lead to a reduction of the number of free
parameters, as e.g. for the description of εxx and εxy four and six excitations are required, respectively.
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By using equation (14) and the obtained weights fi of the susceptibility tensor, the DID for each
oscillator in the chosen laboratory coordinate system was calculated. The deduced orientation of the
corresponding dipole moment and its directional distribution are depicted in figure 4(b). This
demonstrates quite nicely the aforementioned distribution of the DID of the excitations and shows that, as
expected for triclinic materials, the excitations are not necessarily aligned to the crystallographic axes.

For completeness, the parameters of the high energy transitions, with a transition energy above the
measured spectral range are given in table 2. A determination of the DID for these transitions is due to the
limited spectral range not possible and thus the contributions for each tensor component was analyzed
independently from each other.

5. Summary

We demonstrated that the dielectric function can be decomposed into its excitations by taking into account
their dipole orientation distribution. From symmetry arguments it follows that all components of the
dielectric function in general are not independent of each other. The contribution of each excitation to the
dielectric function is given by a complex-valued diagonal susceptibility tensor and three Euler angles. The
latter describes the orientation of the eigensystem of the excitation with respect to the laboratory coordinate
system. The relative magnitude of the corresponding susceptibility tensor elements represent the dipole
orientation distribution in real space. In the special case of a well-defined orientation of the dipole or if the
dipole is equally distributed in one plane or in all directions, the oriented dipole approach and the tensor
for uniaxial and isotropic materials are obtained, respectively. The application of our generalized model for
the dielectric response was successfully demonstrated on triclinic K2Cr2O7 and the experimentally
determined dielectric function was very well reproduced. Based on the relative amplitudes of the
susceptibility tensor of each excitation, its orientation and its dipole orientation distribution in real space
was obtained.
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