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Abstract
Quantumwalks in dynamically-disordered networks have become an invaluable tool for under-
standing the physics of open quantum systems. Althoughmuchwork has been carried out considering
networks affected by diagonal disorder, it is of fundamental importance to study the effects of
fluctuating couplings. This is particularly relevant inmaterials sciencemodels, where the interaction
forcesmay change depending on the species of the atoms being linked. In this work, wemake use of
stochastic calculus to derive amaster equation for the dynamics of one and two non-interacting
correlated particles in tight-binding networks affected by off-diagonal dynamical disorder.We show
that the presence of noise in the couplings of a quantumnetwork creates a pure-dephasing-like
process that destroys all coherences in the single-particleHilbert subspace.Moreover, we show that
when two ormore correlated particles propagate in the network, coherences accounting for particle
indistinguishability are robust against the impact of off-diagonal noise, thus showing that it is possible,
in principle, tofind specific conditions forwhichmany indistinguishable particles can traverse
stochastically-coupled networks without losing their ability to interfere.

1. Introduction

The study of quantum randomwalks in noisy environments have played a fundamental role in understanding
non-trivial quantumphenomena observed in an interdisciplinary framework of studies ranging frombiology
[1, 2], chemistry [3], materials science [4] and electronics [5], to photonics [6–9] and ultracoldmatter [10, 11].
Formany years,most of the research efforts had been focused on the propagation of single particles [12];
however, a great interest in describing the dynamics of correlated particles in noisy systems has recently arisen
[13–16], mainly because it has been recognized thatmany-particle quantum correlations can be preserved in
noisy networks by properly controlling the initial state of the particles, their statistics, indistinguishability or
their type of interaction [17, 18].

In general, the interesting features in the dynamics of quantum correlated particles traversing noisy
networks are due to the tunneling amplitudes in the associatedHamiltonians. Therefore, including noise into
the off-diagonal elements of theHamiltonian allows one to assess the effects of decoherence and noise. Onmany
occasions, when describing the evolution of correlated particles in network systems affected by non-dissipative
noise, a physically accurate result can be obtained after averaging overmany realizations of the noisy walks. In
otherwords, inmost cases, one does not have amaster equation to analytically describe the phenomenon under
study. Indeed, this represents a serious problem, specially in cases where the number of particles or network sites
is extremely large. In such scenarios, computing the evolution of the systemquickly becomes a computationally
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demanding task, which can only be tackled by developing sophisticated computer algorithms [19].
Consequently,most of thework is generally focused on optimizing numerical approaches, and the physical
interpretation of the noise effects are sometimes overlooked.

In the present workwe introduce an exact analytical approach to study quantumwalks in noisy systems.We
use stochastic calculus to derive amaster equation for the propagation of two correlated particles in a quantum
network affected by off-diagonal dynamical disorder. By using our results, we show that off-diagonal noise
produces an effective pure-dephasing-like process that destroys all coherences in a single-particle quantum
walk. Remarkably, wefind that when two ormore indistinguishable particles propagate in a noisy system,
coherences accounting for particle indistinguishability are robust against the dephasing-like process. These
results elucidate the role of particle indistinguishability in the preservation of quantum coherence in systems
that interact with a noisy environment.

2. Single-particle dynamics

We start by describing the dynamics of a single particle in a quantumnetwork affected by random fluctuations in
the coupling between sites. In this situation, the time evolution of the single-particle wavefunction at the nth site,
ψn, is given by the stochastic Schrödinger equation (withÿ=1)

åy
w y k y= - -
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( ) ( )
t

t
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d
i i , 1n

n n
m n
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whereωn stands for the energy of thenth site, and the coupling between them is givenby k k f= +( ) ( )t tnm nm nm ,
with f f=( ) ( )t tnm mn describing awhite-noise processwith zero average, that is, fá ñ =( )t 0nm , and
f f g d dá ¢ ñ = - ¢( ) ( ) ( )t t t tnm jl nm nm jl, .Here d d d d d= +nm jl nj ml nl mj, , with δnmbeing theKronecker delta.γnm
denotes thenoise intensity, that is, how strong the stochasticfluctuations are, and á ñ denotes averaging over the
noise realizations.

Following a treatment equivalent to the one used in [20, 21], where fluctuations are introduced in the site-
energies rather than the couplings, we can obtain amaster equation for a stochastically-coupled network by
taking the time derivative of *r y y= á ñ( )tnm n m . Thus, by using equation (1), we canwrite

*
*

* *

å å

å å

r
y

y
y

y

w w r k r k r

g y y h g y y h

= +

=- - + -

- á ñ + á ñ

( )

( ) ( ) ( )

t t t

t t

d

d

d

d

d

d
,

i i i

i i , 2

nm
n

m
m

n

n m nm
j

mj nj
j

nj jm

j
mj n j mj

j
nj j m nj

wherewe have defined a new stochastic variable h f g= -( ) ( )t tnm nm nm , which satisfies the conditions
há ñ =( )t 0nm , and h h d dá ¢ ñ = - ¢( ) ( ) ( )t t t tnm jl nm jl, . Notice that equation (2) is not yet complete, as it remains to
compute the correlation functions of the last two terms. To do so, we employ theNovikov’s theorem [22], which
for the fourth termon the right hand side of equation (2) takes the form
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where the operator d dh ( )tpq stands for the functional derivative with respect to the stochastic process. At this
point, it is worth remarking that theNovikov’s theorem can be used for solving different types of Gaussian
stochastic processes, such as non-Markovian colored noise [23]. Now, to solve the functional derivative in
equation (3), wemake use of the expression
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which corresponds to the formal integration of equation (2)without the noise average.Note that, in equation (4),
the function *y y ¼( )f ,n m contains all terms that do not depend on stochastic variables.
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Thus, by using equation (4)we obtain
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wherewe have used of the relation dh dh d=jr pq jr pq, .We can now substitute equation (5) into (3) tofind
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Similarly, the fifth termon the right hand side of equation (2) is found to be
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Finally, by substituting equations (6) and (7) into (2), we obtain
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which corresponds to amaster equation for the time evolution of a single particle in a stochastically-coupled
quantumnetwork. Note that equation (8) can be cast into a Lindblad equation [12] by noticing that the
deterministic part of equation (1) corresponds to the dynamics of a quantumnetwork described by a tight-
bindingHamiltonian of the form
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with ñ∣n denoting the particle (or excitation) being at the nth site of the network. Then, bymaking use of
equation (9), we canwrite equation (8) as
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where [ ], stands for the commutator. Notice that the effect of the fluctuating coupling is captured by the pure-
dephasing-like operator
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with γnm describing the dephasing rate introduced in the coupling between the nth and themth site.
To elucidate the effect of the stochastic coupling between sites, we now compute the dynamics of a single

excitation in a fully connected network composed by three sites.We have chosen this configuration, because it
constitutes the simplest quantumnetwork that one can investigate both theoretically and experimentally [5, 24].
The energies of the sites are arbitrarily chosen to beω1=ω2=ω3=5 ps−1, whereas the coupling between
them are set toκ12=1 ps−1, andκ13=κ23=0.5 ps−1. Figure 1 shows some examples of platformswhere
single-excitation stochastic networks have been successfully implemented, namely optical tweezers [25],
waveguide arrays [24], superconducting circuits [26–28], and electrical-circuit arrays [29]. Quite recently, it has
been shown that stochastic quantumnetworks can also be implemented in fascinating platforms, such as nuclear
magnetic resonance systems [30], and ion traps [31, 32].

The time evolution of the diagonal (populations) and off-diagonal (coherences) elements of the system’s
densitymatrix, solved bymeans of equation (8), is shown infigure 2. In allfigures, the dephasing rate is set to
γ12=γ13=γ23=0.38 ps−1. For the sake of comparison, we have included the numerical solution (dashed
lines) of equation (1), which corresponds to the average of 10 000 random realizations, where the dephasing
coefficient is defined bymeans of the relation [33, 34]: g s= Dtnm nm

2 , with snm
2 being the variance of the

Gaussian distribution containing the values of the stochastic variable f ( )tnm , andΔt the correlation time.Notice
that the effect of thefluctuating coupling is a pure-dephasing-like process, described by the operator  r[ ]deph ,
that destroys the coherence between the network’s sites. This phenomenon is equivalent to the quantumZeno
effect [35], a process inwhich the system is driven by its environment into a steady statewhere the regular
hopping of thewavefunction is no longer sustained, i.e. a state in which the initial excitation becomes
incoherently delocalized [36, 37].
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Figure 1. Schematic representation of photonic and electronic platformswhere single-excitation stochastic networks have been
investigated: (a) optical tweezers, (b)waveguides, (c) superconducting circuits, and (d) electrical-circuit arrays.

Figure 2.Dynamics of a single excitation injected into site 1 of a stochastically-coupled three-site quantumnetwork. (a)Time
evolution of the population in each of the sites; (b) and (c) show the real and imaginary parts of the coherence (off-diagonal) terms,
respectively. Note that the effect of the fluctuating coupling is a non-dissipative pure-dephasing-like process that destroys coherence
between the network’s sites. The solid line corresponds to the solution using our derivedmaster equation (equation (8)); whereas the
dashed line shows the numerical solution of equation (1) obtained by averaging 10 000 realizations. In both cases, we have set the
dephasing rates to γ12=γ13=γ23=0.38 ps−1.
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3. Two-particle wavefunction dynamics

Wenow turn our attention to the description of two-particle correlation dynamics. To this end, we use the
concept of two-particle probability amplitude [24, 38], and derive the corresponding equations ofmotion for
finite tight-binding networks comprisingN sites.

We start by noting that the probability amplitudes for a quantumparticle, initialized at a site n, are governed

by the equations [24, 38]: w k= - - å = ( )U t Ui i
U

t n p n r
N

pr r n
d

d , 1 ,
p n, , whereUp,n stands for the impulse response of

the system, that is, the unitary probability amplitude for a single particle traveling from site n to site p. As in the
previous section, the coupling k ( )tpr represents aGaussianMarkov process with zero average.We can then
write, in terms of single-particle probability amplitudes, the two-particle probability amplitudes at sites p and q
as: y x= å = =( ) [ ( ) ( ) ( ) ( )]t U t U t U t U tp q m n m n p n q m p m q n, 1, 1 , , , , , , where xm n, is the initial probability amplitude
profile that fulfills the conditions xå == = ∣ ∣ 1m n m n1, 1 ,

2 . Notice that the sign±determines whether the particles
are bosons (+) or fermions (−), respectively. Then, by taking the time derivative of the two-particle
wavefunction, we obtain the equation
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which describes the dynamics of two-particle quantum correlations. Notice that two-particle quantum states
evolve in aHilbert space composed by a discrete set ofN2-mode states occupied by the two particles. One
important fact to highlight regarding equation (12) is the presence of the term w w y+( )p q p q, , which implies that
during evolution thewavefunctionψp,q acquires a phase that a single particle acquires when it traverses the same
network twice [39]. Indeed, such effects can be expected sincewe are dealingwith two correlated particles [40].
Finally, we remark that themodulus squared of the two-particle wavefunction gives the probability offinding
one particle at site p and the other at q [41–46].

We can now follow the same procedure as in the previous section to obtain amaster equation for the two-
particle wavefunction dynamics by taking the time derivative of *r y y= á ñ¢ ¢ ¢ ¢pq p q pq p q, . Thus, by using
equation (12), we obtain (see appendix A for details)
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which is themaster equation that describes the time evolution of two correlated particles in a stochastically-
coupled quantumnetwork.Note that we canwrite equation (13) in its equivalent Lindblad formby following the
procedure described above and noticing that theHamiltonian for the two-particle system is given by

  = +⨂ ⨂H Hd d, where⨂ stands for the tensor product and  is the identitymatrix, whose dimension is
the same as the single-particleHamiltonian.

Before considering particular examples, it is worth noting that in the followingwewill use the compact
notation ñ∣1 , 1n m to represent the states where one particle is populating the site n and another the sitem, i.e.

ñ Ä ñ∣ ∣1 1n m , whereas statesµ ñ + ñ(∣ ∣ )1 , 1 1 , 1n m m n are symmetrizedwavefunctions.
We now examine the evolution of two-particle correlations in a three-site fully-connected network. As initial

states we consider three different bosonic cases: (i) two indistinguishable particles in the separable state
y ñ = ñ + ñ∣ ( ) (∣ ∣ )0 1 , 1 1 , 1 21 2 2 1 , (ii) an incoherent two-distinguishable-particle state represented by
r = ñá + ñá( ) (∣ ∣ ∣ ∣)0 1 , 1 1 , 1 1 , 1 1 , 1 21 2 1 2 2 1 2 1 , and (iii) two particles in an entangled state
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y ñ = ñ + ñ∣ ( ) (∣ ∣ )0 1 , 1 1 , 1 21 1 2 2 . Figure 3 shows the evolution of the initial states at t=1 ps. Notice that the
stochastic fluctuations affect the system in such away that, when indistinguishable particles (figures 3(a), (d) and
(c), (f)) are injected in the system, the probability offinding both particles in the same site is the largest, that is,
the photons bunch in all sites with the same probability. This effect could be thought of as a generalizedHong-
Ou-Mandel effect produced by the pure-dephasing-like process. In striking contrast, when distinguishable
photons are injected in the system (figures 3(b), (e)), the probability offinding them in different sites becomes
larger, thus leading to an anti-bunching effect. An important aspect to point out regarding the results shown in
figure 3 is the computation time required for obtaining them. Remarkably, solving themaster equation in
equation (13) takes∼0.521 s; whereas the pure numerical solution of equation (12) takes∼2.4 h. This implies
that our derivedmaster equation improves the computation time by at least four orders ofmagnitude, while
providing themaximumaccuracy possible (see appendix B for details).

Recently, it has been shown that coherences arising fromparticle indistinguishability are robust against
noise [24, 38]. Bymaking use of ourmodel, we have verified that in the steady-state, coherences accounting for
particle indistinguishability do survive the impact of stochastic fluctuations in the coupling between sites (see
appendix C for details). These results imply that it is possible, in principle, tofind specific conditions for which
many indistinguishable particles can traverse stochastically-coupled networkswithout losing their ability to
interfere.

Finally, notice that the generalization of our results toN correlated particles is straightforward following
similar steps as above by introducing theN-particle probability amplitude

å j c cY = + +¼
¼

¼ ¼
¼

¼( ) [ ] ( )t ... , 14p q r
a b c

N

a b c a b c
p q r

a b c, , ,
, , ,

, , , , , ,
, , ,

, , ,
per

with c =¼
¼ ( ) ( ) ( )U t U t U t ...a b c

p q r
p a q b r c, , ,

, , ,
, , , , whereUm,n represents the probability amplitude for each particle at site

nwhen it is injected into channelm. The superscript ‘per’ stands for the cyclic permutations of the subscripts p,
q, r,K in the corresponding transition amplitudes.

Figure 3.Densitymatrices (absolute value) for (a), (d) separable, (b), (e) incoherent and (c), (f) entangled states at t=0 ps and t=1
ps, respectively. Note that the stochastic coupling affects the system in such away that when indistinguishable particles are injected
into the system (figures 3(a) and (c)) the probability offinding both particles in the same site is the largest (bunching effect); whereas
for distinguishable photons (figure 3(b)), the probability offinding them in different sites becomes larger (anti-bunching effect). The
parameters used for the quantumnetwork—namely site-energies, couplings and dephasing rates—are set to be
ω1=ω2=ω3=5 ps−1;κ12=2 ps−1,κ13=κ23=1 ps−1, and γ12=γ13=γ23=0.38 ps−1.

6

New J. Phys. 21 (2019) 053041 R de J León-Montiel et al



4. Conclusions

In this work, we have derived amaster equation for the propagation of correlated particles in quantumnetworks
affected by off-diagonal dynamical disorder. Unlike commonly-used computationalmethods, wheremany
stochastic trajectories are needed, our equation allows one tofind the average trajectory of correlated particles in
a single calculation. By using our results, we showed that the effect of introducing noise in the couplings of a
quantumnetwork leads to a dephasing-like process that destroy all coherences in the single-particleHilbert
subspace. Interestingly, we found that when two ormore correlated particles propagate in a stochastically-
coupled network, coherences accounting for the indistinguishability of the particles endure the impact of noise.
These resultsmay help elucidating the role of particle indistinguishability to preserve quantum coherence and
entanglement propagating through complex dynamically-disordered systems.
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AppendixA.Derivation of the two-particlemaster equation

Westart bywriting the expression for the probability amplitude dynamics of a quantumparticle initiated at siten
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whereωn stands for the energy of the nth site, and the coupling between the rth and qth sites is given by
k k f= +( ) ( )t trq rq rq , with f f=( ) ( )t trq qr describing aGaussianMarkov process with zero average, that is

fá ñ =( ) ( )t 0, A.2rq
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Here d d d d d= +rq jl rj ql rl qj, , with δrq being theKronecker delta. γrq denotes the noise intensity, that is, how strong
the stochastic fluctuations are, and á ñ denotes stochastic averaging. By defining the stochastic variable
f g x= -( ) ( )t trq rq rq , we canwrite

å åw k g x= - - + ( ) ( )
U

t
U U t U

d

d
i i i , A.4

q n
q q n

r
rq r n

r
rq rq r n

,
, , ,

with the properties of the stochastic variable ξrq given by

xá ñ =( ) ( )t 0, A.5rq

x x d dá ¢ ñ = - ¢( ) ( ) ( ) ( )t t t t . A.6rq jl rq jl,

Notice that because noise (dynamic disorder) is introduced in the couplings, wemust keep inmind that ¹r q
and, consequently, ¹j l.

Now, to compute the evolution of the two-particle densitymatrix *r y y= á ñ¢ ¢ ¢ ¢pq p q pq p q, , with

y x= å = =( ) [ ( ) ( ) ( ) ( )]t U t U t U t U tp q m n m n p n q m p m q n, 1, 1 , , , , , , wefirst write

*
*

* *

* *

* *

* *

å å

å å

å å

å å

y y
w w w w y y

k y y k y y

k y y k y y

g y y x g y y x

g y y x g y y x

=- + - -

- -

+ +

- -

+ +

¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

( )
[ ]

( ) ( )

( ) ( ) ( )

t

t t

t t

d

d
i

i i

i i

i i

i i . A.7

pq p q
p q p q pq p q

l
lq pl p q

l
lp lq p q

l
lq pq p l

l
lp pq lq

l
lq pl p q lq

l
lp lq p q lp

l
lq pq p l lq

l
lp pq lq lp

7

New J. Phys. 21 (2019) 053041 R de J León-Montiel et al



Wecan formally integrate equation (A.7), and obtain

* *

*

*

*

*

ò
å

å

å

å

y y y y

g y y x

g y y x

g y y x

g y y x

= ¢ ¼

- ¢ ¢ ¢

- ¢ ¢ ¢

+ ¢ ¢

+ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢

⎧⎨⎩

⎫⎬⎭

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

t f

t t t

t t t

t t t

t t t

d ,

i

i

i

i , A.8

pq p q

t

pq p q

l
lq pl p q lq

l
lp lq p q lp

l
lq pq p l lq

l
lp pq lq lp

0

where ( )f is a function that contains all terms that do not depend on the stochastic variables. Concurrently,
we canwrite the average of equation (A.7) as

*
*

* *

* *

*

*

*

*

å å

å å

å

å

å

å

y y
w w w w y y

k y y k y y

k y y k y y

g y y x

g y y x

g y y x

g y y x

á ñ
=- + - - á ñ

- á ñ - á ñ

+ á ñ + á ñ

- á ñ

- á ñ

+ á ñ

+ á ñ

¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢

[ ]

( )

( )

( )

( ) ( )

t

t

t

t

t

d

d
i

i i

i i

i

i

i

i . A.9

pq p q
p q p q pq p q

l
lq pl p q

l
lp lq p q

l
lq pq p l

l
lp pq lq

l
lq pl p q lq

l
lp lq p q lp

l
lq pq p l lq

l
lp pq lq lp

It is clear that in order to obtain themaster equation for r ¢ ¢( )tpq p q, , wemust evaluate the correlation functions in
the last four terms of equation (A.9). To do so, we invoke theNovikov’s theorem [22, 47], which for thefirst
correlation function in equation (A.9) takes the form

*
*

*

*

ò

ò

å

å

å

y y x x x
d y y

dx

d d
d y y

dx

d
d y y

dx

á ñ = ¢á ¢ ñ
¢

= ¢ - ¢
¢

=

¢ ¢
¢ ¢

¢ ¢

¢ ¢

( ) ( ) ( )
[ ( ) ( )]

( )

( )
[ ( ) ( )]

( )

[ ( ) ( )]
( )

( )

t t t t
t t

t

t t t
t t

t

t t

t

d ,

d ,

1

2
. A.10

pl p q lq
rs

lq rs
pl p q

rs

rs
lq rs

pl p q

rs

rs
lq rs

pl p q

rs

,

,

Here, we have taken into account the fact that, in the Stratonovich interpretation [48], ò d =( ) /t 1 2.We can
then use equation (A.8) towrite the functional derivative as

*
*

*

*

*

å

å

å

å

d y y

dx
g y y d

g y y d

g y y d

g y y d

=-

-

+

+

s
s s s

s
s s s

s
s s s

s
s s s

¢ ¢
¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢

[ ( ) ( )]
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

t t

t
t t

t t

t t

t t

i

i

i

i , A.11

pl p q

rs
l p p q l rs

p l p q p rs

q pl p q rs

p pl q p rs

,

,

,

,
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wherewe used the relation dx dx d=s sl rs l rs, . By substituting this result into equation (A.10), we canwrite

* å

å

å

å

y y x d g r

d g r

d g r

d g r

á ñ=-

-

+

+

s
s s s

s
s s s

s
s s s

s
s s s

¢ ¢ ¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢ ( )

( )

A.12

t
i

2

i

2

i

2

i

2
.

pl p q lq l lq l p p q

p lq p l p q

q lq q pl p

p lq p pl q

, ,

, ,

, ,

, ,

Similarly, the remaining correlation functions are given by

* å

å

å

å

y y x d g r

d g r

d g r

d g r

á ñ=-

-

+

+

s
s s s

s
s s s

s
s s s

s
s s s

¢ ¢ ¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ¢ ( )

( )

A.13

t
i

2

i

2

i

2

i

2
,

lq p q lp q lp q l p q

l lp l q p q

q lp q lq p

p lp p lq q

, ,

, ,

, ,

, ,

* å

å

å

å

y y x d g r

d g r

d g r

d g r

á ñ=-

-

+

+

s
s s s

s
s s s

s
s s s

s
s s s

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢ ( )

( )

A.14

t
i

2

i

2

i

2

i

2
,

pq p l lq q lq q p p l

p lq p q p l

l lq l pq p

p lq p pq l

, ,

, ,

, ,

, ,

* å

å

å

å

y y x d g r

d g r

d g r

d g r

á ñ=-

-

+

+

s
s s s

s
s s s

s
s s s

s
s s s

¢ ¢ ¢ ¢

¢ ¢

¢ ¢ ¢

¢ ¢ ( )

( )

A.15

t
i

2

i

2

i

2

i

2
.

pq lq lp q lp q p lq

p lp p q lq

q lp q pq l

l lp l pq q

, ,

, ,

, ,

, ,

Finally, by substituting equations (A.12)–(A.15) into equation (A.9)we obtain

å

å

å

å

å

r
w w w w r

g g g g g g r

k r k r k r k r

d g g r d g g r

d g g r d g g r

d g g r d g g r

g r g r g r g r

=- + - -

- + + + - -

- + - -

- +

+ +

+ +

+ + + +

¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ( )

( )

[( ) ]

( )

( )

( )

( )

A.16

t

d

d
i

1

2

i

,

pq p q
p q p q pq p q

l
lp lq lp lq pq p q pq p q

l
lq pl p q lp lq p q lq pq p l lp pq lq

l
pq lq lp ll p q p q lp lq pq ll

l
qq lq lq pl p l qp lq lp pl lq

l
pq lp lq lq p l pp lp lp lq lq

qq pq p q qp pp qq pp p q pq pq q q p p

,
,

,

, , , ,

, ,

, ,

, ,

, , , ,

which is the result shown in equation (13) of themain text.

Appendix B. Comparison betweenmaster equation and the direct stochastic numerical
simulation

Wenowprovide a quantitative comparison between the time evolution of a two-particle state obtained bymeans
of our derivedmaster equation and by directly implementing the stochastic equations. Figure B1 shows the
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evolution of a separable state, y ñ = ñ + ñ∣ ( ) (∣ ∣ )0 1 , 1 1 , 1 21 2 2 1 , propagating in a dynamically-disordered
three-site network. The parameters used for the quantumnetworks—namely site-energies, couplings and
dephasing rates—are the same as those used for obtaining figure 3 of themain text. Figures B1(a)–(c) show the
results obtained by using the derivedmaster equation (equation (13) of themain text), whereasfigures B1(d)–(f)
show the results obtained by numerically solving equation (12) of themain text using the Taylor Integration
package [49]. The latter were obtained by averaging over 10 000 different realizations of the two-particle random
walk. It is important to highlight that the computation time required for each case was =( )T 0.521 sc

master , and

=( )T 2.4 hc
numerical for themaster equation and direct stochastic evaluation, respectively. Clearly, our derived

equation improves the computation time by at least four orders ofmagnitude, while providing themaximum
accuracy possible. For the sake of completeness, infigures B1(g)–(i), we have included the absolute difference
between the absolute value of the densitymatrix elements obtained from themaster equation and the numerical
solution, i.e. r r rD = -¢ ¢ ¢ ¢∣∣ ∣ ∣ ∣∣( ) ( )

pq p q pq p q,
master

,
numerical . Finally, wewould like to remark that while the derivedmaster

equation provides the exact solution, the accuracy of the stochastic-computation solution strongly depends on
the number of realizations being used for the average, which implies thatmany realizations (and therefore longer
computation times) are required in order to obtain reliable numerical results. This is the reasonwhy, when
possible, one should usemaster equations instead of direct stochastic numerical simulations.

AppendixC.Quantitative analysis of two-particle coherence preservation

To quantify the amount of surviving coherence in the steady states, we use two different coherencemeasures, the
physically intuitive normof coherence [50]: r r= å ¹( ) ∣ ∣CN i j i j, , and the relative entropy of coherence [51]

r r r= -( ) ( ) ( )C S SE diag , with S representing the vonNeumann entropy and ρdiag thematrix obtained from the

densitymatrix ρ after removing all off-diagonal elements. Note that, in bothmeasures, a totallymixed (or
incoherent) state is signaled by a vanishing coherencemeasure. Figure C1 shows the evolution of the normof
coherence and the entropy of coherence for the initial separable (solid line), path-entangled (dashed line), and

Figure B1.Densitymatrices (absolute value) for a separable state, y ñ = ñ + ñ∣ ( ) (∣ ∣ )0 1 , 1 1 , 1 21 2 2 1 , at t=1 ps, t=3 ps, and t=5
ps, obtained bymeans of the derivedmaster equations (a)–(c), and by the direct numerical evaluation of the stochastic equations (d)–
(f). Figures 1(g)–(i) show the absolute difference between both solutions, r r rD = -¢ ¢ ¢ ¢∣ ∣( ) ( )

pq p q pq p q,
master

,
numerical , at the corresponding

evolution times.
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incoherent (dotted line) states. Interestingly, when distinguishable particles (incoherent states) are injected into
the system (CN=CE=0), coherence due to propagation-induced indistinguishability rapidly emerges and the
system evolves into a steady state whereCN=0.250 andCE=0.061. Remarkably, the same results as those
shown infigureC1 can be observed for any value of the dephasing rates. Therefore, we can convincingly say that
under the influence offluctuating couplings, identical particles always evolve into a steady state inwhich
coherences due to indistinguishability perpetually prevail.
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