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Abstract

Quantum walks in dynamically-disordered networks have become an invaluable tool for under-
standing the physics of open quantum systems. Although much work has been carried out considering
networks affected by diagonal disorder, it is of fundamental importance to study the effects of
fluctuating couplings. This is particularly relevant in materials science models, where the interaction
forces may change depending on the species of the atoms being linked. In this work, we make use of
stochastic calculus to derive a master equation for the dynamics of one and two non-interacting
correlated particles in tight-binding networks affected by off-diagonal dynamical disorder. We show
that the presence of noise in the couplings of a quantum network creates a pure-dephasing-like
process that destroys all coherences in the single-particle Hilbert subspace. Moreover, we show that
when two or more correlated particles propagate in the network, coherences accounting for particle
indistinguishability are robust against the impact of off-diagonal noise, thus showing that it is possible,
in principle, to find specific conditions for which many indistinguishable particles can traverse
stochastically-coupled networks without losing their ability to interfere.

1. Introduction

The study of quantum random walks in noisy environments have played a fundamental role in understanding
non-trivial quantum phenomena observed in an interdisciplinary framework of studies ranging from biology
[1,2], chemistry [3], materials science [4] and electronics [5], to photonics [6—9] and ultracold matter [10, 11].
For many years, most of the research efforts had been focused on the propagation of single particles [12];
however, a great interest in describing the dynamics of correlated particles in noisy systems has recently arisen
[13—16], mainly because it has been recognized that many-particle quantum correlations can be preserved in
noisy networks by properly controlling the initial state of the particles, their statistics, indistinguishability or
their type of interaction [17, 18].

In general, the interesting features in the dynamics of quantum correlated particles traversing noisy
networks are due to the tunneling amplitudes in the associated Hamiltonians. Therefore, including noise into
the off-diagonal elements of the Hamiltonian allows one to assess the effects of decoherence and noise. On many
occasions, when describing the evolution of correlated particles in network systems affected by non-dissipative
noise, a physically accurate result can be obtained after averaging over many realizations of the noisy walks. In
other words, in most cases, one does not have a master equation to analytically describe the phenomenon under
study. Indeed, this represents a serious problem, specially in cases where the number of particles or network sites
is extremely large. In such scenarios, computing the evolution of the system quickly becomes a computationally
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demanding task, which can only be tackled by developing sophisticated computer algorithms [19].
Consequently, most of the work is generally focused on optimizing numerical approaches, and the physical
interpretation of the noise effects are sometimes overlooked.

In the present work we introduce an exact analytical approach to study quantum walks in noisy systems. We
use stochastic calculus to derive a master equation for the propagation of two correlated particles in a quantum
network affected by off-diagonal dynamical disorder. By using our results, we show that off-diagonal noise
produces an effective pure-dephasing-like process that destroys all coherences in a single-particle quantum
walk. Remarkably, we find that when two or more indistinguishable particles propagate in a noisy system,
coherences accounting for particle indistinguishability are robust against the dephasing-like process. These
results elucidate the role of particle indistinguishability in the preservation of quantum coherence in systems
that interact with a noisy environment.

2. Single-particle dynamics

We start by describing the dynamics of a single particle in a quantum network affected by random fluctuations in
the coupling between sites. In this situation, the time evolution of the single-particle wavefunction at the nth site,
1y, 1s given by the stochastic Schrédinger equation (with & = 1)

d,

% = —iw, Y, — 1 Z Ko (E) Yy @

m=n

where w,, stands for the energy of the nth site, and the coupling between them is given by x,,,, () = Kum + @, ()»
with ¢,,,(t) = ¢,,,(¢) describing a white-noise process with zero average, that s, (¢,,,(t)) = 0,and
(P () on (")) = Yy Onm,jid (t — t'). Here 8y ji = OujOmi + 6516,j with 6,,,,, being the Kronecker delta. 5,,,,
denotes the noise intensity, that is, how strong the stochastic fluctuations are, and (- - -} denotes averaging over the
noise realizations.

Following a treatment equivalent to the one used in [20, 21], where fluctuations are introduced in the site-
energies rather than the couplings, we can obtain a master equation for a stochastically-coupled network by
taking the time derivative of p,, (t) = (1,%},). Thus, by using equation (1), we can write

Ay _ [ diby, di,
o <wn + U >

= —i(w, — wm)pnm IZ KmjPnj — IZ Konj Pim

~ IZW wnw*nm(r) lzm Y, (D), @

where we have defined a new stochastic variable 7, (1) = —@,,,(t) / am> which satisfies the conditions

(N, (H)) = 0,and (1, (1) i (")) = Oum,ji6 (t — t'). Notice that equation (2) is not yet complete, as it remains to
compute the correlation functions of the last two terms. To do so, we employ the Novikov’s theorem [22], which
for the fourth term on the right hand side of equation (2) takes the form

SV (D] >

Oy (')

(on i, (D) = f dt’<nmj(t)npq(t’)><
Pq

3

P O11pq (1)

1 S P} (0]
i)

where the operator 6 /67, () stands for the functional derivative with respect to the stochastic process. At this
point, it is worth remarking that the Novikov’s theorem can be used for solving different types of Gaussian
stochastic processes, such as non-Markovian colored noise [23]. Now, to solve the functional derivative in
equation (3), we make use of the expression

Uu () (1) = j: dt’[f(wm?;,...) — 1> T Ui, (1)

Hiy mw:;nm(r)], @

which corresponds to the formal integration of equation (2) without the noise average. Note that, in equation (4),
the function f (1,7, ..) contains all terms that do not depend on stochastic variables.

2
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Thus, by using equation (4) we obtain

S[bn(D)% ()] . :
o = S g + 1 Vb ®
pa r '

where we have used of the relation 5% / 6np 0= dir,pg- We can now substitute equation (5) into (3) to find
i i
<wn w}knm](t» = - E Z \/’V_jrpnr (Sjr,mj + E Z N prj 6nr,mj- (6)

Similarly, the fifth term on the right hand side of equation (2) is found to be
i i
<wj j:mnj(t» = 75 Z N Vmr Pir 6mr,nj + E Z \/’Y_jrprméjr,nj- 7)
Finally, by substituting equations (6) and (7) into (2), we obtain

dp,,

. 1
ar = —|i(wy, — wm) + EZ('Ynj + ’ij) Prm

J

1D R P = Fon P+ Yam Prams + S Y Vi Vo Py ©)
j j

which corresponds to a master equation for the time evolution of a single particle in a stochastically-coupled
quantum network. Note that equation (8) can be cast into a Lindblad equation [12] by noticing that the
deterministic part of equation (1) corresponds to the dynamics of a quantum network described by a tight-
binding Hamiltonian of the form

Hd = an|n><n| + Z '%nmln> (ml’ (9)

m=n

with |n) denoting the particle (or excitation) being at the nth site of the network. Then, by making use of
equation (9), we can write equation (8) as

dp,,
dr

where [,] stands for the commutator. Notice that the effect of the fluctuating coupling is captured by the pure-
dephasing-like operator

- *i[Hd: p]nm + Edeph[p]nm) (10)

1
‘Cdeph[p]nm = - EZ(WH] + ’Ym]) = Yom |Pym T Oum Z N Vnj Vmj Pij> (11)
J J

with ,,,,, describing the dephasing rate introduced in the coupling between the nth and the mth site.

To elucidate the effect of the stochastic coupling between sites, we now compute the dynamics of a single
excitation in a fully connected network composed by three sites. We have chosen this configuration, because it
constitutes the simplest quantum network that one can investigate both theoretically and experimentally [5, 24].
The energies of the sites are arbitrarily chosen tobe w; = w, = ws = 5ps ™', whereas the coupling between
themaresetto s, = 1 ps~',and k3 = k3 = 0.5 ps~ . Figure | shows some examples of platforms where
single-excitation stochastic networks have been successfully implemented, namely optical tweezers [25],
waveguide arrays [24], superconducting circuits [26—28], and electrical-circuit arrays [29]. Quite recently, it has
been shown that stochastic quantum networks can also be implemented in fascinating platforms, such as nuclear
magnetic resonance systems [30], and ion traps [31, 32].

The time evolution of the diagonal (populations) and off-diagonal (coherences) elements of the system’s
density matrix, solved by means of equation (8), is shown in figure 2. In all figures, the dephasing rate is set to
Y12 = Y13 = Y23 = 0.38 psfl. For the sake of comparison, we have included the numerical solution (dashed
lines) of equation (1), which corresponds to the average of 10 000 random realizations, where the dephasing
coefficient is defined by means of the relation [33, 34]: v, = o7, At, with o, being the variance of the
Gaussian distribution containing the values of the stochastic variable ¢,,, (¢), and At the correlation time. Notice
that the effect of the fluctuating coupling is a pure-dephasing-like process, described by the operator Lgeph[p],
that destroys the coherence between the network’s sites. This phenomenon is equivalent to the quantum Zeno
effect [35], a process in which the system is driven by its environment into a steady state where the regular
hopping of the wavefunction is no longer sustained, i.e. a state in which the initial excitation becomes
incoherently delocalized [36, 37].
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(a) (b)

Figure 1. Schematic representation of photonic and electronic platforms where single-excitation stochastic networks have been
investigated: (a) optical tweezers, (b) waveguides, (c) superconducting circuits, and (d) electrical-circuit arrays.
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Figure 2. Dynamics of a single excitation injected into site 1 of a stochastically-coupled three-site quantum network. (a) Time
evolution of the population in each of the sites; (b) and (c) show the real and imaginary parts of the coherence (off-diagonal) terms,
respectively. Note that the effect of the fluctuating coupling is a non-dissipative pure-dephasing-like process that destroys coherence
between the network’s sites. The solid line corresponds to the solution using our derived master equation (equation (8)); whereas the
dashed line shows the numerical solution of equation (1) obtained by averaging 10 000 realizations. In both cases, we have set the
dephasing rates to v, = 713 = 7,3 = 0.38 ps~ .
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3. Two-particle wavefunction dynamics

We now turn our attention to the description of two-particle correlation dynamics. To this end, we use the
concept of two-particle probability amplitude [24, 38], and derive the corresponding equations of motion for
finite tight-binding networks comprising N sites.

We start by noting that the probability amplitudes for a quantum particle, initialized at a site 1, are governed
by the equations [24, 38]: O _ —iw, Uy — izﬁil Kpr () Uy, where U, ,, stands for the impulse response of
the system, that is, the unitary probability amplitude for a single particle traveling from site # to site p. As in the
previous section, the coupling i, (t) represents a Gaussian Markov process with zero average. We can then
write, in terms of single-particle probability amplitudes, the two-particle probability amplitudes at sites p and g
as: Yp (1) = 31 = S Upn (D Uy (1) £ Up, i (8) U, (1)), where & is the initial probability amplitude
profile that fulfills the conditions 3-,,_, ,,_|&,, ,I* = 1. Notice that the sign 4 determines whether the particles
are bosons (4) or fermions (—), respectively. Then, by taking the time derivative of the two-particle
wavefunction, we obtain the equation

dvp,q
dt

= _i(wp + Wq)d’p,q - iZ[Hpr(t)lpr,q + fiqr(t)¢p,r]> (12)

which describes the dynamics of two-particle quantum correlations. Notice that two-particle quantum states
evolve in a Hilbert space composed by a discrete set of N*>-mode states occupied by the two particles. One
important fact to highlight regarding equation (12) is the presence of the term (w, + w;)%,4, which implies that
during evolution the wavefunction v, ; acquires a phase that a single particle acquires when it traverses the same
network twice [39]. Indeed, such effects can be expected since we are dealing with two correlated particles [40].
Finally, we remark that the modulus squared of the two-particle wavefunction gives the probability of finding
one particle at site p and the other at g [41-46].

We can now follow the same procedure as in the previous section to obtain a master equation for the two-
particle wavefunction dynamics by taking the time derivative of p,, .. = (Vg @/ 4)- Thus, by using
equation (12), we obtain (see appendix A for details)

dp ’or
Pap'a .
ar = [l(“-’p +wg — Wy — Wy) = Vg — W'q’

- %}l:(mp + g + v + wqr)]ppq,p/q/

- i;('ﬂqpphp’q’ + Kip iy prg)

+ i;(’i”i'ppq,p’l + Kip' Ppg i)

- Zl:(‘qu Va7V Puprg + Oprqt YV Vi Ppg, 1)
+ Zl:(éqq'\/wppl,p’l + Sgp Vi Vip' Pt 1q)
+ ;(%’\/W Pig.prt T Opp! VIV Plg 1)

+ Yaa' Poqtp'q T Vap’ Ppp’ qq'
+ ’Ypp’pp/q)Pq/ + prq’,Oq/q’p/P, (13)

which is the master equation that describes the time evolution of two correlated particles in a stochastically-
coupled quantum network. Note that we can write equation (13) in its equivalent Lindblad form by following the
procedure described above and noticing that the Hamiltonian for the two-particle system is given by
H = HyQ1 + IR H,, where Q) stands for the tensor product and 1 is the identity matrix, whose dimension is
the same as the single-particle Hamiltonian.

Before considering particular examples, it is worth noting that in the following we will use the compact
notation |1,,, 1,,) to represent the states where one particle is populating the site 7 and another the site m, i.e.
[1,) ® |1,,), whereas states (|1,, 1,,) + |1, 1,)) are symmetrized wavefunctions.

We now examine the evolution of two-particle correlations in a three-site fully-connected network. As initial
states we consider three different bosonic cases: (i) two indistinguishable particles in the separable state
[1(0)) = (I, L) + |1, 1)) /~/2, (ii) an incoherent two-distinguishable-particle state represented by
p0) = (|1, L) {1, L| + |, 1) {1, L])/2,and (iii) two particles in an entangled state
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Figure 3. Density matrices (absolute value) for (a), (d) separable, (b), (¢) incoherent and (c), (f) entangled statesat t = Opsand t = 1
ps, respectively. Note that the stochastic coupling affects the system in such a way that when indistinguishable particles are injected
into the system (figures 3(a) and (c)) the probability of finding both particles in the same site is the largest (bunching effect); whereas
for distinguishable photons (figure 3(b)), the probability of finding them in different sites becomes larger (anti-bunching effect). The
parameters used for the quantum network—namely site-energies, couplings and dephasing rates—are set to be

Wi =w, =w;=5ps 5K =2ps L3 =k =1ps andy, =3 = 73 = 0.38 ps .

[1(0)) = (|1, ;) + |1, 1,))/~/2. Figure 3 shows the evolution of the initial states at t = 1 ps. Notice that the
stochastic fluctuations affect the system in such a way that, when indistinguishable particles (figures 3(a), (d) and
(¢), (f)) are injected in the system, the probability of finding both particles in the same site is the largest, that s,
the photons bunch in all sites with the same probability. This effect could be thought of as a generalized Hong-
Ou-Mandel effect produced by the pure-dephasing-like process. In striking contrast, when distinguishable
photons are injected in the system (figures 3(b), (e)), the probability of finding them in different sites becomes
larger, thus leading to an anti-bunching effect. An important aspect to point out regarding the results shown in
figure 3 is the computation time required for obtaining them. Remarkably, solving the master equation in
equation (13) takes ~0.521 s; whereas the pure numerical solution of equation (12) takes ~2.4 h. This implies
that our derived master equation improves the computation time by at least four orders of magnitude, while
providing the maximum accuracy possible (see appendix B for details).

Recently, it has been shown that coherences arising from particle indistinguishability are robust against
noise [24, 38]. By making use of our model, we have verified that in the steady-state, coherences accounting for
particle indistinguishability do survive the impact of stochastic fluctuations in the coupling between sites (see
appendix C for details). These results imply that it is possible, in principle, to find specific conditions for which
many indistinguishable particles can traverse stochastically-coupled networks without losing their ability to
interfere.

Finally, notice that the generalization of our results to N correlated particles is straightforward following
similar steps as above by introducing the N-particle probability amplitude

N
g () = D0 oo IXELT 7+ X054+l (14)
a,b,c,...
with ng: = U,,a(t)Upp(t) U, (2)..., where U, , represents the probability amplitude for each particle at site

nwhen itis injected into channel m. The superscript ‘per’ stands for the cyclic permutations of the subscripts p,
g1 ... in the corresponding transition amplitudes.




10P Publishing

NewJ. Phys. 21 (2019) 053041 R de ] Le6n-Montiel et al

4. Conclusions

In this work, we have derived a master equation for the propagation of correlated particles in quantum networks
affected by off-diagonal dynamical disorder. Unlike commonly-used computational methods, where many
stochastic trajectories are needed, our equation allows one to find the average trajectory of correlated particles in
asingle calculation. By using our results, we showed that the effect of introducing noise in the couplings of a
quantum network leads to a dephasing-like process that destroy all coherences in the single-particle Hilbert
subspace. Interestingly, we found that when two or more correlated particles propagate in a stochastically-
coupled network, coherences accounting for the indistinguishability of the particles endure the impact of noise.
These results may help elucidating the role of particle indistinguishability to preserve quantum coherence and
entanglement propagating through complex dynamically-disordered systems.
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Appendix A. Derivation of the two-particle master equation

We start by writing the expression for the probability amplitude dynamics of a quantum particle initiated at site n
dU,.
dt

= *iwq Upn — 12 Hrq(t) Un> (A.1)
where w, stands for the energy of the nth site, and the coupling between the rth and gth sites is given by
Kg(t) = Ky + d),q (t), with ¢, HOES d)q, (t) describing a Gaussian Markov process with zero average, that is
(d,(0) =0, (A.2)
<¢,q(t) ¢jl(t/)> = ’Yrq‘srq,jlé(t - t/)- (A3)

Here 6,451 = 6,105 + 0r10;j, with 6, being the Kronecker delta. 7,, denotes the noise intensity, that is, how strong
the stochastic fluctuations are, and (- - - ) denotes stochastic averaging. By defining the stochastic variable

Prg(£) = = [ §rq (1), We can write

dUp,n . . .
dz’ = —1wq (]q,n - IZ '%rq Ur,n + IZ \/’y_rqfrq(t) Ur,m (A4)
with the properties of the stochastic variable &, given by
(£,(0) =0, (A.5)
(§g(OE&; X)) = by bt — ). (A.6)

Notice that because noise (dynamic disorder) is introduced in the couplings, we must keep in mind that r = g
and, consequently, j = I.
Now, to compute the evolution of the two-particle density matrix p,,, . = (VpqVprqr)> With

Upa () = X1 Eomn [Upin (D) Uy (8) £ Up (£) Uy, ()], we first write
%ﬁ/qu/) = —ilwy + wy — wy — wylYpg Uiy
- izlj Kig Uiy — izl: KipigWyy
+ izlj Kig Vpg Uyt + izl: Kip Upg Uity
- i; NePT IR OB i; ST, (®
+ i; SV Upg Uiy (£) + i; ST Cpq Uiy (). (A7)
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We can formally integrate equation (A.7), and obtain

Ut = [ dt'{ Wyt
- i; g Yot Uy (1) 6, (2
- i; ST g () Gy (1) &, ()
ENIENQUZCING

+iy %q(f’)wi‘;/(t’)&p/(t’)}, (A.8)
1

where f (---) isa function that contains all terms that do not depend on the stochastic variables. Concurrently,
we can write the average of equation (A.7) as

d </ll)Pt] /l/}?’q’>

et ey vy~ wl (UpgUiprg)

- i; Kig Wplﬁ’q/) —1i ; Kip (Yig ¢t’q/>

+ i; Kig (Ypg V) + i; Kip (Ypq Vi)

— 10 VT (6t 1)

~ 15 T (1)

+ i; Va7 (Upg¥piiy ()

+ iEIZ ST (Vpg Uiy (D). (A.9)
Itis clear that in order to obtain the master equation for p,, ../ (f), we must evaluate the correlation functions in

the last four terms of equation (A.9). To do so, we invoke the Novikov’s theorem [22, 47], which for the first
correlation function in equation (A.9) takes the form

6¢,,(t))

_ ) ] DY (0]
_Er;fdtélqﬁ&(t t)<w

S[p () (0]
66,1 '

S (D) Yyrg (1)]
ol (®) = 2 f 446,05, <&>

(A.10)

Here, we have taken into account the fact that, in the Stratonovich interpretation [48], f 6(t) = 1/2.Wecan
then use equation (A.8) to write the functional derivative as

S (0) Yy (D]

. _' *, )
6§r5(t) B IZJ: m%a(t)wp q ) 6Ul,rs

- IZ \/T‘P’L/Jal(t)w?’q’(t) 50'p,r5
+ IZ mwpl(t)¢;’a(t)6aq’,rs
1D oy Yot (DU (1) S s (A.11)
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where we used the relation 6, /6¢,, = Op1,s. By substituting this result into equation (A.10), we can write

<1/]pl d)p Elq(t) Z 501 Ig~\ Vol ppg’ p'q
- 5 Z 60'17’1‘1\/ Yop pol,p’q’
o
i
+ B > boq'la\Voq' Ppl.p'c
o

i
+ B > Sopt g Top’ Pplyog (A.12)
o
Similarly, the remaining correlation functions are given by

(Yig Wy @) = —— Z boalpnVoa Pio, g’

—3 ZU: Ot ipN Vol Pog g’

+ % ZU: boq o[ Vod Pigp'o

i1 Z Oap' oy Vop’ Plgoqr> (A.13)
(g Ui () = —= Z ot ot P

Y 203 Oop,lg' \Vop Pogp

+ % ZU: 8ot Vol Ppg pro

+1 Z bopt 1 Vow’ Ppgyot (A.14)

<¢Pq7/’lq (1) = Z baq.lp ' oq Ppo,lg’

-3 ZO: bop,ip' Vop Prgylg’
+ % EU: baq'\lp’ Vod Ppalo
* % > bolip Vol Ppg,oq'" (A-15)
o
Finally, by substituting equations (A.12)—(A.15) into equation (A.9) we obtain
dpl:;p v —iwp + Wy — Wy = W) gy

- %le[(wp + g + Y+ Vg = Yeq = W'a' 1 Ppgpry
- izl:(“lqppl)p’q’ + EipPigprg = Bl Ppgpt = Kip' Ppg,iq’)
- le(épq gV Pupq + Op'a V9 Vig’ Ppg, )
+ El:(%u/W Poip't T Oap’ Vig Vip! Ppliqr)
+ 212(51)‘1/«/% Pigprt T Opp' Vi V10’ Pig 1q7)

+ %a' Ppqprq + Yar' Pyt T Vo' Potapg T Vod Paaprpy (A.16)

which is the result shown in equation (13) of the main text.

Appendix B. Comparison between master equation and the direct stochastic numerical
simulation

We now provide a quantitative comparison between the time evolution of a two-particle state obtained by means
of our derived master equation and by directly implementing the stochastic equations. Figure B1 shows the
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Figure B1. Density matrices (absolute value) for a separable state, [¢)(0)) = (|1, L) + [L, L ))/\/5, att = 1ps,t = 3ps,andt = 5
ps, obtained by means of the derived master equations (a)—(c), and by the direct numerical evaluation of the stochastic equations (d)—
(f). Figures 1(g)—(i) show the absolute difference between both solutions, Ap = | pg;'?;,‘;f) - p;‘]“;?;‘,‘cal) |, at the corresponding

evolution times.

evolution of a separable state, |¢/(0)) = (|1, 1,) + |1, 1,))/~/2, propagating in a dynamically-disordered
three-site network. The parameters used for the quantum networks—namely site-energies, couplings and
dephasing rates—are the same as those used for obtaining figure 3 of the main text. Figures B1(a)—(c) show the
results obtained by using the derived master equation (equation (13) of the main text), whereas figures B1(d)—(f)
show the results obtained by numerically solving equation (12) of the main text using the Taylor Integration
package [49]. The latter were obtained by averaging over 10 000 different realizations of the two-particle random
walk. It is important to highlight that the computation time required for each case was T™*'" = 0.521 s, and
pmumerica) — 3 4 h for the master equation and direct stochastic evaluation, respectively. Clearly, our derived
equation improves the computation time by at least four orders of magnitude, while providing the maximum
accuracy possible. For the sake of completeness, in figures B1(g)—(i), we have included the absolute difference
between the absolute value of the density matrix elements obtained from the master equation and the numerical
solution, i.e. Ap = || p;‘;‘f;fo) |—] pg;‘f;‘,‘flfi“al) |- Finally, we would like to remark that while the derived master
equation provides the exact solution, the accuracy of the stochastic-computation solution strongly depends on
the number of realizations being used for the average, which implies that many realizations (and therefore longer
computation times) are required in order to obtain reliable numerical results. This is the reason why, when
possible, one should use master equations instead of direct stochastic numerical simulations.

Appendix C. Quantitative analysis of two-particle coherence preservation

To quantify the amount of surviving coherence in the steady states, we use two different coherence measures, the
physically intuitive norm of coherence [50]: Cy (p) = >, i1l and the relative entropy of coherence [51]

Cg(p) = S( ,odiag) — S(p), with Srepresenting the von Neumann entropy and pgi,g the matrix obtained from the
density matrix p after removing all off-diagonal elements. Note that, in both measures, a totally mixed (or
incoherent) state is signaled by a vanishing coherence measure. Figure C1 shows the evolution of the norm of
coherence and the entropy of coherence for the initial separable (solid line), path-entangled (dashed line), and
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Figure C1. Time evolution of (a) the norm of coherence Cy (p), and (b) the relative entropy of coherence Cg(p), considering three
different initial states, namely separable (solid line), path-entangled (dashed line), and incoherent (dotted line) states.

incoherent (dotted line) states. Interestingly, when distinguishable particles (incoherent states) are injected into
the system (Cy = Cg = 0), coherence due to propagation-induced indistinguishability rapidly emerges and the
system evolves into a steady state where Cy = 0.250 and Cr = 0.061. Remarkably, the same results as those
shown in figure C1 can be observed for any value of the dephasing rates. Therefore, we can convincingly say that
under the influence of fluctuating couplings, identical particles always evolve into a steady state in which
coherences due to indistinguishability perpetually prevail.
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