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Summary
Background Although effects on labour is one of the most tangible and attributable climate impact, our quantification 
of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve 
different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour 
productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates 
of the effects of climate change on labour effectiveness.

Methods In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to 
subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe 
temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing 
labour productivity response functions and derived an augmented mean function. Finally, we combined these two 
dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to 
estimate the effect of future climate change on both the number of hours worked and on the productivity of workers 
during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure 
(indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors.

Findings We found differentiated empirical regional and sectoral ERF’s for labour supply. Current climate conditions 
already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce 
global total labour in the low-exposure sectors by 18 percentage points (range –48·8 to 5·3) under a scenario of 
3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points 
(–48·8 to 2·7) in Africa, 18·6 percentage points (–33·6 to 5·3) in Asia, and 10·4 percentage points (–35·0 to 2·6) in 
the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour 
outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour 
projected to be 32·8 percentage points (–66·3 to 1·6) in Africa, 25·0 percentage points (–66·3 to 7·0) in Asia, and 
16·7 percentage points (–45·5 to 4·4) in the Americas.

Interpretation Both labour supply and productivity are projected to decrease under future climate change in most 
parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are 
at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is 
necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our 
findings imply income and distributional consequences in terms of increased inequality and poverty, especially in 
low-income countries, where the labour effects are projected to be high.

Funding COST (European Cooperation in Science and Technology).

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Labour is a major channel through which climate change 
might affect the global workforce and thus economic 
output.1 Warming directly affects labour supply (working 
hours) by changing the allocation of time to labour 
beyond certain thresholds, especially in working 
conditions that are highly exposed to the climate—eg, in 
the agriculture sector2–4—to avoid lasting damages to 
health due to heat exhaustion or heat stroke, or even 
death.5,6 Climate change also reduces performance during 
working hours (labour productivity) when workers under 
severe heat stress slow down and take more breaks to 
rehydrate and cool down.5–7 Additionally, excessive body 

temperature and dehydration can increase the number of 
mistakes made, resulting in increased accidental 
injuries.8–10 As labour accounts for a substantial share of 
the total valued added, as much as 50% in some sectors 
depending on the sector and country,11 studies using 
economic models have found that the climate effects on 
labour are among the most important drivers of total 
economic costs of climate change.1,11 Possible effects on 
the working population due to temperature shocks that 
are unmitigated through adequate thermoregulatory 
infrastructure will lead to a reduction in economic activity 
and reduce the capacity for economic growth, especially 
in low-income and middle-income countries.3,4,12 These 
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effects have distributional implications in terms of 
increased inequality and poverty.1,12

Most of the existing literature focuses on the effect on 
labour productivity, where the terms labour productivity, 
work productivity, work capacity, and worker productivity 
are used interchangeably without clear delineations.10 
Analyses of the effect of warming on the number of 
hours worked are largely absent and, if available, focus 
mostly on individual countries.3,4,13–16 A representative 
global assessment of total labour effects is missing 
(panel).

We used novel exposure-response functions (ERFs) for 
the effect of warming on global and regional labour 
supply, using both mean temperature and wet-bulb globe 
temperature (WBGT). Although climate change is a 
global phenomenon, the effects are localised and depend 
largely on local physical and sociocultural contexts; hence, 
region-specific response functions must be estimated. 
The high-resolution spatial data on labour supply and 
climate used in this study allowed us to estimate climate 
effects on labour with greater robustness compared with 
previous literature, capturing various heterogeneities and 
aiding the evidence-based policy process. We used these 
regional functions with projections of climate change to 
assess future changes in labour supply. Combining these 
changes with estimates of changes in labour productivity 
derived from published temperature-productivity 

response functions yields a metric for the effect of climate 
change on effective labour. We assessed the large 
uncertainty regarding labour productivity effects by doing 
a multi-model comparison following the approach of the 
Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP).23 We computed the future effects of climate 
change under 1·5°C, 2·0°C, and 3·0°C of global warming 
scenarios (relative to the pre-industrial era) on labour 
productivity and labour supply, and then combined these 
two effects into effective labour.

Methods
Exposure-response functions of labour supply
In this empirical, multi-model study, we analysed over 
300 micro surveys from Integrated Public Use Microdata 
Series (IPUMS)-International, the world’s largest archive 
of publicly available micro-survey data. The archive 
comprises data for many countries for 30 years, including 
the number of hours worked per week (defined as the 
number of hours an individual respondent worked per 
week at all jobs). Although data on number of hours 
worked are available, the timing of the surveys are not 
always available; thus, we aggregated the data on hours 
worked to the annual level. For some European countries, 
we were only able to obtain data at the annual level.

In terms of gender breakdown, the number of female 
respondents ranges from 26·0% in east Asia to 47·2% in 

Research in context

Evidence before this study
Heat stress affects both labour supply and productivity. 
Although the literature on the effect of heat on labour is 
extensive, exposure-response functions (ERFs) based on a small 
number of observations and almost no systematic inter-
comparison of existing response functions remain. We searched 
PubMed, Embase, SpringerLink, and ScienceDirect for literature 
on heat and labour effects from inception until Sept 30, 2020, 
using the following search terms: (“temperature*”, “climate” OR 
“heat”) AND (“*labour”, “*labor”, “*worker”, “supply”, 
“productivity”, “capacity”). We also considered official reports 
from the International Labour Organization and the Joint 
Research Centre. Previous studies applied a single function 
globally and most of the existing literature has studied labour 
supply and labour productivity independently—only one study 
has used multiple impact models for labour productivity before, 
and none have empirically estimated response functions 
globally.

Added value of this study
Our study is the first to empirically estimate response functions 
with globally representative data for labour supply and assess 
the uncertainty related to labour productivity by applying 
multiple response functions. We combined our heterogenous 
regional response functions for labour supply with an 
augmented mean response function of existing impact models 

of labour productivity to compute a single compound metric 
for effective labour effects. This metric allowed us to project the 
effect of future climate change on both the number of hours 
worked and on the productivity of workers during their working 
hours under various warming scenarios. We showed that 
current warming already limits effective labour across the 
globe. Global warming will exacerbate these effects, especially 
in sub-Saharan Africa, south Asia, and southeast Asia.

Implications of all the available evidence
Labour is directly affected by changes in environmental 
conditions. Our study shows differentiated historical effects of 
temperature on labour across the world, indicating that future 
warming will have substantial adverse effects on effective 
labour. These effects will be heterogenous across regions and 
sectors, with the highest declines expected in Africa and Asia. 
Our findings indicate that there is a need to use regional ERFs 
because of the heterogeneity between regions. Furthermore, 
the combined effect on both the number of hours worked and 
the productivity of the workers implies consequences for long-
term economic growth and inequality. Future studies should 
focus on improving the impact models for labour productivity 
and to contextualise the role of adaptation. The results can be 
used to improve the assessment of the economic consequences 
of future climate change impacts on labour.

For more on IPUMS see https://
international.ipums.org/

international

https://international.ipums.org/international
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https://international.ipums.org/international
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northern Europe. Thus, we believe our numbers are 
robust. One limitation of the data used is that not all 
samples required that the person be currently working at 
the time of the census. Many samples include people 
who did not work during the reference week but are 
usually employed. The labour supply data are geo-
referenced at the second administrative level, allowing us 
to use the individual weights from the surveys to 
aggregate the individual responses of labour supply 
(hours worked) data to the region-year level. As a result, 
the aggregated dataset is representative at subnational 
level.

We re-categorised the occupational codes for primary 
occupation into low-exposure working conditions (labour 
outside in the shade or indoors—eg, manufacturing) and 
high-exposure working conditions (outside with no 
shade—eg, agriculture and construction). We used a 
panel regression controlling for both location 
(subnational region) and time (survey year) fixed effects 
using an unbalanced panel at the region-year level:

ln(LSist)=fs(tempist) + αis + γts + εit	 (1)

In this regression, the dependent variable is the log of 
the total number of hours worked in working condition s 
in region i in survey year t. fs(tempist) represents the non-
linear effect of regional annual mean temperature or 
WBGT on labour supply. This effect is controlled for by 
including both linear and quadratic dependencies on 

temperature. Previous findings showed a non-linear, 
concave response of labour supply to local tempera
tures;2–4,24,25 for low temperatures labour supply increases 
with temperature but once a certain threshold tempera
ture is surpassed supply declines when temperature is 
further increased. Time-invariant subnational region 
fixed effects are denoted by αit, while γt are survey-year 
fixed effects. Our standard errors were clustered at the 
country level. We used equation 1 for high-exposure and 
low-exposure working conditions globally and for Africa, 
Asia, the Americas, and Europe. As robustness tests, we 
used binned regressions and population-weighted 
temperature instead of individual survey weights.

For the econometric analysis, we extracted mean 
temperature (Tmean), maximum temperature (Tmax), and 
near-surface relative humidity from ERA5, fifth 
generation European Centre for Medium-Range Weather 
Forecasts atmospheric reanalysis of the global climate 
data at a spatial resolution of 0·25° × 0·25° and hourly 
temporal resolution, which was overlaid on the 
subregional shapefile from IPUMS.

Exposure response functions for labour productivity
We assessed the effect of climate change on labour 
productivity using five different ERFs established in the 
literature (figure 1B). All these ERFs are driven by changes 
in WBGT rather than mean temperature. Wyndham26 is 
similar to Sahu and colleagues,7 in terms of the shape of 
the ERFs (ie, the location and gradient of each function 

Panel: Definitions used in the existing literature

Previous research has not carefully defined the subject of 
interest and terms such as labour productivity, labour supply, 
and labour capacity have been used interchangeably. 
Definitional clarity is certainly needed and for this reason we 
include the following definitions.

The existing literature focuses on labour productivity, where 
the terms labour productivity, work productivity, work capacity, 
worker performance, and worker productivity are used 
interchangeably without clear delineations.11 Dunne and 
colleagues17 define labour capacity as the occupational capacity 
to safely perform sustained labour under environmental heat 
stress. Kjellstrom and colleagues18 define labour capacity as the 
reduction of hourly work capacity at different levels of work 
intensity. Sahu and colleagues7 measure a reduction in work 
productivity as a reduction in hourly work output whereas Li 
and colleagues19 define labour productivity as a relationship 
between the output and the associated input in a production 
process (focusing on construction work in China). Pilcher and 
colleagues20 did not provide a specific definition for worker 
performance but they studied the effects of temperature on 
performance for reasoning, learning, and memory tasks.

In economic theory, labour supply is defined as the amount of 
labour, measured in person-hours, offered for hire in a given 

time period.21 Warming directly affects labour supply (working 
hours) by reducing the allocation of time to labour beyond 
certain thresholds, especially in weather-exposed sectors such 
as agriculture,3,4,22 to avoid lasting damages to health due to 
heat exhaustion, heat stroke, or even death.5,6 Climate change 
might also reduce performance (labour productivity) during 
these working hours when workers under severe heat stress 
slow down and take more breaks to rehydrate and cool down.5–7

We combined these two dimensions (supply and productivity) 
of labour into a single compound metric, which we call effective 
labour. This compound metric allowed us to estimate the effect 
of future climate change on both the number of hours worked 
and on the productivity of workers during their working hours.

Heal and Park13 use the term “effective labour supply”, which 
they define as a composite of labour hours, task performance, 
and effort. However, their empirical analysis is based on 
country-level data on per-capita income and temperature and 
the authors estimate willingness to pay for heating and cooling 
in the USA. We took a similar approach but used subnational 
data on labour supply and published labour productivity 
models from the literature.

For ERA5 data see https://cds.
climate.copernicus.eu/cdsapp#!/
home

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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on a WBGT-productivity axis). Kjellstrom and colleagues18 
state that “The Sahu data (on agricultural workers) fit 
reasonably close to the fitted Wyndham curve but 
generally indicates additional work capacity loss, possibly 
due to more heavy labour in this type of work.”

These five ERFs cover a range of functions applied in 
past assessments of the effect of climate change on 
labour productivity,14–16,19,27 including one multi-model 
assessment using all five models together.27 The ERFs 
represent the range of work intensities that occur in 
different working environments and the functional 
form and scope of the models are rather different.28 
In some models, labour productivity decreases 
continuously with WBGT, whereas in other models it 
decreases in discrete steps (figure 1A). Somanathan and 
colleagues1 did a detailed empirical study on different 
types of manufacturing in India and found results that 
broadly fall in the range covered by the functions here 
(with a threshold of approximately 25–27° WBGT and 
reductions in productivity of 3–8% for every additional 
degree of WBGT), showing that indoor labour can also 
be heavily affected. Most models show some form of 
saturation with increasing WBGT, albeit at different 
levels. These effects need to be considered when 
aggregating the effect of individual models because a 
simple multi-model mean would show artefacts of 
saturation.

In the economic assessment of the effect of climate 
change on labour productivity, typically only one ERF is 
applied.11 A detailed uncertainty analysis on individual 
impact channels is a challenge for many complex 
economic models. However, using only an individual 
ERF might lead to extreme results because doing so does 
not allow the representation of uncertainties resulting 
from the different approaches. We here propose an 
augmented mean response function. In line with the 
ERFs, we assumed zero effects for values of the WBGT 
below 25·0°C, and for values above 25·0°C we did a 
linear fit with equal weighting of all five ERFs with 
zero intercept. We then assumed that labour productivity 
declines above 25·0°C linearly with the slope of the fit 
until it reaches zero around WBGTs of 39·5°C. Sensitivity 
checks revealed that our augmented mean response 
function lies well between the existing impact models 
and even compensates for the more extreme response 
functions (figure 1C).

For the impact analysis, we quantified daily WBGT by 
first assessing the wet-bulb temperature Tw from daily 
mean relative humidity and Tmax following the empirical 
relationship by Stull:29

Tw=Tmaxatan(0·151977 [RH + 8·313659]1/2) +
atan(Tmax + RH) – atan(RH – 1·676331) + 
0·00391838(RH)3/2 atan(0·023101 RH) – 4	 (2) 

Ideally, WBGT is calculated from sub-daily temperature 
and humidity data to account for diurnal variability in 
both variables. However, daily is the highest resolution 
provided by the ISIMIP2b input data. We used daily 
mean relative humidity and daily Tmax, as done by Saeed 
and colleagues,30 because we wanted to provide an 
indication of the maximum possible WBGT experienced 

Figure 1: Exposure-response functions for labour productivity
(A) The five individual exposure response functions from selected impact 
models used to calculate the augmented mean response function (red line) used 
to quantify the effect of WBGT (°C) on labour productivity in this study. 
(B) Labour productivity impact models, with their response variable and spatial 
scale. (C) Global effects of climate change on labour productivity for the 
augmented mean response function and labour productivity impact models at 
3·0°C compared with the historical baseline period (1986–2005). Boxes show 
the quartiles and the horizontal line in the box shows the median, whiskers 
denote the most extreme non-outlier data points and denote fliers are the 
points representing data that extend beyond the whiskers. WBGT=wet bulb 
globe temperature. ISO=International Standards Organisation.
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on any given day. The maximum relative humidity and 
maximum temperature are unlikely to occur at the same 
time of day because there can be an inverse diurnal 
relationship between the two variables, so these two 
variables were not used together, and the use of the daily 
mean of each variable would miss out the extremes 
experienced each day. A combination of daily mean 
relative humidity and Tmax is thus considered appropriate. 
We then used Tw to quantify WBGT for outdoor 
conditions in the shade using the formula of Bernard 
and Pourmoghani:31

WBGTshade=0·67Tw + 0·33Tmax	 (3)

Stull’s29 empirical relationship in equation 2 is for the 
calculation of wet-bulb temperature. Equation 3 is based 
on Lemke and Kjellstrom,32 who define the same equation 
except that in Lemke and Kjellstrom32 the wet-bulb 
temperature is replaced with the psychometric wet-bulb 
temperature Tpwb. It is, however, reasonable to use Tw in 
equation 3 because Stull’s29 relationship was derived from 
a fit to a psychrometric graph for standard sea-level 
pressure of 101·325 kPa and Stull29 notes that a rationale 
for the empirical relationship shown in equation 2 is for 
its use in the calculation of WBGT. However, we 
acknowledge that Tw as estimated in our study will be 
slightly different from Tw that might be estimated using 
meteorological instruments because ours was based on 
an empirical relationship. Tw is normally estimated with 
a wetted bulb instrument in natural wind conditions in 
the shade, whereas Tpwb is normally estimated from a 
wetted bulb in the shade, aspirated with a fan at 3–5 m/s 
or by rotating a wetted thermometer in the air. Equation 3 
assumes a wind speed of 1 m/s and when wind speed is 
greater than 3 m/s the WBGTshade computed with Tpwb 
reduces by approximately 6% of the 1 m/s value.32 Thus, 
we expected the use of empirically derived Tw in 
equation 3 instead of Tpwb to have a negligible effect on 
the estimation of WBGTshade. WBGT for outdoor in the 
sun was approximated following Kjellstrom and 
colleagues:18

WBGTsun=WBGTshade + 3°                                                                    (4)

We focus on the results for WBGTshade because we found 
the method of quantifying WBGTsun (the approximation 
of +3°C) oversimplistic. Nevertheless, the results for 
WBGTsun can be found in the appendix (pp 4–5).

Effect of climate on effective labour
To compute the effect of climate on effective labour, we 
combined the effect of climate change on labour 

Figure 2: Relationship between temperature and labour supply
Shading shows 95% CI. Our specification controlled for temperature, region, and survey year fixed effects. Standard 
errors were clustered at the country level.
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productivity (percentage point decline from present) with 
the loss of hours worked (labour supply) using the impact 
models from the literature and our own labour-supply 
response functions. Heal and Park13 use the term 
“effective labour supply”, which they define as a 
composite of labour hours, task performance, and effort 
but the authors did empirical analysis using country-
level data on per-capita income and temperature, and 
households’ estimated willingness to pay for heating and 
cooling in the USA. We take a similar approach but use 
subnational data on labour supply and published labour 
productivity models from the literature:

Change in Effective Labour=(100% + Change in Labour 
Supply) * Change in Labour Productivity         	  (5) 

Both labour productivity and labour supply are affected 
by several factors aside from climatic stressors, such as 
clothing and the intensity of work being undertaken;12 
however, we were unable to account for them in our 
analysis because of data constraints.

Climate change projection data and warming levels
To estimate the effect of future climate change, we used 
statistically downscaled (0·5° × 0·5°) simulations of daily 
global climate data from two global climate models 
(GCMs) from the CMIP5 ensemble (IPSL-CM5A-LR and 
GFDL-ESM2M) that are part of the input dataset of the 
ISIMIP2B.23 The simulations were bias-corrected toward 
observational data.33 Daily WBGT was estimated across 
the global land surface at the grid-cell level for all GCMs 
and warming levels, following the method already 
described.

We considered three global warming levels in the 
assessment; 1·5°C, 2·0°C, and 3·0°C increase in global 
mean temperature above pre-industrial levels. Following 
Schleussner and colleagues,34 we assessed these warming 
levels by assessing warming over the observational period 
until the reference period 1986–2005 (0·6°C) and 
modelled warming for the individual GCMs relative to 
the reference period. We first calculated the absolute 
effects for the reference period and then assessed the 
relative changes for 1·5°C, 2·0°C, and 3·0°C (table). All 
the effects are averaged for a 20-year period to account for 

climate variability. The effects were population weighted 
using the shared socioeconomic pathway 2 (SSP2) 
scenario because the change in labour is more significant 
in locations with higher population. SSP narratives 
describe how the future might unfold in terms of broad 
societal trends.35 SSP2 describes the middle-of-the-road 
scenario with medium challenges to mitigation and 
adaptation. To allow for inter-comparability, we used one 
future population estimate, SSP2 projected population 
for 2100, for all warming levels and GCMs. We 
acknowledge that only including SSP2 in ISIMIP is a 
limitation. However, given the voluntary nature of 
ISIMIP, the number of runs required by participating 
modelling teams needed to be kept to a manageable level. 
In the upcoming round of ISIMIP, ISIMIP3, multiple 
SSPs will be included. In a follow-up paper we plan to 
focus on adaptation using multiple SSPs.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
We found a non-linear, concave relationship between 
mean temperature and labour supply. We normalised the 
labour supply and labour productivity response functions 
to one. Our findings show that global labour supply 
under low-exposure work conditions is maximised at a 
mean temperature of 16·2°C and under high-exposure 
work conditions at 14·7°C (figure 2E). Labour supply 
increases up to these temperature thresholds; further 
temperature increases then result in a decrease in the 
number of hours worked (figure 2E).

Importantly, we found evidence that the effect of 
temperature on labour supply is heterogeneous across 
regions and work conditions. For Africa (figure 2A), 
labour supply is maximised at a mean temperature 
of 25·2°C, whereas the optimal temperature is 21·5° 
for Asia (figure 2B), 24·7°C for the Americas (figure 2C), 
and 14·1°C for Europe (figure 2D).

In the case of high-exposure work conditions, the 
non-linearity of the ERFs held true for each of the 
regions, the optimal temperature being lower than 

Figure 3: Effects of climate on labour, 1986–2005
Labour supply factor (A), labour productivity factor (B), and effective labour factor (C; as a combination of A and B).
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Labour factor

0·70 0·75 0·80 0·85 0·90 0·95 1·00



Articles

www.thelancet.com/planetary-health   Vol 5   July 2021	 e461

the optimal for the low-exposure work conditions (21·3°C 
for Africa, 20·2°C for Asia, 20·6°C for Europe, 
and 11·2°C for the Americas) because for high-exposure 
work conditions, workers are subjected to higher heat 
stress compared with low-exposure conditions. For 
the USA, we estimated that labour supply in the high-
exposure working conditions is maximised at 14·3°C, 
whereas the optimal temperature in the low-exposure 
working conditions was estimated to be 14·8°C 
(appendix p 3).

The estimated ERFs for WBGT and labour supply were 
similar to those estimated using mean temperature, both 
globally and regionally (appendix pp 1–2). The optimal 
global WBGT for the low-exposure work conditions was 
estimated at 18·2°C and for high-exposure conditions 
15·8°C, slightly higher than the mean optimal 
temperature (appendix pp 1–2). We further found that 
inter-annual variations in temperature result in a decline 
of labour supply at both global and regional levels, with 
the highest effects on Africa under high-exposure work 
conditions (appendix pp 1–2).

The heterogeneity in the regional response-functions, 
which are estimated from a large dataset, suggests that 
applying global response functions (as is common in the 
literature) to project local climate effects on labour is 
likely to provide biased results. Therefore, in our study 
we used novel regional response-functions to estimate 
the effects of future climate change, separately for each 
study region.

As a sensitivity test, we used a binned temperature 
regression, in which daily temperature was sorted into 
discrete bins of 5°C and two additional ones: below 5°C 
and above 30°C. The results from these regressions 
support our main findings, with additional days of mean 
temperature in the bins below the reference bin resulting 
in an increase in labour supply (appendix p 3). Additional 
temperature days in the bins in the higher temperature 
level bins result in a decrease in labour supply 
(appendix p 3).

As a further robustness test, we used population-
weighted temperature instead of individual survey 
weights. We used population of the subnational regions 
to compute the population weights to ensure that the 
labour supply response functions reflect the average 
global labour supply. The results from regressions using 
subnational population weights suggest that labour 
supply is non-linear and concave in mean temperature, 
with only slight differences in the temperature levels 
maximising labour supply.

We used the ERFs to study the limits posed on labour 
by present day climate compared with the optimal 
temperature (for labour supply) and a WBGT level 
of 25°C (for labour productivity), acknowledging that the 
latter ERFs do not account for the possible effects of low 
temperatures on productivity (figure 3).

In the historical period (1986–2005), we found that 
labour supply is affected negatively in the tropics but also 
in colder regions because of temperatures below the 

Figure 4: Effects of climate change relative to the period 1986–2005 on labour
Labour supply (A), labour productivity (B), and effective labour for outdoor working conditions in the shade or indoors (C) for 1·5°C, 2·0°C, and 3·0°C global warming.
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optimum (figure 3A). Further, using the augmented 
mean ERF, we found that global average labour 
productivity is reduced by 0·08 for low-exposure work 
conditions in regions with WBGT above 25°C, and up 
to 0·64 around the equator (figure 3B). Particularly 
affected are regions in South America, central Africa, 
India, and southeast Asia, where labour productivity is by 
a factor of 0·50 below the optimum. These estimates are 
in line with studies that find moderate-to-high risk for 
in-shade work in many tropical and subtropical 
regions.15,16,36 By combining both metrics, we found that 
global mean annual effective labour is by a factor of 0·23 
below the optimum (figure 3C).

Close to the equator, effective labour is below the 
optimum by a factor of 0·80 (combining the two negative 
effects), whereas it is only by a factor of 0·20 below the 
optimum in the northern and southern hemispheres 
(mainly driven by labour supply). These results suggest 
that effective labour is substantially limited by high 
temperatures, particular in regions around the equator. 
As climate change will intensify heat stress in already hot 
regions, there is a need to understand the possible future 
effects of climate change, which could have adverse 
effects on both health protection and economic output in 
these regions, in the absence of further adaptation 
measures.

To investigate the effect of future climate change, we 
computed the relative effects of additional warming 
compared with the reference period under three warming 
scenarios of 1·5°C, 2·0°C, and 3·0°C for labour supply 
(figure 4A), labour productivity (figure 4B), and effective 
labour (figure 4C).

Global effective labour indoors or outdoors in the shade 
will decrease by 6·7 percentage points (range –23·1 to 3·1) 
under 1·5°C of warming, by 10·3 percentage points 

(–32·6 to 3·6) under 2·0°C, and by 18·3 percentage 
points (–48·8 to 5·3) under a 3·0°C warming scenario 
compared with present day. Figure 5 shows the 
population-weighted regional differences for effective 
labour. Increasing warming is projected to result in 
substantial declines in Africa, Asia, and the Americas 
(effects are averaged over the region; figure 5). Figures 4 
and 5 also emphasise the heterogeneity in climate effects 
across the regions. Africa is expected to experience the 
highest reductions in effective labour, with a reduction of 
9·9 percentage points (–23·1 to 1·2) under 1·5°C warming, 
14·9 percentage points (–32·6 to 1·7) under 2·0°C, and 
25·9 percentage points (–48·8 to 2·7) reduction under 
3·0°C warming (figures 4, 5). The highest effects in Africa 
will be in sub-Saharan Africa, with declines of up to 
50·1 percentage points in effective labour under a 
3·0°C scenario (figure 4C). In Asia, the second most 
affected region, effective labour is projected to reduce by 
6·7 percentage points (–14·7 to 3·1) at 1·5°C warming, by 
10·4 percentage points (–21·2 to 3·6) at 2·0°C, and 
by 18·6 percentage points (–33·6 to 5·3) under 
3·0°C warming. Countries in Asia around the equator 
(India and southeast Asia) will experience the largest 
reductions in effective labour due to future climate 
change. In the case of the Americas, the average decline 
will be 3·5 percentage points (–14·9 to 1·3) at 1·5°C of 
warming, 5·6 percentage points (–20·6 to 1·8) at 2·0°C, 
and 10·4 percentage points (–35·0 to 2·6) at 
3·0°C warming. The strongest effects are expected in 
South America (figure 4). Europe is expected to be the 
least affected region, with an average decrease in effective 
labour of 0·1 percentage points (–13·6 to 3·1) under 1·5°C, 
0·3 percentage points (–18·2 to 3·6) under 2·0°C, and 
1·0 percentage point (–28·5 to 5·3) under 3·0°C warming. 
However, these effects greatly vary across the continent, 
with a decline of up to 28·5 percentage points in effective 
labour at 3·0°C of warming expected in southern Europe 
(figures 4, 5). Note that increasing temperatures in the 
northern regions improve labour supply up to the optimal 
temperature, although we cannot quantify this for labour 
productivity. The effects were estimated to be significantly 
higher under high-exposure work conditions and a 
3·0°C warming scenario, with the average reductions in 
effective labour is projected to be 32·8 percentage points 
in Africa, 25·1 percentage points in Asia, and 
16·7 percentage points in the Americas (appendix pp 7–8). 
Europe is expected to have a decline of 5·8 percentage 
points in effective labour under a global warming scenario 
of 3·0°C (appendix pp 6–7, 14).

Discussion
Labour is one of the sectors most heavily exposed to, and 
affected by, climate change. Although labour is regularly 
included in economic assessments of climate change 
effects using macroeconomic models, our understanding 
of this channel and the reliability of the response 
functions are limited by being based on a small number 

Figure 5: Population-weighted (SSP2) changes (percentage points) in global and regional effective labour 
under various global warming scenarios compared with pre-industrial levels, 1986–2005
Boxes show the quartiles, the horizontal line in the box shows the median, whiskers denote the most extreme 
non-outlier data points and denote fliers are the points representing data that extend beyond the whiskers. 
SSP2=Shared Socioeconomic Pathway 2.
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of observations without systematic inter-comparison 
of existing response functions. We estimated robust 
empirical regional ERFs for labour supply using several 
micro surveys. First, the heterogeneous regional 
response functions indicate that it is necessary to move 
away from one-size-fits-all response-functions to investi
gate the effect of climatic stressors on labour, especially 
at the global level. Second, we compared multiple existing 
response functions on labour productivity. Finally, we 
combined these two dimensions of labour into a single 
compound metric (effective labour), which allowed us to 
estimate the effect of future climate change on both the 
number of hours worked and on the productivity of 
workers during their working hours.

Our findings show that current climate has a negative 
effect on effective labour compared with optimal 
conditions as given by the ERFs. These effects will be 
exacerbated by climate change, with future warming 
projected to reduce effective labour output in most parts 
of the world during the 21st century.

An immediate consequence of these declines in labour 
(supply and productivity) will be income reductions,37 
and in turn the associated inequality and poverty effects 
are also likely to be severely affected, especially in low-
income areas of Africa and Asia, where labour effects are 
projected to be high. The relatively higher reductions in 
effective labour under high-exposure work conditions 
might also have distributional consequences because 
incomes in the associated sectors (eg, agriculture and 
construction) are relatively low.

Furthermore, our results provide a basis for improving 
the economic assessments of labour effects;11 in 
particular, our results stress the need to account for the 
large uncertainty across labour productivity ERFs, but 
also provide a robust foundation to include regional 
labour supply effects, which so far is largely missing.

In such a complex global analysis there are multiple 
sources of uncertainty that might influence the results, 
such as uncertainties with regards to the climate models 
as well as uncertainties resulting from the modelling of 
the impact metrics (appendix p 23). The assessment of 
additional uncertainty dimensions as, for instance, 
uncertainties regarding socioeconomic development are 
beyond the scope of this paper. We found that the large 
heterogeneity between the projected climate effects on 
labour productivity for the five impact models compared 
with the augmented mean response (appendix pp 13–21) 
is a major driver of uncertainty, underlining the need for 
more research in this field. To some extent, this result is 
not surprising because the five models we used were 
derived for different types of labour and calibrated for 
different regions of the world. The existing literature has 
used the models independently, which means past 
understanding on the sensitivity of labour productivity to 
climate change has been based on the use of disparate 
labour productivity models. For the first time, we showed 
the differences in projections when the models were 

used with consistent climate change projections. This 
conclusion leads us to two recommendations: (1) that 
future studies carefully consider which labour produc
tivity models they use and that they consider using 
several models so uncertainty can be quantified; and (2) 
that the scientific community work towards developing a 
set of more statistically robust models of labour 
productivity. A notable example is the detailed empirical 
study by Somanathan and colleagues;1 however, this 
study focuses only on certain types of manufacturing 
in India. For application in global integrated assessment, 
robust global estimates are necessary, such as the labour 
supply functions we developed here. The former models 
thus inherently have significant statistical biases (indeed, 
CIs are not available for these models), which significantly 
impinges on the robustness of the projections calculated 
from them.

Our estimates of effective labour under climate change 
are based on projections of daily WBGT estimated from 
climate model projections based on empirical relation
ships, rather than using meteorological instruments for 
which WBGT is intended. To this end some authors38,39 
suggest avoiding the indirect use of WBGT without 
instrumental globe temperature, whereas Havenith and 
Fiala40 suggest that non-instrumental measurements of 
WBGT should be avoided. Furthermore, WBGT can be 
estimated empirically in multiple different ways28 and the 
application of WBGT assumes that workers wear light 
clothing.40 These limitations imply that the calculation of 
WBGT from climate model data should be treated with 
caution and that climate change impact assessments for 
labour productivity with climate variables that are not 
based on the WBGT, but other heat indices, could be 
worthwhile.

The augmented labour productivity function we 
developed considers step, linear, and non-linear models 
of labour productivity. We assumed a linear fit 
beyond 25°C because two of the input models are linear 
and because we sought to develop a simple function that 
broadly considered the ERFs used in previous climate 
change impact assessments. However, we acknowledge 
that the physiological basis for this assumption is limited 
and that although simplicity offers practicality, it does not 
guarantee robustness.41 In this respect, the application of 
a heat index based on human heat balance, which can 
include known physiological and behavioural modifiers 
of heat dissipation, might be more robust. We recommend 
such an approach in future labour productivity studies, 
but the purpose of our study was to capture some of 
the uncertainty that arises from using models used 
previously in climate change impact assessments.

An important omission to our method is that future 
adaptation is not included because of a dearth of 
published empirical evidence on the extent to which 
people in working environments have acclimatised or 
adapted to increases in atmospheric temperature (or 
other variables like WBGT) in recent decades. This 
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evidence contrasts with that of temperature-related 
mortality, where there is evidence of a reduction in slope 
of the temperature—mortality dose—response relation
ship.42,43 A significant opportunity exists therefore to 
quantify the extent to which physiological acclimatisation, 
as well as planned adaptations (eg, shift working and air 
conditioning) has occurred in different working 
environments historically.41 A good example is the work 
by Somanathan and colleauges,1 showing that climate 
control reduces negative effects on labour productivity in 
manufacturing plants in India, but not on supply. The 
paper also shows the complexity of the topic because 
different wage structures influence outcomes. More 
research in this direction will inform how labour 
productivity and supply models should be modified in 
climate change impact assessments so that uncertainties 
associated with adaptation can be considered. This is an 
emerging approach in epidemiological studies of 
temperature-related mortality,44 where the dose-response 
curves are flattened or shifted by varying amounts when 
they are used with climate projections, to account for 
possible future adaptation. Our projections should be 
interpreted as effects in the absence of any future 
adaptation and might, if adaptation is successful, 
therefore be upper estimates of the effect. Although 
mechanisms exist for dealing with temperature 
extremes—eg, the US Occupational Safety and Health 
Administration advice to consider the adjustment of work 
shifts to allow for earlier start times or evening and night 
shifts45—the extent to which such adaptations can be 
implemented will vary by labour sector. Furthermore, 
individual susceptibility to heat varies significantly and 
can be influenced by factors such as physical fitness and 
clothing.46 Although there have been some suggestions to 
model adaptation for labour productivity by shifting the 
hours of work (eg, to earlier starts, later finishes, or night-
time working when temperatures are cooler than during 
the day27) it is important to acknowledge that evidence 
shows shift working can cause disturbances of the normal 
circadian rhythms of psychophysiological functions; 
interference with work performance; difficulties in 
maintaining relationships; disturbances of sleeping and 
eating habits; chronic fatigue, anxiety, and depression; 
and longer-term effects such as coronary heart disease.47–50 
These issues need to be carefully considered along with 
the technical aspects of how to model adaptation in future 
studies on labour productivity and supply.

We suggest that future studies focus on using the 
detailed sectoral breakdown so that ERFs for each sector 
can be compared on the basis of exposure level of 
industries. In the future, new globally estimated ERFs 
based on robust empirical assessment should be used. 
Further work is also needed to contextualise the role of 
adaptation on the basis of various factors such as indoor 
versus outdoor work and rural versus urban. In terms of 
technical adaptation (eg, air conditioning), behavioural 
changes (eg, shift in work patterns), and infrastructure 

and regulatory interventions (eg, installation of green 
roofs) should be considered by future research.
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