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Abstract. Inspired by applications in optimal control of semilinear elliptic partial differential equa-
tions and physics-integrated imaging, differential equation constrained optimization problems with
constituents that are only accessible through data-driven techniques are studied. A particular focus is
on the analysis and on numerical methods for problems with machine-learned components. For a rather
general context, an error analysis is provided, and particular properties resulting from artificial neu-
ral network based approximations are addressed. Moreover, for each of the two inspiring applications
analytical details are presented and numerical results are provided.
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1. INTRODUCTION

Consider the optimization problem

o 1 2 Q9
minimize J(y,u) := 3 1Ay — gl + 5 llull;;, over (y,u) €Y x U, (L1)

subject to (s.t.) e(y,u) =0, and u € Cqq,

where y € Y, u € U are the state and control variables, respectively, with Y a suitable Banach space and U a
Hilbert space. Moreover, g € H denotes given data with H the pertinent Hilbert space, a > 0 is the control cost,
and A :Y — H is a bounded linear (observation) operator, i.e., A € L(Y, H). While in (1.1) feasible controls
u are confined to a nonempty, closed, and convex set C,q4, the relationship between admissible controls and
states is through the equality constraint associated with a possibly nonlinear operator e : Y x U — Z, with Z
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a Banach space. Often, e(y,u) = 0 is given by (a system of) ordinary or partial differential equations (ODEs or
PDEs) describing, e.g., underlying physics. For the ease of discussion we assume that, for given u € U, there is
a unique y € Y such that e(y,u) = 0. This allows us to write

y = Il(u),

where IT denotes the (implicitly defined) control-to-state map with e(TII(u),u) = 0. Given II, a popular approach
in the study of (1.1) is based on the reduced problem

L 1 o
minimize J (u) := 3 1Q(u) — g||§17 t3 Hu||?] , overueU, (12)

s.t. u € Cua,

where @ := AII(-) : U — H. Note that J(u) = J(II(u), u).

In general, (1.1) or its reduced form (1.2) represent a class of optimal control problems, for which a plethora of
studies exist in the literature; see, e.g., [53] for an introduction and [24, 36, 43] as well as the references therein for
more details. In contrast, in many applications one is confronted with control problems where e or, alternatively,
IT are only partly known along with measurement data which can be exploited to obtain (approximations) of
missing information. Such minimization tasks have barely been treated in the literature and motive the present
work. In order to inspire such a setting, we briefly highlight here two classes of applications which will be further
studied from Section 4 onwards.

Our first motivating example is related to the fact that many phenomena in engineering, physics or life
sciences, for instance, can be modeled by elliptic partial differential equations of the form

Ly + f(z,y) = Ru in Q} 13)

b(x)0,y + d(x)y =0 on ON0.

which gives rise to a specific example of the equation in (1.1). Here L denotes a second-order linear elliptic
partial differential operator with measurable, bounded and symmetric coefficients, f(x,y) is a nonlinearity,
and R models the impact of the control action u. Moreover, b and d are given coefficient functions. The set
Q C R represents the underlying domain with boundary 02, and 0, denotes the derivative along the outward
(unit) normal v to . Referring back to (1.1), in optimal control, a typically choice of A is the identity (or
embedding) operator, giving rise the classical tracking type cost functional. Regrading (1.3), often the precise
form of f is unknown, but rather only accessible through a data set D := {(y;, w;) : e(y;,u;) = 0,i=1,...,np},
np € N, i.e., given pre-specified control actions, one collects associated state responses (through measurements
or computations). Utilizing data-driven approximation techniques such as artificial neural networks (ANNs),
one may then get access to a data-driven model of f which can be used even outside the range of the data
set D to yield a valid model of the underlying real-world process. In such a setting, associated optimal control
problems depend on approximations A of f, and theoretical investigations as well as numerical solutions of the
control problem need to take the construction of A/ into account.

The second example comes from quantitative magnetic resonance imaging — qMRI. In this context, one
integrates a mathematical model of the acquisition physics (the Bloch equations [20]) into the associated image
reconstruction task in order to relate qualitative information (such as the net magnetization y = pm) with
objective, tissue dependent quantitative information (such as 77 and T, the longitudinal and the transverse
relaxation times, respectively, or the proton spin density p). This model is then used to obtain quantitative
reconstructions from noisy subsampled measurement data g in k-space by a variational approach. The provision
of such quantitative reconstructions is highly important, e.g., for subsequent automated image classification
procedures to identify tissue anomalies. Moreover, in [20] it is demonstrated that such an integrated physics-
based approach is superior to the state-of-the-art technique of magnetic resonance fingerprinting (MRF) [40]
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and its improved variants [18, 42]. Specifically in MRI, acquisition data are obtained at different pre-specified
times (read-out times) ¢1,...,tr, during which the magnetization of the matter is excited through the control
of a time dependent external magnetic field B. Given u = (T, T4, p), the magnetization time vector at t1,...%,
is then given by y = II(u), where II denotes the solution map associated with a discrete version of the Bloch
equations. Written compactly, one ends up with a problem that has a similar structure to (1.2)

1 o
mivimize | PF(y) ~ gll% + 5 ully, over (g,ui= (T3, To,p) ) €Y x U,

Wy _ y1(t) y2(t) ys(t) — pme B '
s.t. E(t) =y(t) x yB(t) — ( o T T , t=ty,...,tr, (Bloch equations) (1.4)
y(0) = pmo,
u e Cad,

where the different terms are explained in more detail in Section 5. Crucial to this approach is the fact that, at
least for specific variations of the external magnetic field B, explicit formulas for the solution map of the Bloch
equations are available. For instance, in [18, 20] Inversion Recovery balanced Steady-State Free Precession (IR~
bSSFP) [49] is used which involves certain flip angle sequence patterns that characterize the external magnetic
field B. These flip angle patterns allow for a simple approximation of the solutions of the Bloch equations at the
read-out times through a recurrence formula. However, in general, it is quite typical that for more complicated
external magnetic fields one does not have at hand explicit representations for the Bloch solution map. More
generally, for most nonlinear differential equations (including those relevant in image reconstruction tasks)
explicit solution maps might be too complicated to obtain. However, one may employ numerical methods to
approximate their solutions (y;);-2 given a specific (coarse) selection of parameters (u;);? within a certain
range. This generates a data set D which is then employed in a learning procedure to generate an ANN based
approximation ITy of II. This gives rise to Qar := AIlys in (1.2) and requires an associated analytical as well as
numerical treatment of the (reduced) minimization problem.

In general, learning-informed models are getting increasingly more popular in different scientific fields nowa-
days. Some works focus on the design of ANNs; e.g., by constructing novel network architectures [7], or on
developing fast and reliable algorithms in order to train ANNs more efficiently [10]. More relevantly for our
present work, ANNs have been applied to the simulation of differential dynamical systems [47] and high dimen-
sional partial differential equations [28, 50], as well as to the coefficient estimation in nonlinear partial differential
equations [38], also in connection with optimal control [21, 27] and inverse problems [4]. Note, however, that
in our approach neural networks do not aim to approximate the solution of (1.1), but rather they are part of
the physical process encoded in II. We emphasize that this is a different strategy to some of the recent works
[2, 8] in the literature that focus on learning the entire model or reconstruction process. More precisely, in the
present work we suggest to use a parameter-to-solution operator I that is induced by trained neural networks
modelling the equality constraint (with, e.g., f replaced by an ANN-based model N in our example (1.3)) or
its (implicitly defined) solution map II. In such a setting, existence, convergence, stability and error bounds of
the corresponding approximations need to be analyzed. Particularly, we are interested in the requirements on
the mathematical settings of both neural networks and differential equations for the robustness of the proposed
framework, and the error propagation from the neural network approximation to the solution of the optimal
control problem. Moreover, in the case of partial differential equations, when replacing f by A/, the regularity of
solutions has to be checked carefully before approaching the optimal control problem. Further, from a numerical
viewpoint, in order to use derivative-based numerical methods, it is important for these approximating solution
maps to have certain smoothness. This aspect is typically tied to the regularity of the activation functions
employed in ANN approximations.

We also mention that our work falls also into the framework of operator learning, i.e., learning a map between
infinite dimensional spaces (e.g. a parameter-to-solution map). Such a setting gives rise to a challenging topic
in machine learning in its own right. Although we are not targeting the operator learning problem per se in
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this paper, our specific applications, one based on semi-linear elliptical PDEs and the other one on a system
of dynamical ODEs, can be thought of as case studies in that area. Based on classical results of function
approximation in low dimensional spaces, we derive universal approximation-type results for the learned or
learning informed operators. However, addressing fundamental theoretical and algorithmic questions for a more
general operator learning setting is still mostly work in progress.

The remaining part of the paper is organized as follows: Section 2 provides a general error analysis for
solutions of the proposed learning-informed framework. Some basic definitions and approximation properties
of artificial neural networks are recalled in Section 3, and Section 4 presents a concrete case study on optimal
control of semilinear elliptic equations with general nonlinearities, including both error analysis and numerical
results. Section 5 contains another case study on quantitative magnetic resonance imaging, again including
computational results.

2. MATHEMATICAL ANALYSIS OF THE GENERAL FRAMEWORK PROBLEM

We start our analysis by studying (1.2) or its variant where ), the original physics-based operator, is replaced
by a (data-driven) approximation. Existence of a solution to (1.2) follows from standard arguments which are
provided here for the sake of completeness.

Proposition 2.1. Suppose that Q is weakly-weakly sequentially closed, i.e., if uy, Yu and Q(uy) A g, then
g = Q(u). Then (1.2) admits a solution @ € U. In the special case where Cqq is a bounded set of a subspace
U which is compactly embedded into U, it suffices that Q is strongly-weakly sequentially closed to guarantee
existence of a solution to (1.2).

Proof. Suppose that @ is weakly-weakly sequentially closed and let (up)nen C Caq be an infimizing sequence
for (1.2). Since o > 0, (uyn)nen is bounded in U, and thus we can extract an (unrelabelled) weakly convergent

subsequence, i.e., Uy, Y @ for some @ € U. Since Caq is strongly closed and convex, it is weakly closed and
therefore @ € C,q. Moreover, since the sequence (Q(uy,))nen is also bounded in Y, passing to a subsequence if

necessary, we get that there exists a g € H such that Q(uy,) LA g. Due to the weak sequential closedness we have
g = Q(@). Finally, from the weak lower semicontinuity of || - |z and || - ||y we have J (@) < liminf,, o0 J(un) =
inf,ec,, J(u) and hence @ is a solution of (1.2).

For the special case let (u,)nen again be an infimizing sequence for (1.2). Due to the compact embedding,
we have that (up)neny has an (unrelabelled) subsequence such that u,, — @ strongly in U as n — oo. Then the
proof follows the same steps as above. O

Remark 2.2. We note here that in many examples in optimal control of (semilinear) PDEs, the control-to-state
map actually maps U to a solution space Y which is of higher regularity than H and even compactly embeds
into it; e.g., Y := H'(Q2) < L?(Q) =: H. Provided that the control-to-state map is bounded, in that case weak
convergence in U results, up to subsequences, in strong convergence in H with the latter used to show closedness
of the control-to-state operator.

Assuming that @ is Fréchet differentiable with derivative Q'(-) € L(U, H), the first-order optimality condition
of (1.2) is

(J'(w),u—u)y=y >0 forall u€ Caq, (2.1)

where J'(@) € L(U,R) =: U* is the Fréchet derivative of J at @, and (-,-)y~y denotes the duality pairing
between U and its dual U*. Utilizing the structure of J we get

((Q"(w)* 17" (Q(1) — g) + cug't,u — ﬂ)U*,U >0 forall u e Cquq,
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or alternatively

— P, (_LU(Q’(U))*LEI(Q(U) - g)) ’

(07

where Pc,, is the projection in U onto Cuq, and tg : H* — H as well as (y : U* — U are Riesz isomorphisms,
respectively. For ease of notation, however, we will leave off the Riesz maps in what follows whenever there is
no confusion.

We now proceed to the error analysis of (1.2), where we assume that (Q,)nen is a family of operators
approximating ), and clarify the convergence of the associated minimizers u,, € C,q. Notice that the proof of
the next result is similar to the ones of classic results that can be found for instance in [22], where convergence
of solutions under vanishing noise is studied. For the sake of keeping the paper self-contained, we display the
proof.

Theorem 2.3. Let QQ and Q,, n € N, be weakly sequentially closed operators, and suppose that there exists a
sequence €, | 0 such that

1Q(u) = Qu(w)llmr < €n,  for all u € Coq. (2.2)

Furthermore let (up)nen be a sequence of minimizers of (1.2) with Q replaced by @, for all n € N. Then, we
have the strong convergences (up to a subsequence)

up, = in U, and  Qnp(un) = Q) in H, as n— oo, (2.3)
where @ is a minimizer of (1.2).
Proof. As (upn)nen is a sequence of minimizers, we have for C' := max,, €, < oo and every u € Cqq:
1 2 «Q 2 2 @ 2
S 1Qnwn) = 3 + 5 Junll? < Q) = gl +C* + 5 1wl

Note also that [|Q(un)||lg < ||Qn(un)llg + €n. Hence (up)nen, (Q(un))neny and (Qn(un))nen are bounded
sequences and therefore there exist (unrelabelled) subsequences and @ € U such that w, Y 4 with @ € Cad

by weak closedness, Q(uy,) A Q(a), and Q. (uy) A Q(uw), where we have also used that @ is weakly sequentially
closed for the second limit. For the third limit, note that for an arbitrary g € H, by using (2.2), we get

[(Qn(un) = Qu), 9)u| < [(@n(un) = Qun), 9 u| + [(Q(un) — Q@) 9)
< enllglle + (Qun) — Q1), )| — 0,

where (-, )y denotes the inner product in H.
Using the (weakly) lower semicontinuity of the norms, we have for every u € Cyq that

1 _ 2 Qo 1 2 |« 2
31000 — ol + 5l < timnt (3 12nCun) = o+ 5l )
. 1 2 « 2 1 2 « 2
< im 2 1Qu ) — glfy + 2l = 5 1QGw) — gl + % ful

Thus, we conclude that @ is a minimizer of (1.2). We still need to show that w, — @ strongly in U. Suppose
there exists a p1 > 0 such that p = limsup,, ||un|l; > |4l Let (un, )ren be a subsequence with ||uy, ||, — p as
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k — o0o. Then we have

. 1 2 . 1 2« 2
limsup > [|Qny (uny,) = gl = limsup 5 | Qny (un,) = gll7r + 5 ([l — #2)
k 2 k 2 2
1 _ .
< lim 2 [|Qn, (@) — g7 + 5 (a5 - %) 24)
]. _ 2 (07 _n2 ]. _ 2
= 5 1Q@) - gllf + S (lals - 1) < 5 Q@ — gl

This contradicts the lower semicontinuity of the norm and @, (u,) = Q(@).Thus, |u,|lv — ||@]lv as n — oo.
Together with the weak convergence u,, — @ we get u,, — @ strongly in U and further

limsup [|Qn(un) = gl < Q@) = glly < T inf [|Qn(un) = gl -

Hence, lim, ||@Qn (un)|l 7 = ||Q(@)] 5, which implies the second limit in (2.3). O
For a quantitative convergence result, we invoke the following assumptions which are motivated by the analysis
of nonlinear inverse problems [29, 39]. Comparing to the assumptions in that literature, the ones below contain

no additional source conditions as typically needed in standard regularization theory for ill-posed problems.
This is because we compare regularized solutions with respect to perturbations of operators.

Assumption 2.4. Assume that @ is Fréchet differentiable and that there exists Ly > 0 such that
1Q (Wl sy < Lo for all u € Cog. (2.5)
Assume further that the Fréchet derivative is locally Lipschitz with modulus L; > 0, i.e.,
|Q (ug) — Q'(ub)Hﬁ(Uﬂ) < Ly |lug —upllyy,  for all ug,up € Caqg. (2.6)
Moreover, let the Fréchet derivatives of Q) and @Q,, satisfy the following error bounds
Q" (u) — Q%(U)”g(U,H) <y, forall u € Cuq, (2.7)
where 7, € (0,1) for all n € N and n,, | 0. Finally, let the two constants Ly and L satisfy
Lo(Lo+1) + L1 Q1) — gl <, (2.8)

with @ being the minimizer of (1.2).

The condition in (2.5) indicates that

1Q(ua) — Q(up) ||y < Lo |ua — uslly,  for all uq,up € Cag. (2.9)

We note that in our framework @, would be an operator depending on a neural network in a specific
manner. In many applications, including the ones we are considering here, a local Lipschitz constant of @Q,, and
its derivative @/, would depend on the corresponding local Lipschitz constants of the network. Although this is
not our main focus here, we mention that there exists recent literature describing ways to enforce such bounds
in the training process, see for instance [13].
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Theorem 2.5. Let the assumptions of Theorem 2.3 as well as Assumption 2.4 hold. Then, we have

1
a— Lo(Lo +1n) — L1 [|Q(7) — gl 4

||un - a”U < (LOen + €niin + ||Q(ﬁ) - gHH nn) . (2-10)

Proof. First-order optimality yields

i ="Pe,, (—(Q @) w) and un="Pe,, (—(Q(un)) wn), (2.11)

where w = Q(f;) 4 and w, = W. The inequalities in (2.5), (2.6), (2.7), and (2.9) and the fact that

Q" (u )”L UH) — = [(Q"(u))" ||L (k= ,U+) WPy

[un = lly < (@ (un)) wn — (Q' (W) w|ly-
< @ ()™ (wn — W)l + 1@ (un))* — (Q"(@))")
<(Lo + 1) [lwn — wll gy + [wll g + L [[w]l 7 lun — ally
LO Lo +1n

1Q(@) = Qulun)ll g + 1wl g 1+ La [Jw]l g [lun = ully

—— (& + Lo [lun = ally) + [[wll g 0 + Lo flwll g llun = @lly -

Moving all terms that involve ||u, — |, to the left-hand side we get

Lo(Lo + 1) Lo €nln
(1= B ) )~y < B+
Finally, using w = Q(z)—g we find (2.10). O

Observe that for Q(a) = g (perfect matching) the a priori bound is essentially controlled by €, only:

Note further that the error bound depends on a sufficiently large o such that (2.8) is satisfied.
In the special case where C,q is redundant, i.e., when J'(#) = 0, improved error bounds can be derived. This
is in particular true for perfect matching which also allows to relax the conditions on «a.

Theorem 2.6. Let the assumptions of Theorem 2.3 hold and suppose that the Lipschitz condition (2.6) is
satisfied with the constant Ly such that

Ly [|Q(a) — glly < a. (2.12)

If 7' (u) = 0, then for sufficiently large n € N we have the following error bound

—a 3 2 a) — g||?
it unUz\/ IV T 210 — gl (2.13)
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Proof. Since u,, is a minimizer for every n € N, we have that J,(u,) < Jn (@) with J,(u) := J(Qn(u),w).
Adding §(||un — 12||?] - ||un||2U) to both sides of the inequality gives

1 2 (0% _n2 1 _ 2 —1- -
Q) — gl + %l — 1 < 2 1Qu(E) — gl + i 8w (214)
Using Theorem 2.3, Taylor’s expansion and (2.6), we get for sufficiently large n € N
N 1/ — _ _ — Ll —112
Q(un) — Q(a) = Q'(@)(un — u) + q(un, @), where |lg(un, @)l < =~ llun — allg; -

By our assumptions and first-order optimality we have 4 = —uy(Q'(4))*w where w = a~1(Q(@) — g) with
L1 ||w| g < 1 because of (2.12). This leads to

(g, = un)y- v = (—w, Q' (@) (@ — un)) < |lwll g Q' (@) (@ — un)ll

< ol (5w = 1+ 1200 = Qi)+ 1@un) — gl + 9~ Q)
(2.15)

|wll g L1 12 1 2 1 2
<P Yy — s+ 5 (@l + — 1Qnun) — gl

1 1
(ol + 5 190) ~ Quua)lfy + 50 s — QI ).

where we have used the identity ab < 5-a? + $b%. Returning to (2.14) and using (2.15), we derive

_ 1 _ _
e = allfy <= 11Qu(@) = gll7y + el gy La e = 7y + ex o]
1 _
+ —(1Q(un) — Qu(un) 3 + g — Q@)|3)
8]
5 (2.16)
_ —\12 12 2
<= 1Qu(@) = Q@) + llwlly L e — g + 3l

2 1Qun) ~ Quln) I+ 2 llg — Q@)

Taking into account (2.12), we get

B 1 3 2 N2
lun =l < e = (4 a? wlf + g - Q@3 )
U (- lwly L) o " "
for sufficiently large n € N. Replacing now ||w||, by % yields (2.13). O

Note that in the case of perfect matching Q(u) = g, (2.13) becomes

lun —all; < €ny/ 3 for sufficiently large n € N. (2.17)
!

As stated earlier, our aim is to use approximations @, = Qn;, = Ally;, resulting from artificial neural networks
to replace the partially unknown exact control-to-state map II and @ = AIl. Therefore, we next collect some
fundamental properties of such neural network based approximations.
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3. A BRIEF PRIMER ON ARTIFICIAL NEURAL NETWORKS (ANNSs)

Here, we briefly review some (well-known) results for ANNs as they will be useful in what follows. For more
introduction on ANNs; one may refer to many textbooks of this topic, e.g., [25]. We recall that a standard
feedforward ANN with one hidden layer is a function N : R"™ — R? of the following structure:

N(x) = Wao(Wix +b1) + by, x€R", (3.1)

where W; € RX" by € RY, Wy € R*¥! and by € R®. In that case we say that the hidden layer has [ neurons. Here,
o : R — R is an infinitely differentiable activation function which acts component-wise on a vector in R!. In the
output layer, the activation function is usually the identity map, therefore ignored in (3.1), while in the other
hidden layers, it involves nonlinear transformations. Some standard smooth activation functions are sigmoid

type functions like for instance, tansig (o(z) = ‘;;72:2), logsig (o(z) = H%), and arctan (o(z) = arctan(z)).
Another possibility is the softmax (o;(z) = %), where the index i denotes the i-th neuron in a given layer,

;e
with the summation indexed by j being taken over all the neurons of the same layer. Notice that the smoothness
of the activation function determines the smoothness of A'. We mention that nonsmooth activation functions are
also used in the neural network literature, e.g. the ReLU(2) := max(z,0). Here, we focus on smooth networks
since our results rely on classical differentiability properties of the operator @, that can only be guaranteed with
differentiable activation functions.

Next we state a classical result, see, for instance, Theorem 3.1 of [45]. Below “” denotes the standard inner
product in the underlying Euclidean space.

Theorem 3.1. Let 0 € C(R). Consider the following set
R, := {N:RT —>R|N($) = Wsy -O'(Wll‘—i—bl), with wy € Rl, Wy GRIXT, by GRZ, le N+}
Then R, is dense in C(R") in the topology of uniform convergence on compact sets if and only if o is not a
polynomial function.
Hence, for any € > 0, and for any given function f € C(K), K C R" compact, there exists a function

N = N¢ € R, such that

max|f(x) = N*(2)] <e.

This approximation property can be also carried over to the derivatives of a given smooth function; see, e.g.,
Theorem 4.1 of [45].

Theorem 3.2. Let m = max{’mi| D i= 1,2,...,8}, where each m' is a standard differentiation multi-
indez, and define C™ »-m"(R") := Ni_, C™ (R"). Then R, is dense in cm'm*(RY) if ¢ € C™(R) is not

a polynomial function.

As a consequence, for any f € o’ s (K), for every compact K C R" and every e¢ > 0, there exists a
function N = M€ € R, such that

max |D¥ f(z) — DFN“(2)| <,

for all multi-indices k such that 0 < k < m? for some i.
Note that these results imply analogous error bounds for (3.1), i.e., for the vector-valued case. They can be
also generalized to mutiple-hidden-layer networks as the next theorem shows, see [35].
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Theorem 3.3. A standard multi-layer feedforward network with a continuous activation function can uniformly
approzimate any continuous function to any degree of accuracy if and only if its activation function is not a
polynomial.

In practice, networks with multiple hidden layers, i.e., L > 1, are used. This gives rise to
N=Tp,1000T0--000Ty000T,

where for every [ = 1,...,L 4+ 1, T; denotes the affine transformation z — W;z 4+ b;. When compared to single
hidden layer networks, the use of multilayer structures is motivated by their improved approximation properties
and their better interpolation and extrapolation capabilities, see for instance [26] and the references within.

One of the main tasks of deep learning, a specific branch of machine learning, is to identify suitable choices
for Wr41 € RSXZL, W, € Rllxr, W, € Rlixti-1 for 4§ = 2,...,L,and b1 € R®, b; € Rli’, where . = 1,..., L
represents the i-th hidden layer of the underlying ANN, from a given data set D = {(z;, f;) € R" x R® : j =
1,...,np}, with np € N sufficiently large. A typical approach in this context seeks to find a (global) solution
to the nonconvex minimization problem

minimize » d(N(z;), f;) + t(W,b) over (W,b) € Faa, (3.2)
j=1

where A results from a multi-layer ANN that depends on © := (W,b), with W := (Wy,...,Wp41) and b :=
(b1,...,bp+1). Further, ? denotes a suitable distance measure, t is an optional regularization term inducing
some a priori properties of ©, and F,4 encodes possible additional constraints. While the study of (3.2) is an
interesting and challenging subject in its own right, here we rather assume that the learning process, i.e., the
computation of a suitable ©, has been completed. We then study analytical properties of the resulting N, or
the solution map Iy or Q in view of (1.2), in the context of our target applications and report on associated
numerical results.

4. APPLICATION: DISTRIBUTED CONTROL OF SEMILINEAR ELLIPTIC PDES

In our first application we consider the following model problem associated with the distributed optimal
control of a semilinear elliptic PDE:

. 1 e
minimize J(y,u) := §||y - gHZLQ(Q) + §||u||2L2(Q), over (y,u) € H'(Q) x L*(Q) (4.1)
st. —Ay+ f(r,y)=w in Q, O,y=0 on 09, (4.2)
U € Cog = {v € L*(Q) : u(x) < v(zx) <T(x), forae. z €N},

where u, T with u < @ belong to L (), and ’a.e.” stands for 'almost every’ in the sense of the Lebesgue measure.
Moreover, we have g € L?(Q), and Q C R%, d > 2, is a bounded domain with Lipschitz boundary. In view of our
general model problem class (1.1) we have H = U = L?(Q2), Y = HY(Q), Z = H 1(Q2), A = id, and e is given
by the PDE in (4.2). For more details on the involved Lebesgue and Sobolev spaces we refer to [1]. Concerning
f we invoke the following assumption throughout this section:

Assumption 4.1. The nonlinear function f = f(z,z) : @ x R — R is measurable with respect to x for every
z € R and continuously differentiable with respect to z for almost every x € ). There exists a function F :
Q xR — R so that 0,F(-,z) = f(,z). The functions F and f satisfy the following conditions, for all z € R

fGal Sbitealzl " and = f(2)z+ F(2) < b, (4.4)
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which combined also result to

F(,2) <by+colz|, (4.5)
for some constants by, b1,b2 € R and ¢g,c; > 0 and for p with 1 < p < dQ—_dQ for d > 3,1 <p< oo for d =2,
or 1 < p < 4oo for d = 1. The interpretation of p = co for d = 1 is that the growth conditions in (4.4) are not

fQ F(z,y)dz

required to hold. Finally, we assume that F' is coercive in the sense that limHy”LP(mﬁoo = o0, and F

HyHLP(Q)
is bounded from below, i.e., F(x,z) > Fy for some Fy € R, for all z € R and for almost every x € .

The above assumption particular indicates that both f and F satisfy the Carathéodory condition, and thus
induce some operators of Nemytskii type.

Moreover, observe also that the conditions on p enable the embedding H'(Q) C LP(£2). Also note that the
Assumption 4.1 is satisfied for F(z, z) = a(z)mp(2) with o € L*>®(Q) and a(z) > 0 for almost every z € Q and
mp being a polynomial of degree p and positive coefficient on the term of degree p; the latter being equal to |z|?
if p is odd such that the coercivity assumption is not violated.

Given the above assumption, the PDE (4.2) is related to the variational problem

1
minimize G(y) := §||VyH%2(Q) —|—/QF(x,y) dx — /Quyda: over y € H'(Q). (4.6)

A particular example is given by a Ginzburg-Landau model for superconductivity where f(z) = n=1(z3 — 2)
with a parameter 1 > 0. It gives rise to the double-well type variational model

1 1
minimize fHVyH%z(Q)—i—f/(yQ—l)de—/uydx over y € H*(Q), (4.7)
2 4n Jo Q

for given u € L?(Q) or in fact, to a more a general space. The next proposition shows existence of solutions for
(4.6). The proof is based on an application of the direct method of the calculus of variations, provided here for
the sake of completeness.

Proposition 4.2. Let Assumption 4.1 hold, and suppose that uw € L"(Q)) for some r > p%' Then the
optimization problem (4.6) admits a solution in H' ().

Proof. Notice that due to the coercivity assumption we can find a C' > 0 such that ||u]
being the constant involved in the embedding LP(Q) C L7 (Q) such that

Q) < CC; with Cy

| Fawde= [ wds = Clylre — lul el = o

> (CCy — ||uHLr(Q))Hy||LfT1(Q) =0,

(4.8)

provided ||y|/z»(q) is large enough. This together with the lower bound F' > Fy implies that the energy G
is bounded from below and thus there is an infimizing sequence (y,)nen € H'(2) C LP(Q). Using the above
inequality one easily deduces that [[yn|, = @ is bounded, and with the help of the Poincaré inequality a

uniform H!() bound is also obtained for that sequence. Therefore, we only need to show that G(:) is weakly
lower semicontinuous in H(Q). For this, it suffices to check the term involving F, since the arguments for the
other two terms are straightforward. Assuming y,, — y in H'(£2), by the compact embedding of H*(Q)— L (),
we have that y,, — y almost everywhere, up to a subsequence. Due to the continuity of F' with respect to the
second variable, we have F'(-,y) = lim,,_,o, F(-,y,) almost everywhere. Since F(-,y,), F(:,y) > Fp, by Fatou’s
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lemma we have

n—oo

/F(x,y) dxﬁliminf/F(w,yn)dx,
Q Q

and thus G(-) is weakly lower semicontinuous. O
Before we proceed, it is useful to recall the following standard result on linear elliptic PDEs [23, 53].

Theorem 4.3. Let v € L"(Q), a € L*>°(Q) with a > 0. Then the following equation admits a unique solution
—As+as=v in €, 0,s=0 on ON.
Furthermore there exist constants Cp, > 0 and C; > 0 independent of a and v such that

I8y < Crllvllpry  and  islle@ < CillvllLro) - (4.9)

r

Using the polynomial growth of F' together with the continuous embedding H'(2) C L71(Q), one verifies
the Fréchet differentiability of G : H'(2) — R. The Euler-Lagrange equation associated with (4.6) is given by

—Ay+ f(z,y) =u in Q, 0,y =0 on 09, (4.10)

and it is satisfied for every solution y of (4.6). Under Assumption 4.1, the solutions of (4.10) can be uniformly
bounded with respect to [ - || o), as shown next.

Proposition 4.4. Let the Assumption 4.1 be satisfied, and let Coq C L*°(S2) be bounded. Then there exists a
constant K > 0 such that for all solutions of (4.10), it holds

lylle @) + Yo < K, forall w € Caq. (4.11)

Proof. From the fact that y € LP(Q), the growth condition (4.4) and the measurability of f, we have f(-,y) €
L71(£2). We can rewrite (4.10) in the following form

—Ay+ey=u+ey— f(z,y) in Q, O,y =0 on 09, (4.12)

for some € > 0. Let us define 7 := min{ril, ]%} Then u + ey + f(-,y) € L7(Q) since u € Coq C L>®(R).
Applying (4.9) to (4.12) yields

9l @) + IWlle@ < (Ch+C) (HUHL”(Q) +ellyllpro + ||f(',y)||m(ﬂ)) : (4.13)

As all solutions of (4.12) are stationary points of G, in view of (4.4), every weak solution y satisfies

1
6) =3IVl + [ Flaao— [ww= [ ~foay+ Fapar<wiol, (419

where we use the weak formulation of (4.12) tested with y.
Using the coercivity of GG, we can find some constant M > 0 independent of y such that ||yHLP(Q) < M. Since

(p— D7 < p, by (4.4), we have

<do+d|yl%, o < M. (4.15)

1)l < do+dfly" | g
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Returning to (4.13), we choose a sufficiently small € > 0 such that the second term on the right-hand side of
(4.13) is absorbed by [|y|| ;1 (). Since L7 () € L>(Q) and Cuq is bounded, l[ull 7 (qy is uniformly bounded for
all u € Cyq. Finally, taking into account (4.13) and (4.15) we have

Yl o) + ||Z/||C(§) < (Ch+ él)(”“”ﬁ(n) + M) <K, (4.16)

which is the conclusion. O

Notice that for monotone f, one can directly refer to standard results in the literature, e.g., [53], where
uniform bounds on the solution of (4.10) are shown for that case.

4.1. Continuity and sensitivity of the control-to-state map

Since f(-,-) might be nonmonotone with respect to the second variable, this may give rise to a lack of
uniqueness of a solution to the semilinear PDE (4.2). In the monotone case, the continuity result is more direct
to show, thus we focus on the nonmonotone case here.

Under our standing Assumptions, (4.2) has a nonempty set of solutions y satisfying

Iyl + Iyl < K.

for some constant K independent of u since C,q is bounded. The associated continuity result stated next, relies
on a I'-convergence technique. We note that for this section we take r = 2.

Proposition 4.5. Let u,, — u in L*(Q) and G,,, G : H(Q) — R be the corresponding energies in (4.6). Then
Gy T—converges to G with respect to the H' topology. Furthermore, Gy, is equi-coercive.

Proof. Observe first that one easily checks that G, T'-converges to G. This is because the function
IV () ||2L2(Q) + [, F(x,-) da is weakly lower semicontinuous with respect to the H'(£2) convergence (and hence it
I'—converges to itself), while the function y — fQ Uy y da continuously converges to the function y — fQ uy dz (see
[16], Def. 4.7 for the notion of continuous convergence). The assertion follows from the stability of I'-convergence
under continuous perturbations ([16], Prop. 6.20).

In order to see that G, is equi-coercive, it suffices to find a lower semicontinuous coercive function W :
H'(€2) — R such that G,, > ¥ on H'(Q), ¢f. ([16], Prop. 7.7). This follows from the fact that (||u,r2(0))nen
is a bounded sequence and from the coercivity condition in Assumption (4.1), see also (4.8). O

With the help of I'-convergence and equi-coercivity one can get the classical results on I'-convergence with
respect to global and local minimizers. It is of particular interest whether yq is an isolated local minimizer of G
(and in particular satisfies (4.2)). In this case there exists a sequence ¢, with g, — yo in H(Q) such that for
all sufficiently large n, 9, is a local minimizer of G,, (hence it also satisfies (4.2)); see [11]. This implies that if
up — ug in L3(Q) and yo € Il(up) is an isolated local minimizer of G, then there exists a sequence (y,)nen in
H'() such that y,, € I(u,) and y, — yo in H(Q).

Remark 4.6. We note that solutions of the PDE (4.2) are not necessarily local minimizers of the variational
problem (4.6). In order to make sure that yo is an isolated local minimizer, one can check second-order conditions

n (4.6). In this context, second-order sufficiency relates to (s, —As+ 0y f(-,y0)s) > € HsH?p(Q) for all s € HY(Q)
with some € > 0. Therefore, if f(-,-) is a strictly monotone function with respect to its second variable, then the
positive definiteness condition is automatically guaranteed. For the more general case, it turns out that a similar,
but yet milder condition (see (4.19) below) helps to establish the sensitivity result for the control-to-state map.

Given this approximating sequence (y,)nen for yo € II(ug), convergence rates and differentiability of the
control-to-state map in a certain sense are shown next. For this, we also assume that

VM >0 3Ly > 0: 10, f(2,y1) — Oy f(x,92)| < Lmlyr — 2l (4.17)
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for almost every x € Q and for all yy,y2 € [-M, M]. This also implies
VM >0 3C>0: |[0,f(x,y)| <C forae xeQandVye [-M, M| (4.18)

Theorem 4.7. Assume that (4.17) holds for f, let T1 : L?>(Q) = H() be the possibly multi-valued control-
to-state map of (4.2) and fix some ug,h € L*(Q) N Cuq as well as yo € H(ug). Define (9, f(-,y0))~ =
min {9, f(-,y0),0}, and assume that

oL
) ST

1

10y C90) ™ Nl 2o o (4.19)

and H(ayf('ayo))_HLOO(Q) <

where C; and Cy, are the positive constants defined in (4.9). Suppose u, = ug + t,h for a sequence t, — 0, and
suppose there exists y, € I(uy,) with y, — yo in H*(Q). Then we have

lyn = voll ey < Cty, (4.20)

for some constant C' and large enough n € N. Moreover, one has that every weak cluster point of ¥=2° denoted
by p, solves the following linear PDE

—Ap+ 0y f(,yo)p="h in Q, O,p=0 on 9.
In particular, p satisfies the energy bounds:

Pl 10y < Crrllbllpz)  and  lplo@ < Cellhllzz ), (4.21)

with constants C'y and C. depending on Cj and Cj.

Proof. Subtracting the equations that correspond to the pairs (uy,y,) and (uo,yo) and using the mean value
theorem, we get

— A(yn —y0) = tuh + f(-,90) — f(-,yn) = tnh — 6yf('7y0 + Y (Yn — %0)) (Yn — Yo), (4.22)

where ~;, € L*°(Q) with ||’Yh||Loo(Q) < 1, see Remark 4.10 regarding measurability of such v;,. Note that y,,yo €

C(Q) with a uniform bound K > 0, therefore from (4.18) we have 9, f(-, 90 + Yh(yn — ¥0)) € L>(2). Then,
given € > 0, we rewrite (4.22) as

— A(Yn = y0) + (e + By f (6 ) n — w0) = tah + (e + Dy F(,ENT = 0y f(60)) (yn — o), (4.23)

where 61]: =7%Yo + ’Vh(yn - yO)v and (6yf(7gﬁ))+ = max {6yf(7fﬁ)70} NOWa using (49)3 we have

Cih l9m = voll i) + 1y = Yoll Lo ()
<(e+C) (ta 0l 2y + [1(e + (07 (€T = By (€)= 90| 2o (4.24)
<(e+C) (ta bl 2y + lle+ @y ) || oy 1 = vl ) -
The last inequality holds since both y,, and yo are C(9) functions. Because y,, — yo in H'(Q), we also have

that ¢! — yo in L?(Q). From the continuity of 9, f(z,-), the fact that y,, yo are uniformly bounded in C(f)
and from dominated convergence, we have that 0, f(-,£") — 9, f(-,yo) in L?(Q2). Thus, because of (4.19), there
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exists € = ¢y small enough, such that for sufficiently large n, we have (e + Cj) Heo + (Oy f (-, €M)~ HLQ(Q) <1
Then (4.24) leads to

171l 2 () tn- (4.25)

Ch(eo + Ch)
o = 3ol gy < “HLEE

From the above inequalities we have that (¥2=%), ¢y is uniformly bounded in H'(Q) and therefore admits

a weakly convergent subsequence (unrelabelled) with weak limit p. Then, dividing by t,, and letting ¢,, — 0 in
(4.22), we have that p satisfies the following equation

—Ap+0yf(,yo)p=h inQ, 9J,p=0 on 0N (4.26)

Note that (4.25) readily implies the first energy bound in (4.21). For the second bound in (4.21), the procedure
is similar. For this we consider

€
1yn = Yol 10y + oA l9n = voll @
! (4.27)

<(e+Ch) (tn 1Bl gy + €+ (%f(ufﬁ))_HLw(Q) yn — yo||L2(Q)) :

Invoking now the second condition in (4.19), and using exactly the same steps as for the first bound of (4.21),
we find some €, > 0 to conclude the second bound in (4.21) when n is sufficiently large. O

Remark 4.8. The proof of Theorem 4.7 provides an alternative strategy for proving existence and energy
estimates of solutions for certain type of linear elliptic PDEs, e.g. as in (4.26) when the elliptic coercivity is
mildly violated. Also note that in the monotone case, (9, f(-,y0))~ =0, and thus the conditions in (4.19) are
always fulfilled.

4.2. Existence results for learning-informed semilinear PDEs

As motivated in the introduction, in many applications the precise form of f is not known explicitly, but
rather it can be inferred from given data only. Here we are particularly interested in neural networks to learn
the hidden physical law or nonlinear mapping from such data. The corresponding existence result for PDEs
that include such neural network approximations is stated next.

Proposition 4.9. Let f: QxR = R and F': Q x R — R be given as in Assumption 4.1 with the extra
assumption that f € C(Q x R). Then, for every € > 0 there exists a neural network N' € C>®(R? x R) such that

sup  |If(y) =Nl < (4.28)

Iyl Loo (o) <K
with K cf. (4.11). Moreover, the learning-informed PDE
—Ay+N(,y)=u in Q, d,y=0 on 09, (4.29)

admits a weak solution which also satisfies (4.11) for sufficiently small € > 0.

Proof. From Theorem 3.1 we have that for every € > 0 there exists a neural network N € C=(R? x R) such
that |f(z,y) — N(z,y)| < € for every (z,y) € QA x [-K — 1, K +1].

Thus, the existence of A/ such that (4.28) holds can be directly shown; note that U = L*(Q) is feasible in
(4.28).



16 G. DONG ET AL.

Consider next the function N : 2 x R — R given by

[y N (z,5)ds + F(x,0), —(K+1)<t<K+1,
N(z,t) == < ro(z) + F(z,t), t>K+1,

ri(z) + F(x,t), t<—(K+1),
with ro(x) := OK+1 N(z,s)ds + F(z,0) — F(z, K + 1), ri(x) := fO_K_lj\/'(x, s)ds + F(z,0) — F(z,—K — 1).
Notice that N(x,t) is continuous with |N(z,t) — F(z,t)| < (K + 1) for every t € R and x € Q. Next we
apply some smoothing of N(z,-) in a small neighbourhood of Q x {—K — 1} and Q x {K + 1} such that the
previous approximation estimate still holds true, and continue to use the symbol N for the result. Then N(z, )
is differentiable with respect to the second variable for every = € 2. Consider now the minimization problem

1
inf  =||Vyl? +/N, d—/ de. 4.30
ye}}ﬁ(g)g” Yll72e0) A (z,y)dz e (4.30)

One can now prove existence of a solution to (4.30) analogously to the proof of Proposition 4.2 for (4.6). We
can show that the functional in y — [, N(x,y)dz is Frechét differentiable in H*(€2) with Frechét derivative
h = [, 0yN(x,y)hdz, see discussion after this proof. Thus, any solution to (4.30) satisfies the PDE

—Ay+0yN(,y)=u, in Q 09dy=0 on I (4.31)

By following estimates analogous to the ones leading to (4.11), we have in view of (4.15)—(4.16) and (4.28),
that any solution yo also satisfies [[yo|| @, < K when € is sufficiently small. Since 9, N = N on Q x [-K, K]
we conclude that yg is a solution of (4.29). O

Concerning the announced differentiability of ®x(y) := fQ N(z,y) dzx, define

'y (y)h ::/3yN(a:,y)hdx.
Q

|on (y+h) =N (1) —@N (W] _ [®h(y+mh)h—2
||hHH1(Q) - HhHHl(Q)
value theorem along with H'(Q) C L71 (), we have for a C' > 0

Since w)h| for some 7;, € L*°(Q) with ||| 1 (q) < 1, using the mean

PN (y+ h) — Pn(y) — Py (y)h|
12l g1 ()

< C110,(NC.y+7mh) = NC )l o ey - (4.32)

Note that by definition, the growth rate of N(z,-) outside of [-K — 1, K + 1] is exactly the same as the one of
F(x,-). Therefore 9y N(-,y) is indeed an element of L"(§2). Finally, we need to verify that

10y N (y + mh) — 9y N (y)| =0 for he HY(Q).

}ng% L7 (Q)
This is true due to the continuity of the Nemytskii operator 9, N : L71 () — L" ().

Remark 4.10. Notice that in (4.32) the mean value theorem is applied for every x € Q and 7y, is defined as a
selector function of the multi-valued map 7 : Q = [0, 1] with

m(z) = {A € [0,1] : N(z,y(z) + h(z)) = N(z,y(z)) = Oy N (z,y(x) + Ah(x))h(x) = 0}.
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Even though by definition 73, is a bounded function, one still needs to show its measurability such that 7, €
L*>(9). Such a measurable selector function is indeed guaranteed by the Kuratowski-Ryll-Nardzewski selection
theorem ([3], Thm. 18.13) whose conditions can be verified in our case. In fact, we may choose 73, (z) := max 7(z);
see ([3], Thm. 18.19). We note that one can also use another version of mean value theorem where 7, € [0,1] is
just a real number. Since we use the former mean value theorem several times in the paper, for generality, we
consider the point-wise version.

Note that the above set-up covers a wide range of problems, including the class of problems where the
nonlinear function f(-,-) is strictly monotone with respect to the second variable. In that case, the nonlinear
PDE (4.2) admits a unique solution [53]. We also point out that in the monotone case direct methods allow to
prove the existence of solutions and energy bounds for a wider array of monotone nonlinearities (such as, e.g.,
exponential functions). Moreover in that case, the regularity and growth conditions on the nonlinear function
f can be relaxed. However, as pursuing such a generality is not the focus of the current paper, we skip detailed
discussions here. We note however that structural aspects of the control problem such as first-order optimality,
adjoints etc. remain intact even under relaxed conditions.

In order to give an example on this, we show in the next proposition how strict monotonicity for the learning-
based model can indeed be preserved.

Proposition 4.11. Let f: Q x R — R satisfy Assumption 4.1 and Oy f(x,y) > Cy for almost every x € Q and
y € R for some Cy > 0. We additionally assume that f € C(2 x R). Then for every € > 0, for every compact
set Q. C Q, and for every M > 0, there exists a neural network N := NS'EZC,M € O®(R? x R) such that

[f(z,2) = N(z,2)| <€,  for every x € Q. and every z € [—M, M], (4.33)
0N (z,2) > Cur,  forall z € Q and z € [—M, M] for some Cyr > 0. (4.34)

If f € CY(Q x R), then we have in addition that
|0, f(x,2) — 0N (z,2)| <€,  forallz e Q. and z € [-M, M]. (4.35)

Proof. Let € > 0, Q2. C Q compact, and M > 0. Further, let f :R?x R — R be the extension by zero of f outside
Q x R, ps a standard mollifier ([5], Sect. 2.2.2), and fs := f % ps : R* x R — R. Next we choose § > 0 such that
the following hold true: (i) B(z,d) := {# € R%: ||& — x| < 6} C Q for every z € Q., (i) fs(x,y) = f5(z,y) for
(z,y) € Q. x R, and (iii) |f(x,y) — f(;(gc,~y)| < €/2 for every x € Q., y € [-M, M]. Moreover, one finds that for
sufficiently small 6 > 0 it holds that 0, f5(z,y) > C’f for some C’f > 0 for all z € Q, y € R. Indeed, note that
Assumption 4.1 and the mean value theorem yield for almost every =’ € Q, y1 < yo

f(x/’yz) - f(33'7y1) > Cf(y2 — Y1) (4.36)

Hence, using ps(-) = 6@V p(-/8) ([5], Sect. 2.2.2), we have

f(x/’ y/)5_d_1p ((m,yl) ; (95/73//)) d(z',y)

f(;(l', 3/1) = /
Bs(z,y1)N(QXR)

/ (f(a:’,y’) —Crly2 — y1)) 5 ((m’ y) — (@, y’)) d(z',y")
Bs (2,y2)N(QXR) d

) =co(f (PR a ) n -

=:C

IN

= fs(z,y2) — CrC(y2 — y1).
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We now use the fact that the boundary of €2 is Lipschitz to deduce that for some small enough § > 0 we have

C = C, 4 > cforsome c > 0, for every x € €, y € R, and set Cf := Cyc. Hence from the last inequality above we
deduce 8yf5(ac7 y) > Cj. Utilizing now Theorems 3.1 and 3.2 for the compact set Qx[-M,M] C R? x R, we find
aneural network A € O™ (R? x R) such that | f5(z,y) — N (z,9)| < €/2 as well as |, fs(z, y) — OyN (z,y)| < Cy/4
for every x € Q and y € [-M, M]. Then with the use of the triangle inequality we get (4.33) and (4.34) for

Finally, when f is also continuously differentiable in 2 x R, we can proceed as before with the extra care to
choose 6 > 0 such that |0, f(z,y) — Oy fs(x,y)| < €/2 for every z € Q., y € [-M, M]. O

Note that if f is bounded on Q x [—K, K], for instance if f € C(Q x R) as in Proposition 4.9, then the
estimate (4.28) holds here as well and if analogous conditions hold for the derivative of f then with the help of
(4.35) we also have

sup 10, f(-y) = N (- y)llu < e (4.37)

Iyl Loo (o) <K

Conceptually, if f is monotonically increasing and the network N has been trained well enough, then it will
be also monotone at least on a bounded set. Even though we will not follow such an approach here, we point
to literature regarding the enforcement of monotonicity in the training process [17, 37, 51]. Monotonicity can
also be achieved via a sufficiently good derivative approximation (Sobolev training), see for instance [15].

4.3. Error analysis for the control-to-state map

Our next target is to show the error bounds (2.2) and (2.7) for the solution maps (control-to-state maps) of
the learning-informed versus the original PDE. Before we proceed, we first show the local Lipschitz conditions
(2.9) and (2.6). For the ease of presentation we confine ourselves to a strict monotone f(x,-) here. For the
nonmonotone f(x,-), we would require (4.19) to be satisfied for solutions uniformly bounded by K. Consider
the following pairs of equations for ¢ € {1, 2}

(4.38)

—Ay; + f( ) = u; in Q, and —Ap;i + 0y f(-,¥i)pi = v in Q,
dyy; =0 on 09, Oyp; =0 on 09,

where v € U is unitary, g; = I(u;), and p; = II'(u;)v for ¢ = 1,2. Taking the difference of the first equations in
(4.38) for ¢+ = 1, 2, testing with y; — y2, and using the mean value theorem we get for some Cy > 0 that

Crllys = el < 1991 — Vaal3aqy + /Q (F(a, 1) — Fl, o)) (1 — y2) da

_ /<u1 —u3) (g1 — y2) d < [lus — ually gt — vally
Q

which yields the Lipschitz property ||y1 — yal 5 < Cif lur — uily-
In order to show the local Lipschitz continuity of II', we need to further assume condition (4.17). Consider

now the difference of the right-hand side equations for ¢ = 1,2 in (4.38). Using standard PDE arguments (see,
e.g., [53], Thm. 4.7) we find

1P1 = p2ll g1 () + IPr = P2l o) < CNOyf(51) = Oy f (- B2))P1ll L2 (o

_ _ L
< CL|pillc@ 191 — B2l 220y < CC*fC [0l L2 (@) lur = uzll 2 (q) -
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Here, we also used the estimate |[p1 o) < ¢|[v]|r2(o) from Theorem 4.7 for u € Cag.
For the desired error bounds we focus now on the state equations

7Ay+N(:C7y):u in Q7 fAerf(x,y):u in Qa
and (4.39)
d,y =0 on 09, d,y =0 on 09,
and the associated adjoints
—Ap+ OyN (2, 7)p=v in Q, —Ap+ 0y f(z,g)p=v in Q,
and (4.40)
dy,p=0 on 909, O,p=0 on 0N.

The main approximation result is stated below. It guarantees that the uniform approximation properties of
the control-to-state operator II and its derivative (compare (2.2) and (2.7) of Theorem 2.3 and Assumption 2.4,
respectively) are met by the corresponding learning-informed operators.

Proposition 4.12. Let M > K > 0, with K being the constant from (4.11). Suppose the first inequality in (4.19)
holds for f for every y such that ||y||p~) < K. Assume that N' € C*°(R? x R) satisfies the approzimation
property

sup [[f(y) = NCylly <e (4.41)
Iyl oo (@) <M

for e > 0 sufficiently small. Then, the following error estimate holds:
lvo — yell g < Ce,  for all u € Cua, (4.42)

where the constant C > 0 depends only on f, and y., yo are solutions of the left and right equations of (4.39)
respectively. Moreover, assuming (4.17) and also that the condition

sup |0y f(-y) = 0N y)llu < e, (4.43)

[yl Loo () <M
holds for sufficiently small €1 > 0, then, there exist some constants Cy > 0 and Cy > 0 so that
llpo — p6||H1(Q)mC(§) < Cier + Coe,  for all u € Cquq, (4.44)

where pe, po are solutions of the left and right equations of (4.40) respectively.

Proof. Let y. and yo be solutions of the learning-informed PDE and the original PDE, respectively. Recall that
the H' norms of both y. and yy are bounded by K > 0. Subtracting the two PDEs we get

—Alyo —ye) =N(G,ye) — f(yo) in € and  9,(yo —ye) =0 on 9N. (4.45)

Using the same technique as in the proof of Theorem 4.7, the equation in (4.45) can be rewritten as

(_A + Ko + (ayf(’ Ce))+) (yO - ye) = N('vye) - f("ye) + (‘%0 - (ayf(v Ce))i)(yO - ye)v (446)
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where (. is a pointwise convex combination of yy and y. that results from a pointwise application of the mean
value theorem, and kg > 0 is a fixed small constant. We have then the estimate

Ko
o lyo = Yell g @) + Yo = Yell o
S(K‘O + Cl)(HN(a ye) - f(a y6)||L2(Q) + H(HO - (ayf(a Ce))_)(yo - ye)HL2(Q))

Rearranging the above inequality, and taking into account the Lipschitz continuity of d,f and the condition
(4.19) for (. for which it holds [|(c|| 1 (n) < K, for sufficiently small € we derive finally

190 = el < Ce.

For deriving (4.44) we use a similar approach. Let p. and py be the solutions of the left and right equations in
(4.40), respectively. Subtracting these two equations gives

—A(pe — po) + 9y f(z,90)(pe — o) = (0 f(x,90) — Oy N (x,yc))pe  in Q,

9y(pe —po) =0 on 99. (4.47)
Using again the same trick as above, we rewrite (4.47) as
= A(pe = po) + (11 + (3 f (2, 50)) ™ (pe — po) (4.48)
=(0yf(x,90) — OyN (x, ye))pe + (k1 — (9y f(%,50)) ") (Pe — o),
and then similarly we get
Ipe = pollzs ey < Cllpclleqay 1955 50) = BN Gy a e - (4.49)

for some constant C' independent of both py and p, but depending on the constants Cj, and Cj. The estimate
in (4.49) holds also for ||p. — pol| c@) but with a different constant, say C > 0. Focusing on the right-hand side
of the inequality above and using the triangle inequality we have

10y f (-, 50) — ayN('7ye)||L2(Q) <10y f(-,90) — ayf('7y6)||L2(Q)
+ Hayf('vye) - ayN('7 ye)”L2(Q) <L ”3/0 - yé”]ﬂ(ﬂ) + €1,

where L is the local Lipschitz constant of 9, f(-,-) for those y € H'(£2) N C() with (Yl oo () < K-
Finally we need to estimate |[pe[/c ) in (4.49). For this we note that for sufficiently small €;, the second
bound in (4.21) also holds for the solution of PDEs with A. This yields the estimate

||peHc(ﬁ) < Celvl 20, (4.50)

with the constant C, independent of v and e. Finally we conclude

10 = Pl @ync@ = sup lIPo = pell g )nc@)
HUHLz(Q)Sl

= sup |po— Pe”Hl(Q) + |lpo — pe“()(ﬁ)

HUHLQ(Q)Sl

S CC(C + é)(LG + 61) S 0161 + CQG,
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which ends the proof. O

Remark 4.13. Notice that the condition (4.19) imposed on all y with |[y[|;,«(q) < K in fact enforces a unique
solution to the semilinear PDE (4.2), which also satisfies the same constraint. It is possible to treat the multi-
solution case using a similar strategy as Theorem 4.7, by using I'-convergence arguments to show the convergence
of y. — y in a certain sense, and then apply the condition (4.19) to yo.

Remark 4.14. The results above can be viewed as universal approximation properties of the learning-informed
control-to-state map and its directional derivatives. Note that it is true also for more general types of boundary
conditions, including homogeneous Dirichlet boundary conditions.

4.4. Existence of solutions of the learning-informed optimal control

After having replaced the unknown f by the neural network based approximation N we are now interested
in the following optimal control problem with a partially learning-informed state equation:

L 1 o
minimize J(y,u) := §||y - gH%2(Q) + §||u||%z(ﬂ), over (y,u) € H' () x L*(Q), (4.51)
st. —Ay+N(z,y)=u in Q, dy=0 on 99, (4.52)
u € Coq. (4.53)

In what follows we prove the existence of an optimal control for the problem (4.51)—(4.53). Here we consider
that the control-to-state operator is single-valued, that is, the learning-informed PDE (4.52) has a unique
solution for every u € Cuq. According to Proposition 2.1, we only need to check that the operator Qn : U — H
is weakly sequentially closed. In fact, an even stronger property holds true as we show next.

Proposition 4.15. Let N € C*®°(R? x R) be a neural network such that any solution of the learning-informed
PDE (4.52) satisfies a bound as in (4.11). Then the reduced operator Qu : U = L*(Q) D Cuqg — H = L*(Q)
induced from the control-to-state map of (4.52) is weakly-strongly continuous, in the sense that if up, — u in U
and yp, € I (uy) then, y, — y in H for some y € M (u).

Proof. For u, — u in U N Cuq and y, € I (un), (Yn)nen is a bounded sequence in Y = H(Q) N C(Q) as
(un)nen C Caq is a bounded set in L>°(2). Thus, up to a subsequence, still denoted by (y,,), there is y € H(Q)
such that y,, — y in H*(2). Since H'(£2) embeds compactly into H, we can consider that y,, — y strongly in
H. We show that y = Ix(u), i.e., y is a weak solution of the PDE in (4.52). Since y,, is the weak solution of
(4.52) with right hand-side u,,, we have

/ Vyn - Vodz + / N(z,yn)vde = / uvdr  for all v e HY(Q). (4.54)
Q Q Q

We only need to show that

/Q (N(z,yn) = N(z,y))vdx =0, (4.55)

since the convergence of the other two terms readily follows from weak convergence. Taking into account that
N € CY(R% x R) we have that for every M > 0, there exists an Lj; > 0 such that for every z € Q and
Y1, y2 € [-M, M], we have

N (z,y1) = N(2,92)| < Lm|yr — 92l (4.56)
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Using the estimate (4.11), we have that (y,)nen and, hence, y are uniformly bounded in L*°(fQ), say by a
constant M > 0. Thus we have

HN(7yn) _N('7y)HU < LMHyn - y”H

Due to the inequality above and the strong convergence of y,, — y in H, (4.55) is verified. Passing to the limit
n — oo in (4.54) we get that y is a weak solution of (4.52) corresponding to u. Since any other subsequence of
(Yn)nen will have a further subsequence that converges to IIx(u) the assertion follows. O

For the error analysis on the optimal controls of (4.51) with (4.52) to solutions from (4.1) with (4.2), we
can readily apply Theorems 2.3, 2.6 and 2.5 for the monotone function f, in view of the error bounds shown in
Proposition 4.12. For the nonmonotone case, these results are still applicable up to a selection of subsequences
of the solutions.

Finally, a word on the approximation process for f : 2 X R — R in a semilinear PDE is in order. For generating
the corresponding learning data, we make use of a pointwise evaluation of v + Ay. From the viewpoint of PDE
theory, this is justified under sufficient regularity of the design variable u, the domain 2, and of the underlying
nonlinear data encoded in f. In computational practice, we then consider input data in form of a family of

sampled (pairwise) disjoint points (z;)!_, in Q and (measured) data v; € [Ymin, Ymaz] for i = 1,...,1, along
with given associated controls u(x;), i = 1,...,l. The corresponding outputs are values (f;)!_, obtained from
(4.2) via

f(@i,y(z)) = fi = u(zi) + Ay;.
These input-output data pairs are then used in the process of learning f.

4.5. Numerical algorithm for the optimal control problems

In this section we briefly describe an algorithm for solving the optimal control problem (4.1). Even though
it is suitable for rather general problems, we outline it here for the version with the learning-informed state
equation.

In order to compute a numerical solution, we first state the Karush-Kuhn-Tucker (KKT) conditions, which
are justified by constraint regularity (see [54] for a general setting):

—Ay+N(G,y)—u=0 inQ, d,y=0 on 9N,
—Ap+ON(,y)p+y=9g nQ, Jyp=0 on 09,
—p+A+au=0 in Q,
A —max(0, A + c(u — 7)) — min(0, A+ ¢(u —u)) =0 in Q,

(4.57)

where ¢ > 0 is some constant, which in practice, is useful to be chosen ¢ = «. The first equation with its
boundary condition is just the learning-informed PDE constraint, while the next one is the associated adjoint
equation. The third equation represents optimality w.r.t. u and, together with the last one, it incorporates the
control constraint v < u < . Indeed, notice that the last equation is equivalent to the usual complementarity
system as it secures a.e. that

A=0:u<u<u, A>20:u=u, A<0:u=m.
Letting ¢ := (y,u,p, \) T, (4.57) can be compactly rewritten as the nonsmooth equation

Mp () — (0,9,0,0)" = 0. (4.58)
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For solving (4.58), we employ a semi-smooth Newton method (SSN); see, e.g., [32]. It operates as follows: Given
an initial guess ¢g of a solution to (4.58), compute for all £ =0,1,2,...

Or+1 = Pk — (gN(¢k))_1(MN(¢k) - (05970’0)—'—)'

Here, Gnr(¢r) is a Newton derivative of the operator My, at ¢y given by

—A+ Oy N (-, yr) 0 —1d 0
_ 8ny('ayk)pk +Id -A+ 8yN('a Yr) 0 0
Gn(dr) = 0 —1 ald  1d |
0 0 *CG}C Id — Gk

where for x € §,

Grlw) — {0’ Helue) = un(e)) = Anlie) = efule) = ule).

1, else,

is a Newton derivative that corresponds to the nonsmooth functions max(0,-) and min(0,-) in (4.57). SSN
can be shown to converge locally at a superlinear rate, provided ¢q is sufficiently close to a solution and the
selection of Newton derivatives for My, is uniformly bounded and invertible along the iteration sequence; see
[32, 34]. Moreover, under a nondegeneracy assumption the method exhibits a mesh independent convergence
upon proper discretization of (4.58); see [31, 34]. Globalization of the SSN iteration, that is, convergence to a
stationary point after an arbitrary initialization, can be achieved e.g., by employing a path search [19, 48], which
we did not pursue here, however. Rather we intertwined SSN with a sequential quadratic programming (SQP)
iteration, with the latter specified below. This combination helped the globally convergent SQP solver to escape
from unfavorable local minimizers or stationary points. Obviously, one cannot expect a general theoretical result
supporting such a behavior. It, hence, merely reflects a useful numerical observation, in particular in connection
with our example with a nonmonotone f.

SQP algorithm Here we consider the reduced SQP approach which operates on the reduced optimal control
problem. Given an estimate uy of an optimal control, in every iteration it seeks to solve the following quadratic
problem:

1
minimize  (Jp(ug) + in(uk)5u,5u>U*7U, over 6, € U, (4.59)

subject to u < wug + 9, <u a.e.in Q,

where Jx (ux) is the Fréchet derivative of the reduced functional Jyr, and Hp(uy) is a positive definite
approximation of the second-order derivative of Jjr at ug. First-order optimality for (4.59) yields

j/(/(uk) + Hk(uk)(;u +A=0, (4 60)
A —max(0, A + c(ug + 6, — @) — min(0, A + c(ug + §, —u)) =0, '
for some fixed ¢ > 0. This nonsmooth system can be again solved using a semi-smooth Newton method
which yields d, x and ;. Concerning the Hessian approximation, in our implementation we choose Hy(uy) :=
(Tn(ur))* TXr(ur), where ™’ denotes the adjoint operator.
For globalization we use a classical line search with the merit function

i (p) = In(uk + péuk) + BeWr(p)  for some S > 0, (4.61)
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where
\Ijk(:u) = H(uk + ,Uféu,k _ﬂ)+|‘L2(Q) + H(uk + Méuk _g>_HL2(Q) )

with a™ := max {a,0}, and a~ := min{0,a}. We employ a backtracking line search method starting with
=1 to decide on the step length. Note that the reduced problem requires to enforce the PDE constraint for
every ug. For this purpose a (smooth) Newton iteration was embedded into every SQP update step. This Newton
iteration is terminated when || — Apyr + N (-, yx) — url| g-1() < tol = 10716 or a maximum of 15 iterations was
reached.

To summarize, we utilize the following overall algorithm:

Algorithm 1 A semi-smooth Newton SQP algorithm for PDE control problems

e Initialization: Choose ¢g := (yo, uo ,Po, Ao), and compute ¢(0). Fix a lower bound € > 0 for the step
length, choose p € (0,1), and Sy > 0. Set k := 0.
e Unless the stopping criteria are satisfied, iterate:
(1) Compute an update direction &, by solving (4.60) using SSN. Let ) := 1, y, ' := y) and set
[ := 0. Iterate:
(al) Compute y. := IInr(ug + pf6u k), where Iy is realized by performing Newton iterations as
a nonlinear PDE solver initialized by yé‘l.
Setting y := yfC and w = uyp + uiéu,k compute the remaining quantities in (;Sff according to
(4.57) with p =: p,. and A =: AL. This yields ¢! .
(a2) Increase fB, if necessary, to get L.
(a3) Check the Armijo condition (4.63).
If it is satisfied, then set Iy := ! and continue with step (2); otherwise update uﬁjl = rul,

l:=1+1
If ugjl < €, then terminate the algorithm; otherwise return to Step (al).

(2) Set ¢pq1:= ¢§€’“, and By = Bllc’“, and k: =k + 1.
e Output: The value of ¢; which contains both the control and state variables.

In our examples, we choose pg = 1, € = 107°,r = 2/3, and By = H)\o||Lz(Q) + 1. In order to solve the nonsmooth
system in (4.60), we employ a primal-dual active set strategy (pdAS), which was shown to be equivalent to an
efficient SSN solver for classes of constrained optimization problems [32]. For the precise set-up of pdAS and
the associated active/inactive set estimation we also refer to [32]. For minimizing quadratic objectives subject
to box constraints and utilizing highly accurate linear system solvers, pdAS is typically terminated when two
consecutive active and inactive set estimates coincide. We recall here that the active set for (4.59) at the solution
du i is a subset Ay of Q with (ug + 0,1 )(2) € [u(x),u(x)] for z € Ag; ), := Q\ A, denotes the associated inactive
set. Alternatively one may stop the iteration once the residual norm of the nonsmooth system at an iterate
drops below a user specified tolerance. In view of (4.60) and constraint satisfaction, the function ¥y (p) in (4.61)
appears irrelevant as a penalty for violations of the box constraints. However, it becomes relevant when early
stopping is employed in SSN (respectively pdAS). In this case we still need to guarantee that J, x is a descent
direction for our merit function to obtain sufficient decrease of ®;, in our line search (4.63). This is needed
for getting convergence of (uy) (along a subsequence) to a stationary point. For deriving a proper stopping
rule for SSN to guarantee sufficient decrease, we multiply the first equation in (4.60) by the solution &, use
Aug + 6y — @) (ug + 6y —u) = 0 a.e. in Q and the feasibility of uy + d,, both according to the second line in
(4.60). We further set 8 > ||[A||y (upon identifying U*=U) to find

(Tn(ur), 0u)v= v + Br(Wr(1) =W (0)) < —(Hg(up)du, du)v- v <0,
5
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unless §,, = 0, i.e., ug is stationary for the original reduced problem. Here, ¢, replaces &, in ¥y(1). This
motivates our termination rule for SSN when solving (4.60). In fact, let superscript ! denote the iteration
index of SSN for the outer iteration k, i.e., for given uy. For some initial guess (62, \°) (typically chosen to be
(8uk—1, —1)) SSN computes iterates (6%, \!), | € N, and terminates at iteration lx, which is the smallest index
with

(TN (un), 0 )0 v + Br(Wi(1) = Wr(0)) < —E(H(ur)dt, 63 )v-v (4.62)
and  Wi(1) < (1—&)W(0) ’
for some ¢ € (0,1), with 8, > [|A!*||;7, and where 6% is used in Wy (1). In our tests, we choose £ = 0.9, and
terminate SSN iterations whenever (4.62) is satisfied or two consecutive active set estimates are identical. Then
we set 0y 1 1= (55}, Ak = A, and determine a suitable step size .

For the latter we use a backtracking line search based on the Armijo condition [46]. Indeed, given ug, 0y k,

and Ak, let [ now denote the running index of the line search iteration. Then [; € N is the smallest index such
that

D (py) — @1(0) < rpg ((The(un), dup)uev + Be(Tr(1) — U1(0))), (4.63)

for some parameter 0 < x < 1, and By = max{Br_1,{|| cllv} > [Mellu, for some ¢ > 1 in (a2). In our
implementation we use k = 1072 and ¢ = 2.

Regarding the stopping criteria for the SQP iterations, we set a tolerance for the norm of the residual of
(4.57) along with a maximal number of iterations. We note here that (4.57) matches (4.60) upon introducing
the adjoint state for efficiently computing J5 (ux) to the latter.

In our implementation we simplified the Newton derivative of the first-order system (4.57) by dropping the
second-order derivatives Oy, N (-, yi)px from Gar(¢y). The corresponding approximation reads

—A+ 9N ) 0 40

Id “A+ONCm) 0 0 N

0 —1d ald  1d =GN (9e).
0 0 —cGr Id — Gy

This helped to stabilize the SSN iterations, while maintaining almost the same convergence rates as for the
exact Newton derivative in our tests. Note that in the case when 9, (-, yx) is non-positive, indefiniteness might
occur, which may cause solvability issues. One would then need to design the algorithm to detect such cases
during the iterations. If failure is detected, then the learning process is re-run by adjusting the network structure
and/or the training data. Subsequently the optimization algorithm for solving the control problem is re-started
(by a warm start from the previous iterate). In our tests, however, we have not encountered such difficulties.

4.6. Numerical results on distributed optimal control of semilinear elliptic PDEs

Our first test problem is given by

e 1 a
minimize 5 |ly = gl7a(q) + 5 lullza) . over (v.u) € H'(Q) x LA(Q),

subject to  — Ay + f(z,y) =u in Q:=(0,2) x (0,2), 8,y =0 on 99, (4.64)
— 20 < u < 20,

with exact underlying nonlinearity f(z,2) = 2 + 5cos?(nmz122)2 and z = (x1,72) € R?, 2 € R. Note that
trivially f satisfies Assumption 4.1.
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4.6.1. Training of artificial neural networks

For learning the function f we use neural networks that are built from standard (multi-layer) feed-forward
networks. Their respective architecture together with the loss function as well as the training data and method
are specified next.

Loss function and training method Let © = (W,b) denote the parameters associated with an ANN
N =: Ng that needs to be trained by solving an associated minimization problem; compare (3.2). We use here
the mean squared error

np

1
U(X, f) = E Z |N@(Xj) - fj|27
j=1

as a loss function, no regularization, i.e, t = 0, and F,q is the full space. In this context, (xj,fj)?jl are the
input-output training pairs. For simplicity of presentation we assume that np is larger than the number of
unknowns in O.

For solving (3.2), we adopt a Bayesian regularization method [41] which is based on a Levenberg-Marquardt
(LM) algorithm, and is available in MATLAB packages. We initialized the LM algorithm by unitary random
vectors using the Nguyen-Widrow method [44], and terminated it as soon as the Euclidean norm of the gradient
of the loss function dropped below 10~7 or a maximum of 1000 iterations was reached. For other methods that
are suitable for this task we refer to the overview in [10]. In particular, we point out that for deep neural networks
one often encounters vanishing gradients when using feed forward networks. In such situations, residual type
networks, e.g., [6, 30], might be preferable.

Architecture of the network In order to have a representative study of the influence of ANN architectures
on our computational results, we used networks with a total number of hidden layers (HL) equal to 1, 3 or 5.
In each choice, we further varied the number of neurons per layer such that the final number of unknowns in ©
(degree(s) of freedom; DoF) remained in essence the same. Such tests were performed for three different DoF
(small, medium, large) resulting in a total of nine different architectures; cf. Table 1. All underlying networks
operate with input layer size of three neurons and one neuron in the output layer. In all tests for this example,
the log-sigmoid transfer function (lLogsig in MATLAB) was chosen as the activation function at all the hidden
layers.

Training and validation data The training data rest on chosen control actions (uj)?i’l C Cqq with

w = — 2dj7r2 cos(mxy) cos(mza)

— d, cos(mxq) cos(mxa) — 5d§ cos?(ma1 ) cos®(may ) cos® (maa),

and (d;) = {[0.01:0.4: 2.01]} (in MATLAB notation). The procedure for generating the training data is as

follows: First, numerical solutions are computed on a uniform discrete mesh €, = {xk}kN ", (represented here by
the associated mesh nodes including those on 9) with mesh width h = &5, and N}, = (ns +1)2, nj = 1/h. The
Laplace operator is discretized by the standard five-point finite difference stencil respecting the homogeneous
Neumann boundary conditions. This yields the N}, x Nj-matrix Ay, related to nodes x, in Q with Ny, = (ny, —1)2.
The nonlinearity as well as the controls are evaluated at such mesh points z*, and the resulting discrete nonlinear
PDE (4.64) is solved by Newton’s method. The Newton iteration is terminated once the PDE residual in
the discrete H~1(€2)-norm drops below 10*1§, or a maximum of 30 iterations is reached. Thus for each ul,
j=1,...,np, we obtain numerical values y] = (yfm, o ,111{1171\,}1)—r associated with the (interior) mesh nodes
x* and approximating y? (z*) = —d; cos(mz¥) cos(wzk), the analytical PDE solution. Of course in this proof-of-
concept example since the analytical solution of the PDE is known, we could have used this in order to obtain
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TABLE 1. Architecture of networks. For a given network size (small, medium, large), we used
three different architectures of one, three and five hidden layers respectively. HL i: ¢-th hidden
layer; DoF: degrees of freedom in © (total number of network parameters).

Small DOF HL1 HL2 HL3 HL4 HL5 DoF

1 hidden layer network  #neurons per layer 30 - - - - 151
3 hidden layers network #neurons per layer 6 10 5 - - 155
5 hidden layers network  #neurons per layer 3 5 10 5 1 155
Medium DOF HL1 HL2 HL3 HL4 HL5 DoF

1 hidden layer network  #neurons per layer 60 - - - - 301
3 hidden layers network  #neurons per layer 10 12 10 - - 313
5 hidden layers network #neurons per layer 5 8 10 8 6 307
Large DOF HL1 HL2 HL3 HL4 HL5 DoF

1 hidden layer network  #neurons per layer 120 - - - - 601
3 hidden layers network  #neurons per layer 15 18 13 - - 609

5 hidden layers network #neurons per layer 10 10 15 10 10 596

the y7’s. However we prefer to retain a more experimental setting, as conceptually, in real world applications,
our framework assumes that y’(z*) will be given as an output quantity of some experiment.
Using now these data we compute the output values of f denoted by f; € RN% according to the PDE by

f@®, 7 (2%) ~ v () + (Ahyf;)k =: f,ik? k=1,....Np, j=1,...,np.

These input-output pairs both are prepossessed using mapminmax function in MATLAB without change of
notation here. The training data are then obtained through subsampling ffl Dy restriction to a coarse mesh
Qp, with H > h. For this purpose we use H € {0.2,0.1,0.08} giving rise to a small, medium and large training
set, respectively. The corresponding reduction rates are 1/10, 1/5, and 1/4 with respect to the data for h = 1/50.

This subsampled data set is then split into a training data set, a validation data set and a testing data set
at the ratio of 8 : 1 : 1. In our tests, such a data partitioning is done randomly by using MATLAB’s randperm
function.

4.6.2. Numerical results

We start by comparing the exact, numerical and learning-based solutions, respectively. The exact reference
solution is chosen to be

y* = 1.5 cos(mzy) cos(mza),
and the numerical approximation y;, resulted from a mesh with A = 277 and the use of the exact nonlinearity f.
The same grid is used for obtaining the numerical approximation of yxr. Note, however, that the grid for data
generation is different from the grid for numerical computation.
Our report on the experiments involves several discrete norms. In fact, for z;, € RN» we have

lznl3 i= B2 (Anzn) zn,  lznlll = B2 2,

where ||, and ||-||, correspond to the H'-seminorm and L?-norm, respectively.
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TABLE 2. Statistics on learning-informed PDEs with different layers in neural networks using
small size training data, small DoF in ©, and 15 samples in total.

luv =il luv —vily luv =yl luv =yt lluv =il luv —wille lluv = v*llo  llyunv —v*lo

min max min max min max min max
1-L  0.2506 0.6532 0.2868 0.6713 0.0752 0.2422 0.0808 0.2435
3-L  0.2575 0.7537 0.2391 0.7777 0.0817 0.2524 0.0791 0.2565
5-L  0.2157 36.2640 0.2235 36.2731 0.0539 29.4926 0.0544 29.4936

mean deviation mean deviation mean deviation mean deviation
1-L  0.4276 0.1099 0.4496 0.1075 0.1472 0.0484 0.1506 0.0485
3-L  0.3853 0.1350 0.4003 0.1687 0.1425 0.0462 0.1268 0.0482
5-L  3.0242 8.9087 3.0287 8.9103 2.1309 7.3143 2.1299 7.3149

TABLE 3. Statistics on learning-informed PDEs with different numbers of neurons in networks
using medium size training data of 15 samples in total.

luv —vinly luv —uily luw =yl v =yl luv = 9wl v —willy  lluv = v*llo  llunv — v*1lo

min max min max min max min max
3-L'S 0.0546 0.1658 0.0889 0.2211 0.0086 0.0546 0.0207 0.0515
3-L M 0.0090 0.1508 0.0876 0.2039 0.0026 0.0492 0.0168 0.0591
3-L'L 0.0155 0.2815 0.0833 0.3306 0.0036 0.0901 0.0161 0.0996

mean deviation mean deviation mean deviation mean deviation
3-L'S 0.1103 0.0357 0.1464 0.0329 0.0266 0.0125 0.0339 0.0095
3-LM 0.0631 0.0407 0.1113 0.0367 0.0170 0.0120 0.0250 0.0117
3-L' L 0.0559 0.0626 0.1115 0.0609 0.0149 0.0205 0.0250 0.0204

Table 2 depicts the approximation results for different ANN architectures with small DoF as described in
Table 1 and in all cases the small training data set.

We find that the 1-layer network is robust in terms of the statistical quantities shown, and the 3-layer network
has the smallest errors on average, but exhibits a larger deviation than the 1-layer network. The 5-layer network
yields the smallest error, but also the largest ones with a very big deviation. This behavior may be attributed to
the fact that deeper networks give rise to increasingly more nonlinear compositions entering the loss function.
This may be stabilized by tuned initializations, additional regularization, or sufficient training data. A study
along these lines, however, is not within the scope of the present work as noted earlier.

In Table 3, we provide statistics on the influence of the number of neurons for fixed layers. We use 3-layer
networks and medium sized training data for this set of experiments. All three levels of DoF for the networks
as given in Table 1 are studied. The results in terms of 'mean’ and ’deviation’ indicate that a large number of
neurons gives typically better approximations when compared to the smaller size of DoF's. However, we also
observe that the deviation and the maximum error increases with the number of DoF. This can be attributed
to an increase in training error for increasing DoF's.

Next we present some computational results where we use the learning-informed PDE as constraint when
numerically solving the optimal control problem (4.51). Here we consider a target function g = y* + ¢ where 0 is
a variable denoting zero-mean Gaussian noise of standard deviation &, for different values of . For convenience
of comparison, we take y* to be the solution from the last set of experiments. We denote by uy and @ the optimal
controls with respect to the learning-informed PDE constraint and the original PDE constraint, respectively,
both computed by the semi-smooth Newton algorithm as described in Section 4.5 with a fixed number of 30
iterations which turns out to be sufficient for this example, as the sum of all residual norms of the first-order
system (4.57) is less than 10710, As before, ynr and j are the states corresponding to ux and 1, respectively.
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TABLE 4. Optimal control with learning-informed PDEs using different layers, different size of
networks, and a variety of training data.

Small DoF Medium DoF Large DoF

luv —ally Nlyv = 9lle  lywv =9l Nuwv —ally luv =3lle  lynv =gl Nuwv —ally Ny =3l lyn =7l

Small size of training data

1-L  0.5578 0.0330 0.1609 0.3055 0.0283 0.1423 0.2548 0.0194 0.1143
3-L  0.3426 0.0274 0.1246 0.3597 0.0343 0.1777 0.3932 0.0354 0.1722
5L 0.3888 0.0183 0.1041 0.1771 0.0117 0.0666 0.3986 0.0359 0.1698
Medium size of training data
1-L  0.2145 0.0071 0.0413 0.1153 0.0072 0.0587 0.0655 0.0029 0.0244
3-L  0.1647 0.0069 0.0419 0.0985 0.0082 0.0423 0.0623 0.0046 0.0287
5L 0.2971 0.0271 0.1223 0.0325 0.0014 0.0081 0.0736 0.0064 0.0414
Large size of training data
1-L  0.1417 0.0089 0.0481 0.0920 0.0040 0.0266 0.0447 0.0009 0.0055
3-L  0.0566 0.0020 0.0126 0.0467 0.0024 0.0122 0.0076 0.0004 0.0020
5-L  0.1239 0.0070 0.0435 0.2135 0.0098 0.0645 0.0192 0.0018 0.0115

Using the same noisy data g (Gaussian noise of mean zero and deviation 0.1) with o = 0.001 in all the tests.

In general, we observe in Table 4 that most combinations give similar results. This shows the robustness of
our proposed method with respect to a wide range of network architectures. Here, the presented errors are just
computed from one specific initialization.

Note that when using 3-hidden-layer networks with large DoF, we observe a clear increase in the levels of
accuracy for both the control and state variables as the training data increase from small to large size. These are
highlighted with bold font numbers in Table 4. A similar behavior occurs for 1-hidden-layer and 5-hidden-layer
networks. By fixing the 3-hidden-layer networks, and for each case of DoFs provided in Table 4, we are next
interested in exploring how the noise level ¢ and the cost parameter « further influence the optimal control
approximation.

From Table 5 we draw several interesting conclusions. In both, the noisy and noise free case, we have that the
error ||uxs — @ is proportional to the accuracy of the neural network approximation, and inverse proportional
to y/a. This verifies the results of Theorem 2.6 and Theorem 2.5, respectively. The dependence on « could only
be proved for the noise-free case in Theorem 2.6. Therefore the convergence rates provided by our tests here
seem to indicate that better convergence rates or more relaxed assumptions appear plausible.

4.7. Numerical results on optimal control of stationary Allen-Cahn equation

Next we study the optimal control of the Allen-Cahn equation, which involves a nonmonotone f and reads
1, 4 .
—Ay+—-(y°—y)=u in Q, 9Jy=0 on 09, (4.65)
n

with 7 > 0. In our numerical tests, we set 7 = 0.004, use Q = (0,2)2, and h := 277. Observe that this f also
trivially satisfies Assumption 4.1.

We focus on 3-hidden-layer neural networks with 10, 12 and 10 neurons per layer yielding DoF= 293. In each
hidden layer we use log-sigmoid transfer functions. Note also that since the input data here does not depend
explicitly on the spatial variable x, i.e., f = f(y), both the input and output layers have only one neuron,
respectively. This is different to the previous test examples.
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TABLE 5. Optimal control on learning-informed PDEs with networks by 3 layers networks, but
different sizes on the neurons (DoF), and a variant amount of training data.

Noise free Mild noise ¢ = 0.05 Larger noise 6 = 0.5

luax —ally  llyw =3l luv =3l Nuv —ally  llyuv —3lly lyuwv =3l luxv —ally  lluv =3l lyv — 3k,

a = 0.00001
3-L-S NN  1.9523 0.0210 0.2041 1.9518 0.0210 0.2043 2.1480 0.0213 0.2085
3-L-M NN  0.1187 0.0018 0.0253 0.1190 0.0018 0.0253 0.1264 0.0018 0.0254
3-L-L NN  0.0213 0.0004 0.0046 0.0215 0.0004 0.0046 0.0258 0.0004 0.0047
a = 0.0001
3-L-S NN 1.3489 0.0395 0.2695 1.3560 0.0397 0.2705 1.4181 0.0410 0.2796
3-L-M NN 0.1361 0.0032 0.0314 0.1357 0.0032 0.0314 0.1384 0.0032 0.0315
3-L-L NN 0.0137 0.0005 0.0039 0.0136 0.0005 0.0039 0.0136 0.0005 0.0039
a = 0.001
3-L-S NN  0.3903 0.0350 0.1706 0.3917 0.0352 0.1714 0.4067 0.0371 0.1792
3-L-M NN 0.0628 0.0046 0.0286 0.0630 0.0046 0.0286 0.0671 0.0046 0.0293
3-L-L NN  0.0076 0.0004 0.0020 0.0076 0.0004 0.0020 0.0080 0.0004 0.0021
a=0.01
3-L-S NN  0.0570 0.0066 0.0209 0.0572 0.0066 0.0210 0.0592 0.0069 0.0217
3-L-M NN  0.0271 0.0020 0.0080 0.0271 0.0021 0.0081 0.0277 0.0022 0.0083
3-L-L NN  0.0035 0.0003 0.0008 0.0035 0.0003 0.0008 0.0035 0.0003 0.0008

Variant level of noise in g with respect to different o and coarser to finer neural networks.

Training performance Testing performance
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FIGURE 1. Performance on learning the nonlinear function f of (4.65).

In our tests, we obtained the training data by solving the PDE in (4.65) with

1000, 2 € Q':=(0,2) x (0,1),
—1000, =€ Q/Q.

In order to train the neural networks described above, the solution of the PDE is subsampled uniformly at a
rate of 0.25, that is H = 0.08. The performance of the network along the training iterations is given in Figure 1.
In order to do the training, we randomly subdivided the total number of known input and output pairs into the
training data and the testing data at the ratio 0.85/0.15. Note that only the training data appear in the loss
function. As we see in Figure 1, the mean square error (MSE) on the testing data is quite similar to the one of
the training data, since this is essentially an interpolation problem.
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FIGURE 2. Functions F', f and its first order derivative f’ along with the corresponding approxi-
mations learned from a neural network. We note that the range of the learning-informed function
is influenced by the training data. The second row of images shows that the functions are well-
approximated by their neural network counterparts in the ranges where the training data cover
well, which here is around the interval [—2, 2].

As f has an one dimensional image space, it suffices that the data u? correspond to a PDE solution that has
a relatively wide range of values. Indeed, using our choice of u¢, the value of the corresponding solution y varies
between —2.5 and 2.5 which turns out to be sufficient for learning f.

In Figure 2, we provide the plots of F(z) = f_zl f(¢t) dt, the function f and its derivative f’ on [-K, K] C R,
(K =10 and K = 2, respectively) as well as their learned counterparts.

We observe that all the learning-informed versions preserve the key features of their exact counterparts very
well. This is due to the fact that the training data cover exactly those ranges where important features are
located.

As a next step, we consider the corresponding optimal control problem when the function f is replaced by
its learned version. Notice that both the original and the learning-informed PDE admit no unique solution.
Therefore the initial guess for the Newton iteration is crucial for the convergence to the final solutions. The
algorithm for solving the optimal control problem for both PDEs is a combination of the semi-smooth Newton
algorithm for (4.57) (with 0 as the initial guess) and the SQP algorithm. The switch between the solvers operates
as follows: Consider the summed up residual of the four equations in (4.57) with respect to their norms in the
spaces H~1(Q), H=1(2), L*(Q) and L?(2), respectively. Then we start our algorithm by calling the semi-smooth
Newton iterations, and when the residual drops below a threshold value (e.g., 5 in our tests), then we switch to
the SQP algorithm. The iteration is stopped if the residual is smaller than 1071°, or a maximum of 30 iterations
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FIGURE 3. Merit function (left) and residual norm (right).

is reached. We fix a = 107% and C,q := {u : —50 < u < 50}. Next consider g to be some polarized data preferring
the values —1 and 1 and representing two distinct material states, e.g., a binary alloy; see Figure 4.

In Figure 3 we show the plots of the merit function values and also the overall residual of the first-order system
in (4.57). The increasing part in the first few steps in the left plot (merit function) is due to the initilization of
SSN while full step length is accepted. We notice that the threshold is reached by 10 overall iterations including
also the SSN initialization steps.

Since neither the optimal control problem nor the PDE admit unique solutions, many local minima make the
semi-smooth Newton algorithm rather sensitive to the initial guess. Concerning SQP we note here that enforcing
the PDE and the box constraints too strongly in the early iterations, might result to the SQP algorithm getting
trapped at some unfavorable stationary point. This has been numerically observed, e.g., when initializing the
SQP algorithm by zero. In our tests, the combination of the semi-smooth Newton algorithm with the SQP
algorithm, however, turns out to be robust against the aforementioned adverse effects. From Figure 4 (right
plot) we observe a high accuracy approximation of the solutions of the learning-informed control to the solutions
of the original control problem. Both, the PDE constraint and also the box constraint are satisfied with high
accuracy. We finally remark that the computational effort for solving the learning-informed optimal control
problem is almost identical to the one corresponding to the exact f. We note however that the former does not
include the time needed for training the neural network as this is done offline.

5. APPLICATION: QUANTITATIVE MAGNETIC RESONANCE IMAGING (QMRI)

According to [20], we consider the following optimization task in gMRI:

1 o}
minimize 3 |1PF(y) — g||§{ + 5 ||u||%]7 over (y,u:= (T}, Tp,p) ") €Y x U,

oy . yi(t) ya(t) ys(t) — pme _

s.t. E(t) =y(t) x yB(t) — ( o T T , t=t1,...,1L, (5.1)
y(0) = pmo,
u € Cod,

where 0 < t; < ... <tr, LEN, ue€ U :=[H'Q)]® and Y := [L3(Q)%]F with Q C R? the image domain,
H= [LQ (K)Q]L with K the Fourier space. By F : Y — H we denote the component-wise Fourier transform
acting on (y1,y2), i.e., the first two coordinates of y, and P : H — H is a subsampling operator.

Further, g = (gl){‘:1 € H are (noisy) data, and C,q is an nonempty, closed, convex, and bounded subset
of [L®(Q)T]3 with L*®(Q)T = {f € L>(Q) : essinff > €}, for some € > 0, which takes care of practical
properties of physical quantities. The system of ordinary differential equations in (5.1) with initial value pmg
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Q

FIGURE 4. Optimal control of the stationary Allen-Cahn equation. First row: states (right:
target data g; left and the middle: optimal states of learning-informed and original PDE,
respectively); second row: difference images of states (left and the middle: differences (in abso-
lute values) of optimal states to target state g; right: actual difference between the two optimal
states |yn — 7| in the first row; third row: left and middle the optimal controls corresponding
to the learning-informed and original PDE respectively, as well as their difference |uxs — @| on
the right.

represents the renowned Bloch equations (BE), which model the evolution of nuclear magnetization in MRI
[9] with the parameters v and m. being fixed constants. In our context, the external magnetic field B is
assumed to be a uniformly bounded function in time. To accommodate different scaling, we consider ||uH2U =
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o 2 2
D ull{p2 () + : [ul{pr1 (0 » and

|u\[2H1(Q)]3 = /Q (al,l |VT1|2 + a1 2 |VT2|2 + Q1.3 |Vp\2) dl’,

with ap > 0 and a;,; > 0 for j = 1,2, 3. For the ease of presentation, below we omit these scaling parameters.

Remark 5.1. One readily checks that the solutions to the BE are bounded uniformly as long as 737,75 are
positive values and the magnetic field B(¢) is bounded. This property persists if either of the two terms on the
right hand side of the equation is missing.

Fixing the external magnetic field B according to an excitation protocol with a specific sequence of frequency
pulses (cf., e.g., [20]) and associated echo times {t;}X ; we have u ~ {y(t;)}%, yielding the solution map
I : Coq — [(L%°(2))%]L. Using this notation we have Q(-) = PF(II(-)). Noting that I1(Ty, Ty, p) = pll(T}, Ty, 1)
we show first continuity and differentiability results for I1(#) := II(T1, T, 1) where 6 := (T1,T5)". Even though
for simplicity we do that for § € [L2°(€2)1]2, with € > 0, we note that the map II can be continuously extended
also for 77 = 0 and/or T; = 0.

Proposition 5.2. The operator I : [L°(Q)F]? — [(L=(Q))3]Y is locally Lipschitz continuous, and Fréchet
differentiable with locally Lipschitz derivative.

Proof. Let 0,0% € [L>°(Q)T)? be given with associated solutions y,y® of the BE, respectively. Suppressing 2 € Q
in our notation, subtracting the BE for both 6 values, and letting r* := y — y® as well as R() := diag(
we get

11 L)
T Ty Ty /0

or?
ot

(t) = r*(t) x yB(t) + R(0)r* = (R(6%) — R(9)) (y*(t) — (0,0,c)) ", r*(0) = 0. (5-2)

This equation and its homogeneous counterpart (i.e., with zero right hand side) admit unique solutions,
respectively, cf. [52], for instance. According to Theorem 3.12 of [52] the solution to (5.2) is

T“(t):/o ©(t,s) (R(9%) — R(9)) (y°(s) — (0,0,e) " )ds, (5:3)

where ®(t, s) is the principal matrix consisting of the three independent solutions of the homogeneous coun-
terpart of (5.2) resulting from the initial data h(s) = e;, ¢ = 1,2, 3, with {ej, e2,e3} the canonical orthonormal
basis in R3. Note that it is easy to check that any such solution is uniformly bounded both in ¢ > 0 and 6 > 0
almost everywhere. Since R(-) restricted to [e,00) is Lipschitz (modulus L > 0), (5.3) can be further estimated
as follows

r* (1)) < L/O (. 5)(y*(s) — (0,0,¢) ")|ds [6* — 6] < L(1) |8* — 6],

for all 8,6 € [L2°(2)*]2. Note that the above estimate and in particular L(t) can be considered independent of
the spatial variable « due to the uniform bound on the solution of BE for every element of C,q (cf. Rem. 5.1).
Therefore we have for some Ly > 0 that

ly“(t) =y )llipa)s < Lullf® — Oljzeq)2 for all 1 < g < oo.

By considering the above estimate at {t;}%; we get the asserted local Lipschitz continuity of II.
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We now proceed to Fréchet differentiability. Let 8 € [L>°(Q)*]?, v € [L*°(Q)]? be an arbitrary vector, and
let 9 = 0 + av where a > 0 is such that 6% € [L>°(Q)*]2. Dividing (5.2) by a and letting pg§ := =-, we get:

orh (t) — p(t) x yB(t) + R(0)p} = (R(6%) — R(9))

ot a (ya(t) - (Oa 0, ye))Tv pg(O) = 0. (54)

Existence, uniqueness and representation of a solution again follows from Theorem 3.12 of [52]:

i) = [ (e EEEZEO ) (0,0, .

Recall that R(-) is continuously differentiable for # > 0 and time independent. For a | 0 and pg := lim,_o pj,
we have

mwaéﬂmmwmw@—mawﬂw

where R’(0;v) denotes the directional derivative of R at # in direction v. By considering again the uniform
boundedness with respect to the spatial variable and pointwise evaluation at {t;}X |, we get that pp = I’ (0;v)
is bounded, and also linear with respect to the direction v € [L>°(2)]2. Thus, II is Gateaux differentiable.
Notice further that, due to R’(-;v) being locally Lipschitz, we have also the local Lipschitz continuity (modulus
L,, > 0) of the directional derivative:

Ipoe — pol? < L&, 10 — 0|7 |0 (100 ()2 for all 6,6 € [L°(2)T]?, and 1 < ¢ < oo, (5.5)

with the above estimate again independent of the spatial variable. This together with the linearity of the
Gateaux derivative implies the Fréchet differentiability of II. Finally we also conclude the Lipschitz continuity
of the Fréchet derivative:

| (o) = @)

[Lo°(Q)]3L < Ly, 6% — 9||[LOC(Q)]2 ”U”[LOO(Q)P . (5.6)

This ends the proof. O

Note that the continuity and differentiability of II = pf[ for u € Cuq follows readily as p € L>=(Q). As a
consequence, existence of a solution to (5.1) can be shown similarly to Proposition 2.1.

Remark 5.3. The estimate (5.5) indicates that for every u = (07,p)" € Cuq, and h € [L>(Q2)]? sufficiently
small, we even have

Hﬁ(e +h) — T1(0) — ﬁ’(e)hH = O(||hlPuqy:)  forall 1< g < oo.

[La()]3F

We also note that due to properties of the Bloch operator, we have that both TI'(8) : [L2(Q)]?> — [L?(2)]*” and
Q' (u) : [L2(Q)]* — [(L*(K))?]* are bounded linear operators, respectively, as soon asu = (07, p) T € Cqq. In this
sense, we consider in the following IT'(9) and Q’(u) to be elements in £([L?(Q2)]2,Y) and L(U, H), respectively.

We are now interested in finding a data-driven approximation IIxr(u) := pN (11, T2) of II and in solving the
reduced problem

o 1 2 Qa9
minimize — u) — + — ||ul|;;, overu e U,

s.t. u = (Tl,TQ,p)T S Cad,
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with Qa(u) = PF(Mn(T1,Ts,p)). Existence of a solution to (5.7) can again be argued similarly to
Proposition 2.1.
We finish this section with the corresponding approximation result.

Proposition 5.4. Let 0 = (Ty,T2) ", u = (07,p)7 € Cuq. Assume the following error bounds in the neural
network approrimations

HN(@) - ﬁ(&)” and HN’(&) - ﬁ’(e)H <e,

[Le=(@)3]F L(L2()7,[L>=(2)°]F)

Then we have

1Q(u) — Qn (W)l < Ce, (5:8)
1Q"(u) = Qu (Wl v, iy < Cre+ Caen, (5.9)

for some positive constants C', C1 and Cs which are all independent of € and €.

Before we commence with the proof, note that the above assumptions are plausible in view of u € Cpq C
[(L22(£2))*]? and Theorems 3.1 and 3.2.

Proof. The first estimate is straightforward from the definition of @

< .
H(H))H[B(Q)S]L < Ce, (5.10)

1Q@) — Qu ()l = [PF©) ~T10))| < ||ovie) -

since Cuq C [L>(2)]? is a bounded set.
To see the second estimate, notice that for every v := (vy,v2,v3) " € [L3(Q)]?,

Q' (uw)v = PF(v111(0)) + PF(pIl' (8)(va,v3) ), (5.11)

and similarly for @Q/,. Thus,

1@ () = Qu(w)oll; <C1 [N (6) —110)|

o HN’@ _ 10 H
FC AW ~TO| . aayp = @ie)

(Lo (3L [v1llr2(e)

[ (v2, v3) L2 ()2

which ends the proof. O

Finally, we show the Lipschitz continuity of @ and @Q’. For the learning-informed versions this is done similarly.
Using the isometric property of the Fourier transform and the triangle inequality, we get for every ug, up € Caqg
and some C' > 1:

1Q(a) = QUus)llyy < C (IIpa = poll ey + 160 = Ol a2 -

Similarly, we estimate ||(Q'(ua) — Q' (us))v|| ; assuming that v is unitary:

(@ (1a) = @ ()l
< |[PF@ e 1102 |+ | PF ((0r11(62) — pall'(02)) o2, 0a])

<Lg 61 - 92||[L2(Q)]2 +llp1 — P2HL<>c(Q) + Ly, ||P2||L<><>(Q) 161 — 92||[L2(Q)]2 :

I
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Here, we use the fact that F is a unitary operator, Hﬁ(e)H[Loo(Q)fi]L is uniformly bounded, and Ly and Ly, are
the Lipschitz constants of II() and II'(6), respectively.

5.1. Numerical algorithm

For the numerical solution of the reduced optimization problem associated with the present gMRI problem, we
adopt the SQP method, i.e., Algorithm 1, from the previous application to the gqMRI setting. The only difference
is that we do not need the Newton iterations in Step (al) there. Recall that now we have u = (T1,T%,p) . In
comparison to the previous PDE examples, the sensitivity of the reduced objective functional in (5.7) is directly
available as

Tar(u) = (pWN'(T1, T))*\ N(T1, T2)) " F*(F(pN (11, T2)) — g) + a(ld = A)(T, Ty, p) . (5.12)

Further, in every QP-step one is confronted with solving

1
minimize (Jx(ug), R)u=v + §<Hk(uk)h, hyu~u over h e U (5.13)

s.t. ug +h € Cquq,
where now Hj(uy) is the following symmetrized version of the Hessian of Jy at uy € Cqq:
(pN'(T1, T2))* \ N (T1, To)) T F* F(p(N'(T1, T2)), N (T1, T2)) + a(1d — A).

In the following tests, we choose g = 1, e = 107°, » = 0.618, x = 1072, and & = 0.5. We stop the SQP
iteration when the norm of the residuals of the first-order optimality system drops below a user-specified
threshold value of 1072 or a maximum of 40 iterations is reached. The regularization parameter is g = [1,1,1] x
10719 for the L? part in the regularization functional in (5.7), and a; = [1,20, 2] x 1079 for the H' seminorm part
in (5.7), with respect to T1, T», p, respectively. The parameter ¢ in the complementary constraint is chosen
to be 10%; in the numerical tests, which is different to the previous examples. The values of all remaining
parameters in Algorithm 1 not explicitly mentioned here, are kept the same as in the previous tests. We notice
here that due to the analytical structure of the problem, the primal-dual active set algorithm for this example
is equivalent to a SSN approach only in the discretized setting. We refer to [33] for a path-following SSN solver
which works in function space upon Moreau-Yosida regularization of the indicator function of the constraint
set.

5.2. Numerical results on qMRI

For the generation of the training data, we use the explicit Bloch dynamics of [18] where a specific pulse
sequence with acronym IR-bSSFP (short for Inversion Recovery balanced Steady State Free Precession) is
considered. Let (M;)%, denote the pertinent explicit solution. This yields II(u) = p(M;(T1,T2))f,, with
u = (T1,T2,p) 7. The MRI tests are implemented based on an anatomical brain phantom, publicly available
from the Brain Web Simulated Brain Database [12, 14]. We use a slice with 217 x 181 pixels from this
database and cut some of the zero fill-in pixels so that we finally arrive at a 181 x 181-pixel image. The
selected range for u reflects natural values encountered in the human body. This gives rise to the box constraint
Cod := {u= (T1, T, p)" : Ty € (0,5000), T3 € (0,1800), p € (0,6000)}. In Figure 5, we show the images from the
brain phantom for ideal parameter maps 77, 15 and p.

Loss function and training method For each residual of two neighbored images in the time series, we
use the mean squared error as the loss function and the Bayesian regularization algorithm based on the
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FIGURE 5. Simulated ideal tissue parameters of a brain phantom.
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TABLE 6. The architecture of every sub-network. Both input and output layers have two
neurons.

HL1 HL2 HL3 DoF HL1 HL2 HL3 DoF HL1 HL2 HL3 DoF

Small DoF Medium DoF Large DoF
1-L-NN 24 - - 122 75 - - 377 130 - - 652
2-L-NN 7 10 - 123 17 16 - 373 23 22 - 643
3-L-NN 5 8 5 120 10 15 10 377 15 18 15 650

Levenberg-Marquardt method for the training of the networks described below. The learning algorithm and
the setting are the same as the previous examples.

Architecture of the network In order to approximate the Bloch solution map at a given time we proceed as
follows: Let M be the learned approximation of M, i.e. M;(T1,Ts) ~ M;(T1,T3),1 =1,..., L. Then in order to
be consistent with the ODE structure, we propose to use a a family of sub-networks Mg, to learn the difference
Ml - Mo, i.e.,

My(Th, Ty) = Mo(Th, To) + Ney(Th, To), 1=1,...,L, My(Ty,Tz) = Mo, (5.14)

with sub-networks {Ng, }/~,. The map (M;)~, is then simply approximated by the map (M + Ne)E .

We use sub-networks with a total number of hidden layers equal to 1, 2, or 3. In each case, we design the
architecture at every layer so that the total degrees of freedom in © are essentially the same. The detailed
description is summarized in Table 6. In total, we test 9 different architectures. For every network, we use the
'softmax’ activation function in the layer next to the output layer, and the ’logsigmoid’ function in all other
hidden layers. The difference to the previous optimal control examples is that the architecture applies to every
sub-network which is of residual type, as described above.

Training and validation data The training including also the validation data are generated from the
dictionary which has been used in methods for magnetic resonance fingerprinting (MRF), e.g., [18, 40]. These
are time series resulting from the dynamics, such as e.g. IR-bSSFP, which was introduced in [49], given the
initial value My = (0,0, —1). We fix the length of the pulse sequence to be L = 20. Of course, other numerical
simulations of the Bloch equations can also be proper options as input-output training data. We test each
of the networks with architectures according to Table 6 using three levels of training data, which we term
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TABLE 7. Error comparison for gMRI: Using Bloch maps by networks with different layers,
different size of neurons, and a variant of training data.

Small DoF Medium DoF Large DoF
T T p M@®) T T, p M(0) T T, p M(0)

Small training data
1 Layer NN 0.084 0.056 0.004 0.016 — — — — — — — —
2 Layer NN 0.093 0.0564 0.005 0.013 — — — — — - — —
3 Layer NN 0.087 0.052 0.009 0.012 — — — — — — — —
Medium training data
1 Layer NN 0.084 0.058 0.003 0.004 0.089 0.052 0.002 0.005 — — - -
2 Layer NN 0.143 0.060 0.006 0.004 0.090 0.052 0.005 0.003 — — - -
3 Layer NN 0.086 0.051 0.003 0.004 0.087 0.051 0.004 0.002 — — - -
Large training data

1 Layer NN 0.120 0.078 0.005 0.002 0.120 0.081 0.004 0.0014 0.090 0.050 0.004 0.0009
2 Layer NN 0.094 0.057 0.006 0.001 0.094 0.043 0.002 0.002 0.089 0.056 0.004 0.0012
3 Layer NN 0.096 0.059 0.005 0.0007 0.087 0.051 0.004 0.0004 0.087 0.051 0.004 0.0006
Method [20] 0.102 0.094 0.004 — proposed Algorithm using exact Bloch 0.084 0.051 0.003 —

For 25% Cartesian subsampled k-space data with Gaussian noise of mean 0 and standard deviation 30.
llz—z"||
(BN

Relative error computed from for x = T3, T, p, M where ||| is the discrete 2-norm.

’small’, 'medium’ and ’large’. For the small size training data, we generate parameter values for (T1,T5) from
Dy :=(0:400 : 5000) and D5 := (0 : 100 : 1800) (in MATLAB notation) which contribute 247 entries of time
series; for the medium size training data from D; := (0 : 200 : 5000) and D5 := (0 : 50 : 1800) with a total of
962 entries; and for the large size data Dy := (0 : 50 : 5000) and D := (0 : 20 : 1800) resulting in total in 9191
entries. The input data of the neural networks consist of elements of the set Dy x Dy. Note here that we include
0 for both 77 and 75, respectively, to take care of the marginal area in the imaging domain. The output data
will be the Bloch dynamics corresponding to each pair of elements in D7 x Dy. Both input and output data
are normalized to pairs whose elements take values in the range [—1, 1]. This is done by mapminmax function in
MATLAB.

For the SQP we consider the image domain to be [0, 1] x [0, 1], thus the spatial discretization size is h = 1/180.
We compare the results of the learning-based method with results from the algorithm proposed in our previous
work [20]. The initialization to the SQP algorithm and also the algorithm in [20] is done by using the so-called
BLIP algorithm of [18] with a dictionary resulting from the small size D; x Dy. The parameters are tuned as
in [20]. Concerning the degradation of our image data we consider here Gaussian noise of mean 0 and standard
deviation 30.

Concerning the results reported in Table 7, the columns of M () reflect the approximation accuracy to the
discrete dynamical Bloch sequences using various neural networks. A smaller value refers to a smaller error, or in
other words to higher accuracy in the approximation. However, higher accuracy in the Bloch solution operator
approximation does not necessarily result in a better estimation of the T7, T» parameters. For this purpose, note
that differently to the previous example, here the error is evaluated against the ideal solutions. The dashes in
Table 7 belong to cases where the training data are not sufficient to guarantee well enough learning under the
current setting our paper. We observe that the results are varying slightly under different network architectures
and also when using different volumes of training data. In particular, we have the observations: (i) When the
training data is sufficiently rich, with the same number of hidden layers, then the larger the number of neurons
the better becomes the approximation to the Bloch mapping. However, this does not mean necessarily better
to the estimated parameters in terms of the error rates provided. (ii) We find that the small DoF networks with
small volume training data achieve already almost the same accuracy as the ones using medium and large DoF
networks. The results are almost as good as using SQP with the exact Bloch solution formula. We have also
observed that the SQP method with learning-based operators can be computationally more efficient than the one
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with the exact Bloch operators. This is due to the fact that evaluating the learning-based operator can be much
cheaper than solving the exact physical model, although a learning process has to be performed before-hand.

The images produced by the proposed algorithm with a learning-informed model are based on the 1-hidden-
layer network with a small size of DoF which is trained with medium volume data. We can see that the proposed
approach clearly gives better results for the recovering of the quantitative parameters when compared with the
methods in [20] and BLIP [18]. In particular, we observe the Tj, T» parameters estimated by the proposed
method are significantly better than the results from the other two methods in terms of spatial regularity. In
particular, some artifacts are avoided by the proposed method. This is due to using an H! term for u in the
objective while the method in [20], for instance, uses an L? term only.

We notice that the method in [20] is superior only if the noise in the data is small. The learning-informed
operator could also be applied yielding results similar to those of the original method [20]. Since for real MRI
experiments, the k-space data may be contaminated by different sources of noise, certain spatial regularization
could help to stabilize solutions. The proposed method in this paper seems to be new to qMRI in this respect,
since previous methods typically use pixel-wise estimation so that spatial regularity is harder to enforce. Along
this line, one may consider more sophisticated regularization methods such as, e.g., total variation or total
generalized variation regularization, to take care of spatial discontinuities. Such a study, however, is clearly
beyond the scope of the present paper. In Figures 6 and 7, we provide visual comparison of results from
different methods for quantitative MRI. Particularly, we compare to the method proposed by the authors in
[20] assuming knowledge of the exact Bloch solution map and also the BLIP algorithm in [18] in which the fine
dictionary (i.e., a large size data set) is used.

6. CONCLUSION

In this paper, we have proposed and analyzed a general optimization scheme for solving optimal control
problems subject to constraints which are governed by learning-informed differential equations. The applications
and numerical tests have verified the feasibility of the proposed scheme for two key applications. We envisage that
our work will provide a fundamental framework for dealing with physical models whose underlying differential
equation is partially unknown and thus needed to be learned by data, with the latter typically obtained from
experiments or measurements. Qur approach avoids learning the full model, i.e., learning directly the solution
of the overall minimization problem as this could be on the one hand too complicated and on the other,
it could render the method more towards being a black box solver. By learning only a component, i.e., a
nonlinearity, or the solution map of the underlying differential equation, the method is kept more faithful to
the true physics-based model.

An important factor for the applicability of the proposed framework is the learnability of the operator
resulting from differential equations. We observed that the uniform boundedness of the range of the input and
output data (state variable) played a crucial role, stemming from the fact that the density of neural networks
holds in the topology of uniform convergence on compact sets. As we observed in the double-well potential
example, learning the nonlinearity in its whole range is not necessarily needed, but only in a range in which the
state variables lie, with this range being known due to a priori estimates. Indeed, in the stationary Allen-Cahn
control problem, the learning is only performed over a very local part of the nonlinearity (the double-well part),
giving an almost perfect result. This shows some potential for reducing the training load by properly analyzing
the properties of the nonlinearities.

From the quantitative MRI example we furthermore observed that the embedding of the learned operator in
the reconstruction process led to a reduction in the computational load, since it avoids a repetitive solution of
the exact physical model.

A series of future studies arise from the present work. The analysis implemented here asks for smooth neural
networks approximating (part of) the control-to-state map. A theory incorporating nonsmooth neural networks
is an important extension as this will include networks with ReL'U activation functions. Further studies can also
incorporate the network structure (in the spirit of optimal experimental design), questions regarding statistical
sampling as well as aspects of the training process into the overall minimization process to further optimize and
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FIGURE 6. Estimated tissue parameters from subsampled and noisy measurements. First row:
Solution using the BLIP method in [18] using a fine dictionary; Second row: Solution using
method in [20]; Third row: Our SQP solution with learning-informed model small size DoF,
1-hidden-layer networks and trained with medium size data. Fourth row: Our SQP solution
using the analytical formula for the Bloch solution map.
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T1 Error Rate:0.12648 T2 Error Rate:0.10194

T1 Error Rate:0.1023 T2 Error Rate:0.09414

.
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FIGURE 7. Relative errors of the estimated tissue parameters from subsampled and noisy mea-
surements. First row: Error map from BLIP [18] using a fine dictionary; Second row: Error map
from [20]; Third row: Error map for our SQP solution with learning-informed model. Fourth
row: Error map for our SQP solution with exact formula for the Bloch map as [20]. All errors

are normalized.
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robustify the new technique. Finally, the errors due to the early stopping of the numerical algorithm as well as
due to the ones from the numerical discretization, can be incorporated in the a priori error analysis. This could
be of benefit for designing more suitable network architectures.
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