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a b s t r a c t 

Cardiac muscle cells can exhibit complex patterns including irregular behaviour such as 

chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac 

death. Suitable mathematical models and their analysis help to predict the occurrence of 

such phenomena and to decode their mechanisms. The focus of this paper is the inves- 

tigation of dynamics of cardiac muscle cells described by systems of ordinary differential 

equations. This is generically performed by studying a Purkinje cell model and a modi- 

fied ventricular cell model. We find chaotic dynamics with respect to the leak current in 

the Purkinje cell model, and EADs and chaos with respect to a reduced fast potassium 

current and an enhanced calcium current in the ventricular cell model — features that 

have been experimentally observed and are known to exist in some models, but are new 

to the models under present consideration. We also investigate the related monodomain 

models of both systems to study synchronisation and the behaviour of the cells on macro- 

scale in connection with the discovered features. The models show qualitatively the same 

behaviour to what has been experimentally observed. However, for certain parameter set- 

tings the dynamics occur within a non-physiological range. 

© 2020 The Author(s). Published by Elsevier B.V. 
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1. Introduction 

Nowadays, mathematical modelling and numerical simulations are essential and standard approaches to study and anal-

yse real world problems and phenomena in life science. One major aim is the understanding of complex dynamics and

behaviour of these systems. For this purpose, bifurcation theory has proven to be a very helpful and powerful tool in order

to investigate dynamical systems and their (complex) dynamics, see [1–5] for an overview. Furthermore, numerical bifurca-

tion analysis has become a profitable tool in the study of (for instance) climate, neuronal and cardiac models. 

Cardiac muscle cells can exhibit complex patterns of oscillations like spiking and bursting, which is related to ion cur-

rent interactions of the considered cell. Aside from normal action potentials of a cardiac muscle cell, certain kinds of cardiac

arrhythmia can occur. This includes specific types of abnormal heart rhythms, which can lead to sudden cardiac death. In
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addition, irregular behaviour, such as (deterministic) chaos or chaotic early afterdepolarisations, has been observed in ex-

perimental as well as in computational studies, see [6,7] and the references therein. It is therefore highly interesting and

important to understand the complex behaviour and mechanism of such biological phenomena. Moreover, cardiac dynam-

ics or heart rhythms can be quite sensitive to the influence of certain drugs, which has been investigated experimentally

but also in computational studies, see e.g. [8–10] . In later years, the focus has been to continuously move towards inter-

disciplinary research, including biology, computer science, and mathematics, to tackle these issues. As a consequence, the

number of existing mathematical models based on experimental data is also continuously increasing. 

The development of a good and precise mathematical model is essential to design numerical experiments for the study

of cardiac dynamics, but also for the investigation of the influence of certain external effects such as drugs or oxidative

stress. To this end, mathematical analysis is a key to decode occurring phenomena and to validate a derived model in all

details. The newly gained information of the considered model, can then be either used to improve the model or to proceed

with the original aspiration, e.g. the investigation of optimal properties of drugs [9] . 

To this end, bifurcation theory has been utilised to investigate the dynamics of cardiac muscle cells in recent years,

see e.g. [11–14] . Continuing on this line of research, this paper highlights how useful bifurcation theory can be for the

understanding of complex cardiac dynamics and how it can be applied to find hidden features and dynamics of cardiac

single cell models described by ordinary differential equations (ODEs) through numerical investigations. 

In the end, it is the synchronisation of a large group of cells that decides whether a cardiac arrhythmia spreads or dies

out. For this reason, a brief study of how the micro-scale single cell features of these models affect the behaviour of an

ensemble of cells at the macro-scale level ( cm ) is provided. This is done by an up-scaling of the ODE system to a PDE–ODE

monodomain model. 

All of the above will be done by an in-depth mathematical and numerical investigation of the two cardiac cell models

introduced in [15,16] , where one is a model of a Purkinje cell, and the other a model of a human ventricular cell. In partic-

ular, we find new features of the considered models, such as chaos and early afterdepolarisations, and investigate how this

affects groups of cells at the tissue level. 

We find chaotic dynamics in both models considered. Similar chaotic dynamics to what we discover can be observed in

experiments, cf. [6] . However, the dynamics seems to appear in a non-physiological range. This either requires the improve-

ment of the models or the experimental validation. 

In addition, we discover EADs in the human ventricular cell model. This behaviour does seem to be within the physi-

ological range [17] , which is a validation of the model in this case. Finally, we show that the (in)validity of the models in

terms of being within the physiological range carries over to the synchronisation effects in the corresponding monodomain

models. These findings clearly highlight the advantages of bifurcation theory in the analysis of cardiac muscle cell dynamics

by detecting unexpected or maybe non-physiological behaviour of the model. 

1.1. Outline of the paper 

In Section 2 we start with a mathematical and biological description of the models and problems under investigation.

A brief background on the modelling of cardiac muscle cells and on up-scaling to a monodomain model at the tissue level

(cf. [18–20] ) is provided. Furthermore, we perform a stability analysis of the ODE system from Noble [15] , and show how

to extend this analysis to the macro-scale monodomain model. The approach is explained in detail for the four dimensional

model [15] . However, the ansatz can also be used for more complex models, see [21,22] . 

The structures of the systems in [15,16] are similar. Nevertheless, the behaviour and dynamics that they display can be

quite disparate due to different complexity and parameter settings. In Section 3 , we apply a numerical bifurcation analysis in

order to derive a complete understanding of the dynamics of the model from Noble [15] with respect to certain parameters.

The analysis is then extended to the corresponding macro-scale monodomain model. Based on the results in Section 3 , we

then continue our analysis by studying a ten dimensional version of the model from Bernus et al. [16] in Section 4 . Finally,

we close our paper with a discussion in Section 5 and then a conclusion. 

2. Biological and mathematical background 

The history of mathematical modelling of action potentials (APs) of excitable biological cells like neurons and cardiac

cells starts with the famous and pioneering Hodgkin–Huxley (HH) model from 1952 [23] . In [23] , the authors established a

mathematical approach that can be used to model APs of excitable biological cells by a system of ODEs. The first model of

a cardiac cell is the Noble model from 1962 [15] of a generic Purkinje cell. In 1991, Luo and Rudy published an ionic model

for cardiac action potential in guinea pig ventricular cells [24] . In the last decades, there has been an immense development

in the modelling of cardiac muscle cells, see e.g. [25–28] . These conductance–based models represent a minimal biophysical

interpretation of an excitable biological cell in which current flow across the membrane is due to charging of the membrane

capacitance and movement of ions across ion channels, cf. Fig. 1 . Ion channels are selective for particular ionic species.

In general, an AP is a temporary, characteristic variance in the membrane potential of an excitable biological cell from its

resting potential. The molecular mechanism of an AP is based on the interaction of voltage-sensitive ion channels. The reason

for the formation and the special properties of the AP is established in the properties of different groups of ion channels

in the plasma membrane. An initial stimulus activates the ion channels as soon as a certain threshold potential is reached.
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Fig. 1. (a) Scheme of a cardiac muscle cell [26] , where SR denotes the sarcoplasmic reticulum, I NaCa = Na + / Ca 2+ exchanger current and I NaK = Na + / K + pump 

current. (b) Physical system of a cardiac muscle cell. The dashed lines denote the ion currents, which are not included due to the lack of space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, these ion channels break open and/or up allowing an ion current flow, which changes the membrane potential. A

normal AP is always uniform and the cardiac muscle cell AP is typically divided into four phases: the resting phase, the

upstroke phase, the (long) plateau phase and the repolarisation phase. This mechanism is based on several different currents.

One example is the potassium current I K which is usually divided into a fast ( I K r ) and a slow current ( I K s ), cf. scheme in

Fig. 1 (a). 

This electrophysiological behaviour can be described by the ordinary differential equation: 

C m 

d V 

d t 
= −I ion + I stimulus , 

where V denotes the voltage (in mV ) and t the time (in ms), while I ion is the sum of all transmembrane ionic currents.

I stimulus represents the externally applied stimulus and C m 

denotes membrane capacitance. 

The model in [15] contains a single potassium current I K , while the authors of [16] merged a fast ( I K r ) and a slow

current ( I K s ) to derive their model, which is based on the system in [29] . In this paper, we will slightly modify the model

from Bernus et al. [16] , i.e. we replace I K by the currents I K r and I K s from Priebe and Beuckelmann [29] . Furthermore, the

different ion currents may depend on different gating variables, individual ionic conductances G i and Nernst potentials E i ,

i = Na , K , Ca , etc., cf. Section 2.1 . 

We want to highlight that cardiac cell models usually have different time scales and may exhibit so-called mixed-mode

oscillations [30] , cf. [31] , and/or chaotic behaviour, cf. [12,32–35] , which can be linked to certain cardiac arrhythmia. 

For instance, if there are depolarising variations of the membrane voltage, we are speaking about afterdepolarisations

(ADs). These ADs are divided into early (EADs) and delayed afterdepolarisations (DADs). This division depends on the tim-

ing obtaining the AP. EADs occur either in the plateau or in the repolarisation phase of the AP and are benefited by an

elongation of the AP, while DADs occur after the repolarisation phase is completed. EADs are resulting, for example, from a

reduction of the repolarising K 

+ currents or an enhancement in Ca 2+ currents, see e.g. [33] . Triggers for this are congenital

disorders of ion channels or the ingestion of medicaments. In general, EADs are additional small amplitude spikes (mathe-

matically speaking mixed-mode oscillations), i.e. pathological voltage oscillations, during the plateau or repolarisation phase.

They are caused by ion channel diseases, oxidative stress or drugs. Furthermore, the presence of EADs strongly correlates

with the onset of dangerous cardiac arrhythmias, including torsades de pointes (TdP), which is a specific type of abnormal

heart rhythm that can lead to sudden cardiac death, see [17,36,37] . Thus, it is highly important to understand the complex

behaviour of such biological phenomena [38] . 

Finally, we want to point out that not all of the existing cardiac cell models may include complex dynamics such as EADs

or chaos. 

2.1. A Purkinje cardiac cell model 

First, we focus on the model from Noble [15] , which reads as follows: 

d V 

d t 
= − I Na + I K + I L 

C m 

=: F, (1)

with the membrane capacitance C m 

= 12 μF 

cm 

2 and the ion currents I Na (sodium), I K (potasssium), and I L (leak current), de-

scribed by I Na = (G Na m 

3 h + 0 . 14)(V − E Na ) , 

I K = 

(
G K 1 n 

4 + G K 2 exp 

(
−V + 90 

50 

)
+ 

G K 2 

80 

exp 

(
V + 90 

60 

))
(V − E K ) , 
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and I L = G L (V − E L ) , respectively. The individual ionic conductances are given by G K 1 
= G K 2 

= 1 . 2 mS 
cm 

2 , G Na = 400 mS 
cm 

2 and

G L = 0 . 075 mS 
cm 

2 , while the Nernst potentials are given by E K = −100 mV, E Na = 40 mV and E L = −60 mV . Furthermore, the

different gating variables m, h and n satisfy the differential equation 

d y 

d t 
= a y (1 − y ) − b y y = a y − (a y + b y ) y = 

y ∞ 

(V ) − y 

τy (V ) 
, (2) 

where y represents the gating variables m, h and n , while y ∞ 

:= y ∞ 

(V ) = 

a y 
a y + b y denotes the equilibrium of the gating variable

y and τy := τy (V ) = 

1 
a y + b y its relaxation time constant with 

a h = 0 . 17 exp 

(
−V + 90 

20 

)
, b h = 

1 

1 + exp 

(
−V +42 

10 

) , a m 

= 

0 . 1 ( V + 48 ) 

1 − exp 

(
−V +48 

15 

) , 

b m 

= 

0 . 12 ( V + 8 ) 

exp 

(
V +8 

5 

)
− 1 

, a n = 

0 . 0 0 01 ( V + 50 ) 

1 − exp 

(
−V +50 

10 

) , b n = 0 . 002 exp 

(
−V + 90 

80 

)
. 

Notice that the gating variables are important for the activation and inactivation of the different ion currents, which is

needed for the ion current flows and the resulting action potential. The Noble model (1) describes the long lasting action

and pace-maker potentials of the Purkinje fibres of the heart based on the Hodgkin–Huxley formulation [23] . While the

sodium current is very similar to the one from Hodgkin and Huxley [23] , the potassium current differs in its formulation

and the calcium current is missing. Nevertheless, the solutions to system (1) closely resembles the Purkinje fibre action

and pace-maker potentials. It is shown that its behaviour in response to applied currents and to changes in ionic perme-

ability corresponds fairly well with that observed experimentally. Furthermore, the Noble model (1) is one of the earliest

mathematical models of cardiac APs which is able to produce a certain type of cardiac arrhythmia, so-called alternans in

AP duration (APD). These alternans in APD is a result of a period doubling bifurcation with respect to the cycle length, see

[39,40] . A period doubling bifurcation is a creation or destruction of a periodic orbit with double the period of the original

orbit. 

In [15] the author numerically studied the influence of the conductance G L of the leak current on the trajectory of the

Noble model (1) . We will extend this numerical study by using bifurcation analysis to derive a more detailed insight into

the behaviour of the solutions to (1) by varying G L , see Section 3.1 . 

2.1.1. Stability analysis 

The steady state or equilibrium of system (1) is determined by h ≡ h ∞ 

( V ), m ≡ m ∞ 

( V ), n ≡ n ∞ 

( V ) and solving the

algebraic equation 

F(V, h ∞ 

(V ) , m ∞ 

(V ) , n ∞ 

(V )) = 0 . (3) 

This yields X ∞ 

= (V ∞ 

, h ∞ 

(V ∞ 

) , m ∞ 

(V ∞ 

) , n ∞ 

(V ∞ 

)) T , where X ∞ 

is depending on several system parameters, cf. system (1) .

Furthermore, the Jacobian of the right hand side of system (1) evaluated at X ∞ 

is given by 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂F 

∂V 

∂F 

∂h 

∂F 

∂m 

∂F 

∂n 

1 

τh 

∂h ∞ 

∂V 

− 1 

τh 

0 0 

1 

τm 

∂m ∞ 

∂V 

0 − 1 

τm 

0 

1 

τn 

∂n ∞ 

∂V 

0 0 − 1 

τn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X ∞ 

, (4) 

where we used the fact that 

∂ 

∂V 

(
y ∞ 

− y 

τy 

)∣∣∣∣
y ≡y ∞ 

= 

∂y ∞ 
∂V 

τy − (y ∞ 

− y ) 
∂τy 

∂V 

τ 2 
y 

∣∣∣∣∣
y ≡y ∞ 

= 

1 

τy 

∂y ∞ 

∂V 

. 

Note that the location and stability of X ∞ 

is depending on the different system parameters, e.g. varying G L changes the

location and the stability of X ∞ 

, while varying C m 

changes only the stability. To determine the stability of the equilibrium

one has to calculate the solution(s) of the characteristic polynomial 

det ( J − λ1 4 ) = λ4 + a 1 λ
3 + a 2 λ

2 + a 3 λ + a 4 = 0 , (5) 

i.e. the eigenvalues of J , where 

a 1 := 

1 

τ
+ 

1 

τm 

+ 

1 

τn 
− ∂F 

∂V 

, 

h 
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a 2 := 

1 

τh 

(
1 

τm 

− ∂h ∞ 

∂V 

∂F 

∂h 

− ∂F 

∂V 

)
+ 

1 

τn 

(
1 

τh 

− ∂n ∞ 

∂V 

∂F 

∂n 

− ∂F 

∂V 

)
+ 

1 

τm 

(
1 

τn 
− ∂m ∞ 

∂V 

∂F 

∂m 

− ∂F 

∂V 

)

a 3 = 

1 

τh 

(
1 

τm 

τn 
−

(
1 

τm 

+ 

1 

τn 

)(
F 

∂V 

+ 

∂h ∞ 

∂V 

∂F 

∂h 

)
− 1 

τn 

∂n ∞ 

∂V 

∂F 

∂n 

− 1 

τm 

∂m ∞ 

∂V 

∂F 

∂m 

)

− 1 

τm 

τn 

(
∂F 

∂V 

+ 

∂n ∞ 

∂V 

∂F 

∂n 

+ 

∂m ∞ 

∂V 

∂F 

∂m 

)

and 

a 4 := − 1 

τh τm 

τn 

(
∂h ∞ 

∂V 

∂F 

∂h 

+ 

∂m ∞ 

∂V 

∂F 

∂m 

+ 

∂n ∞ 

∂V 

∂F 

∂n 

− ∂F 

∂V 

)
. 

In addition, the Routh–Hurwitz criterion implies that all characteristic exponents λi , i = 1 , . . . , 4 have negative real parts if

and only if the conditions 

�1 = a 1 > 0 , �2 = a 1 a 2 − a 3 > 0 , �3 = a 3 · �2 > 0 and �4 = �3 − a 2 1 a 4 > 0 

hold true, see [3,4,41] . Furthermore, if all Hurwitz minors satisfy �i > 0 for i = 1 , · · · , n − 1 and �n = 0 , where n denotes

the dimension of the system, we know that the system exhibits an Andronov–Hopf bifurcation. Using �4 = 0 , we get 

0 = λ4 + a 1 λ
3 + a 2 λ

2 + a 3 λ + a 4 = λ4 + a 1 λ
3 + a 2 λ

2 + a 3 λ + 

a 1 a 2 − a 3 
a 1 

a 3 
a 1 

= 

(
λ2 + 

a 3 
a 1 

)(
λ2 + a 1 λ + 

a 1 a 2 − a 3 
a 1 

)
, 

i.e. the equilibrium has a pair of purely imaginary eigenvalues λ1 , 2 = i ω 0 with ω 0 = 

a 3 
a 1 

> 0 and two further eigenvalues 

λ3 , 4 = 

−a 1 ±
√ 

a 2 
1 

− 4 

a 1 a 2 −a 3 
a 1 

2 

= 

−�1 ±
√ 

�2 
1 

− 4 

�2 

�1 

2 

. 

In general, an Andronov–Hopf bifurcation corresponds to the birth of a limit cycle, when the equilibrium changes stability

via a pair of purely imaginary eigenvalues. Usually, an Andronov–Hopf bifurcation is considered as a trigger to oscillatory

behaviour in dynamical systems and may cause normal AP and cardiac arrhythmia in a cardiac cell model. 

In case that a n = 0 , then the system exhibits a fold or saddle–node or limit point bifurcation, i.e. the equilibrium has at

least one eigenvalue which is equal to zero. A limit point bifurcation is a collision and disappearance of two equilibria in

dynamical systems, which is a turning point. 

2.2. A monodomain model of the Purkinje cardiac cell model 

Besides the study of cardiac cell models an important focus is the behaviour and dynamics of several cells, i.e. the

dynamics on a macro-scale ( cm ), where many cells are connected together and interacting with each other. To this end, we

consider the following monodomain model, i.e. extension of the ODE model (1) to a PDE–ODE model including an additional

diffusion term: 

C m 

∂V 

∂t 
= 

λ

1 + λ

1 

χ
∇ · ( M i ∇V ) − ( I Na + I K + I L ) 

∂y 

∂t 
= 

y ∞ 

(V ) − y 

τy (V ) 
, y = h, m, n in �, (6)

0 = 

�
 ν · ( M i ∇V ) on ∂�, 

where � is a bounded domain, M i denotes the intracellular conductivity tensor, λ the extra- to intracellular conductivity

ratio, χ is the membrane surface area per unit volume and 

�
 ν is the unit normal, cf. [42–44] . System (6) is a monodomain

model, meaning that equal anisotropy rates, i.e. M e = λM i in 

mS 
cm 

, are assumed in the more complex bidomain model. Here,

λ ∈ R is constant and M e denotes the intracellular conductivity tensor. Furthermore, we use λ
1+ λ

M i 
χ = 

1 
360 mS, which is the

diffusion constant originally used in [16] , unless otherwise stated. 

For a better understanding of the behaviour of cells on a macro-scale level, we follow the approach from Li et al. [45] ,

Chen and Jiang [46] , Cao and Jiang [47] to derive a linearised system of model (6) . First of all, we know that on rectangle-like

domains � := [0 , 
 1 ] × · · · × [0 , 
 n ] ⊂ R 

n the eigenvalues and eigenfunctions of the Neumann problem {−�u k (x ) = μk u k (x ) x ∈ �, 

�
 ν · (∇u k (x )) = 0 x ∈ ∂�

(7)
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are 

μ(i ) 
k 

= 

(
πk 


 i 

)2 

and u 

(i ) 
k 

= cos 

(
πkx 


 i 

)
k = 0 , 1 , 2 , . . . , i = 1 , . . . , n , 

see [48] . In general, the eigenvalue of the spectral problem (7) can be derived by multiplying the first equation of sys-

tem (7) by u k , integrating over �, using Green’s formula and applying the boundary condition. Then, one gets for the Neu-

mann problem (7) the following eigenvalues: 

μk = 

‖∇u k ‖ 

2 
L 2 (�) 

‖ u k ‖ 

2 
L 2 (�) 

. 

Now, we consider the linearised system of the monodomain Eq. (6) around an equilibrium X ∞ 

of the ODE system (3) . It

has the form 

∂ 

∂t 

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

= D�

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

+ J 

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

, (8) 

where D denotes the 4 × 4 diffusion matrix with almost everywhere zero entries except the first one, which is 

D 11 = 

λ

1 + λ

M i 

χ

1 

C m 

, 

while J is the Jacobian as stated in (4) . Define the linear operator L as 

L 

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

:= D�

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

+ J 

⎛ 

⎜ ⎝ 

V 

h 

m 

n 

⎞ 

⎟ ⎠ 

. 

Then, consider the following characteristic equation 

L 

⎛ 

⎝ 

ψ 1 

. . . 
ψ 4 

⎞ 

⎠ = μ

⎛ 

⎝ 

ψ 1 

. . . 
ψ 4 

⎞ 

⎠ , 

where ( ψ 1 , ���, ψ 4 ) 
T is the eigenfunction of L corresponding to the eigenvalue μ. Thus, let ⎛ 

⎝ 

ψ 1 

. . . 
ψ 4 

⎞ 

⎠ = 

∞ ∑ 

k =0 

⎛ 

⎜ ⎝ 

V k 

h k 

m k 

n k 

⎞ 

⎟ ⎠ 

cos 

(
πkx 


 

)
, 

where V k , h k , m k and n k are time-dependent coefficients. We can then conclude that 

∞ ∑ 

k =0 

J k 

⎛ 

⎜ ⎝ 

V k 

h k 

m k 

n k 

⎞ 

⎟ ⎠ 

= μ
∞ ∑ 

k =0 

⎛ 

⎜ ⎝ 

V k 

h k 

m k 

n k 

⎞ 

⎟ ⎠ 

, 

with 

J k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J k 11 

∂F 

∂h 

∣∣∣∣
X ∞ 

∂F 

∂m 

∣∣∣∣
X ∞ 

∂F 

∂n 

∣∣∣∣
X ∞ 

1 

τh 

∂h ∞ 

∂V 

− 1 

τh 

0 0 

1 

τm 

∂m ∞ 

∂V 

0 − 1 

τm 

0 

1 

τn 

∂n ∞ 

∂V 

0 0 − 1 

τn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (9) 

where 

J k 11 
= 

∂F 

∂V 

∣∣∣∣
X 

−
(

πk 


 

)2 
λ

1 + λ

M i 

χ

1 

C m 

k = 0 , 1 , 2 , 3 , . . . . 
∞ 
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Keep in mind that system (7) has eigenvalues 

0 = μ0 < μ1 = 

(
π


 

)2 

< μ2 = 4 

(
π


 

)2 

< μ3 = 9 

(
π


 

)2 

< · · · −→ ∞ . 

Hence, the linearised system (8) has infinitely many Jacobians J k . 

We continue by deriving an ODE model to represent the behaviour of the linearised system (8) for each mode k =
0 , 1 , 2 , 3 , . . . in close proximity to the equilibrium V ∞ 

. This is done by ensuring that the resulting system has the same

equilibrium as the Noble model (1) and the Jacobian J k . 

Then, we are in a situation where we can analyse the behaviour of a single cell on a macro-scale including the influence

of the diffusion term (dependent on k ) of the monodomain model (6) . This allows us to gain intuition on how the cells

interact. The resulting ODE system reads as follows: 

d 

d t 

⎛ 

⎜ ⎝ 

V k 

h k 

m k 

n k 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− I Na + I K + I L 
C m 

−
(

πk 


 

)2 
λ

1 + λ

M i 

χ

(V k − V ∞ 

) 

C m 

(h ∞ 

(V k ) − h k ) /τh (V k ) 

(m ∞ 

(V k ) − m k ) /τm 

(V k ) 

(n ∞ 

(V k ) − n k ) /τn (V k ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (10)

where V ∞ 

is an equilibrium for Eq. (3) . We have designed the location of the equilibrium of system (10) to be the same

as for the Noble model (1) . However, considering the stability analysis from Section 2.1 , the stability of the equilibrium

may be different. The first entry of the Jacobian J in (4) is replaced by J k 11 
. Thus, also the coefficients a j , j = 1 , . . . , 4 of

the characteristic polynomial (5) are changed. Obviously, this will affect the stability of the system (10) dependent on the

parameters λ, M i , χ , 
 and k . This indicates that the cellular behaviour of model (1) is not (necessarily) one-to-one transferred

to the behaviour and dynamics of the monodomain Eq. (6) . Nevertheless, it is a good starting point to study the dynamics

of a single cell before extending the analysis to the macro-scale. Do however note that the mode k = 0 does give us the

same dynamics as that of the ODE system (1) . 

In the discrete setting, if we choose k = 

1 
h 2 

, where h denotes the grid size, and k = 

1 
h 2 

is the biggest eigenvalue for the

discrete laplacian, the term 

−(πk ) 2 
λ

1 + λ

M i 


 2 χ

1 

C m 

= −π2 

h 4 

λ

1 + λ

M i 


 2 χ

1 

C m 

= −π2 

h 4 

1 


 2 

1 

4320 

mScm 

2 

μF 

in (10) tends to −∞ and blows up as h → 0 , which should stabilise (10) for large modes k (or refined grid size h ). Looking

at the coefficients a j , j = 1 , . . . , 4 of the characteristic polynomial (5) , we can see that a 1 , a 2 and a 3 will tend to ∞ , while

a 4 will tend to −∞ as h tends to zero and k tends to ∞ . This implies that 

�1 = a 1 > 0 , �2 = a 1 a 2 − a 3 > 0 , �3 = a 3 · �2 > 0 and �4 = �3 − a 2 1 a 4 > 0 

and thus, the numerics of the PDE will stabilise for decreasing grid size, which is to be expected. 

The same analysis can be used on 2D domains � = [0 , 
 ] × [0 , 
 ∗] , 
 , 
 ∗ > 0, by considering the slightly different term 

−(πk ) 2 
λ

1 + λ

M i 

χ

1 

C m 

(
1 


 2 
+ 

1 


 2 ∗

)
. 

A similar modification applies to a 3D cube or cuboid. For a more general geometry one can expect that the additional term

deriving from the linearisation of the monodomain model (6) is more complicated. However, the general discussion above

is expected to remain valid. 

2.3. A ventricular cardiac cell model 

As mentioned, we first investigate the Noble model (1) . Indeed, we will see that this model has some limitations. There-

fore, we will also study a human ventricular cell model, which is more advanced due to the number of included ion currents.

The description of the system in [16] for epicardial cells is similar to system (1) , but it contains more ion currents and reads

as follows: 

C m 

d V 

d t 
= −I ion + I stimulus , (11)

where I stimulus denotes an external stimulus and 

I ion = I Cab + I NaCa + I Nab + I Ca + I K + I NaK + I Na + I K1 + I to 

is depending on the fast sodium current I Na = G Na m 

3 v 2 (V − E Na ) , the slow calcium current I Ca = 

3 
5 G Ca d ∞ 

(V ) f (V − E Ca ) , the

transient outward current I to = G to r ∞ 

(V ) to(V − E to ) , the delayed rectifier K current I K and the inward rectifier K 1 current

I = G K1 ∞ 

(V )(V − E ) , respectively. 
K1 K1 K 
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In [16] the authors studied system (11) with a delayed rectifier current I K = G K x 
2 (V − E K ) , while we are considering

the delayed rectifier current I K = I K r + I K s from Priebe and Beuckelmann [29] . Here, the current I K r = G K r x r rik (V )(V − E K )

denotes the rapidly activating current, while I K s = G K s x 
2 
s (V − E K ) is the slowly activating current. Including the fast and slow

potassium current will makes the dynamics more realistic. 

Furthermore, system (11) contains the background currents I Cab and I Nab , the Na + / Ca 2+ exchanger current I NaCa and the 

Na + / K 

+ pump current I NaK , cf. Fig. 1 (a). Notice that the system is depending on 9 gating variables, i.e. m, v, d, f, r, to, x r , x s 
and K 1, satisfying the differential Eq. (2) , where d, r and K 1 are assumed to be equal to their steady states. We will consider

all gating variables as state variables, therefore the dimension of the system is 10. 

Moreover, we use C m 

= 1 . 534 μF 

cm 

2 , cf. [29] , while the individual ionic conductances are given by G Na = 16 mS 
cm 

2 , G Ca =
0 . 064 mS 

cm 

2 , G to = 0 . 3 mS 
cm 

2 , G K r = 0 . 015 mS 
cm 

2 , G K s = 0 . 02 mS 
cm 

2 and G K1 = 2 . 5 mS 
cm 

2 . The equilibria and the Jacobian are similarly

determined as for the Noble model (1) . The only difference is that we have 6 ODEs more to consider. This increases the

4 × 4 matrix J to a 10 × 10 matrix. Following the same approach as in Section 2.2 , we can derive from the monodomain

model related to system (11) with I stimulus = 40 μA 

cm 

2 and a duration of 2 s, i.e. 

C m 

∂V 

∂t 
= − λ

1 + λ

1 

χ
∇ · ( M i ∇V ) − I ion + I stimulus , 

∂y 

∂t 
= 

y ∞ 

(V ) − y 

τy (V ) 
, y = m, v , d, f, r, to, x r , x s , K1 in � (12) 

with Neumann boundary condition 

�
 ν · ( M i ∇V ) = 0 on ∂�, the following ODE system 

d 

d t 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

V k 

m k 

v k 
d k 
f k 
r k 

to k 
x r k 
x s k 
K1 k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− I ion − I stimulus 

C m 

−
(

πk 


 

)2 
λ

1 + λ

M i 

χ

(V k − V ∞ 

) 

C m 

(m ∞ 

(V k ) − m k ) /τm 

(V k ) 

(v ∞ 

(V k ) − v k ) /τv (V k ) 

(d ∞ 

(V k ) − d k ) /τd (V k ) 

( f ∞ 

(V k ) − f k ) /τ f (V k ) 

(r ∞ 

(V k ) − r k ) /τr (V k ) 

(to ∞ 

(V k ) − to k ) /τto (V k ) 

(x r ∞ (V k ) − x r k ) /τx r (V k ) 

(x s ∞ (V k ) − x s k ) /τx s (V k ) 

(K1 ∞ 

(V k ) − K1 k ) /τK1 (V k ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(13) 

where V ∞ 

the equilibrium of the voltage V of system (11) . Note that the stability analysis for system (10) and the previous

discussion also holds true for system (13) . 

2.4. Numerical methods 

For our simulations we will use MATLAB R2019b and the ode solver ode15s with a relative tolerance of 10 −13 and an

absolute tolerance of 10 −18 . For the monodomain models, the pdepe solver is used. Moreover, as initial values for sys-

tem (1) we will use V 0 = −79 . 04 mV, h 0 = 0 . 81 , m 0 = 0 . 045 and n 0 = 0 . 52 , while for the second model (11) we utilise V 0 =
−93 . 3701 mV, m 0 = 0 . 0 0 04 , v 0 = 0 . 9990 , f 0 = 0 . 8797 , x r 0 = 0 . 0042 , to 0 = 0 . 9999 , d 0 = 0 . 0 0 0 0 , r 0 = 0 . 0 0 0 0 , K1 0 = 0 . 0419

and x s 0 = 0 . 0912 , as long we do not specify anything else. The desired bifurcation diagrams will be derived utilising the

MATLAB toolboxes MATCONT and CL_MATCONT [49–51] , which are numerical continuation packages for interactive bifurca-

tion analysis of dynamical systems. 

3. Dynamics of the Noble model 

In [15] , the author mentioned a change in the dynamics of system (1) by varying the leak conductance G L . We will show

that changing G L has influence on the period of the AP as well as if the system converges into a stable equilibrium or not.

In Fig. 2 , the trajectory of system (1) is given for two different values of the leak conductance G L , i.e. G L = 0 . 075 mS 
cm 

2 and

G L = 0 . 18 mS 
cm 

2 . In Fig. 2 (a), system (1) reveals a periodic trajectory representing two APs of a cardiac single cell, while in

Fig. 2 (b) the trajectory needs certain amount of time to reach a stable periodic pattern also representing APs. This shows

that system (1) is sensitive with respect to G L , which may have an influence on the amplitude and the period T of the

trajectory given by V (t + T ) − V (t) = 0 . In addition, the initial value also has an influence on the appearing pattern (at least

locally). 
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Fig. 2. Different action potentials: Simulation of system (1) (default setting) with two different values of the leak conductance G L , where these values are 

chosen according to the observation in [15] . 

Fig. 3. Bifurcation diagram in 2D: Projection onto the ( G L , V )-plane showing the equilibrium curve and the first two limit cycle branches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Bifurcation analysis of system (1) with respect to G L 

We now systematically investigate the behaviour described above utilising numerical bifurcation analysis as done in

[31,52] . Our first step is to determine a bifurcation diagram with respect to the leak current, i.e. we choose the leak conduc-

tance G L as the bifurcation parameter. Notice that we will only consider positive values of G L , since they are the physiologi-

cally relevant ones. Mathematically and numerically we can easily extend the bifurcation diagram also to negative values of

G L . 

We start by determining the equilibrium curve, i.e. we calculate for different values of G L the corresponding equilibria,

which gives us the desired equilibrium curve. Moreover, we determine the stability of each equilibria. The equilibrium curve

we can easily calculate with a self-written routine. However, to derive a detailed enough bifurcation diagram efficiently, it

is advisable to use a robust continuation algorithm as the one mentioned in Section 2.4 . 

The bifurcation diagram of system (1) related to G L exhibits an unstable (black dashed line) and a stable (black solid line)

equilibrium branch, see Fig. 3 . The equilibrium curve changes stability via a supercritical Andronov–Hopf bifurcation (blue

dot, G L ≈ 0 . 200883 mS 
cm 

2 ) with a negative first Lyapunov coefficient. From the supercritical Andronov–Hopf bifurcation a stable

limit cycle branch (solid blue line) bifurcates, which becomes unstable (dashed blue line) via a period doubling bifurcation

(solid red square, G L ≈ 0 . 187785 mS 
cm 

2 ). Then, the limit cycle branch gains stability again via a limit point of cycle bifurcation

(solid green square, G L ≈ 0 . 193546 mS 
cm 

2 ). Furthermore, this limit cycle branch contains a second period doubling bifurcation,

which is also connected to the first one via a second limit cycle branch, cf. Figs. 3 and 4 . 

The bifurcation diagram in Fig. 3 only includes the first two limit cycle branches, as including further details would not

be particularly visible. Indeed, further branches exist as we will see below. 

Together with Figs. 4 and 5 , a nice graphical explanation of the observations in [15] appears. We can identify values

of G for which system (1) oscillates or has a stable equilibrium. Even more, we can determine the maximal amplitude
L 
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Fig. 4. Bifurcation diagram in 2D: Zoom of Fig. 3 also including the third limit cycle branch. 

Fig. 5. Bifurcation diagram in 3D: Projection onto the ( G L , n, V )-plane including several trajectories of system (1) for different values of G L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of an oscillation corresponding to G L . In addition, we also get the corresponding period of each limit cycle. We have that

the period T for G L = 0 . 075 mS 
cm 

2 is approximately 564.1345ms, while for G L = 0 mS 
cm 

2 we have T ≈ 839.5015ms and for G L =
0 . 18 mS 

cm 

2 we have T ≈ 324.2749ms. Thus, we know that the pattern of the trajectory repeats faster if G L increases before

it converges into a stable equilibrium for G L too large, which explains the observations from Noble [15] . Furthermore, from

Fig. 3 we observe that the maximal amplitude is decreasing while G L increases. 

In Fig. 4 a third limit cycle branch is also included and we focus on a smaller range of G L values, where interesting dy-

namics may appear. The next additional limit cycle branches behave very similarly to the third one, i.e. they are bifurcating

from a period doubling bifurcation, they lose stability via a further period doubling bifurcation, and stay unstable until they

converge into a period doubling bifurcation of the previous limit cycle branch. Only the second limit cycle branch behaves

slightly different — it bifurcates from the first period doubling bifurcation ( G L ≈ 0 . 187785 mS 
cm 

2 ), becomes unstable via a limit

point of cycle bifurcation, gains stability again via a second limit point of cycle bifurcation and finally, loses stability via

a further period doubling bifurcation ( G L ≈ 0 . 187308 mS 
cm 

2 ). Then, it stays unstable until it converges into a period doubling

bifurcation of the first limit cycle branch, cf. Fig. 4 . 

Starting from the second limit cycle branch, system (1) exhibits a stable period doubling cascade, which is usually a route

to chaos, cf. e.g. [35] . However, in the bifurcation diagram in Fig. 5 , where several trajectories (red lines) are highlighted for

different values of G L , no irregular or chaotic behaviour nor additional oscillations can be seen. 

The reason is quite simple: The system exhibits a stable limit cycle branch from the first limit cycle branch, which

“surrounds” the interesting dynamics of the Noble model (1) , cf. Figs. 3 and 4 . Hence, for the standard initial condition we 

do not get any sudden change in the dynamics. The trajectory will jump on to the “outer” stable limit cycle branch and

stays there. 
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Fig. 6. Simulation of system (1) with G L = 0 . 1845 mS 
cm 2 

and initial values V 0 = −40 . 8454 mV, h 0 = 0 . 0268 , m 0 = 0 . 3233 and n 0 = 0 . 5852 . 

Fig. 7. Comparison of the effect of the choice of initial values on the trajectory of system (1) : (a) shows the trajectory of model (1) at the first period 

doubling bifurcation with initial values V 0 = −40 . 8454 mV, h 0 = 0 . 0268 , m 0 = 0 . 3233 and n 0 = 0 . 5852 , while in (b) the default initial values are used. (c) 

shows the trajectory of model (1) with G L = 0 . 1865 mS 
cm 2 

and initial values V 0 = −40 . 8454 mV, h 0 = 0 . 0268 , m 0 = 0 . 3233 and n 0 = 0 . 5852 , while in (d) the 

default initial values are used again. 

 

 

 

However, if we choose an initial value from inside our limit cycle branches, e.g. one of the unstable equilibria, we will

have a sudden change in the dynamics of the system close to the period doubling bifurcations and the period doubling

cascade. For instance, Fig. 6 presents a simulation of system (1) over 150 s , which shows an irregular and chaotic behaviour.

Hence, not only the choice of bifurcation parameter is essential, but also the choice of initial values, cf. Fig. 7 . 
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Fig. 8. Bifurcation diagram with G K 2 chosen as bifurcation parameter: From a supercritical Andronov–Hopf bifurcation G K 2 ≈ 0 . 6851 mS 
cm 2 

a stable limit cycle 

branch bifurcates and determine at a limit point bifurcation G K 2 ≈ 1 . 3147 mS 
cm 2 

. 

Fig. 9. Bifurcation diagram with G K 1 chosen as bifurcation parameter: From a supercritical Andronov–Hopf bifurcation G K 1 ≈ 0 . 6664 mS 
cm 2 

a stable limit cycle 

branch bifurcates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Bifurcation analysis with respect to the potassium I K current 

Next, we analyse the dynamics of system (1) with respect to the potassium I K current. To this end, we choose one of the

two potassium conductances G K 1 
and G K 2 

. Notice that usually the I K current depends on one gating variable, cf. [14,16,24] or

one has a splitting into a fast I K r and a slow I K s current, cf. [26,27,29] . Here the situation is different, since I K is modelled as

the sum of two currents, which is not split into a fast I K r and slow I K s part, nor into a potassium current and a background

current, cf. [16,26,29] . Nevertheless, we will study the influence of a deficit in the potassium current in (1) . 

It is well known that a deficit in the potassium current may induce EADs. This was among others verified for simplistic

models in [12,14] . Using bifurcation analysis we can conclude from Fig. 8 that no EADs appear via a deficit in G K 2 
. In the

case where we combine G K 1 
and G K 2 

, i.e. consider only one potassium conductance G K = G K 1 
= G K 2 

, system (1) behaves

similarly. 

Fig. 9 shows that the behaviour of system (1) does not change dramatically under variations of G K 1 
compared to varia-

tions of G K 2 
. We see that the model (1) does not exhibit EADs via a reduced potassium current. This was also checked for

G L between 0 mS 
cm 

2 and 0 . 2 mS 
cm 

2 . 

One explanation is that the calcium current I Ca has an important influence on the behaviour of a cardiac cell, cf. [31,52] .

This current is missing in the Noble model (1) . For each additional current one gets additional ion current interactions, and

one gains additional system parameters influencing the dynamics of the system. from Erhardt [52] it is known that the ion

current interaction between the potassium and the calcium current is important for the occurrence of EADs. This might be a

reason for the appearance of different behaviour from what one would expect in a cardiac muscle cell. In conclusion, we see

that we need a more detailed model to study more diverse behaviour (including EADs), see e.g. [53] . The above investigation

shows that Hodgkin–Huxley (type) models are sensitive with respect to their system parameters, and also with respect to

their initial values. Thus, to capture all dynamics it is essential to consider both the system parameters and the initial values.

The challenge is to derive a model which exhibits all dynamics of interest, and which at the same time is simple enough

to allow its behaviour to be studied efficiently. This study indicates that model (1) exhibits physiologically relevant APs

or very fast oscillations with small amplitudes with respect to the potassium current I . The system also exhibits chaotic
K 
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Fig. 10. Simulation of system (6) with G L = 0 . 1845 mS 
cm 2 

and initial condition (14) with D = [0 , 
√ 

2 − 1) . Computed with 256 cells. 

Fig. 11. Simulation of system (6) with G L = 0 . 1845 mS 
cm 2 

and initial condition (14) with D = [0 , 
√ 

2 − 1) . Computed with 256 cells. The rightmost plot is 

computed on [0,2] to better illustrate the dynamics as chaos takes over (all other parameters are the same). 

 

 

 

 

 

 

 

 

 

 

 

 

 

behaviour with respect to the leak current I L . However, the voltage is always negative, see Fig. 6 , and this seems to be

non-physiological [6] . 

In Section 4 we will see that by slightly increasing the complexity of the model considered, more of the expected dy-

namics appear. 

3.3. Effects on the macro-scale 

In Section 2.2 the analysis of the linearised system (10) showed that one cannot expect that the cellular behaviour of

a single cell model is one-to-one transferred to the behaviour and dynamics of the corresponding monodomain equation.

Therefore, we briefly visualise how the interaction of an ensemble of cells belonging to two different regimes might play

out in this section. Based on the discussion in the last two paragraphs of Section 2.2 , we focus on a 1 cm one-dimensional

cable, i.e. x ∈ [0, 1], for simplicity. 

To see the additional effects of the cell interactions at the macro-scale, we set the initial condition to partly belong to

the chaotic regime of the Noble ODE model (1) , and partly to the stable regime: 

[ V 0 (x ) , h 0 (x ) , m 0 (x ) , n 0 (x )] = 

{
[ −40 . 8454 mV, 0 . 0268 , 0 . 3233 , 0 . 5852 ] , x ∈ D 

[ − 79 . 04 mV, 0 . 81 , 0 . 045 , 0 . 52 ] , x ∈ [ 0 , 1 ] \ D, 
(14)

where D ∈ [0 , 1] . Note that this is not an equilibrium of the monodomain model (6) . We fix G L = 0 . 1845 mS 
cm 

2 to allow for

both chaotic and stable behaviour. 

Letting D = [0 , 
√ 

2 − 1) , Fig. 10 shows that the stable behaviour suppresses the chaotic one and a travelling wave dynamic

appear as time progresses. Increasing the initial chaotic domain slightly to D = [0 , 
√ 

2 − 0 . 99) , one can observe from Fig. 11

that the chaotic behaviour prevails. 

Moving the chaotic regime to the middle of the interval, the system can tolerate a much larger area of initially chaotic

cells, see Fig. 12 (a). Here the initial data is set to (14) with D = (0 . 1 , 0 . 5) ∪ (0 . 51 , 0 . 9) . However, reducing the diffusion

parameter, the behaviour of the system turns chaotic, see Fig. 12 (b). 



14 A.H. Erhardt and S. Solem / Commun Nonlinear Sci Numer Simulat 93 (2021) 105511 

Fig. 12. Simulation of system (6) with G L = 0 . 1845 mS 
cm 2 

and initial condition (14) with D = (0 . 1 , 0 . 5) ∪ (0 . 51 , 0 . 9) for two different diffusion parameters. 

Computed with 256 cells. 

Fig. 13. Comparison of trajectories of system (11) . a) normal action potential (standard setting). b) different EADs induced by different I K r reduction and 

I Ca enhancements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can see from above that there is a critical mass of initially chaotic cells, depending on the diffusion parameter

and the placement of the initially chaotic region, for inducing chaotic behaviour along the whole cable. These results are

in concert with earlier observations noting that enough cells have to be triggered for chaotic behaviour to prevail [33,34] .

Furthermore, although induced differently, similar behaviour to what we see in Fig. 12 has been observed in experiments

[6] . However, as noted in the previous section, the voltages seem to be within a non-physiological range. 

4. Dynamics of the modified Bernus model 

In this section we investigate the slightly modified version of the human ventricular cardiac cell model from Bernus et al.

[16] , i.e. system (11) . As described in Section 2.3 , this model contains more ion currents, pumps and exchangers compared to

model (1) , including the missing calcium current I Ca and the fast and slow potassium current, I K r and I K s . Therefore, one may

expect that this model is more realistic and exhibits different and diverse dynamics. System (11) contains the important I Ca 

current as well as the fast potassium current I K r , which are important for EADs to establish. Hence, system (11) may exhibits

EADs dependent on the choice of system parameters. 

Furthermore, we know that a reduced (fast) potassium current and/or an enhanced calcium current may leads to EADs,

cf. [37] . In addition, in [52] it is shown how combinations of reduced and enhanced potassium and calcium currents in-

creases the risk of the appearance of EADs, or conversely, may control the pattern of the APs. To illustrate the behaviour of

system (11) Fig. 13 shows a comparison of a normal AP and the occurrence of EAD patterns for different combinations of a

reduced fast potassium and an enhanced calcium current. 

It is well known that EADs occur either in the plateau or in the repolarisation phase of the AP and they are benefited

by an elongation of the AP. This may happen by an increase of one or more inward currents and/or a decrease in one or
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Fig. 14. Bifurcation diagram of system (11) including a 80% block of I K r , i.e. Ḡ K r = 0 . 2 · G K r , using G Ca as bifurcation parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

more outward currents [33] . In addition, it is well established that the calcium current I Ca plays an important rule during

the plateau phase, while the potassium current I K during the repolarisation phase, cf. [52] . 

Fig. 13 (b) shows that EADs appear as a combination of a reduced fast potassium current I K r and an enhanced calcium

current I Ca . Therefore, we restrict our analysis to the case where we have a 80% block of the fast potassium current by

introducing a new conductance Ḡ K r = 0 . 2 · G K r and choosing G Ca as bifurcation parameter. 

Similar to the analysis of the Noble model (1) we start by determining the equilibrium curve, cf. Fig. 14 (b) and (c). Here,

we have again an unstable (black dashed line) and a stable (black solid line) equilibrium branch. The equilibrium curve

changes stability via a subcritical Andronov–Hopf bifurcation (red dot, G Ca ≈ 0 . 096017 mS 
cm 

2 ) with a positive first Lyapunov

coefficient. From the subcritical Andronov–Hopf bifurcation an unstable limit cycle branch (dashed red line) bifurcates, cf.

Fig. 14 (b) and (c). 

The first limit cycle branch contains a limit point of cycle bifurcation (solid green square, G Ca ≈ 0 . 096259 mS 
cm 

2 ) and a

period doubling bifurcation (solid red square, G Ca ≈ 0 . 096255 mS 
cm 

2 ) from which a stable period doubling cascade bifurcates.

The first limit cycle branch changes stability via the limit point of cycle bifurcation and again via the (first) period doubling

bifurcation. The bifurcation diagram in Fig. 14 contains the first two limit cycle branches, where both limit cycles terminate

at the unstable equilibrium branch. The limit cycle branches are mostly unstable and therefore, not attracting. Nevertheless,

they influence the dynamics of the system, i.e they at least prolong the plateau phase and may cause EADs, provided the

initial stimulus is strong enough to establish an AP (as it is in the standard setting). 

In addition to Fig. 14 (b) and (c), we provide in Fig. 14 (d) the corresponding 3D bifurcation diagram including three

different trajectories. From this it is obvious that the trajectories curl around the limit cycles resulting in a prolongation of

the AP and/or EADs. Indeed, as soon as the trajectories enters the inside of the limit cycle branches, they will converge into

the stable equilibrium branch. Notice that the stable equilibriums close to the Andronov–Hopf bifurcation are less attracting

than others, since some of the negative eigenvalues are very small, but still negative. 

However, if the trajectory of system (11) is in the basin of attraction of the stable period doubling cascade (the stable

attracting parts of the limit cycle branches), the system develops self-oscillating behaviour ( Fig. 15 ), or chaos ( Fig. 16 ). A

setting for this to happen is the combination of a G Ca value of the period doubling cascade with initial values in the basin

of attraction and I stimulus = 0 . 

Fig. 15 contains four simulations of system (11) at the first four period doubling bifurcations of the period doubling

cascade. The black fine line denotes the trajectory over 10 0 0 0 ms, while the red line indicates the length of the trajectory
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Fig. 15. Simulation of system (11) over 10 0 0 0 ms for different G Ca values with I stimulus = 0 and initial values on the corresponding limit cycle branch. 

Fig. 16. Simulation of system (11) for G Ca = 0 . 0962518 mS 
cm 2 

. (a) Chaos scenario: initial values V 0 = 0 . 7589 mV, m 0 = 0 . 9952 , v 0 = 0 . 0 , f 0 = 0 . 134 , x r 0 = 

0 . 9745 , to 0 = 0 . 0028 , d 0 = 0 . 9141 , r 0 = 0 . 0411 , K1 0 = 0 . 0 , x s 0 = 0 . 5485 , and I stimulus = 0 . (b) Non-chaos scenario: standard initial values and external stim- 

ulus. 

 

 

 

 

 

 

 

 

 

 

 

with period T , i.e. V (T ) − V 0 = 0 . Additionally, Fig. 15 provides the corresponding phase space ( x r , V ) to these simulations

showing a closed curve starting from a red dot and terminating at a blue one. Note that the red dot is overlaid by the blue

one due to V (T ) = V 0 and therefore, barely or not visible. 

Finally, depending on the initial values the period doubling cascade is again a route to chaos similar to situation for the

Noble model (1) , see Fig. 16 . Again, it is clear that besides the system parameters also the initial values, and additionally

the external stimulus, play a crucial role for the occurrence of certain dynamics and patterns such as (normal) AP, EADs or

chaos. This indicates that a disorder in the external stimulus may also initiate a sudden death (at least on the cellular level).

Our analysis shows on the one hand that the dynamics of a single cell model are sensitive to its system parameters, and

on the other hand they are sensitive to the choice of initial values. This is in accord with our previous analysis. However,

the behaviours of the Noble model (1) and system (11) are quite different. Note that the strength of the initial stimulus

influences the initial values and influences the dynamics of system (11) . 

Notably, the occurring EADs in Fig. 14 (a) appear in a physiological feasible range, cf. [17] , acting as a validation of the

model. However, the chaotic behaviour in Fig. 16 (a) is most likely non-physiological due to the small voltage range, and we

would expect cardiac death as in Fig. 16 (b) to happen in the real cell. 
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Fig. 17. Simulations of system (12) for increasing EAD domains (left to right). In D the calcium conductance is G Ca = 0 . 096229 mS 
cm 2 

, while in the remaining 

parts it is set to G Ca = 0 . 09616 mS 
cm 2 

in (a)–(c), and to G Ca = 0 . 064 mS 
cm 2 

in (d). Top line: the 1D cable simulations. Bottom line: the corresponding left and 

middle cell (blue and red). Computed with 128 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Effects on the macro-scale 

Based on the analysis in the previous section, we study the synchronisation behaviour of an ensemble of cells along a 1D

cable of 1 cm to gain an intuition on whether EADs can spread or not in cardiac tissue. As for the monodomain model (6) ,

we split the cable into two parts D and [0 , 1] \ D. In the domain D, we set the calcium conductance to G Ca = 0 . 096229 mS 
cm 

2 

to ensure that an EAD with six additional oscillations (the pink line in Fig. 14 (a)) would occur in the ODE model (11) , while

in the remaining part it is set to G Ca = 0 . 09616 mS 
cm 

2 (close to the occurence of EADs). We keep the diffusion small and set

the diffusion constant to 0.0 0 0 05 ms. 

Fig. 17 shows the dynamics of an ensemble of 128 cells where 1%, 2%, and 50% of the cells are set to the six-oscillation

setting for the ODE. We observe that no EADs occur when 1% of the cells are EAD prone ( Fig. 17 (a)), while there is one

additional small oscillation on parts of the cable for 2% EAD prone cells ( Fig. 17 (b)). Increasing the percentage of EAD prone

cells to 50%, we see that there are small additional oscillations along the whole cable ( Fig. 17 (c)). All three experiments

show fewer small additional oscillations than in the ODE case. 

In Fig. 17 (a)–(c) the cells surrounding the EAD prone cells ( x ∈ [0 , 1] \ D) are very close to establishing EAD behaviour.

Hence, only a very small percentage of EAD prone cells are needed for EADs to occur along the cable. If the surrounding

cells are further away from the EAD setting ( G Ca = 0 . 064 mS 
cm 

2 , i.e. the standard setting), we can observe that no EADs occur

even if 50% of the cells are set to EAD inducing behaviour, see Fig. 17 (d). 

Finally, we briefly study the effects of initially setting the cells in the region D = [0 . 2 , 0 . 7) to be prone to chaotic be-

haviour. From Fig. 18 we observe that chaotic behaviour does not spread in the three cases considered. In the first two

simulations ( Fig. 18 )(a)–(b)) the surrounding cells are set to produce normal APs, which they indeed do for both the diffu-

sion constant 1 
360 ms and 0.0 0 0 05 ms. However, if the surrounding cells are set to produce normal APs but are close to the

EAD setting, we see that the dynamics die out ( V → 0). 

In conclusion, chaotic behaviour does not spread even if 50% of the cells are initially chaotic. However, cardiac death can

occur in the model ( V → 0), see Fig. 18 (c). In Fig. 18 (a) the system produces normal APs (apart from the fact that the middle

cells are initially set to zero). However, reducing the diffusion constant, the non-physiological behaviour that we saw in the

previous section appears, see Fig. 18 (b). This indicates a critical lower bound on the diffusion constant in this model for the

dynamics to be physiologically relevant. 

Concerning EADs, the above results indicate that the spreading of EADs on the tissue level is depending on 1. the number

of cells prone to establish EADs, 2. how close to the normal setting the surrounding cells are, and 3. the diffusivity of the

monodomain model (12) . 
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Fig. 18. Simulations of system (12) . In D the calcium conductance is G Ca = 0 . 0962518 mS 
cm 2 

and the stimulus to I stimulus = 0 , while in the remaining parts 

G Ca = 0 . 064 mS 
cm 2 

and I stimulus = 40 μA 
cm 2 

in (a)–(b), and G Ca = 0 . 09616 mS 
cm 2 

and I stimulus = 40 μA 
cm 2 

in (c). In all simulations D = [0 . 2 , 0 . 7) . Top line: the 1D cable 

simulations. Bottom line: the corresponding left, middle, and right cell (blue, red, and yellow). Computed with 128 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Summary and discussion 

In this paper, we investigated and analysed the behaviour of two mathematical models describing the action potentials

of a Purkinje and a human ventricular cardiac muscle cell. To this end, we utilised bifurcation theory, numerical bifurcation

analysis, and computational tools to establish an increased understanding of the dynamics of these models. This enabled

us to find hidden features in both models considered. Furthermore, carrying out this analysis, we aimed at convincing the

reader that 1. bifurcation analysis is very beneficial in the study of the dynamics of an ODE model and to detect hidden

features of the considered system, 2. it is important to know how to interpret the corresponding bifurcation diagram, and

3. advancing cardiac cell research benefits from collaborations between mathematicians and physiologists/biologists. 

First, we studied the dynamics of the Noble model (1) with respect to the leak current I L based on the discussion in

[15] . In [15] the author already varied the leak current conductance G L , resulting in the observation that the conductance 

G L influences the period of the AP. Even more, if one chooses G L large enough, e.g. G L = 0 . 4 mS 
cm 

2 , the system converges into

a stable equilibrium and no AP can appear, cf. [15] . This behaviour was analysed in more detail using numerical bifurcation

theory. It turns out that this system changes stability via a supercritical Andronov–Hopf bifurcation from which a stable

limit cycle branch bifurcates. This limit cycle branch loses and wins stability via limit point of cycle bifurcations and a period

doubling bifurcation, respectively. Moreover, from the first period doubling bifurcations of the second limit cycle branch a

(stable) period doubling cascade bifurcates, which is also the route to chaos. Interestingly, every limit cycle branch contains

two period doubling bifurcations, which are connected via two limit cycle branches. Dependent on the initial values and

the choice of G L , the Noble model (1) exhibits complex patterns and chaos. However, although mathematically interesting,

the chaos detected (see Fig. 6 ) might be an artefact of the mathematical model and not within the physiologically relevant

range. 

We used the same approach to study the more complex model (11) , more complex in the sense that it contains more

ion currents, pumps and exchangers compared to model (1) , including the missing calcium current I Ca and the fast and slow

potassium current, I K r and I K s . On the single cell level it turned out that system (11) exhibits both chaotic behaviour and

EADs via a combination of a reduction of the fast potassium current and an enhanced calcium current. 

We would like to remark that this approach is also applicable for more modern and advanced models as the ones in

[27,54–56] , provided that the model of interest is regular and smooth enough. However, some up-to-date models, as in

[54] or [56] , might cause issues due to their complexity and lack of smoothness. 
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For system (11) , we showed that for a 80% block of the fast potassium current and an enhanced calcium current, sys-

tem (11) exhibits a subcritical Andronov–Hopf bifurcation from which an unstable limit cycle branch bifurcates, which stays

unstable and contains a period doubling bifurcation. From this period doubling bifurcation a stable period doubling cas-

cade bifurcates, which causes both EADs and deterministic chaos. Note that also for other (fast) potassium block rates sys-

tem (11) contains a subcritical Andronov–Hopf bifurcation and may exhibit EADs and/or chaos. As experiments have shown

that this is how EADs can occur, we can interpret these findings as a further validation of the model. However, it is unclear

whether the occurring chaotic and self-oscillatory patterns also appear in a biological cardiac muscle cell (or are modelling

artefacts). In particular, the dynamics in Fig. 16 (a) is likely not appearing within a physiologically relevant range. This has to

be investigated further with accurate experiments. 

We would also like to highlight that further investigations using bifurcation analysis can be performed in the study of, for

example, the potassium or calcium dynamics of cardiac cell models. For instance, system (11) contains the calcium current

and the equilibrium potential of the calcium current is 

E Ca = 

RT 

2 F 
log 

(
[ Ca ] e 

[ Ca ] i 

)
. 

Different equilibrium potentials may change the behaviour of the considered system, see [57] , since the ion currents are

depending on the equilibrium potentials, i.e. 

I Ca = G Ca · d ∞ 

· f · f Ca (V − E Ca ) , 

cf. [16] . Thus, one can investigate complex calcium dynamics by, e.g. choosing the intra- or extracellular calcium concentra-

tions, [Ca] i or [Ca] e , as a bifurcation parameter. Indeed, more complex calcium dynamics is expected for more up-to-date

models, such as the ones in [27,54,56] . 

Besides comprehending the dynamics of the single cell models, it is crucial to understand how these dynamics affect the

behaviour on the macro-scale ( cm ) due to the fact that multiple cardiac single cells may synchronise and cause arrhythmias.

To this end, we introduced monodomain models for both systems, cf. (6) and (12) . Based on the analysis of the single cell

dynamics, we investigated cell synchronisation in both models. Both analyses showed that 1. the diffusivity of the model,

2. the number of cells, and 3. the placement of chaotic/EAD regions affect the global dynamics of the monodomain models.

Furthermore, the non-physiological behaviour observed for single cells can transfer over to the macro-scale models, but this

depends on the size of the diffusion constant. In particular, this warrants a bifurcation analysis with respect to the diffusion

parameter and the size of the unstable regions for the two models considered. An analysis finding a criterion for instabilities

has been performed for the Luo–Rudy model [24] in [58] . Whether a criterion like this is obtainable for the Bernus model

(and for more complex models) remains an open question. 

6. Conclusion 

Bifurcation theory is itself a powerful tool to study the behaviour of dynamical systems. It is used in many contexts

and gets more and more attention also in (mathematical and computational) cardiac and neuroscience. In cardiac science,

one can use this approach to establish a better understanding of cardiac arrhythmia [11–14,31,35,52] . In interdisciplinary

research, bifurcation theory can also be an important component in successful treatment of human diseases. 

We considered two specific cardiac cell models among a multitude. Although a large number of models exist, there is

still a lot of future work to do to derive a complete understanding of all cardiac dynamics. One has to deal with several

issues, e.g. complexity of realistic models, and numerical and computational problems. In the very end, the extension from

the cellular level to the tissue level has to be understood [42,59–62] . In particular, the physiological relevance of complex

dynamics at all levels of modelling, as the ones we consider in this paper, has to be proven by experimental data. 

In conclusion, this research would benefit from close interdisciplinary collaborations, since 1. a good, robust and realistic

mathematical model can be developed based on experimental data, 2. an in-depth mathematical analysis can validate the

accuracy or display weaknesses of the model, 3. these new findings either would help to improve the modelling or refor-

mulation of the system to derive a most realistic model, including all expected dynamics, 4. the analysis would also increase

the understanding of the occurrence of certain phenomena, and 5. the new obtained knowledge would help to develop new

potential treatments for human diseases. 
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