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Abstract

Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural
rhythms and the implementation of various information coding strategies. Inhibitory populations are
present in several brain structures, and the comprehension of their dynamics is strategical for the
understanding of neural processing. In this paper, we clarify the mechanisms underlying a general
phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not
only suppression of neural activity, as expected, but can also promote neural re-activation. In
particular, for globally coupled systems, the number of firing neurons monotonically reduces upon
increasing the strength of inhibition (neuronal death). However, the random pruning of connections
is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic
strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth).
Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength.
We show that this minimum signals a transition from a regime dominated by neurons with a higher
firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is
driven by current fluctuations. We explain the origin of the transition by deriving a mean field
formulation of the problem able to provide the fraction of active neurons as well as the first two
moments of their firing statistics. The introduction of a synaptic time scale does not modify the main
aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes
dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In
this latter regime the model provides predictions consistent with experimental findings for a specific
class of neurons, namely the medium spiny neurons in the striatum.

1. Introduction

The presence of inhibition in excitable systems induces a rich dynamical repertoire, which is extremely relevant
for biological [13], physical [32], and chemical systems [84]. In particular, inhibitory coupling has been invoked
to explain cell navigation [87], morphogenesis in animal coat pattern formation [46], and the rhythmic activity
of central pattern generators in many biological systems [27, 45]. In brain circuits, the role of inhibition is
fundamental to balance massive recurrent excitation [73] in order to generate physiologically relevant cortical
rhythms [12, 72].

Inhibitory networks are important not only for the emergence of rhythms in the brain, but also for the
fundamental role they play in information encoding in the olfactory system [39] as well as in controlling and
regulating motor and learning activity in the basal ganglia [5, 15, 47]. Furthermore, stimulus-dependent
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Figure 1. Fraction of active neurons 71, as a function of the inhibitory synaptic strength g for (a) a globally coupled system, where

K = N — 1,and (b) arandomly connected (sparse) network with K = 20.In (a), the asymptotic value n, calculated after a time

ts =1 x 10°isreported. Conversely in (b), 4 is reported at successive times: namely, ts = 985 (red squares), s = 1.1 x 10 (brown
stars), ts = 5 x 10° (blue diamonds),and ts = 1 X 10° (green triangles). An estimation of the times needed to reach 7, = 1 can be
obtained by employing equation (13); these values range from £, = 5 x 10° forg=0.1,to 5 x 10° forg = 50. Insets in (b) depict the
probability distributions P (v) of the single neuron firing rate v for the sparse network for a given g at two different times: ts = 985 (red
filled histograms)and s = 1 x 10° (thickempty green histograms). The histograms are calculated by considering only active
neurons. The reported data refer to instantaneous synapses, to a system size N = 400, and to an uniform distribution P(I) with

[h, b] = [1.0, 1.5] and @ = 1. The values reported in (a) and (b) have been averaged over 10 random realizations of the network.

sequential activation of a group of neurons, reported for asymmetrically connected inhibitory cells [33, 52], has
been suggested as a possible mechanism to explain sequential memory storage and feature binding [67].

These explain the long-term interest for numerical and theoretical investigations of the dynamics of
inhibitory networks. The study of globally coupled homogeneous systems have already revealed interesting
dynamical features, ranging from full synchronization to clustering appearance [23, 83, 85], and from the
emergence of splay states [90] to oscillator death [6]. The introduction of disorder, e.g. random dilution, noise,
or other forms of heterogeneity in these systems leads to more complex dynamics, ranging from fast global
oscillations [9] in neural networks and self-sustained activity in excitable systems [37], to irregular dynamics
[3,29-31,42,49, 56, 82, 90]. In particular, inhibitory spiking networks, due to stable chaos [63], can display
extremely long erratic transients even in linearly stable regimes [3, 29, 30,42, 49, 82, 89, 90].

One of the most studied inhibitory neural populations is represented by medium spiny neurons (MSNs) in
the striatum (which is the main input structure of the basal ganglia) [36, 57]. In a series of papers, Ponzi and
Wickens have shown that the main features of MSN dynamics can be reproduced by considering a randomly
connected inhibitory network of conductance based neurons subject to external stochastic excitatory inputs
[64-66]. Our study has been motivated by an interesting phenomenon reported for this model in [66]: namely,
upon increasing the synaptic strength the system passes from a regularly firing regime, characterized by a large
part of quiescent neurons, to a biologically relevant regime where almost all cells exhibit a bursting activity,
characterized by an alternation of periods of silence and of high firing. The same phenomenology has been
recently reproduced by employing a much simpler neural model [1], thus suggesting that this behavior is not
related to the specific model employed, but is indeed a quite general property of inhibitory networks. However,
the origin of the phenomenon and the minimal ingredients required to observe the emergence of this effect
remain unclear.

In order to exemplify the problem addressed in this paper, we report in figure 1 the fraction of active neurons
np (i.e. the ones emitting at least one spike during the simulation time) as a function of the strength of the
synaptic inhibition g in an heterogeneous network. For a fully coupled network, 114 has a monotonic decrease
with g (figure 1(a)), while for a random sparse network, 714 has a non-monotonic behavior, displaying a
minimum at an intermediate strength g, (figure 1(b)). In fully coupled networks the effect of inhibition is
simply to reduce the number of active neurons (neuronal death). However, quite counter-intuitively, in the
presence of dilution by increasing the synaptic strength the previously silenced neurons can return to firing
(neuronal rebirth). Our aim is to clarify the physical mechanisms underlying neuronal death and rebirth, which
are at the origin of the behavior reported in [ 1, 66].

In particular, we consider a deterministic network of purely inhibitory pulse-coupled Leaky Integrate-and-
Fire (LIF) neurons with an heterogeneous distribution of excitatory DC currents, accounting for the different
level of excitability of the neurons. The evolution of this model is studied for fully coupled and for random sparse
topology, as well as for synapses with different time courses. For the fully coupled case, it is possible to derive,
within a self-consistent mean field approach, the analytic expressions for the fraction of active neurons and for
the average firing frequency  as a function of coupling strength g. In this case, the monotonic decrease of 115
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with g can be interpreted as a Winner Takes All(WTA) mechanism [16, 21, 88], where only the most excitable
neurons survive the inhibition increase. For random sparse networks, neuronal rebirth can be interpreted as a
re-activation process induced by erratic fluctuations in synaptic currents. Within this framework it is possible to
semi-analytically obtain, for instantaneous synapses, a closed set of equations for 11, as well as for the average
firing rate and coefficient of variation as a function of the coupling strength. In particular, the firing statistics of
the network can be obtained via a mean field approach by extending the formulation derived in [70] to account
for synaptic shot noise with constant amplitude. The introduction of a finite synaptic time scale does not modify
the overall scenario provided that this is shorter than the membrane time constant. As soon as the synaptic
dynamics become slower, the phenomenology of the transition is modified. At g < g we have a frozen phase
where 11, does not evolve in time on the explored time scales, since the current fluctuations are negligible. Above
gm we have a bursting regime, which can be related to the emergence of correlated fluctuations induced by slow
synaptic times, as discussed in the framework of the adiabatic approach in [50, 51].

The remainder of this paper is organized as follows: In section 2 we present the models that will be
considered in the paper as well as the methods adopted to characterize their dynamics. In section 3 we consider
the globally coupled network where we provide analytic self-consistent expressions accounting for the fraction
of active neurons and the average firing rate. Section 4 is devoted to the study of sparsely connected networks
with instantaneous synapses, and to the derivation of the set of semi-analytic self-consistent equations providing
n4, the average firing rate, and the coefficient of variation. In section 5 we discuss the effect of synaptic filtering
with a particular attention on slow synapses. Finally in section 6, we briefly discuss the obtained results with a
focus on the biological relevance of our model.

2.Model and methods

We examine the dynamical properties of a heterogeneous inhibitory sparse network made of N LIF neurons. The
time evolution of the membrane potential v; of the i-th neuron is ruled by the following first-order ordinary
differential equation:

vi(t) = I; — v;i(t) — gE, (1), (D

where g > 0 is the inhibitory synaptic strength, I;is the neuronal excitability of the i-th neuron encompassing
both intrinsic neuronal properties and the excitatory stimuli originating from areas outside the considered
neural circuit, and E(f) represents the synaptic current due to the recurrent interactions within the considered
network. The membrane potential v; of neuron i evolves accordingly to equation (1) until it overcomes a
constant threshold # = 1, which leads to the emission of a spike (action potential) transmitted to all connected
post-synaptic neurons while v;is reset to its resting value v, = 0. The model in (1) is expressed in adimensional
units, this amounts to assume a membrane time constant 7, = 1; for the conversion to dimensional variables
see appendix A. The heterogeneity is introduced in the model by assigning to each neuron a different value of
excitability I; drawn from a flat distribution P(I), whose supportis I € [}, L]with /; > 0; therefore, all neurons
are supra-threshold.

The synaptic current E(¢) is given by the linear superposition of all the inhibitory post-synaptic potentials
(IPSPs) 7 (t) emitted at previous times ¢/ < t by the pre-synaptic neurons connected to neuron i, namely

SCi ST —t), )

j=i n|t,<t

1
Ei(t) = X
where Kis the number of pre-synaptic neurons. Cj; represents the elements of the N x N connectivity matrix
associated with an undirected random network, whose entries are 1 if there is a synaptic connection from neuron
jtoneuron 7, and 0 otherwise. For the sparse network, we randomly select the matrix entries; however, to reduce
the sources of variability in the network, we assume that the number of pre-synaptic neurons is fixed, namely
¥i.iCi=K<N for each neuron 7, where autaptic connections are not allowed. We have verified that the
results do not change if we randomly choose the links accordingly to an Erdos—Renyi distribution with a
probability K/N. For a fully coupled network wehave K = N — 1.

The shape of the IPSP characterizes the type of filtering performed by the synapses on the received action
potentials. We have considered two kinds of synapses: instantaneous ones, where 7 (t) = 6 (), and synapses
where the PSP is an a-pulse, namely

n(t) = H(t) o te ", (3)

with H denoting the Heaviside step function. In this latter case the rise and decay time of the pulse are the same,
namely 7, = 1/«, and therefore the pulse duration 7p can be assumed to be twice the characteristic time 7.
Model equations (1) and (2) are integrated exactly in terms of the associated event driven maps for different
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synaptic filtering, which correspond to Poincaré maps performed at the firing times (for details see
appendix A) [53,91].

For instantaneous synapses, we have usually considered system sizes N = 400 and N = 1400, and in the
sparse case in-degrees 20 < K < 80 and 20 < K < 600, respectively, with integration times up to
ts = 1 x 10°. For synapses with a finite decay time we have limited the analysis to N = 400 and K = 20, and to
maximal integration times tg = 1 x 10°. Finite size dependencies on N are negligible with these parameter
choices, as we have verified.

In order to characterize the network dynamics, we measure the fraction of active neurons n, (5) at time ts,
i.e. the fraction of neurons emitting at least one spike in the time interval [0, #s]. Therefore a neuron will be
considered silent if it has a frequency smaller than 1/t5, and with our choices of ts = 10°> — 105, this
corresponds to neurons with frequencies smaller than 107> — 10~* Hz by assuming a membrane time constant
Tm = 10 msas time scale. Estimation of the number of active neurons always begins after a sufficiently long
transient time has been discarded, usually corresponding to the time needed to deliver 10° spikes in the network.

Furthermore, for each neuron we estimate the time averaged inter-spike interval (ISI) Tjgj, the associated
firing frequency v = 1/ Tigp, as well as the coefficient of variation CV, which is the ratio of the standard deviation
of the ISI distribution divided by T1s;. For a regular spike train CV = 0, and for a Poissonian distributed one
CV =1, while CV > lisanindication of bursting activity. The indicators reported in the following to
characterize network activity are ensemble averages over all active neurons, which we denote as 4 for a generic
observable a.

To analyze the linear stability of the dynamical evolution we measure the maximal Lyapunov exponent A,
which is positive for chaotic evolution, and negative (zero) for stable (marginally stable) dynamics [4]. In
particular, by following [2, 55], A is estimated by linearizing the corresponding event driven map.

3. Fully coupled networks: WTA

In the fully coupled case we observe that the fraction of active neurons 1, saturates, after a short transient, to a
value that remains constant in time. In this case, it is possible to derive a self-consistent mean field approach to
obtain analytic expressions for the fraction of active neurons 1,4 and for the average firing frequency o of
neurons in the network. In a fully coupled network each neuron receives the spikes emitted by the other
K = N — I neurons; therefore, each neuron is essentially subject to the same effective input> y, apart from the
finite size corrections O(1/N).

The effective input current, for a neuron with an excitability I, is given by

w=1— gom, (4)
where 1, (N — 1) is the number of active pre-synaptic neurons assumed to fire with the same average
frequency o.
In a mean field approach, each neuron can be seen as isolated from the network and driven by the effective
input current p. Taking into account the distribution of excitabilities P(I), one obtains the following self-
consistent expression for the average firing frequency:

_ -1
U= 1 dr p([)[ln(W)] , 5)

ny Jin I—gony — 0

where the integral is restricted only to active neurons, i.e. to I € {I} values for which the logarithm is defined,
while ny, = J{‘ ) dI P(I)isthe fraction of active neurons. In (5) we have used the fact that for an isolated LIF
neuron with constant excitability C, the IS is simply given by Tis; = In[(C — v,) /(C — 0)][11].

An implicit expression for n, can be obtained by estimating the neurons with effective input . > 6;in
particular, the fraction of silent neurons is given by

l*
1 —ny = f a1 P(I), (6)
I
where I is the lower limit of the support of the distribution, while I* = gbn, + 6. By solving self-consistently
equations (5) and (6), one can obtain the analytic expression for 1, and o for any distribution P(I).

In particular, for excitabilities distributed uniformly in the interval [};, L], the expression for the average
frequency equation (5) becomes

_ —1
D= ;f dr|n| 187 = ve) | -
na(h — ) Jiy I— gomy — 0
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Figure 2. Globally coupled systems. (a) Fraction of active neurons 74 and (b) average network frequency # as a function of the synaptic
strength g for uniform distributions P(I) with different supports. Inset: average neuronal excitability of the active neurons I versus g.
Empty (filled) symbols refer to numerical simulation with N = 400 (N = 1400), and dashed lines refer to the corresponding analytic
solution. Symbols and lines correspond from bottom to top to [}, L] = [1.0, 1.5] (black), [}, L] = [1.0, 1.8] (red), and

[h, L] = [1.2, 2.0] (blue). The data have been averaged over a time interval ts = 1 x 10° after discarding a transient of 10° spikes.

while the fraction of active neurons is given by the following expression
L—0

L—5L+gv

with the constraint that n, cannot be larger than one.

The analytic results for these quantities compare quite well with the numerical findings estimated for
different distribution intervals []}, L], coupling strengths, and system sizes, as shown in figure 2. For definitively
large coupling g>>10, some discrepancies between the mean field estimations and the simulation results are
observable (see figure 2(b)). These differences are probably due to the discreteness of the pulses, which cannot be
neglected for very large synaptic strengths.

As a general feature we observe that 1, is steadily decreasing with g, thus indicating that a group of neurons
with higher effective inputs (winners) silence the other neurons (losers) and that the number of winners
eventually vanishes for sufficiently large coupling in the limit of large system sizes. Furthermore, the average
excitability of active neurons (the winners) I increases with g, as shown in the inset of figure 2(a), thus revealing
that only neurons with higher excitabilities survive the silencing action exerted by the other neurons. At the same
time, as an effect of the growing inhibition, the average firing rate of the winners dramatically slows down.
Therefore, despite the increase of I, the average effective input ji indeed decreases for increasing inhibition.
This represents a clear example of the WTA mechanism obtained via (lateral) inhibition, which has been shown
to have biological relevance for neural systems [20, 60, 88].

Itis important to understand what is the minimal coupling value g. for which the firing neurons start to die.
In order to estimate g it is sufficient to set 1, = 1 in equations (7) and (8). In particular, one gets

g =Uh-0/r,

nap =

®)

©
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Figure 3. Globally coupled systems. (a) Critical value g. as a function of the lower value of the excitability [, for several choices of the
upper limit L. (b) Isolines corresponding to constant values of g in the (4, L)-plane: namely, g. = 0.5 (black solid line), g. = 1.0 (red
dashed line), and g. = 2.0 (blue dotted line). Inset: Dependence of 14 on g for three couples of values (;, L) chosen along each of the
isolines reported in the main figure.

and thus, for J; = 6 even an infinitesimally small coupling is in principle sufficient to silence some neurons.
Furthermore, from figure 3(a) it is evident that whenever the excitabilities become homogeneous, i.e. for [} — 1,
the critical synaptic coupling g. diverges toward infinity. Thus, heterogeneity in the excitability distribution is a
necessary condition in order to observe a gradual neuronal death, as shown in figure 2(a).

This is in agreement with the results reported in [7], where homogeneous fully coupled networks of
inhibitory LIF neurons have been examined. In particular, for finite systems and slow synapses, the authors in [ 7]
revealed the existence of a sub-critical Hopf bifurcation from a fully synchronized state to a regime characterized
by oscillator death occurring at some critical g.. However, in the thermodynamic limit g. — oo for fast as well as
slow synapses, which is in agreement with our mean field result for instantaneous synapses.

We also proceed to investigate the isolines corresponding to the same critical g. in the (;, )-plane, and the
results are reported in figure 3(b) for three selected values of g.. It is evident that the /; and ,-values associated
with the isolines display a direct proportionality among them. However, despite lying on the same g.-isoline,
different parameter values induce a completely different behavior of 14 as a function of the synaptic strength, as
shown in the inset of figure 3(b).

Direct simulations of the network at finite sizes, namely for N = 400 and N = 1400, show that sufficiently large
coupling neurons with similar excitabilities tend to form clusters, similarly to what was reported in [42], but with a
delayed pulse transmission. However, in contrast to [42], the overall macroscopic dynamics is asynchronous, and no
collective oscillations can be detected for the whole range of considered synaptic strengths.

4. Sparse networks: neuronal rebirth

In this section we will consider a network with sparse connectivity, namely each neuron is supra-threshold and it
receives instantaneous IPSPs from K < N randomly chosen neurons in the network. Due to the sparseness, the
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input spike trains can be considered as uncorrelated, and at a first approximation it can be assumed that each
spike train is Poissonian with a frequency  corresponding to the average firing rate of the neurons in the
network [8, 9]. Usually, the mean activity of a LIF neural network is estimated in the context of the diffusion
approximation [69, 80]. This approximation is valid whenever the arrival frequency of the IPSPs is high with
respect to the firing emission, while the amplitude of each IPSPs (namely, G = g/K) is small with respect to the
firing threshold 6. This latter hypothesis in our case is not valid for sufficiently large (small) synaptic strength g
(in-degree K), as can be appreciated by the comparison shown in figure 13 in appendix B. Therefore, the
synaptic inputs should be treated as shot noise. In particular, here we apply an extended version of the analytic
approach derived by Richardson and Swabrick in [70] to estimate the average firing rate and the average
coefficient of variation for LIF neurons with instantaneous synapses subject to inhibitory shot noise of constant
amplitude (for more details see appendices B and C).

Contrasting with the fully coupled case, the fraction of active neurons 11, does not saturate to a constant
value for sufficiently short times. Instead, 114 increases in time due to the rebirth of losers previously silenced by
the firing activity of winners, as shown in figure 1(b). This effect is clearly illustrated by considering the
probability distributions P () of the firing rates of the neurons at successive integration times 5. These are
reported in the insets of figure 1(b) for two coupling strengths and two times: namely, ts = 985 (red lines) and
ts = 1 x 10°(green lines). From these data is evident that the fraction of neurons with low firing rate (the losers)
increases with time, while the fraction of high firing neurons remains almost unchanged. Moreover, the
variation of 114 slows down for increasing s, and 1, approaches some apparently asymptotic profile for
sufficiently long integration times. Furthermore, 714 has a non-monotonic behavior with g, which is opposite to
the fully coupled case. In particular, n15 reveals a minimum 7, at some intermediate synaptic strength g;,,
followed by an increase toward n, = 1 atlarge g. As we have verified, aslongas 1 < K < N, finite size effects are
negligible and the actual value of n, depends only on the in-degree K and the considered simulation time ts. In
the following we will try to explain the origin of such a behavior.

Despite the model being fully deterministic, due to the random connectivity the rebirth of silent neurons can
be interpreted in the framework of activation processes induced by random fluctuations. In particular, we can
assume that each neuron in the network will receive 1, K independent Poissonian trains of inhibitory kicks of
constantamplitude G characterized by an average frequency 7 ; thus, each synaptic input can be regarded as a
single Poissonian train with total frequency R = ny Ki. Therefore, each neuron, characterized by its own
excitability I, will be subject to an average effective input p (I) (as reported in equation (4)) plus fluctuations in
the synaptic current of intensity

nalV

o=g I (10)
Indeed, we have verified that (10) gives a quantitatively correct estimation of the synaptic current fluctuations
over the whole range of synaptic coupling considered (as shown in figure 4). A closer analysis of the probability
distributions P(IAT) of the inter-arrival times (IATs) reveals that these are essentially exponentially distributed,
as expected for Poissonian processes, with a decay rate given by R, as evident from figure 5 for two different
synaptic strengths. However, all these indications are not sufficient to guarantee that the IAT statistics are indeed
Poissonian. In particular, as pointed out in [40], a superposition of uncorrelated spike trains generated by the
same non-Poissonian renewal process can result in a peculiar non-renewal process characterized by
exponentially distributed and uncorrelated IATs with a non-flat power spectrum. In our case we have indeed
verified that for small coupling the power spectrum associated with the IATs deviates from the flat one at low
frequencies, which is similar to the results reported in [40]; meanwhile, at large ¢ the spectrum recovers a
Poissonian shape. Therefore the hypothesis that the neuronal input is Poissonian in our case should be
considered only as a first-order approximation, in particular for small synaptic couplings.

For instantaneous IPSP, the current fluctuations are due to stable chaos [63] since the maximal Lyapunov
exponent is negative for the whole range of coupling, as we have verified. Therefore, as reported by many
authors, erratic fluctuations in inhibitory neural networks with instantaneous synapses are due to finite
amplitude instabilities, while at the infinitesimal level the system is stable [3, 29, 30, 42, 49, 82, 90].

In this circumstance, the silent neurons stay in a quiescent state corresponding to the minimum of the
effective potential U(v) = v?/2 — uv,and in order to fire they should overcome a barrier AU = (60 — u)?/2.
The average time 5 required to overcome such a barrier can be estimated accordingly to the Kramers’ theory for
activation processes [25, 80], namely

(1D

g

0 — u(I))Z)

A =~ Toexp( 5

where 7y is an effective time scale taking in account the intrinsic non-stationarity of the process, i.e. the fact that
the number of active neurons increases during the time evolution.

7



10P Publishing

NewJ. Phys. 19 (2017) 053011 D Angulo-Garcia et al

1.5 i T T T T T T T T T
i
L i ]
1
k
T e -
ALY
| N
o |1,
Lo - i
| :;( 1 \\\'\ P
: Toe "
0.5—: *\\.\(/; —a B
| - “-a
L ! ,/.///i \\'.\\ i
L e T T,
| ~<
0’ , | , | , | , | , 1
0 10 20 30 40 50
g

Figure 4. Effective average input of active neurons i, (black circles) and average fluctuations of the synaptic currents & (red squares)
as a function of the inhibitory coupling g. The threshold potential # = 1 is marked by the (blue) horizontal dotted line and g;,, by the
(green) vertical dash-dotted line. The dashed black (red) line refers to the theoretical estimation for y4, (o) reported in equation (4)
(equation (10)) and averaged only over the active neurons. The data refer to N = 1400, K = 140, [};, L] = [1.0, 1.5],and toa
simulation time ts = 1 x 10°.
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Figure 5. Probability distributions of IATs for a generic neuron in the network for (a) g= 1.3 and (b) g = 10. In both panels, the red
continuous line indicates the exponential distribution corresponding to a purely Poissonian process with an arrival rate given by

R = ny Kv, and the dashed blue vertical lines refer to the average IAT for the Poissonian distribution, namely 1/R. The distributions
have been evaluated for the arrival of 5 x 10° IPSPs. Other parameters used for the simulation are as in figure 1(b).

Itis important to stress that the expression (11) will remain valid also in the limit of large synaptic couplings,
not only because of o2, but also because the barrier height will increase with g. Furthermore, both these
quantities grow quadratically with g at sufficiently large synaptic strength, as it can be inferred from equations (4)
and (10).

Itis reasonable to assume that at a given time s all neurons with #, < ts will have fired at least once, and that
the more excitable will fire first. Therefore, by assuming that the fraction of active neurons at time ts is 115 (ts), the
last neuron that has fired should be characterized by the following excitability:

I=15—n(ts)(lh — b). (12)

Here, excitabilities I are uniformly distributed in the interval [/}, L]. In order to obtain an explicit expression for
the fraction of active neurons at time s, one should solve the equation (11) for the neuron with excitability I by
setting ts = ta, thus obtaining the following solution

¢ — 207 + o — 490y
2

na (ts) = 2y

ifny, <1 (13)

1 otherwise
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I = 1.15 (continuous), ; = 1.1 (dashed), and ; = 1.0 (dotted line). All values entering equation (13) are taken from simulation. All
other parameters used for the simulation are as in figure 1(b).

where
¢
y=h-hH+gr ¢= El_/ln(ts/To) B=0—bh.

Equation (13) gives the dependence of 114 on the coupling strength g for a fixed integration time ts and time
scale 7y whenever we can provide the value of the average frequency . A quick inspection of equations (11) and
(13) shows that, setting 11, = 1, we obtain two solutions for the critical couplings g.; (g.,) below (above) that all
neurons will fire at least once in the considered time interval. The solutions are reported in figure 6. In particular,
we observe that whenever I} — 0 the critical coupling g.; will vanish, which is analogous to the fully coupled
situation. These results clearly indicate that 11, should display a minimum for some finite coupling strength
8. € (89> ). Furthermore, as shown in figure 6 the two critical couplings approach one another for increasing
ts and finally merge, indicating that at sufficiently long times all neurons will be active at any synaptic coupling
strength g.

The average frequency & can be obtained analytically by following the approach described in appendix B for
LIF neurons with instantaneous synapses subject to inhibitory Poissonian spike trains. In particular, the self-
consistent expression for the average frequency reads as

v= [ PO, G, m, D), (14)
{Ia}

where the explicit expression of v is given by equation (31) in appendix B.

The simultaneous solution of equations (13) and (14) provides a theoretical estimation of 115 and  for the
whole considered range of synaptic strength, once the unknown time scale 7 is fixed. This time scale has been
determined via an optimal fitting procedure for sparse networks with N = 400 and K = 20, 40, and 80 at a fixed
integration time tg = 1 X 10°. The results for 11, are reported in figure 7(a). The estimated curves reproduce
reasonably well the numerical data for K = 20 and 40, while for K = 80 the agreement worsens at large coupling
strengths. This could be due to the fact that by increasing g and K, the spike trains stimulating each neuron
cannot be assumed to be completely independent, as done for the derivation of equations (13) and (14).
Nevertheless, the average frequency ¥ is quantitatively well reproduced for the considered K values over the
entire range of synaptic strengths, as is evident from figures 7(b)—(d). A more detailed comparison between the
theoretical estimations and the numerical data can be obtained by considering the distributions P (v/) of the
single neuron firing rate for different coupling strengths reported in figures 7(k)—(m) for K = 40. The overall
agreement can be considered as more than satisfactory, while observable discrepancies are probably due to the
fact that our approach neglected a further source of disorder present in the system and related to heterogeneity in
the number of active pre-synaptic neurons [9].

We have also analytically estimated the average coefficient of variation of the firing neurons CV by extending
the method derived in [70] to obtain the response of a neuron receiving synaptic shot noise input. The analytic
expressions of the coefficient of variation for LIF neurons subject to inhibitory shot noise with fixed post-
synaptic amplitude are obtained by estimating the second moment of the associated first-passage-time
distribution; the details are reported in appendix C. The coefficient of variation can be estimated once the self-
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Figure 7. (a) Fraction of active neurons n, as a function of inhibition for several values of K. (b—d) Average network firing rate & for the
same cases depicted in (a), and the corresponding CV (e—f). In all panels, filled symbols correspond to numerical data, and dashed
lines correspond to semi-analytic values: black circles correspond to K = 20 (f; /79 = 11), red squares to K = 40 (t; /79 = 19),and
blue diamonds to K = 80 (t, /7 = 26.6). The data are averaged over a time interval s = 1 x 10 and 10 different realizations of the
random network. (h—j) Raster plots for three different synaptic strengths for N = 400 and K = 40: namely, (h) g = 0.1,(i)g = 1,and
(j) g = 8. The corresponding value for the fraction of active neurons, average frequency, and average coefficient of variation are

na = (0.94, 0.76, 0.88), 7 = (0.55, 0.34, 0.10),and CV = (0.04, 0.27, 0.76), respectively. The neurons are ordered in terms of their
intrinsic excitability, and the time is rescaled by the average frequency 7. (k-1) Probability distributions P () of the single neuron
firing rate v, for the same values of gin the panels above. Empty-discontinuous bars correspond to the theoretical prediction while
filled bars indicate the histogram calculated with the simulation. The remaining parameters are as in figure 1(b).

consistent values for 11, and 7 have been obtained via equations (13) and (14). The comparison with the
numerical data, reported in figures 7(e)—(g), reveals a good agreement over the whole range of synaptic strengths
for all considered in-degrees.

At sufficiently small synaptic coupling the neurons fire tonically and almost independently, as shown by the
raster plot in figure 7(h) and by the fact that & approaches the average value for the uncoupled system (namely,
0.605)and CV — 0. Furthermore, the neuronal firing rates are distributed toward finite values, indicating that
the inhibition has a minor role in this case, as shown in figure 7(k). By increasing the coupling, 11, decreases, and
as an effect of the inhibition more and more neurons are silenced (as evident from figure 7(1)) and the average
firing rate decreases; at the same time, the dynamics become slightly more irregular, as shown in figure 7(i). At
large coupling g > g, anew regime appears, where almost all neurons become active but with extremely slow
dynamics that are essentially stochastic with CV = 1, as also testified by the raster plot reported in figure 7(j) and
by the firing rate distribution shown in figure 7(m).

Furthermore, from figure 7(a) it is clear that the minimum value of the fraction of active neurons 74,
decreases by increasing the network in-degree K, while g, increases with K. This behavior is further investigated
in alarger network, namely N = 1400, and reported in the inset of figure 8. It is evident that 11, stays close to the
globally coupled solutions over larger and larger intervals for increasing K. This can be qualitatively understood
by the fact that the current fluctuations in equation (10), responsible for the rebirth of silent neurons, are
proportional to gand scales as 1 /+/K. Therefore, at larger in-degrees the fluctuations have similar intensities
only for larger synaptic coupling.
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Figure 8. g,,, as a function of the in-degree K. The symbols refer to numerical data, while the dashed line refers to expression (15). Inset:
ny versus g for the fully coupled case (solid black line) and for diluted networks (dashed lines); from top to bottom K = 20, 40, 80, and
140. A network of size N = 1400 is evolved duringa period s = 1 x 107 after discarding a transient of 10° spikes, and the data are
averaged over 5 different random realizations of the network. Other parameters are as in figure 1.

The general mechanism behind neuronal rebirth can be understood by considering the values of the effective
neuronal input and current fluctuations as a function of g. As shown in figure 4, the effective input current fi,,
averaged over the active neurons, essentially coincides with the average excitability I, for g — 0, where the
neurons can be considered as independent from others. The inhibition leads to a decrease of fi,,and to a
crossing of the threshold § at exactly ¢ = g, . Thisindicates thatat g < g theactive neurons, being on average
supra-threshold, fire almost tonically inhibiting the losers viaa WTA mechanism. In this case the firing neurons
are essentially mean-driven and the current fluctuations play a role in the rebirth of silent neurons only on
extremely long time scales; this is confirmed by the low values of & in such a range, as evident from figure 4. On
the other hand, for g > g,_, theactive neurons are now on average below threshold while fluctuations dominate
dynamics. In particular, the firing is now extremely irregular mainly due to re-activation processes. Therefore,
the origin of the minimum in 4 can be understood as a transition from a mean-driven to a fluctuation-driven
regime [68].

A quantitative definition of g, can be given by requiring that the average input current of the active neurons
fi, crosses the threshold fat ¢ = g, namely

ID’A(gm) = I_A - gmpmnAm = 9:

where I, is the average excitability of the firing neurons, while 14, and i, are the fraction of active neurons and
the average frequency at the minimum.
For a uniform distribution P(I), a simpler expression for g, can be derived, namely

8m = Dml[u + %(ll — lz)]- (15)

We have compared the numerical measurements of g, with the estimations obtained by employing

equation (15), where 1, and  are obtained from the simulations. As shown in figure 8, for a network of size
N = 1400, the overall agreement is more than satisfactory for in-degrees ranging over almost two decades
(namely, for 20 < K < 600). This confirms that our guess (that the minimum n,_ occurs exactly at the
transition from mean-driven to fluctuation-driven dynamics) is consistent with the numerical data for a wide
range of in-degrees.

It should be stressed that, as we have verified for various system sizes (namely, N = 700, 1400, and 2800) and
for a constant average in-degree K = 140, for instantaneous synapses the network is in an heterogeneous
asynchronous state for all considered values of synaptic coupling. This is demonstrated by the fact that the
intensity of the fluctuations of average firing activity, measured by considering the low-pass filtered linear
superposition of all the spikes emitted in the network, vanishes as 1,/+/N [85]. Therefore, the observed transition
at ¢ = g is notassociated with the emergence of irregular collective behaviors as reported for globally coupled
heterogeneous inhibitory networks of LIF neurons with delay [42] or pulse-coupled phase oscillators [82].
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Figure 9. Fraction of active neurons 71, as a function of inhibition with IPSPs with a-profiles for (a) a fully coupled topology and (b) a
sparse network with K = 20. (a) Black (red) symbols correspond to 7, = 10 (7, = 0.125), while dashed lines are theoretical
predictions (7) and (8) previously reported for instantaneous synapses. The data are averaged over a time window ts = 1 x 10°. Inset:
average frequency 7 as a function of g. (b) 11, is measured at successive times: from lower to upper curves, the considered times are
ts = {1000, 5000, 10000, 50000, 100000}, while 7, = 10. The system size is N = 400 in both cases, the distribution of excitabilities
isuniform with [, L] = [1.0, 1.5],and § = 1.

5. Effect of synaptic filtering

In this section we will investigate how synaptic filtering can influence the previously reported results. In
particular, we will consider non-instantaneous IPSP with an a-function profile (3), whose evolution is ruled by
asingle time scale 7.

5.1. Fully coupled networks

Let us first examine the fully coupled topology. In this case we analogously observe the §-pulse coupling by
increasing the inhibition so that the number of active neurons steadily decreases toward a limit where only few
neurons (or eventually only one) will survive. At the same time the average frequency also decreases
monotonically, as shown in figure 9 for two different 7, differing by almost two orders of magnitude.
Furthermore, the mean field estimations (7) and (8) obtained for 15 and & represent a very good approximation
for a-pulses (as shown in figure 9). In particular, the mean field estimation essentially coincides with the
numerical values for slow synapses, as evident from the data reported in figure 9 for 7, = 10 (black filled circles).
This can be explained by the fact that for sufficiently slow synapses, with 75 > Tjs;, the neurons feel the synaptic
input current as continuous because each input pulse has essentially no time to decay between two firing events.
Therefore, the mean field approximation for the input current (4) works well in this case. This is particularly
true for 7, = 10, where 7p = 20 and Tjs; =~ 2 — 6 in the range of the considered coupling. While for

To = 0.125, we observe some deviation from the mean field results (red squares in figure 9). The reason for these
discrepancies resides in the fact that 7p < Tjs; for any coupling strength, and therefore the discreteness of the
pulses cannot be completely neglected, particularly for large amplitudes (large synaptic couplings). This is
analogous to what is observed for instantaneous synapses.

5.2. Sparse networks

For sparse networks, n1, has the same qualitative behavior as a function of the synaptic inhibition observed for
instantaneous IPSPs, as shown in figure 9(b) and figure 10(a). The value of 15 decreases with gand reaches a
minimal value at g,,,; afterwards, it increases towards 15 = 1 atlarger coupling. The origin of the minimum of 71,
asa function of gis the same as for instantaneous synapses. For g < g, active neurons are subject to, on average,
asupra-threshold effective input fi, while atlarger coupling /i, < 6, as shown in the inset of figure 10(b). This is
true for any value of 7,; however, this transition from mean- to fluctuation-driven dynamics becomes dramatic
for slow synapses. As evidenced from the data for the average output firing rate & and the average coefficient of
variation CV/, these quantities have almost discontinuous jumps at g = g _, asshown in figure 11.

Therefore, let us first concentrate on slow synapses with 7, larger than the membrane time constant, which is
one for adimensional units. For g < g the fraction of active neurons is frozen in time, at least on the considered
time scales, as revealed by the data in figure 9(b). Furthermore, for ¢ < g, the mean field approximation
obtained for the fully coupled case works almost perfectly both for n, and 7, as reported in figure 10(a). The
frozen phase is characterized by extremely small values of current fluctuations & (as shown figure 10(b)) and a
quite high firing rate 7 ~ 0.4 — 0.5 with an associated average coefficient of variation CV of almost zero (see
black circles and red squares in figure 11). Instead, for g > ¢, the number of active neurons increases in time
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Figure 10. (a) Fraction of active neurons for a network of a-pulse-coupled neurons as a function of g for various 7,: namely, 7, = 10
(blackcircles), 7, = 2 (red squares), 7, = 0.5 (blue diamonds), and 7, = 0.125 (green triangles). For instantaneous synapses, the
fully coupled analytic solution is reported (solid line), as well as the measured 71, for the sparse network with same level of dilution and
estimated over the same time interval (dashed line). (b) Average fluctuations of the synaptic current & versus g for ISPSs with a-
profiles; the symbols refer to the same 7, as in panel (a). Inset: Average input current fi, of the active neurons versus g, where the
dashed line is the threshold value @ = 1. The simulation time has been fixed to ts = 1 x 10°. (c—d) Raster plots for two different
synaptic strengths for 7, = 10: namely, (c) g = 1 correspondsto ny =~ 0.52, 7 ~ 0.45,and CV ~ 3 x 1074 while (i)g = 10to

np =~ 0.99, 7 > 0.06,and CV = 4.1. The neurons are ordered according to their intrinsic excitability and the time is rescaled by the
average frequency . The data were obtained for a system size N = 400 and K = 20, and other parameters are as in figure 9.
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Figure 11. (a) Average firing rate 7 versus g for a network of a-pulse-coupled neurons, for four values of 7,. Theoretical estimations
for o calculated with the adiabatic approach (45) are reported as dashed lines of colors corresponding to the relative symbols. (b)
Average coefficient of variation CV for four values of 7, as a function of inhibition. The dashed line refers to the values obtained for
instantaneous synapses and a sparse network with the same value of dilution. (c) Average Tis; (filled black circles) as a function of g for
To = 10.For g > g theaverage inter-burst interval (empty circles) and the average IS measured within bursts (gray circles) are also
shown, together with the position of g, (green vertical line). The symbols and colors denote the same 7, values as in figure 10. All the
reported data were calculated for a system size N = 400 and K = 20 and for a fixed simulation time of ts = 1 x 10°.

similarly to what is observed for instantaneous synapses, while the average frequency becomes extremely small

7 =~ 0.04 — 0.09 and the value of the coefficient of variation becomes definitely larger than one.

These effects can be explained by the fact that below g, the active neurons (the winners) are subject to an
effective input i, > 0 thatinduces a quite regular firing, as testified by the raster plot displayed in figure 10(c).
The supra-threshold activity of the winners joined together with the filtering action of the synapses guarantee
that on average each neuron in the network receives an almost continuous current with small fluctuations in
time. These results explain why the mean field approximation still works in the frozen phase, where fluctuations
in synaptic currents are essentially negligible and unable to induce any neuronal rebirth, at least on realistic time
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scales. In this regime the only mechanism in action is the WTA, and fluctuations begin to have a role for slow
synapses only for ¢ > ¢ .Indeed, as shown in figure 10(b), the synaptic fluctuations & for 7, = 10 (black
circles) are almost negligible for ¢ < g_ and show an enormous increase of almost two orders of magnitude at
g = &, Similarly, at 7, = 2 (red square) a noticeable increase of & is observable at the transition.

In order to better understand the abrupt changes in 7 and CV observable for slow synapsesat g = g, letus
consider the case 7, = 10. Asshown in figure 11(c), 7p > Tisy =~ 2 — 3for g < g,,,- Therefore, for these
couplings the IPSPs have no time to decay between a firing emission and the next one, and thus the synaptic
fluctuations & are definitely small in this case. At g,, an abrupt jump is observable to large values where Tis; > 7,
which is due to the fact that now the neurons display bursting activities, as evident from the raster plot shown in
figure 10(d). The bursting is due to the fact that, for ¢ > g_, the active neurons are subject to an effective input,
which is on average sub-threshold; therefore, the neurons tend to be silent. However, due to current
fluctuations, a neuron can pass the threshold and silent periods can be interrupted by bursting phases where the
neuron fires almost regularly. In fact, the silent (inter-burst) periods are very long ~700 — 900 compared to the
duration of the bursting periods, namely ~25 — 50, as shown in figure 11(c). This explains the abrupt decrease
of the average firing rate reported in figure 11(a). Furthermore, the inter-burst periods are exponentially
distributed with an associated coefficient of variation ~0.8 — 1.0, which clearly indicates the stochastic nature
of the switching from the silent phase to the bursting phase. The firing periods within the bursting phase are
instead quite regular, with an associated coefficient of variation ~0.2, and with a duration similar to Tist
measured in the frozen phase (shaded gray circles in figure 11(c)). Therefore, above g, the distribution of the ISI
exhibits a long exponential tail associated with the bursting activity, and this explains the very large values of the
measured coefficient of variation. By increasing coupling, the fluctuations in the input current become larger,
and thus the fraction of neurons that fires at least once within a certain time interval increases. At the same time,
D, the average inter-burst periods, and the firing periods within the bursting phase remain almost constant at
g > 10,as shown in figure 11(a). This indicates that the decrease of i, and increase of & due to the increased
inhibitory coupling essentially compensate for each other in this range. Indeed, we have verified that for 7, = 10
and 7, = 2, [y () decreases (increases) linearly with gwith similar slopes, namely 7, ~ 0.88 — 0.029¢
while & ~ 0.05 + 0.023g.

For faster synapses, the frozen phase is no longer present. Furthermore, due to rebirths induced by current
fluctuations, 11, is always larger than the fully coupled mean field result (8), even at ¢ < g _.Itisinterestingto
notice that by decreasing 7, we are now approaching the instantaneous limit, as indicated by the results
reported for 1, in figure 10(a) and CV in figure 11(b). In particular, for 7, = 0.125 (green triangles) the data
almost collapses on the corresponding values measured for instantaneous synapses in a sparse network with the
same characteristics and over a similar time interval (dashed line). Furthermore, for fast synapses with 7, < 1
the bursting activity is no longer present, as can be appreciated by the fact that at most CV approaches one in the
very large coupling limit.

For sufficiently slow synapses, the average firing rate & can be estimated by applying the so-called adiabatic
approach developed by Moreno-Bote and Parga in [50, 51]. This method applies to LIF neurons with a synaptic
time scale longer than the membrane time constant. In these conditions, the output firing rate can be
reproduced by assuming that the neuron is subject to an input current with time-correlated fluctuations, which
can be represented as colored noise with a correlation time given by the pulse duration 7 = 27, (for more
details see appendix D). In this case we are unable to develop a self-consistent approach to obtain at the same
time 1, and the average frequency. However, once 1, is provided by simulations, the estimated solution to (45)
obtained with the adiabatic approach gives very good agreement with the numerical data for sufficiently slow
synapses, namely for 7p > 1, as shown in figure 11(a) for 7, = 10, 2,and 0.5. The theoretical expression (45) is
even able to reproduce the jump in average frequencies observable at g,,,, and can therefore capture the bursting
phenomenon. By considering 7p < 1, as expected, the theoretical expression fails to reproduce the numerical
data, particularly at large coupling (see the dashed green line in figure 11(a) corresponding to 7, = 0.125).

By following the arguments reported in [50], the bursting phenomenon observed for 7, > land g > g can
be interpreted at a mean field level as the response of a sub-threshold LIF neuron subject to colored noise with
correlation 7p. In this case, the neuron is definitely sub-threshold, but in the presence of a large fluctuation it can
lead to firing, and due to the finite correlation time, it can remain supra-threshold regularly firing for a period
~17p. The validity of this interpretation is confirmed by the fact that the measured average bursting periods are of
the order of the correlation time 7p = 27,, namely, ~27 — 50 (~7 — 14)for 7, = 10 (1, = 2).

As afinal point, to better understand the dynamical origin of the measured fluctuations in this deterministic
model, we have estimated the maximal Lyapunov exponent . As expected from previous analysis, for non-
instantaneous synapses we can observe the emergence of regular chaos in purely inhibitory networks [1, 30, 89].
In particular, for sufficiently fast synapses, we typically note a transition from a chaotic state at low coupling to a
linearly stable regime (with A < 0) atlarge synaptic strengths, as shown in figure 12(a) for 7, = 0.125. This s
despite the fact that current fluctuations are monotonically increasing with synaptic strength. Therefore,
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Figure 12. Maximal Lyapunov exponent A versus g for a network of a-pulse-coupled neurons, for (a) 7, = 0.125, (b) 7, = 2,and (c)
7, = 10. The blue dashed vertical line denotes the g;,, value. All the reported data were calculated for a system size N = 400 and

K = 20and for simulation times 5 x 10* < t5 < 7 x 10°, thus ensuring a good convergence of A to its asymptotic value. The other
parameters are as in figure 9.

fluctuations are due to chaos at small coupling, while at larger g they are due to finite amplitude instabilities, as
expected for stable chaotic systems [3]. However, the passage from positive to negative values of the maximal
Lyapunov exponent is not related to the transition occurring at ¢, from mean-driven to a fluctuation-driven
dynamics in the network.

For slow synapses, A is essentially zero at small coupling in the frozen phase, characterized by tonic spiking of
the neurons, but becomes positive by approaching g,,,. For larger synaptic strengths A, after reaching a maximal
value, it decreases and eventually becomes negative at g > g, as reported in figures 12(b)—(c). Only for
extremely slow synapses, as shown in figure 12(c) for 7, = 10, the chaos onset seems to coincide with the
transition occurring at g,,. These findings are consistent with recent results concerning the emergence of
asynchronous rate chaos in homogeneous inhibitory LIF networks with deterministic [26] and stochastic [31]
evolution. However, a detailed analysis of this aspect goes beyond the scope of the present paper.

6. Discussion

In this paper we have shown that the effect reported in [1, 66] is observable whenever two sources of quenched
disorder are present in the network: namely, a random distribution of neural properties and a random topology.
In particular, we have shown that neuronal death due to synaptic inhibition is observable only for heterogeneous
distributions of neural excitabilities. Furthermore, in a globally coupled network the less excitable neurons are
silenced for increasing synaptic strength until only one or few neurons remain active. This scenario corresponds
to the WTA mechanism via lateral inhibition, which has often been invoked in neuroscience to explain several
brain functions [88]. WTA mechanisms have been proposed to model hippocampal CA1 activity [16], as well as
to be at the basis of visual velocity estimates [24], and to be essential for controlling visual attention [28].

However, most brain circuits are characterized by sparse connectivity [10, 38, 60], and in these networks we
have shown that an increase in inhibition can lead from a phase dominated by neuronal death to a regime where
neuronal rebirths occur. Therefore, the growth of inhibition can have the counter-intuitive effect to activate
silent neurons due to the enhancement of current fluctuations. The reported transition is characterized by a
passage from a regime dominated by the almost tonic activity of a group of neurons, to a phase where sub-
threshold fluctuations are at the origin of the irregular firing of a high number of neurons in the network. For
instantaneous synapses, the first and second moment of the firing distributions have been obtained together
with the fraction of active neurons using a mean field approach, where the neuronal rebirth is interpreted as an
activation process driven by synaptic shot noise [70].

For a finite synaptic time smaller than the characteristic membrane time constant, the scenario is similar to
that observed for instantaneous synapses. However, the transition from mean-driven to fluctuation-driven
dynamics becomes dramatic for sufficiently slow synapses. In this situation one observes for low synaptic
strength a frozen phase, where synaptic filtering washes out the current fluctuations, thus leading to extremely
regular dynamics controlled only by a WTA mechanism. As soon as the inhibition is sufficiently strong to lead
the active neurons below threshold, neuronal activity becomes extremely irregular, exhibiting long silent phases
interrupted by bursting events. The origin of these bursting periods can be understood in terms of the emergence
of correlations in current fluctuations induced by the slow synaptic time scale, as explained in [50].

In our model, the random dilution of network connectivity is a fundamental ingredient to generate current
fluctuations, whose intensity is controlled by the average network in-degree K. A natural question is whether the
reported scenario will remain observable in the thermodynamic limit. On the basis of previous studies we can
affirm that this depends on how K scales with the system size [22, 41, 75]. In particular, if K stays finite for
N — oo the transition will remain observable. For K diverging with N, the fluctuations become negligible for
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Table 1. Comparison between the results obtained for slow c-synapses and experimental data for MSNs. The numerical data refer
to results obtained in the bursting phase, namely for synaptic strength gin the range [10: 50], for simulation times s = 1 x 10°,
N = 400,and K = 20. The experimental data refer to MSNs population in the striatum of free behaving wild type mice [47].

To/ T Tm (Msec) Spike rate (Hz) (0% Burst duration (msec) Spike rate within bursts (Hz)
2 10 4-6 ~1.8 100 £ 40 42 + 2
20 2-3 ~1.8 200 + 80 21 £1
10 10 4-6 ~4.2 400 + 150 41 £ 2
20 2-3 ~4.2 800 £ 300 20+ 1
Experimental data 2-3 ~].5-3 500-1100 31 £ 15

sufficiently large system sizes, impeding neuronal rebirths, and the dynamics will be controlled only by the WTA
mechanism.

An additional source of randomness present in the network is related to the variability in the number of
active pre-synaptic neurons. In our mean field approach we have assumed that each neuron is subject to 1, K
spike trains; however, this is true only on average. The number of active pre-synaptic neurons is a random
variable binomially distributed with average #n, K and variance ny (1 — 1) K. Future developments of the
theoretical approach reported here should include also such variability in modeling network dynamics [9].

Furthermore, we show that the considered model is not chaotic for instantaneous synapses; in such a case,
we observe irregular asynchronous states due to stable chaos [63]. The system can become truly chaotic for only
finite synaptic times [3, 30]. However, we report clear indications that for synapses faster than the membrane
time constant 7, the passage from mean-driven to fluctuation-driven dynamics is not related to the onset of
chaos. Only for extremely slow synapses do we have numerical evidence that the appearance of the bursting
regime could be related to a passage from a zero Lyapunov exponent to a positive one. This is in agreement with
the results reported in [26, 31] for homogeneous inhibitory networks. These preliminary indications demand
more detailed investigations of deterministic spiking networks in order to relate fluctuation-driven regimes and
chaos onsets. Moreover, we expect that it will be hard to distinguish whether the erratic current fluctuations are
due to regular chaos or stable chaos on the basis of network activity analysis, as also pointed outin [30].

Concerning the biological relevance of the presented model, we can attempt a comparison with
experimental data obtained for MSNs in the striatum. This population of neurons is fully inhibitory with sparse
lateral connections (connection probability ~210%—20% [77, 81]) that are unidirectional and relatively weak
[78]. Furthermore, for MSNs within the same collateral network the axonal propagation delays are quite small
~1-2 ms [76] and can be safely neglected. The dynamics of these neurons in behaving mice reveals a low average
firing rate with irregular firing activity (bursting) with an associated large coefficient of variation [47]. As we have
shown, these features can be reproduced by sparse networks of LIF neurons with sufficiently slow synapses at
g > g, and 7, > 7. For values of the membrane time constant that are comparable to those measured for
MSNs [59, 61] (namely, 7, ~ 10-20 msec), the model is able to capture some of the main aspects of MSNs
dynamics, as shown in table 1. We obtain a reasonable agreement with the experiments for sufficiently slow
synapses, where the interaction among MSNs is mainly mediated by GABA 4 receptors, which are characterized
by IPSP durations of the order of ~5-20 ms [34, 81]. However, apart the burst duration, which is definitely
shorter, all other aspects of the MSN dynamics can be already captured for 7, = 27, (with 7, = 10 ms), as
shown in table 1. Therefore, we can safely affirm, as also suggested in [66], that the fluctuation-driven regime
emergingat g > g is the most appropriate in order to reproduce the dynamical evolution of this population of
neurons.

Other inhibitory populations are present in the basal ganglia. In particular, two coexisting inhibitory
populations, arkypallidal (Arkys) and prototypical (Protos) neurons, have been recently discovered in the
external globus pallidus [43]. These populations have distinct physiological and dynamical characteristics, and
have been shown to be fundamental for action suppression during the performance of behavioral tasks in
rodents [44]. Protos are characterized by a high firing rate ~47 Hz and a not too large coefficient of variation
(namely, CV =~ 0.58) both in awake and slow wave sleep (SWYS) states; meanwhile, Arkys have clear bursting
dynamics with CV =~ 1.9 [18, 44]. Furthermore, the firing rate of Arkys is definitely larger in the awake state
(namely, ~9 Hz) with respect to the SWS state, where firing rates are ~3-5 Hz [44].

On the basis of our results, on the one hand, Protos can be modeled as LIF neurons with reasonably fast
synapses in a mean-driven regime, namely with synaptic coupling g < g_.On the other hand, Arkys should be
characterized by IPSP with definitely longer durations, and should be in a fluctuation-driven phase as suggested
from the results reported in figure 11. Since, as shown in figure 11(a), the firing rate of inhibitory neurons
decreases by increasing synaptic strength g, we expect that the passage from awake to SWS should be
characterized by a reinforcement of Arkys synapses. Our conjectures about Arkys and Protos synaptic properties
based on their dynamical behaviors ask for experimental verification, which we hope will happen shortly.
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Besides the straightforward applicability of our findings to networks of pulse-coupled oscillators [48], it has
been recently shown that LIF networks with instantaneous and non-instantaneous synapses can be transformed
into the Kuramoto—Daido model [17, 35, 62]. Therefore, we expect that our findings should extend to phase
oscillator arrays with repulsive coupling [79]. This will allow for a wider applicability of our results, due to the
relevance of limit-cycle oscillators not only for modeling biological systems [86], but also for many scientific and
technological applications [19, 58, 71, 74].
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Appendix A. Event driven maps

By following [53, 91] the ordinary differential equations (1) and (2) describing the evolution of the membrane
potential of neurons can be rewritten exactly as discrete time maps connecting successive firing events occurring
in the network. In the following we will explicitly report such event driven maps for the case of instantaneous
and a-synapses.

For instantaneous PSPs, the event driven map for neuron i takes the following expression:

vi(n + 1) = vi(me B 4+ L(1 — e ) — %cmi, (16)

where the sequence of firing times {#,} in the network is denoted by the integer indices {#}, m is the index of the
neuron firingattime ¢, j,and Ty = t,,1; — t,is the ISI associated with two successive neuronal firings. This
latter quantity is calculated from the following expression:

L, — v,
Ty = In| Z2—2. 17
5 n[Im—l] (17)

For a-pulses, the evolution of the synaptic current E(#), stimulating the i-th neuron can be expressed in
terms of a second-order differential equation, namely

E,‘(l’) + 204E,»(t) + Ozin(l') = Oz_zz Z Cijé(t — ty). (18)

j=in|t,<t

Equation (18) can be rewritten as two first-order differential equations by introducing the auxiliary variable
Q = E; — aE;, namely

2
Ei=Q—aE, QO =-aQ+ %= > Ciib(t — ty) (19)
n|t,<t

Finally, equations (1) and (19) can be exactly integrated from the time ¢,, just after delivery of the n-th pulse,
to time t,,,  corresponding to the emission of the (n + 1)-th spike, to obtain the following event driven map:

2
Qi(n + 1) = Qi(me T + %cmb (20a)
Ei(n 4 1) = Ei(me " 4+ Qi(n) T,e ", (200)
vin + 1) = vi(me T + L;(1 — e 1) — gH.(n). (20¢)
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In this case, the ISI T, = ¢t,,,; — t, should be estimated by solving the following expression:

sz — ln[ Im — Vm(”) :|, (21)
I, —gH, (n) —1

where the explicit expression for H;(n) appearing in equations (20¢) and (21) is

e To — e

aT, R aT,
Hi(n) = —1(Ei(n) 4 Q'(")) Tae Q). 22)

o — a—1

The model so far introduced contains only adimensional units; however, the evolution equation for the
membrane potential (1) can be easily re-expressed in terms of dimensional variables as follows:

TmVi(#) = I = Vi(#) — @Ei(f) i=1,---N, (23)

where we have chosen 7, = 10 ms as the membrane time constant, and I, represents the neural excitability and
external stimulation. Furthermore, f = t - 7, and the field E; = E; /7, has the dimensionality of a frequency
and § of a voltage. The currents {I;} also have the dimensionality of a voltage since they include the membrane
resistance.

For the other parameters/variables the transformation to physical units is simply given by

Vi=Vi+ (Vi — Wi, (24)

Li=Vi+ (Vi — W (25)

§=n—Wg (26)

where V; = —60 mV and Vi, = —50 mV are realistic values of the membrane reset and threshold potential. The

isolated i-th LIF neuron is supra-threshold whenever I; > Vj,.

Appendix B. Average firing rate for instantaneous synapses

In this appendix, by following the approach in [70] we derive the average firing rate of a supra-threshold LIF
neuron subject to inhibitory synaptic shot noise of constant amplitude G, namely

vy =1—v() — GY 6(t — 1), (27)
{1}

where I > 1.The post-synaptic pulses reaching the neuron are instantaneous and their arrival times are Poisson-
distributed and characterized by a rate R. In order to find the firing rate response of the LIF neuron we introduce
the probability density P(v) and the flux J(v) associated with the membrane potentials. These satisfy the following
continuity equation:
@-i'g—f?(t)w(v—vr)—5(1/—9)], (28)
ot 0ov

where p (t) is the instantaneous firing rate of the neuron. The flux can be decomposed in an average drift term
plus the inhibitory part, namely

J=U—=P+ Jin (29)
ajinh(v) t) —
v

The set of equations (28) to (30) is complemented by the boundary conditions
](6) t) = P(t) ]inh(e) t) =0 P(@, t) - O)

and by the requirement that the membrane potential distribution should be normalized, i.e

0
f P, t)dv = 1.

R[P(v,t) — P(v — G, )]. (30)

By introducing bilateral Laplace transforms f(s) = j: O; dve®f (v) and by performing some algebra along
the lines described in [70] it is possible to derive the analytic expression for the average firing rate

1 _fi’o dse? — esvf’ G1)
s Zo(s)
where Z, (s) is the Laplace transform of the sub-threshold probability density. Namely, it reads as
Zy(s) = Cos ResITREG], (32)
where £(y) = — j; ch dte~*/t is the exponential integral, Cy = e R *1nG) j5 the normalization constant

ensuring that the distribution Z, (v) is properly normalized, and I is the Euler-Mascheroni constant.
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Figure 13. Average network frequency  as a function of the synaptic strength g for instantaneous synapses and uniform distributions
P(D)with support [}, L] = [1.0, 1.5]. Inset: average coefficient of variation CV versus g. Filled symbols refer to numerical simulation
for N = 400 and K = 20, dashed lines refer to the corresponding analytic solutions reported in appendices B and C, and solid
(magenta) lines refer to the diffusion approximation. The data have been averaged over a time interval s = 1 x 10° after discardinga
transient of 10° spikes.

To validate this method and obtain the average firing frequency o, we compare the theoretical estimates
given by (14) with numerical data obtained for sparse networks with in-degree K and instantaneous inhibitory
synapses. The agreement is quite remarkable, as shown in figure 13. In the same figure, the solid magenta line
refers to the results obtained by employing the diffusion approximation [8, 9, 69, 80]: clear discrepancies are
already evident for g > 1. In particular, for the diffusion approximation and the evaluation of (14) we assume
that each neuron receives a Poissonian spike train with an arrival rate given by R = n, K. Furthermore, it
should be stressed that in this case we test the quality of the approach described in this appendix versus the
diffusion approximation; therefore, n,, required to estimate 7, is obtained from the simulation and not derived
self-consistently as done in section 4.

Appendix C. Coefficient of variation for instantaneous synapses

In order to derive the coefficient of variation for the shot noise case it is necessary to obtain the first two moments
of the first-passage-time density q(#). By following the same approach as in appendix B, the time-dependent

continuity equation with initial condition P (v, 0) = v, is written as
oP 0
LoD 5 — ) — 80— O] + 5O — ). (33)
ot ov

As suggested in [70], equation (33) can be solved by performing a Fourier transform in time and a bilateral
Laplace transform in membrane potential. This allows us to obtain the Fourier transform of the spike-triggered
rate, namely

fo = ds swA' (s)
[Tdss B )~ A©1

pw) = (34
where A (s) = e™/Zy(s)and B(s) = e*’/Z,(s). The Fourier transform of the first-passage-time density is

qw) = ; f (;}()w) ,and the first and second moment of the distribution are given by
99

a w=0 = _i<t>’ (35)

0%

Ow?
Since the integrals appearing in equation (34) cannot be exactly solved, we have expanded it to the second-order,
obtaining

|w:0 = _<t2>- (36)

ny + mw + mw?

) 37
d() + dlw + dzwz ( )

p(w) =~
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where nyg = —1,dy = 0,d, = —iny /14, and
m = ifoo logsA' (s)ds, (38)
0
© logs
dy = f 8% 1B(s) — A(s)]ds. (39)
0 s
From expression (34) we can finally obtain the first and second moment of g(), namely
1
(ty = —,  (?) =2[d} + dy + dim]. (40)
0]

Once these quantities are known, the coefficient of variation can be easily estimated for each neuron with
excitability I.

The results obtained for the average coefficient of variation CV for a sparse network are compared with
numerical data and with the diffusion approximation in the inset of figure 13. It is evident that the
approximation derived here is definitely more accurate than the diffusion approximation for synaptic strengths
larger than g >~ 1.

Appendix D. Average firing rate for slow synapses

In section 5 we have examined the average activity of the network for non-instantaneous IPSPs with a-function
profiles. In the presence of synaptic filtering, whenever the synaptic time constant is larger than the membrane
time constant, one can apply the so-called adiabatic approach to derive the firing rate v, of a single neuron, as
described in [50, 51].

In this approximation, the output firing rate 1 of the single neuron driven by a slowly varying stochastic
input current z with an arbitrary distribution P(z) is given by

Vo = fdzP(z)l/(z), (41)

where v (z) is the input to rate transfer function of the neuron under a stationary input which for the LIF neuron

is simply
—1
v(z) = [ln(z - 2)] . (42)
7

The synaptic filtering induces temporal correlations in the input current z, which can be written as

o? [t — t/|
(@) — W) —w) = —eXP[——]- (43)
27 Ts

Here 7, is the synaptic correlation time. In the case of a-pulses, where the rise and decay synaptic times coincide,
we can assume that the correlation time is given by 7, = 7 = 27,.

Analogous to the diffusion approximation [8, 9, 14], the input currents are approximated as a Gaussian noise
with mean yrand variance o> = ¢ /27,. In our network model, a single neuron receives an average current y
given by equation (4) with a standard deviation o given by equation (10). In particular, the fraction of active
neurons 1, entering in the expressions of ;1 and o is in this case obtained by numerical simulations.

Therefore, the single neuron output firing rate reads as

0 e~ (—Z_ Vf) - (44)
SR o = e s |

where I is the neuronal excitability.
The average firing rate of the LIF neurons in the network, characterized by an excitability distribution P(J),

can be estimated as
G0 z— ) -1
U= dI P 27 |Iln L , 45
()0\/ O’Z [(2—9] (45)

where we impose the self-consistent condition that the average output frequency is equal to that of the average
input.
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