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Abstract One way to analyze complicated non-autonomous flows is through try-
ing to understand their transport behavior. In a quantitative, set-oriented approach
to transport and mixing, finite time coherent sets play an important role. These are
time-parametrized families of sets with unlikely transport to and from their sur-
roundings under small or vanishing random perturbations of the dynamics. Here we
propose, as a measure of transport and mixing for purely advective (i.e., determin-
istic) flows, (semi)distances that arise under vanishing perturbations in the sense of
large deviations. Analogously, for given finite Lagrangian trajectory data we derive
a discrete-time-and-space semidistance that comes from the “best” approximation of
the randomly perturbed process conditioned on this limited information of the deter-
ministic flow. It can be computed as shortest path in a graph with time-dependent
weights. Furthermore, we argue that coherent sets are regions of maximal farness in
terms of transport and mixing, and hence they occur as extremal regions on a spanning
structure of the state space under this semidistance—in fact, under any distance mea-
sure arising from the physical notion of transport. Based on this notion, we develop
a tool to analyze the state space (or the finite trajectory data at hand) and identify
coherent regions. We validate our approach on idealized prototypical examples and
well-studied standard cases.
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1 Introduction

Transport in Dynamical Systems Instrumental to understanding the essential behav-
ior of complicated non-autonomous flows is to grasp how transport is happening in
them. This leads on a qualitative level to objects that prohibit transport, commonly
named transport barriers; often originating from the geometric picture for autonomous
systems and that trajectories are unable to cross co-dimension 1 invariant manifolds
(Haller 2000, 2001; Haller and Beron-Vera 2012, 2013). For periodically forced sys-
tems, invariant manifolds enclose regions called “lobes” that get transported across
these periodically varying manifolds (MacKay et al. 1984; Rom-Kedar and Wiggins
1990).

On a quantitative level, one searches for surfaces of small flux (Balasuriya et al.
2014; Karrasch 2016; Froyland and Koltai 2017), so-called partial barriers (Wigner
1937; Meiss 1992). Instead of characterizing regions that do not mix with one another
via enclosing them by boundaries of low flux, there are approaches that aim to describe
these sets directly. Such set-oriented concepts are strongly interwoven with the the-
ory of transfer operators (Perron–Frobenius and Koopman operators) and comprise
almost-invariant sets (Dellnitz and Junge 1999), ergodic partitions (Mezić and Wig-
gins 1999) in autonomous, and coherent sets (Froyland et al. 2010; Froyland 2013) in
the non-autonomous cases.

Distinctive attention has been given to coherent sets, which are a (possibly time-
dependent) family of sets having little or no exchangewith their surrounding in terms of
transport and are robust to small diffusion over a finite time of consideration (Froyland
2013, 2015). Natural examples include moving vortices in atmospheric (Rypina et al.
2007; Froyland et al. 2010), oceanographic (Treguier et al. 2003; Dellnitz et al. 2009;
Froyland et al. 2015), and plasma flows (Padberg et al. 2007). In such applications,
one would like to be able to find coherent sets even in the cases when a dynamical
model that can be evaluated arbitrarily often is not available, only a finite set of
Lagrangian trajectory data (passive tracers moving with flow with positions sampled
at discrete time instances). This problem has received lot of attention in recent years,
and a diverse collection of tools has been developed to tackle it (Budišić and Mezić
2012; Allshouse and Thiffeault 2012; Ser-Giacomi et al. 2015; Froyland and Padberg-
Gehle 2015; Allshouse and Peacock 2015; Williams et al. 2015; Hadjighasem et al.
2016; Banisch and Koltai 2017; Schlueter-Kuck and Dabiri 2017; Padberg-Gehle and
Schneide 2017; Rypina and Pratt 2017; Fabregat et al. 2016; Froyland and Junge
2017).

While other current methods aim at collecting trajectories into coherent sets, in
Banisch and Koltai (2017) it has been proposed to go one step further and analyze the
connectivity structure of the state space under transport and mixing with “transport
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coordinates” and the “skeleton of transport”.Very similar observations have beenmade
earlier in Budišić and Mezić (2012) in the infinite-time limit for periodically forced
systems. While coherent sets (and transport barriers) aim at partitioning the state
space, the skeleton is aiming at “spanning” the state space with respect to transport.
In this respect, coherent sets can be associated with distinct “extremal regions” of the
skeleton. Here we will only use this idea of extremality, more precisely that coherent
sets are “maximally far” from one another, as measured by transport. To this end, we
will need to measure “farness” of dynamical trajectories.

Several dynamical distance measures have been put forward already to measure
the “distance” or “dissimilarity” of trajectories or initial states in dynamical systems
(Mezić and Banaszuk 2004; Budišić and Mezić 2012; Froyland and Padberg-Gehle
2015; Hadjighasem et al. 2016; Fabregat et al. 2016; Karrasch and Keller 2016). The
majority of them are shown to serve their purpose well in revealing coherent structures
efficiently and reliably. However, they are either heuristic in the sense that they are
not derived from the physical notion of transport and mixing, or no discretizations to
finite scattered trajectory data have been developed.

The purpose of this paper is thus twofold. On the one hand, we develop a dis-
tance measure (a semidistance) between trajectories that is derived from the physical
notion of transport and mixing subject to diffusion of vanishing strength, and we also
derive a discretized distance measure for finite (also possibly sparse and incomplete)
Lagrangian data that is consistent with its continuous counterpart in the limit of infinite
data. On the other hand, we construct a tool to analyze with such distances the structure
of the state space under transport, especially to find coherent sets. This tool makes use
of the idea that coherent sets are some sort of extremal regions on a spanning structure
with respect to transport, although in this work we will not investigate this “skeleton”
in its entirety.

Finite Time Coherent Sets Let us consider the ordinary differential equation (ODE)

ẋt = v(t, xt ) (1)

on some bounded X ⊂ R
d and on a finite time interval [0, T ] for some T > 0.

Throughout the paper, we will assume that v : [0, T ] × X → R
d is a continuous

velocity field tangential at the boundary, such that the flow of (1), denoted by φs,t [·],
0 ≤ s, t ≤ T , is a diffeomorphism on appropriate subsets of X . For t < s we flow
backward in time: φs,t = φ−1

t,s .
Many different notions to characterize coherent sets have been proposed in the liter-

ature. Central to all of these notions is the idea that coherent sets should be robust under
noise; without such a requirement, any non-intersecting characteristic of a singleton
could be considered a coherent set. To this end, one typically perturbs the ODE (1) by
a random noise (Denner et al. 2016; Froyland and Koltai 2017; Karrasch and Keller
2016), leading to the Itô stochastic differential equation (SDE)1

dx (ε)

t = v(t, x (ε)

t )dt + √
εdwt , (2)

1 We denote random variables by boldface symbols.
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where {wt }t∈[0,T ] is a Wiener process (Brownian motion) with generator φ �→ 1
2�φ,

reflecting boundaries, and starting from w0 = 0 (deterministically) and ε > 0 is, at
least for now, a given small constant. In fact, the rigorous mathematical formulation of
an SDE with reflecting boundaries can be quite subtle, see Andres (2009). We ignore
this issue as it does not affect our analysis.

According to the definition of finite time coherent pairs (Froyland et al. 2010;
Froyland 2013; Koltai et al. 2016), two sets A, B ⊂ X are coherent for times 0 and T
if most mass from set A is likely to end up in set B, and most mass ending up in set B
is likely to originate from set A, that is,

P
[
x (ε)

T ∈ B | x (ε)

0 ∈ A
] ≈ 1, and P

[
x (ε)

0 ∈ A | x (ε)

T ∈ B
] ≈ 1. (3)

Naturally, for practical purposes one would need to choose how small ε and how large
these probabilities should be. As the systems we are dealing with are often determin-
istic by nature, and there is no “physically straightforward” choice of the diffusion
strength ε, our first aim is to remove some of this indeterminacy by quantifying what
it means for probabilities to be close to 1 for small ε, in terms of large deviations as
we explain below.2 However, it turns out that the forward and backward conditions (3)
are essentially equivalent in the large-deviation regime, and even worse, the large-
deviation limits of (3) hardly give any quantitative information about how coherent
two sets might be, as discussed in Appendix A. To conclude, the large deviations of
conditions (3) do not yield sensible conditions for coherence.

Large-Deviation-Based Semidistances In the current paper, we take a different
approach. We study semidistances that quantify how unlikely it is for mass to flow
from one point to another. These are semidistances in the sense that they satisfy all
properties of a metric except for the triangle inequality. In the first part of this paper, in
Sects. 2 and 3, we show how such semidistances can arise naturally from probabilistic
arguments via large-deviation principles, as we explain below. In the second part, in
Sects. 4 and 5, we discuss how (general) semidistances can be used to analyze coherent
sets, and we apply the concepts of this paper to a number of examples.

In Sect. 2, we derive two different semidistances from the large deviations of two
probabilities. The first one is related to the probability that the endpoint x (ε)

T of the
random path is φ0,T [y], given that it starts in x (ε)

0 = x , for any two initial positions
x, y ∈ X . As ε → 0, the process can no longer deviate from the deterministic flow
of (1), and hence this probability will converge to 0 whenever x 	= y. In fact, it
converges exponentially fast (Freidlin and Wentzell 1998), i.e.,

P
[
x (ε)

T 
 φ0,T [y] | x (ε)

0 = x
] ∼ e− 1

ε
μT (x→y) (4)

for some functionμT (x→y) ≥ 0,where this statement andnotation aremadeprecise in
Sect. 2.1. Such exponential convergence results are called large-deviation principles,

2 A different way of factoring out diffusion to obtain coherent sets for deterministic flows appeared in
the set-oriented transfer operator-based characterization in Froyland (2015); Froyland and Kwok (2016),
leading to the notion of the dynamic Laplacian. See also our concluding remarks in Sect. 6.1.
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Fig. 1 μcross
T (x, y) is the cost to

move from x to φ0,T [y] and
from y to φ0,T [x]

t
T

x

φ0,T [x]

y

φ0,T [y]

Fig. 2 μmeet
T (x, y) is the cost

for two trajectories to meet

t
T

x

φ0,T [x]

y

φ0,T [y]

and μT (x → y) is the large-deviation rate. The less probable it is to reach one point
from another, the larger the rate between them. The first semidistance is then obtained
via symmetrization:

μcross
T (x, y) := μT (x→y) + μT (y→x). (5)

We call this the cross semidistance, since it arises frommass flowing from x to φ0,T [y]
and mass flowing from y to φ0,T [x] simultaneously and independently, see Fig. 1.

The second semidistance arises as the large deviations of the probability for two
independent random trajectories x (ε), y(ε) starting at x and y, respectively, to meet at
or before time T (Fig. 2):

P
[
x (ε)

T 
 y(ε)

T | x (ε)

0 = x, y(ε)

0 = y
] ∼ e− 1

ε
μmeet

T (x,y), (6)

where the meeting semidistance is given by

μmeet
T (x, y) := inf

z∈X
μT (x→z) + μT (y→z).

By this procedure, we find two semidistances μcross
T and μmeet

T that can be used as a
measure of “farness” of points x, y, which will be low for points in the same coherent
set, and high otherwise. Since both arise from large-deviation principles, they have
a nice additional interpretation as a probabilistic cost or free energy that needs to be
paid in order to deviate from the expected flows; such interpretation is common in
statistical physics, see for example Onsager and Machlup (1953).
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Nevertheless, wewill see that in order to calculate these costs explicitly, the velocity
field v needs to be known. As discussed above, this is in practice seldom the case;
mostly one can only assume to have discrete-time snapshots of the positions of a limited
number of floaters. With this in mind, we derive similar cost functions as above, that
are based on such a finite data set only. This will be the content of Sect. 3. First, the
dynamics is discretized in time and space by conditioning a usual time-steppingmethod
for the SDE (2) on the event that the random continuous trajectories are to be found in
the set of known floater positions at the K ∈ N given time instances. As above, we then
derive two large-deviation semidistances νcrossK (x, y) and νmeet

K (x, y) that have a clear
probabilistic interpretation, that can be used to characterize coherent sets, and that are
based on the finite data set rather than on the explicit velocity field. In fact, we will
show that these discrete-space–time semidistances are really specific discretizations
of the continuous-space–time semidistances μcross

T and μmeet
T . As shown in Sect. 3.4,

they can be computed as shortest path lengths in a time-dependent weighted graph.
We give an algorithm to compute these shortest paths in Appendix B.

Let us stress that these semidistances are defined for deterministic dynamical sys-
tems. The random perturbation that is factored out by the large-deviation principle is
merely acting as a catalyst to help quantify how strongly distinct trajectories mix—or,
we should rather say how poorly, as the transport from one trajectory to another is
inversely proportional to their semidistance.

Coherence Analysis with Semidistances In Sect. 4, we describe how in general a
semidistance on finite Lagrangian data can be used to analyze coherence. Key to our
method is the notion of cornerstone: a point that is furthest away from all other points.
Cornerstones are though of as “endpoints” of a spanning structure, and ideally each
cornerstone is in some sense the center of a coherent set. As a next step, trajectories
can be clustered around cornerstones to yield coherent sets. Of course, this approach
is very close to the k-means- and fuzzy c-means clustering of trajectories with respect
to dynamical distances in Hadjighasem et al. (2016); Froyland and Padberg-Gehle
(2015), with the important difference that the centers are not chosen by the heuristics
of these clustering approaches, but with regard to the properties of coherent sets in the
light of transport and mixing.

To exemplify the usefulness of the theory put forth in this paper, in Sects. 4 and 5
we test our approach on a number of standard test cases. Finally, Sect. 6 discusses
possible combinations of this work with other concepts.

2 Large-Deviation Semidistances in Continuous Time and Space

In this section, we study large deviations of the forms (4) and (6). In large-deviation
theory, it is often easier to first study large deviations in a larger space. In our setting,
we first study the large deviations of paths in Sect. 2.1 before transforming to the large
deviations of the endpoints in Sect. 2.2. We end with a discussion of the resulting
semidistances μcross

T , μmeet
T in Sect. 2.3.
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2.1 Large Deviations of Paths

We denote paths by w(·) to distinguish them from points w. Let P be the Wiener
measure, i.e., the probability that a Brownian path lies in a set U ⊂ C(0, T ;Rd) is
P[w(·) ∈ U ]. Recall that there does not exist a canonical probability measure on the
space of paths, and so the Wiener measure cannot be identified with a meaningful
density. This means that one always needs to consider sets rather than particular
realizations of the Brownian path. Nevertheless, large-deviation rates are always local,
in the sense that they depend on one realization only (the most likely one in the set U
under consideration). This motivates writing w(·) 
 f(·) if w(·) lies in an infinitesimal
neighborhood U of the path f(·). We will make this more precise below.

The large deviations for the SDE (2) are a standard result by Freidlin and Wentzell
(1998). This result can be derived via a combination of Schilder’s theorem and a
contraction principle as we now explain.

We first consider the noise part
√

εwt , which clearly converges (almost surely uni-
formly) to the constant path 0 as ε → 0. The corresponding large-deviation principle
is given by Schilder’s theorem (Dembo and Zeitouni 1987, Th. 5.2.3):

−ε logP
[√

εw(·) 
 w(·)
] −−→

ε→0

1

2

∫ T

0
|ẇt |2dt, (7)

for differentiable paths w(·) starting from w0 = 0 (otherwise the limit will be ∞).3

Let us assume that the velocity field v(t, ·) is Lipschitz, so for each realization of
the Brownian path w(·) = w(·) corresponds a unique solution x (ε)

(·) of the SDE, starting
from some given x (ε)

0 = x , see (Øksendal 2003, Th. 5.2.1). The contraction principle
(Dembo and Zeitouni 1987, Th. 4.2.1) then states that the large-deviation rate of a
path x(·) is given by the minimum of (7) over all realizations of the noise that give rise
to that path, i.e.,

−ε logP
[
x (ε)

(·) 
 x(·)
]

−−→
ε→0

inf
w(·) : ẋt =v(t,xt )+ẇt

1

2

∫ T

0
|ẇt |2 dt

= 1

2

∫ T

0
|ẋt − v(t, xt )|2 dt, (8)

for differentiable paths x(·) starting from x0 = x .

2.2 Large Deviations of Endpoints

We now derive the large-deviation principle of the type (4) as discussed in the Intro-
duction. In a sense, the pathwise large deviations (8) encode more information than is
needed if we are only interested in the endpoint x (ε)

T 
 φ0,T (y) of the random path.

3 More rigorously, (7) means ε logP
[√

εw(·) ∈ U
] −−−→

ε→0
− infw(·)∈U

1
2

∫ T
0 |ẇt |2dt, where, for technical

reasons, this convergence is realized by a liminf lower bound for open sets U and limsup upper bound for
closed sets U ; see Dembo and Zeitouni (1987).
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Another application of the contraction principle then states that the large-deviation
rate for the endpoint is the minimum of (8) over all paths starting from x and ending
in that given endpoint φ0,T [y], that is:

−ε logP
[
x (ε)

T 
 φ0,T [y] | x (ε)

0 = x
]

−−→
ε→0

inf
x(·) :x0=x,xT =φ0,T [y]

1

2

∫ T

0
|ẋt − v(t, xt )|2 dt =: μT (x→y). (9)

This defines the “one-way” rate that we are after.
The sum (5) then defines the cross-semidistanceμcross

T (x, y) and has a natural inter-
pretation in terms of large deviations: As mentioned in the Introduction, it arises from
two independent and simultaneous copies x (ε)

t , y(ε)

t . By independence, the probability
that (x (ε)

T , y(ε)

T ) 
 (φ0,T [y], φ0,T [x]) given (x (ε)

0 , y(ε)

0 ) = (x, y) is a product of one-way
probabilities, yielding the sum of two one-way rates in the large deviations, see Fig. 1.

A similar argument can be used to derive the meeting large deviations (6). Let x (ε)

t
and y(ε)

t be two independent solutions of the SDE (2), starting from given x and y,
respectively. We consider the probability that both trajectories end in a given point,
say φ0,T [z] for some z ∈ R

d , see Fig. 2. Assuming independence of the two trajecto-
ries, we immediately get

− ε logP
[
x (ε)

T 
 φ0,T [z], y(ε)

T 
 φ0,T [z] | x (ε)

0 = x, y(ε)

0 = y
]

= −ε logP
[
x (ε)

T 
 φ0,T [z] | x (ε)

0 = x
] − ε logP

[
y(ε)

T 
 φ0,T [z] | y(ε)

0 = y
]

(9)−−→
ε→0

μT (x→z) + μT (y→z).

However, we are only interested in the probability that the two trajectories meet, and
not in the point where they meet. A final contraction principle thus yields:

−ε logP
[
x (ε)

T 
 y(ε)

T | x (ε)

0 = x, y(ε)

0 = y
]

−−→
ε→0

inf
z∈X

μT
(
x→z

) + μT
(
y→z

) =: μmeet
T (x, y). (10)

Observe that the two paths could also meet earlier and subsequently follow the same
trajectory up until time T with zero cost; the time T thus acts as a maximum time at
which the paths should meet.

2.3 The Semidistances

We now discuss some metric properties of the rate functionals. Recall from Introduc-
tion that we assumed that the flow is a diffeomorphism. Therefore μT (x → y) = 0 if
and only if x = y. It is then easy to see that, for any x, y,

(i) μcross
T (x, y) ≥ 0 and μmeet

T (x, y) ≥ 0,
(ii) μcross

T (x, y) = 0 ⇐⇒ x = y and μmeet
T (x, y) = 0 ⇐⇒ x = y,

(iii) μcross
T (x, y) = μcross

T (y, x) and μmeet
T (x, y) = μmeet

T (y, x).
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However, the triangle inequality can fail, and so μcross
T and μmeet

T are semidistances
only.

We point out the following useful relation between the two. Observe that by
the definition, μmeet

T (x, y) ≤ μT (x→y) + μT (y, y) = μT (x→y), and similarly
μmeet

T (x, y) ≤ μT (y→x). Therefore,

μmeet
T (x, y) ≤ min

{
μT (x→y), μT (y→x)

} ≤ max
{
μT (x→y), μT (y→x)

}

≤ μcross
T (x, y).

In order to investigate which semidistance is more suitable to study coherence, one
would need to study in which setting the gapμcross

T (x, y)−μmeet
T (x, y) becomes large.

This is beyond the scope of this paper, but we will show for several examples that both
work as they should.

Remark 2.1 (Invariance under time reversal) Note the following invariance property
of μT under time reversal:

μT (x→y) = inf
y(·) :y0=φ0,T [y]

yT =φ−1
0,T [φ0,T [x]]

1

2

∫ T

0
|ẏt + v(T − t, yt )|2 dt =: ←−μT

(
φ0,T [y]→φ0,T [x]),

where←−μT is the one-way rate associatedwith the backward system ẏt = −v(T −t, yt ).
This time-reversal property is retained for the cross-semidistance: μcross

T (x, y) =←−μcross
T

(
φ0,T [x], φ0,T [y]). However, the meeting semidistance μmeet

T (x, y) = inf z←−μT
(
z→φ0,T [x]) + ←−μT

(
z→φ0,T [y]) is the same as the cost for the backward tra-

jectories to start in a joint position and end in φ0,T [x] and φ0,T [y].

2.4 A Simple Example

Let us consider a very simple example, where the domain of interest is the inter-
val [0, L], and there is no dynamics, i.e., v ≡ 0. Its primary purpose is to form our
intuition and expectations about how the semidistances work in more complicated
settings. In particular, we shall see how the semidistances scale in time and system
size.

The system is considered on the time interval [0, T ]. One can then easily see
that ẋt ≡ L/T is an optimal path in (9), thus giving

μT (0→L) = μT (L→0) = 1

2

∫ T

0

(
L

T

)2
dt = L2

2T
,

and so μcross
T (0, L) = L2

T . Thus, also μT (0→L/2) = μT (L→L/2) = L2

8T . In general,
the one-way cost is proportional to the squared distance and inversely proportional to
time. This also gives

μmeet
T (0, L) = L2

4T
,
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so, in this symmetric situation the meeting distance is half of one-way cost and quarter
of the cross-semidistance.

We will revisit this example in the next section and will realize that the behavior of
the discrete semidistances deviates from the one observed here for continuous space
and time.

3 Large-Deviation Semidistances in Discrete Time and Space

As mentioned in the Introduction, the cost functions μcross
T and μmeet

T are difficult
to calculate explicitly, and impossible if the velocity or flow field is not explicitly
known. In this section, we take a more practical approach. We will assume that the
only information at hand is the position at finite times of a finite number I of floaters.

To bemore specific, let {x (i)
k }k=0,...;K ,i=1,...,I ⊂ R

d be given positions of floaters i =
1, . . . , I at time kτ for k = 0, . . . , K for some τ > 0. Assuming that the floaters
sample from the deterministic flow field φs,t , we know that for each floater i ,

x (i)
k+1 = φkτ,(k+1)τ [x (i)

k ] . (11)

If we would add noise to the system, we would find random particles described by the
set of SDEs

dx (i,ε)
t = v(t, x (i,ε)

t )dt + √
εdw

(i)
t , x (i,ε)

0 = x (i)
0 , for i = 1, . . . , I, (12)

where w(i) are now independent standard Brownian motions.
Our strategy is to study the probability that random particles described by the

SDEs (12) deviate from the given floater trajectories (11), conditional to the fact that
all our knowledge about the otherwise unknown flow field φs,t comes from the time-
and space-discrete set of trajectory data (11). We first approximate the SDEs (12)
by discrete-time, continuous-space Markov processes in Sect. 3.1, as it is done in
standard time-steppingmethods for SDEs (Kloeden andPlaten 2010).Next, inSect. 3.2
we condition these discrete-time processes on the given floater positions. Then we
calculate the large-deviation rate for trajectories in Sect. 3.3, and for endpoints in
Sect. 3.4. Finally, we end the section with a discussion of the metric properties of the
resulting large-deviation rates in Sect. 3.5.

3.1 Discrete-Time Approximation

We first focus our attention to one time step kτ → (k + 1)τ of one trajectory i ,
and temporarily drop the superindex for brevity. Since the noise process is a standard
Brownian motion, we know its density,

dP[√εw(k+1)τ ∈ dy
∣∣ √εwkτ = x]

dy
= (2πετ)−d/2 exp

(
−|x − y|2

2ετ

)
. (13)
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Hence, we have exact information on the purely deterministic part of the SDE by (11)
and on the purely noise part by (13). We combine this information by using the
following time-stepping approximation for the SDE (2).

Fix an α ∈ [0, 1], and let (ξ+
k , ξ−

k )k=0,...,K be independent normally distributedRd -
valued random variables with unit variance. Given the approximated random position
x̃ k at time kτ , we iterate

x̃+
k := x̃ k + √

ατε ξ+
k

x̃−
k+1 := φkτ,(k+1)τ [x̃+

k ]
x̃ k+1 := x̃−

(k+1)τ + √
(1 − α)τε ξ−

k+1

(14)

Here, x̃+
k and x̃−

k+1 are only auxiliary (intermediate) steps. Themethod (14) is a special
case of a splitting method, since the deterministic evolution and purely noise parts of
the SDE (2) are handled separately in the distinct steps; here it would be “noise-flow-
noise”.

We would like to stress that our choice of discretization is made on the basis that
we can use the available information on the flow given by (11). In the realm of one-
step methods for SDEs we are bound to choices of the form (14), because there is
no information on the drift other than the flow generated by it on prescribed time
intervals [kτ, (k + 1)τ ). Given the form of time-stepping (14), the optimal [in the
sense of highest weak consistency order Kloeden and Platen (2010)] approximation
of the SDE is obtained by choosing α = 1/2. That is the so-called Strang-splitting
(Strang 1968) and has weak order two, while for α 	= 1/2 we only get order one.4

Having performed discretization in time, in the next section we derive a discrete-
time, discrete-space, α-dependent Markov chain that we will use to derive discrete
semidistances.

3.2 Conditioning on Finite Data

Recall that we considered one discrete-time process (x̃ k)k=1,...,K with initial condition
x̃0 = x (i)

0 , and that we suppressed the dependency on i . For each k = 0, . . . , K , we
introduce the set

Ak := {x ( j)
k } j=1,...I .

of available points at time t = kτ . We now condition the random process on the
event that for each realization x̃ k ∈ Ak and for each intermediate point x̃+

k ∈ Ak .

4 Formally, this can be seen by denoting the generators of the noise process and advection by A and B,
respectively, and estimating the difference of the Markov propagators associated with (12) and (14) by
performing formal Taylor expansions in τ with the non-commuting operators A and B, to obtain

eτ(A+B) − e(1−α)τ Aeτ B eατ A =
{O(τ3), α = 1/2,
O(τ2), α 	= 1/2.
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This automatically implies conditioning of the other intermediate points x̃−
k+1 ∈ Ak+1

due to (11). We choose to condition on the intermediate points for practical reasons;
otherwise, we would not be able to perform the second step in (14), since the discrete
trajectories are our only information about the flow, cf. Remark 3.1 below.

The conditioning on the finite data set results in replacing the discrete-time
continuous-space process by a fully discrete-time discrete-space Markov chain that
hops between the given trajectories. Therefore, the state of the new Markov chain
can be represented by the labels j = 1, . . . , I ; this is particularly useful since the
deterministic flow (11) will change the positions but not the labels. Since the resulting
process is still Markovian, we can fully characterize its behavior through its transi-
tion probabilities for one time-step k → k + 1. We now calculate these transition
probabilities, dealing with each step in (14) separately. See Fig. 3 for a sketch.

For the transition from x̃ k to x̃+
k , where we know the increment distribution (13),

note that we are in fact conditioning on a null set, so that the conditional probabilities
are sensibly defined as the limits over balls Br (·) of small radii r → 0 around these
points. We thus obtain, for any j, 
 = 1, . . . I :

p+
k ( j, 
) := P

[
x̃+

k = x (
)

k

∣
∣ x̃ k = x ( j)

k and x̃+
k ∈ Ak

]

= lim
r→0

P
[
x̃+

k ∈ Br (x (
)

k )
∣
∣ x̃ k = x ( j)

k

]

P
[
x̃+

k ∈ Br (Ak)
∣∣ x̃ k = x ( j)

k

]

=
exp

(
− ∣

∣x (
)

k − x ( j)
k

∣
∣2 /(2αετ)

)

∑I

̂=1

exp

(
−

∣
∣∣x (
̂)

k − x ( j)
k

∣
∣∣
2
/(2αετ)

) , (15)

and similarly for the transition from x̃−
k+1 to x̃ k+1:

p−
k+1(
, m) := P

[
x̃ k+1 = x (m)

k+1

∣∣ x̃−
k+1 = x (
)

k+1 and x̃ k+1 ∈ Ak+1
]

=
exp

(
− ∣∣x (m)

k+1 − x (
)

k+1

∣∣2 / (2(1 − α)ετ)
)

∑I
m̂=1 exp

(
−

∣∣∣x (m̂)

k+1 − x (
)

k+1

∣∣∣
2
/ (2(1 − α)ετ)

) . (16)

Since the transition from x̃+
k to x̃−

k+1 is deterministic (middle equation in (14)), we
have that,

Pk( j, m) := P
[
x̃ k+1 = x (m)

k+1

∣∣ x̃ k = x ( j)
k and x̃+

k ∈ Ak, x̃−
k+1 ∈ Ak+1

]

=
I∑


=1

p+
k ( j, 
)p−

k+1(
, m) . (17)

In words, the process performs the following three subsequent steps for one time step
(see Fig. 3):
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Fig. 3 One time step of the
discrete-time discrete-space
Markov chain ik

Ak

ik = j

Ak+1

ik+1 = m

p+
k ( )

φkτ,(k+1)τ
p−

k+1( )

1. Start in x ( j)
k , and perform a jump to some x (
)

k with probability p(k,+)

j,
 ,

2. Perform a deterministic jump from x (
)

k to x (
)

k+1,
3. Perform a jump from x (
)

k+1 to x (m)

k+1 with probability p(k+1,−)


,m .

The transition probabilities Pk( j, m) define our new, discrete-time Markov chain
(ik)k=0,...,K on the discrete space {1, . . . , I }. To shorten notation, we will write
i(·) := (ik)k=0,...,K for a discrete path, analogous to the continuous-time setting. By the
Markov property, the probability that the Markov chain realizes such a path is simply

P
[
i(·) = i(·)

] =
K−1∏

k=0

Pk(ik, ik+1), (18)

where we assumed that the chain starts (deterministically) from i0.

3.3 Large Deviations of Discrete Trajectories

We now study the large deviations of the discrete Markov chain ik . Similarly to the
continuous setting from Sect. 2, we start from the large deviations of paths. First we
calculate the large deviations for p+

k ( j, 
) and p−
k+1(
, m). By the Laplace princi-

ple (27),

−ε log p+
k ( j, 
)

(15)= ε log
I∑


̂=1

exp

⎛

⎝

∣∣∣x (
)

k − x ( j)
k

∣∣∣
2 −

∣∣∣x (
̂)

k − x ( j)
k

∣∣∣
2

2αετ

⎞

⎠

−−→
ε→0

max

̂=1,...,I

∣
∣∣x (
)

k − x ( j)
k

∣
∣∣
2 −

∣
∣∣x (
̂)

k − x ( j)
k

∣
∣∣
2

2ατ
= |x (
)

k − x ( j)
k |2

2ατ
.

We will make this simplification again below. Similarly, we obtain
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−ε log p−
k+1(
, m)

(16)−−→
ε→0

|x (m)

k+1 − x (
)

k+1|2
2(1 − α)τ

.

Using these two exponential approximations, we can again use the Laplace princi-
ple (27) to find for the jump probability of one time step:

lim
ε→0

−ε log Pk( j, m)
(17)= lim

ε→0
−ε log

I∑


=1

p+
k ( j, 
)p−

k+1(
, m)

= min

=1,...,I

lim
ε→0

(−ε log p+
k ( j, 
) − ε log p−

k+1(
, m)
)

= min

=1,...,m

|x (
)

k − x ( j)
k |2

2ατ
+ |x (m)

k+1 − x (
)

k+1|2
2(1 − α)τ

.

Finally, the large-deviation rate of a discrete path is

−ε logP
[
i(·) = i(·)

] (18)= −ε log
K−1∏

k=0

Pk(ik, ik+1)

−−→
ε→0

K−1∑

k=0

min

=1,...,I

|x (
)

k − x
(ik )

k |2
2ατ

+ |x (ik+1)

k+1 − x (
)

k+1|2
2(1 − α)τ

:= J (i(·)),

(19)

Remark 3.1 Recall that we conditioned on the event that all x̃ k as well as the interme-
diate points x̃+

k lie in the set Ak of available points. One might argue that in practice
only the points x̃ k are measured to lie in Ak , while the other two are mathematical
constructs that may lie anywhere. However, if we would relax this conditioning and
follow the calculations as above, we would find:

−ε log Pk( j, m) −−→
ε→0

min
x∈Rd

{ |x − x ( j)
k |2

2ατ
+

∣∣∣x (m)

k+1 − φtk ,tk+1 [x]
∣∣∣
2

2(1 − α)τ

− min
m̂=1,...,I

∣
∣∣x (m̂)

k+1 − φtk ,tk+1 [x]
∣
∣∣
2

2(1 − α)τ

}
.

Since this large-deviation rate still depends on the unknown flow field φ, it cannot be
used if only the data of a finite number of floaters is available.

Remark 3.2 (Missing data and non-uniform time-sampling)
Note that the construction works exactly as described above even if information

about trajectories is partiallymissing. The conditioning on the setAk works identically,
but now these sets might have different cardinalities smaller or equal I . Observe that
our only information about the deterministic flow for times in [kτ, (k + 1)τ ) comes
from those trajectories that are available both in Ak and Ak+1. If this intersection
is empty, we need to skip that time slice completely. This is not a problem, since
our choice of sampling time uniformly by the step size τ was solely in order to ease
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presentation. As the reader has probably observed, the extension for varying time
steps τk is straightforward.

3.4 Large Deviations of Endpoints

Analogously to the continuous setting, we study the large deviations of the one-way
probability to hop from i to j in discrete time K , and the meeting probability that two
independent chains, starting from i and j , respectively, meet by discrete time K or
earlier. Since the paths (19) encode more information than the endpoints, we can now
easily derive the large deviations of the one-way probability by a contraction principle.
Indeed, for any two indices i, j = 1, . . . , I ,

−ε logP[iK = j | i0 = i] −−→
ε→0

min
i(·): i0=i,iK = j

J (i(·)) =: νK (i→ j), (20)

where J is the discrete-path large-deviation rate (19). Note that J is the shortest path
length in a graph with time-dependent edge weights

wk(i, j) = min

=1,...,I

|x (
)

k − x (i)
k |2

2ατ
+ |x ( j)

k+1 − x (
)

k+1|2
2(1 − α)τ

.

Again, the sum νcrossK (i, j) := νK (i→ j) + νK ( j→i) can be given an interpretation
in terms of large deviations as in Sect. 2.2. Moreover, following the same argument as
in (10), if we take two independent trajectories i(·) and j(·), then

−ε logP[iK = jK | i0= i, j0= j] −−→
ε→0

min

=1,...,I

νK (i→
) + νK ( j→
) =: νmeet
K (i, j).

3.5 The Semidistances

It is easily checked that in the discrete setting the properties of a semidistance are also
satisfied:

(i) νcrossK (i, j) ≥ 0 and νmeet
K (i, j) ≥ 0,

(ii) νcrossK (i, j) = 0 ⇐⇒ i = j and νmeet
K (i, j) = 0 ⇐⇒ i = j ,

(iii) νcrossK (i, j) = νcrossK ( j, i) and νmeet
K (i, j) = νmeet

K ( j, i).

Furthermore, the triangle inequality fails, but we again have the following estimate:

νmeet
K (i, j) ≤ min

{
νK (i→ j), νK ( j→i)

} ≤ max
{
νK (i→ j), νK ( j→i)

} ≤ νcrossK (i, j).

Both semidistances can be computed from shortest path costs, where the cost of a
path is given by (19). We stress that this expression is fairly simple and depends on
the flow field through the known positions of the floaters x (
)

k only. Because of this:
(1) these costs can be used in practice if the velocity field is unknown (Sects. 4 and
5); (2) these costs can even be applied to cases where there may not be an underlying
velocity field, as for example in discrete-time dynamical system (Sect. 4.1).
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Fig. 4 Hopping back and forth
(solid line) between two given
trajectories (dashed lines)

k
K

x(i)

k

x(j)

k

These semidistances can be computed by first computing the one-way rates νK (i →
j) using Algorithm 1, see Appendix B. From these rates, one readily obtains the
semidistances via

νcrossK (i, j) = νK (i → j) + νK ( j → i) and νmeet
K (i, j)

= min

=1,...,I

νK (i → 
) + νK ( j → 
).

Remark 3.3 (Time reversal for discrete semidistances) Similarly to Remark 2.1, the
one-way cost satisfies the time-reversal property νK (i → j) = ←−νK ( j → i), provided
α = 1/2, where←−νK is the cost associated with the backward dynamics.Moreover, this
time-reversal property also holds for the cross-semidistance, whereas for the meeting
semidistance νmeet

K (i, j) = min
=1,...,I
←−νK (
 → i) + ←−νK (
 → j). Apart from the

superior consistency order discussed in Sect. 3.1, the invariance of semidistances under
time reversal is another reason for choosing α = 1/2.

Remark 3.4 Other large-deviation-based semidistances are also possible. If one con-
siders the “noise-flow” (i.e., α = 1) time-stepping scheme for the SDE rather than
“noise-flow-noise”, expression (19) simplifies a bit. As another example of a large-
deviation-based semidistance between two given discrete paths {x (i)

k , x ( j)
k }k=0,...K , one

could consider the probability to hop back and forth between the two trajectories, see
Fig. 4. In that case, we find in the large-deviation scaling for α = 1:

−ε logP[i1 = j1, i2 = i2, · · · | i0 = i0] −−→
ε→0

K−1∑

k=0

|x (i)
k − x ( j)

k |2
2τ

, (21)

for α = 0 the sumwould go from k = 1 to K . Naturally, this is simply the L2-distance
between two trajectories, as considered earlier in Froyland and Padberg-Gehle (2015).
Although this construction is very easy to calculate and its square root is a genuine
metric, it is less interpretable as a cost for transport and mixing.

Remark 3.5 It should be noted that the semidistances νmeet
K , νcrossK scale quadratically

in space; this becomes even more apparent in the example considered in Sect. 3.7.
In the case of the L2-distance (21), the cost becomes a genuine distance after taking
the square root. However, if we take the square roots of νmeet

K and νcrossK , the triangle
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inequality still fails. We therefore stick to the quadratic scaling as this has the most
direct interpretation as large-deviation costs.

Remark 3.6 (Eulerian transport vs Lagrangian mixing) When speaking of transport
in this paper, we mean “transport (of probability) from a trajectory to another”, to
express how the dynamics is mixing up regions these two trajectories come in contact
with. This can be seen as a Lagrangian perspective. We express with large-deviation
rates the unlikeliness of transitions between trajectories, and these are then computed
as shortest paths, cf. Sect. 3.4. Deceivingly similar mathematical constructions show
up in Ser-Giacomi et al. (2015), where the authors consider “highly probable paths” of
non-homogeneous Markov chains, which also leads to a time-dependent shortest path
problem. Note, however, that this is orthogonal to our concept, as this is quantifying
likeliness. A further important distinction is that their Markov chain is constructed in
an Eulerian manner (opposed to our Lagrangian setting), meaning that it describes
transport between fixed regions of state space; serving as a discretization of the flow
field (Froyland et al. May 2007, 2010).

3.6 Discretization of the Continuous Semidistances

We now show that the one-way discrete-space–time cost νK can also be obtained by
discretizing the continuous-space–time cost μT . This means that discretization and
derivation of the large-deviation principle are interchangeable operations (if done the
right way). We will not be precise about the discretization error; of course one needs
to assume that the number of floaters is sufficiently large.

We first divide the time interval into subintervals [0, T ) = ⋃K−1
k=0 [kτ, (k + α)τ) ∪

[(k + α)τ, (k + 1)τ ). Recall that φt0,t is the flow associated with v(t, ·), that is, for
any t0, x ,

∂tφt0,t [x] = v
(
t, φt0,t [x]).

Note in what follows that x(·) is some path, not necessarily a trajectory of the flow. In
each interval [kτ, (k + α)τ), we approximate by finite differences:

ẋt ≈ x(k+α)τ − xkτ

ατ
and v(t, xt ) ≈ x(k+α)τ − φ(k+α)τ,kτ [x(k+α)τ ]

ατ
.

In each interval [(k + α)τ, (k + 1)τ ), we approximate:

ẋt ≈ x(k+1)τ − x(k+α)τ

(1 − α)τ
and v(t, xt ) ≈ φ(k+α)τ,(k+1)τ [x(k+α)τ ] − x(k+α)τ

(1 − α)τ
.

Because of the assumption that the flow is one-to-one, we can always write x(k+α)τ =
φkτ,(k+α)τ [x̂k] for some x̂k . We thus obtain:

1

2

∫ T

0

∣
∣ẋt − v(t, xt )

∣
∣2 dt ≈

K−1∑

k=0

|xkτ − x̂k |2
2ατ

+ |x(k+1)τ − φkτ,(k+1)τ [x̂k]|2
2(1 − α)τ

.
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Since the number of floaters {x (i)
k }k=0,...,K ;i=1,...,I is large, we can find an x (i)

k close
to x̂k , giving

μT (x (i)
0 → x ( j)

K ) ≈ inf
{
1

2

∫ T

0
|ẋt + v(t, xt )|2 dt : x0 = x (i)

0 , xT = x ( j)
K , xkτ ∈ Ak,

x (
)

k := φ(k+α)τ,kτ [x(k+α)τ)] ∈ Ak

}

≈ min
i(·):i0=i,iK = j

K−1∑

k=0

min

=1,...,I

|x (ik )

k − x (
)

k |2
2ατ

+ |x (ik+1)

k+1 − x (
)

k+1|2
2(1 − α)τ

= νK (i→ j).

This shows that we can either derive the large-deviation rate function in continuous
space and discretize this to finite trajectories (as done here), or we can restrict the
continuous dynamics to finite trajectory data and derive a large-deviation rate function
for that (as done above); we obtain consistent results whichever route we take.

3.7 The Simple Example Revisited

Let us nowdemonstrate how the results of this section apply to the example of Sect. 2.4.

Discrete Time and Continuous Space Let us first suppose we are given infinitely many
“trajectories” of the system, one starting at each point x ∈ [0, L], and they are sampled
at discrete time points kτ , k = 0, 1, . . . , K , with τ = T

K . From Sect. 3.3 with α = 1/2
we obtain, by writing �x = L

K , that

νK (0→L) = 1

2

K∑

k=1

(�x)2

τ
= 1

2
K · (L/K )2

T/K
= L2

2T
,

where we used that the optimal discrete path in (20) is the one making jumps of equal
lengths �x . Note that the rate function is identical to that in the fully continuous
case. Analogously, νK (0→L/2) = νK (L/2→L) = L2

8T , and generally, if |x − y| =
δ, then νK (x→y) = δ2

2T . The derived semidistances scale similarly. Note that the
semidistances converge to zero as T → ∞.

Discrete Time and Space If we are given a finite number I of equispaced trajectories
of this system sampled at the same times as in the previous paragraph, the virtual
random walker cannot make arbitrarily small jumps as in the continuous state case,
thus

νK (0→L) = 1

2

K∑

k=1

(�xk)
2

τ
≈ L2

2T
, if K ≤ I ,
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since we can take �xk ≈ L/K with error O(I −1) as I grows. However, if K > I ,
the smallest jumps are �xk = L

I , thus

νK (0→L) = 1

2
I · (L/I )2

τ
= L2 K

2I T
.

Thus, if the observation time of trajectories grows and they are still observed at the
same rate (i.e., τ stays constant), the semidistances saturate at L2

I τ and do not converge
to zero as in the continuous time case. Moreover, to reach y = L/2 from x = 0, we
still cannot make smaller jumps than �x = L

I , but now we only require only I/2

of them, such that we obtain νK (0→L/2) = νK (L/2→L) = I
2 · (L/I )2

τ
= L2

4I τ (for
even I , and vanishing error for odd I as I grows).

The main lesson is that while in the continuous space case halving the Euclidean
distance makes the semidistance scale by 1

4 , if the spatial resolution of trajectories is
coarse, the discrete semidistance scales only by 1

2 . In general, if |x − y| = δ, then on
a coarse resolution grid it takes about δ

�x jumps to travel between these two points,

and we obtain νK (x→y) ≈ δ
�x · (�x)2

τ
= δ · �x

τ
. Note that �x and τ are constant

quantities, and thus the one-way discrete cost scales linearly in the Euclidean distance
between the two points, as opposed to quadratic scaling in the continuous space case.

4 Coherence Analysis with Semidistances

Let us assume that we are given a set of discrete time and space trajectories
{x ( j)

k } j=1,...,I,k=0,...,K , and a (semi)distance d. We now describe how such semidis-
tances can be used to distinguish and analyze coherent sets from the finite data. We
shall work with an unspecified semidistance d, but of course the semidistances that we
have in mind are νcrossK and νmeet

K that we derived in the previous section. Other—not
large-deviation based—distance measures could be used just as well, as we discuss
below. Nevertheless, the semidistances should not be completely arbitrary; we assume
that they share the behavior of νmeet

K and νcrossK that we discuss in Sects. 4.1 and 4.2.
To illustrate the ideas, we first analyze the behavior of two one-dimensional proto-

typical examples. These examples show the difference between two types of regions:
“mixing” and “static” (also known as “regular”). In these one-dimensional and simple
examples, one can easily determine the regions and whether they are mixing or static
from the semidistances. One example has two invariant sets under the dynamics, which
is (measure-theoretically and topologically) mixing on both of them. The other has
two static regions, where the mutual physical distance of trajectories does not change
under the dynamics, and these regions are separated by a third, mixing region.

After this we proceed with a more involved model: a two-dimensional periodically
forced double-gyre flow, where the boundaries of the separate regions are no longer
as clear-cut as in the one-dimensional example. Nevertheless, we will show that one
can identify the separate regions via the tools that we present next.

To this end, we introduce the notion of cornerstones, representing possible coherent
sets or mixing regions, and then discuss how to find them and when to stop searching
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x

φ(x)

x

φ(x)

Fig. 5 Left: the time-discrete flow map with two invariant mixing subdomains. Right: the time-discrete
flow map with two static regions and an invariant mixing subdomains between them

for them. Finally, to obtain coherent sets, we assign the trajectories to cornerstones.
The notion of fuzzy affiliations will be used to express the uncertainty whether a
trajectory close to the boundary of a set belongs to it or not. Note that in the case of
finite data such an uncertainty is always present.

4.1 Two Illustrative Model Cases

Two Invariant, Mixing Subdomains As mentioned in Sect. 3.5, we may also apply
the techniques developed in this paper to a discrete-time dynamical system. To gain
some intuition for the behavior of the semidistances at mixing regions, we consider
the discrete-time system on the unit interval X = [0, 1] and one-step flow map, see
Fig. 5 (left),

φ(x) =
{
4x mod 1

2 , x < 1
2(

4(x − 1
2 ) mod 1

2

) + 1
2 , x ≥ 1

2 .

The sets X1 = [0, 1
2 ], X2 = ( 12 , 1] are invariant, i.e., φ−1(X1) = X1

and φ−1(X2) = X2, and φ is simply the circle-quadrupling map on each of these
sets, i.e., it is mixing on the single components. Consequently,5

lim inf
t∈N, t→∞

∣∣φt (x) − φt (y)
∣∣ = 0 (22)

for (Lebesgue-)almost every pair x, y ∈ Xi , i = 1, 2.

5 If a system (X, ψ, μ) ismixing, then (X×X, ψ×ψ, μ×μ) is ergodic (Walters 2000,Theorem1.24) . Thus,
for μ×μ-almost every pair (x, y), the trajectory (ψ ×ψ)t (x, y) will enter every set A of nonzero measure
for some t ≥ 0. This shows (22) by taking ψ = φ|(0,1/2) or ψ = φ|(1/2,1), and A = {(x, y) | |x − y| < ε}
for any fixed ε > 0.
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Fig. 6 Two trajectories of the map φ of length 200 steps, starting in X1 and X2, respectively. Theory shows
that they come arbitrary close, eventually. Here they get the closest at time step 193, shown by a circle

Thus, νK (i→ j) → 0 as K → ∞, because if xi , x j are both in X1 or both in X2,
then (22) shows that their trajectories get arbitrarily close eventually. If the trajectories
start in different halves of [0, 1], then6

lim inf
t∈N, t→∞

∣∣φt (xi ) − 1
2

∣∣ + ∣∣φt (x j ) − 1
2

∣∣ = 0 , (23)

thus the jump from one trajectory to another gets arbitrarily cheap. See Fig. 6.
The transport semidistances between any two points within the same region are very

small, at least if the time window is large enough. This behavior is typical for mixing
regions. In fact, since the two mixing regions are only separated by one point, it is
relatively cheap tomove fromone region to the other, and so the semidistances between
two points in separate regions converge with increasing time to zero. Nevertheless, the
semidistances still detect a difference between the two invariant sets: The semidistance
between two trajectories in the same invariant component goes in general quicker
to zero than the one between two from different components, as shown in Fig. 7
for I = 100 initially equispaced trajectories. Thus, it is the relative difference between
the semidistances that is relevant for the transport structure of the state space, and not
the absolute values.

Two Static Regions Divided by a Mixing One To gain some intuition about static
regions, let us now consider the discrete-time system on X = [0, 1] given by

φ(x) =
{

x, x ∈ [0, 1
4 ) ∪ ( 34 , 1](

2(x − 1
4 ) mod 1

2

) + 1
4 , x ∈ [ 14 , 3

4 ] ,

see Fig. 5 (right). This map has three invariant sets. The left and right ones are static,
such that the mapping restricted to them is the identity, and are meant to model regions

6 Applying Footnote 5 to the case whereψ = φ|(0,1/2), we obtain that (φ|(0,1/2) ×φ|(0,1/2))t (x, y) enters

A = {(x, y) | |x−1/2|+|y| < ε} eventually.Noting thatφ|(1/2,1) = φ|(0,1/2)(·− 1
2 )+ 1

2 , the claim follows.
Comparing the different slopes in Fig. 7, based on the reasoning in Footnote 5 and here we conjecture that
the minimal distance of two trajectories decays faster in the case when they both start in the same invariant
set, because the set {(x, y) | |x − y| < ε} is larger in measure than {(x, y) | |x − 1/2| + |y| < ε}.
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Fig. 7 Semidistances νcrossK (i→ j) (left) and νmeet
K (i, j) (right) for increasing maximal time K , averaged

over xi , x j ∈ X1 (downward-pointing triangles), xi , x j ∈ X2 (upward-pointing triangles), and xi , ∈
X1, x j ∈ X2 (circles), respectively. Note that the decrease in the distance is much slower for trajectories
taken from different invariant sets

Fig. 8 One-way cost νK (i→ j) for i = 1 (left) and i = 51 (right) for the map with two static and one
mixing region

of the state space in complicated flows that are “static” in the sense that the mutual dis-
tance of points is not changed (or just barely) by the dynamics. We will consider these
as one kind of prototype for coherent sets. The third region is mixing and physically
separates the other two.

We take I = 100 initially equispaced trajectories and compute the one-way
costs νK (i→·) with K = 50 for i = 1 and i = 51, respectively, shown in Fig. 8.

From our analysis in Sect. 3.7, we would have expected to see quadratic growth of
the one-way cost with respect to physical distance in the static regions, but we only
observe linear growth. This is due to the finite number of considered trajectories, as
also explained in the second paragraph of Sect. 3.7. All points of the mixing region
have almost the same cost from any one point in the static regions, and approximately
zero cost from one another. To obtain the cost between two points of different static
regions, one has to consider the cost to go to the boundary of the static and mixing
regions (linear cost in Euclidean distance), travel on a trajectory from there to the
boundary of the other static region (at zero cost), and then go from there to the desired
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Fig. 9 Sketch of the velocity field of the periodically forced double-gyre flow at two different times. The
horizontal axis is x1, and the vertical is x2

point. (Again, linear cost in Euclidean distance that needs to be covered.) Thus, the
cost (and semidistance) between these two points is the sum of their one-way cost (and
semidistance) to the mixing region, provided the time of consideration is sufficiently
large for the mixing to take place.7 Since our fictive random walker uses trajectories
of the mixing region to travel from one static region to the other, we will also call it
transition region henceforth.

To conclude, from Fig. 8 we can easily identify three separate regions, and from the
steepness of the slopes (linear/quadratic or flat), we can determine wether a region is
static or mixing. As the next example shows, this distinction is usually not as clear as
in these constructed examples, but the main ideas will be based on this observation.

4.2 The Periodically Forced Double Gyre

Let us now consider the non-autonomous system ẋt = v(t, xt ) on X = [0, 2] × [0, 1]
with (Froyland and Padberg-Gehle 2014)

v(t, x) :=
[ −π A sin (π f (t, x1)) cos(πx2)

π A cos (π f (t, x1)) sin(πx2)
d f
dz

(t, x1)

]

, (24)

where f (t, z) = β sin(ωt)z2 + (1 − 2β sin(ωt))z. We fix the parameter values A =
0.25, β = 0.25 and ω = 2π ; hence, the vector field has time period 1. The system
preserves the Lebesgue measure on X . Equation (24) describes two counter-rotating
gyres next to each other (the left one rotates clockwise), with the vertical boundary
between the gyres oscillating periodically, see Fig. 9.

We choose a uniform 50 × 25 grid as initial conditions for the floaters at time t =
0; i.e., I = 1250. We sample the trajectories of these floaters at times tk = kτ ,
k = 0, 1, . . . , K , where K = 100 and τ = 0.2. That means, the length of trajectories
in consideration is 20 times the period of the forcing.

Employing our large-deviation-based distance computations on this data set using
Algorithm 1 and α = 1/2, we get the one-way costs νK (i→ j), i, j = 1, . . . , I , from
which we compute νcrossK (i, j) and νmeet

K (i, j).

7 Note that for this argument, ergodicity of the dynamics in the “mixing” region would be sufficient, since
one only needs to travel “from one static region to the other”. The crucial additional property we get from
mixingness is that the mutual semidistances of points in this region go to zero.
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Fig. 10 Left: νmeet
K (c1, ·) sorted in ascending order. Right: the same as left, on a log-log scale. The

horizontal axis shows the rank, and the vertical shows the semidistance value

As a first simple analysis,we can order the points by their semidistances to the center
of one gyre, see Fig. 10. Here and in the following, the rates and semidistances will be
always given in units 1/τ . On a log-log scale, the slope 1/2 (square-root-type behav-
ior) indicates that most trajectories in the gyre are approximately concentric circular
regions around the center.8 Since the semidistances grow linearly in the Euclidean
distance inside the gyre, we see that we are in the low-resolution regime discussed in
Sect. 3.7. Analogously to Fig. 8, we can again (vaguely) distinguish three regions: a
steep (square-root-type) region, a flat region, and another steep (flipped square-root-
type) region. As before, the flat region is typically strongly mixing, and the steep
regions are static. We shall make this distinction more precise in the next sections.

Remark 4.1 (Three-dimensional flows) Clearly, the scaling behavior shown in Figs. 8
and 10is dimension-dependent. For a three-dimensional static region, one would see
a slope 1/3 on a log–log scale. The question remains, how does a typical coherent set
behave there; can it be modeled by a static region? If an incompressible flow rotates
uniformly in a plane, it necessarily has a constant shifting motion in the perpendicular
axial direction, leading to cylindrical vortices. If the cylindrical rings of a vortex rotate
at different angular frequencies, the flow speed along axial directions is non-uniform,
and mixing-type behavior occurs in the vortex (Halász et al. 2007). We leave the
analysis of such systems to future work and proceed with analyzing different aspects
of prototypical two-dimensional flows here.

4.3 Cornerstones

To start the analysis of the state space under a semidistance d, we randomly choose a
trajectory, represented by a label c0 ∈ {1, . . . , I }, and compute the trajectory furthest
from it, i.e, we set

8 As on a regular grid there areO(δ2) points not further than Euclidean distance δ from a reference point,
the r -th closest point to the reference point has distance O(r1/2).
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Fig. 11 The objective functions of the maximization problem in (25), sorted in ascending order (yellow
and purple). Blue and red: νmeet

K (ci , ·), i = 1, 2 (Color figure online)

c1 = arg max
i=1,...,I

d(i, c0) .

To find a set of points that “spans” the state space, we identify successively
further trajectories that are far away from all the other already identified “corner-
stones” {cq}q=1,...,Q , as in Rüdrich et al. (2017):

cQ+1 = arg max
i=1,...,I

min
q=1,...,Q

d(i, cq) . (25)

Observe that in this optimization problem we ignore the first, randomly chosen tra-
jectory c0; hence, the set of cornerstones {cq}q=1,...,Q will be less dependent on this
randomness. Moreover, even if the first trajectory c0 would represent a coherent set,
the algorithm will eventually provide a new cornerstone in that set, which lies closer
to the semidistance center of that set.

For the double gyre and the meeting distance, we identified three cornerstones.
The objective function of the maximization problem (25) is plotted in Fig. 11; this
yields a similar but more detailed picture as Fig. 10. Note that the chaotic, well-mixed
transition region appears as flat region in these distance graphs, and the gyres appear
as steep regions toward the maxima of the respective graphs. That the chaotic region
is well mixed, and has no stratification (invariant rings as the gyres), can be seen from
its flat behavior toward its maximum. The forth cornerstone is part of a gyre, and it
starts to stratify it. Nevertheless, its distance to the other corners is much smaller.

To get a first glimpse of the separate regions in the state space, we have plotted
the semidistances from each cornerstone in Fig. 12, both at the initial and final times.
Note that since we work with trajectory labels rather than physical positions, the
semidistances are invariant in time, whereas the physical positions of the floaters
change over time. From these figures, one can approximately identify the two static
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Fig. 12 Distances νmeet
K from trajectory c1 (top), c2 (middle) and c3 (bottom), marked by the magenta

circle, at initial (left) and final times (right). The semidistances are given in units 1/τ . The horizontal axis
is x1, and the vertical is x2 (Color figure online)

(gyre) regions, being very close and very far from c1 and c2, respectively, and the
chaotic transition region in between, having approximately constant distance from c1
and c2, cf. (Froyland and Padberg-Gehle 2014, Figure 1) .

4.4 Number of Cornerstones

How to determine the number of cornerstones that should be used? Is there an optimal
number, or is it up to our liking? In the case of the double gyre, as noted above, a
fourth cornerstone would be part of one of the gyres, and assigning affiliations would
thus split one gyre into two sets. If the gyres would consist of a continuum of periodic
orbits, thenwe could proceed and split them this way into asmany rings as we like. The
same situation in an idealized framework appears in Sect. 4.1 for the static regions:
since they are static, arbitrary subsets are perfectly coherent (even invariant in this
case).

A good place to stop searching for further cornerstones would be when they would
start to subdivide “maximal coherent” sets, as the gyres in the double-gyre example,
or the static sets in the second, and the invariant sets in the first example of Sect. 4.1.
To this end we make an idealized assumption: Coherent sets appear as for the second
example in Sect. 4.1, i.e., multiple static regions divided by one mixing region. Here,
“static” is meant in the sense that the mutual distances between points in the set barely
change. Such an assumption was also utilized in (Hadjighasem et al. 2016).
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Fig. 13 The trajectories closest in terms of νmeet
K to one of the cornerstones than to the others. Left: initial

time, right: final time. The horizontal axis is x1, the vertical is x2

Note that if there are C ≥ 2 coherent sets, the first C corner stones are going to be
in them, one in each. This is due to the fact that to move from the center of one static
region to another, the shortest path in (20) needs to move out of one set, travel in the
transition region to the other set, andmove to its center, hencemaximizing theminimal
distance to all other cornerstones. After finding all static regions, the next cornerstone
is to be found in the transition region, if all static regions are approximately of the
same size—which we assume here. The crucial observation is that this (C + 1)-st
cornerstone is half as far from the other cornerstones,9 as they are from one another.
In other words, d(ci , cC+1) + d(c j , cC+1) ≈ d(ci , c j ), i, j ≤ C .

To summarize, our simple check when to stop searching for cornerstones is going
to be, when the value of the objective function in (25) drops by at least a factor two
compared with the previous value. Observe how nicely this works in the periodically
forced double-gyre case: the rightmost points of the curves inFig. 11 are the optimizers,
and the corresponding value of the yellow curve is less than half of the values for the
first two cornerstones. This indicates to stop with three cornerstones, as they will
represent both the gyres and the transition region.

4.5 Clustering and Fuzzy Affiliations

Toget an evenmore crisp picture of the subdivision of the state space into regionswhich
are far away in terms of the semidistance d, we assign to each cornerstone c1, c2, c3 the
trajectories that are closer to them than to the two other cornerstones, respectively. For
the periodically forced double gyre and the meeting distance this is shown in Fig. 13.

Comparing this picture with the typical trajectories of the time-1 Poincaré map of
the system [again, see Froyland and Padberg-Gehle 2014, Figure 1], it appears that the
gyre regions in our figure are smaller. This is due to the nature of the transport distance
at hand: the gyres are partly made up of so-called regular regions of the Poincaré
map, meaning that typical trajectories move on periodic orbits that are approximately
concentric circular lines. Transport between these trajectories is only possible through
diffusion, and the price one has to pay for this transport in radial direction is reflected
by the rate function (recall, this is what wemodel by the static regions in Sect. 4.1). The

9 Here we assume that we are in the coarse spatial resolution case, where the semidistances scale linearly
and not quadratically, cf. Sect. 3.7. Otherwise, the drop in the distance is more than a factor two (toward
factor four).
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Fig. 14 Fuzzy affiliations qci (·) of the trajectories to the three cornerstones, c1, c2, c3 (from left to right)
for fuzziness exponent m = 2, shown at initial time. The horizontal axis is x1, the vertical is x2

cost to get from the center of the gyre (the cornerstone c1 or c2) to a regular trajectory
in the same gyre is proportional to the “radial distance” between them (compare with
the static part of the second example in Sect. 4.1). This behavior is not characteristic
for the well-mixed transition region, because there the dynamics (eventually) brings
any two trajectories close to each other. The effect is most prominent if the time frame
of consideration grows infinitely large, and on our finite time horizon it appears as a
flattening of the curve. This brings us back to why the blue and green regions in Fig. 13
are smaller than gyres in the Poincaré map. The answer is simply, because the outer
periodic orbits are closer to the transition region than to the center of the gyre, hence
also closer to the cornerstone c3 that is in the transition region, because the points in
the transition region have very small distance from one another.

Instead of a hard clustering we can assign the trajectories to the cornerstones by
fuzzy affiliations qci (·), to obtain more refined information on coherence. For instance,
let m > 1, and minimizing the affiliation-weighted penalty function

I∑

j=1


∑

i=1

qci ( j)md(ci , j)2

subject to the constraints 0 ≤ qci for i = 1, . . . , 
 and
∑


i=1 qci ( j) = 1 for every j =
1, . . . , I , yields

qci ( j) = 1

∑

k=1

(
d(ci , j)
d(ck , j)

) 2
m−1

. (26)

This is the affiliation function in the fuzzy c-means algorithm (Bezdek 1981), giv-
ing qci ( j) = 1 ⇔ d(ci , j) = 0, i.e., affiliation is maximal if the distance is minimal.
Further, the parameter m controls the fuzziness of the clustering: large m gives soft
clusters, whilem approaching 1 givesmore andmore “crisp” clusters as the affiliations
converge either to 0 or to 1 (Bezdek et al. 1987). The resulting affiliations (indicated
at initial time) for m = 2 are shown in Fig. 14. For m close to 1 we obtain affiliations
very similar to the hard clusters in Fig. 13.

5 Numerical Results

In the previous section we already presented numerical results for the double-gyre
system, where we used the results to motivate and develop the analysis tools. In
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this section we apply these tools to two other well-analyzed test cases: the perturbed
Bickley Jet and the rotating (transitory) double gyre. They are different paradigmatic
examples, as the Bickley Jet has a non-vortex coherent set (the jet core), and the
transitory double gyre is not a periodically forced system, thus genuinely living on a
finite time interval.

Let us also point out that the examples presented here and in the previous section
are all one- or two-dimensional. Although we expect the analysis in higher dimensions
to be at least qualitatively not very different from the two-dimensional case, dealing
with the nevertheless arising subtle differences (see Remark 4.1) is beyond the scope
of this conceptual work.

It turns out that the choice between the two semidistances νcrossK or νmeet
K has only

marginal influence on the results. In this section we shall mostly work with the cross-
semidistance.

5.1 The Bickley Jet

We consider a perturbed Bickley Jet as described in Rypina et al. (2007). This is an
idealized zonal jet approximation in a band around a fixed latitude, assuming incom-
pressibility, on which three traveling Rossby waves are superimposed, see Fig. 15. The
dynamics is given by ẋt = v(t, xt ) with v(t, x) = (− ∂�

∂x2
, ∂�

∂x1
) and stream function

�(t, x1, x2) = −U0L tanh
(
x2/L

) + U0L sech2
(
x2/L

) 3∑

n=1

An cos (kn (x1 − cnt)) .

The constants are chosen as in Rypina et al. (2007, Section 4) . In particular, we
set kn = 2n/re with re = 6.371, U0 = 5.414, and L = 1.77. The phase speeds cn

of the Rossby waves are c1 = 0.1446U0, c2 = 0.205U0, c3 = 0.461U0, their ampli-
tudes A1 = 0.0075, A2 = 0.15, and A3 = 0.3, as in Hadjighasem et al. (2016). The
system is considered on a state space X = [0, πre] × [−3, 3] which is periodic in the
horizontal x1 coordinate.

We choose a uniform 60 × 18 grid as initial conditions for the floaters at time t =
0; i.e., I = 1080. We sample the trajectories of these floaters at times tk = kτ ,
k = 0, 1, . . . , K , where K = 80 and τ = 0.5. In this time interval, typical trajectories
cross the cylindrical state space horizontally 4–5 times, trajectories in the jet core (the
wavy structure in Fig. 15) up to 9 times.

Employing our large-deviation-based distance computations on this data set using
Algorithm 1 and α = 1/2, we get the rates νK (i→ j), i, j = 1, . . . , I . From these

Fig. 15 Sketch of the Bickley Jet flow field at two different times. The flow pattern travels from left to
right on the horizontally periodic domain. The horizontal axis is x1, the vertical is x2
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rates we readily obtain the νcrossK (i, j) via

νcrossK (i, j) = νK (i→ j) + νK ( j→i) .

We repeat the cornerstone finding analysis from the previous section. The optimal
values of the objective function in the cornerstone finding problem (25) are for 8
cornerstones, in order:

2.06, 3.21, 2.45, 2.33, 2.30, 2.14, 1.42, 0.70.

Recall that the first value is with respect to a random cornerstone c0 that we discard.
These numerical values with our previous analysis shed light on the topological struc-
ture of the state space with respect transport and mixing. Note, that our assumption
from Sect. 4.4, that all coherent sets are divided by one mixing region, is not satisfied:
the jet core is a coherent set itself, dividing two mixing regions (below and above
it), each containing 3 further coherent sets (the gyres). Thus, c1 and c2 have maximal
distance (νcrossK (c1, c2) = 3.21), because the random walker needs to cross the jet
core. Every further cornerstone c3, . . . , c6 can be reached from either c1 or c2 through
one of the mixing regions, and thus have a very similar cost. The deviation of these
costs, 2.14–2.45, shows that we did not reach the state of full mixing on the chosen
time interval.

Now, the seventh cornerstone lies in the jet core, which has to be crossed if traveling
between cornerstones that are below and above it, respectively. The corresponding
cost (1.42) is a bit larger than half of the previous cost, because c7 does not lie on
the shortest path between cornerstones below and above the jet core. Intuitively, the
“center line” of the jet core should be equally far from all cornerstones c1, . . . , c6,
if the time interval is large enough such that the regions around the gyres are truly
mixing. Since it is not, there are points on the boundary of the jet core which are easier
to reach from them, and thus easier to cross there. The cornerstone c7 represents the
position where it is the hardest to cross. The eighth cornerstone has truly half the
semidistance to the closest one than c7, and lies in one of the mixing regions.

We show our results for seven cornerstones.10 The semidistances are shown in
Fig. 16.

The corresponding fuzzy affiliations from (26) for m = 1.1 are shown in Fig. 17.
They show a very crisp distinction of the six gyres from the rest of the state space.
The bottom right figure shows the affiliation qc7(·) for m = 1.9, which suggests that
the region around the gyres could still be partitioned into coherent sets itself: the jet
core appears more strongly affiliated to this cornerstone than the other trajectories. It
is not surprising that we could not see this for m = 1.1, since the closer m is to 1,
the more “crisp” the affiliation function is forced to be, and the mixing region is more
easily reached from the thin jet core than from the gyres.

10 If we include additional cornerstones, results tend to deteriorate due to the low resolution and because
the chosen time interval is not giving full mixing.
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Fig. 16 Row-wise from top left to bottom: the identified corner stores ci , i = 1, . . . , 7, (magenta circles)
and their distances νcross(ci , ·) to the other trajectories, at initial time. The cornerstones are located in the
six gyres and the central jet region. The distances are given in units 1/τ . The horizontal axis is x1, the
vertical is x2 (Color figure online)
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Fig. 17 Row-wise from top left to bottom: the fuzzy affiliations (26) of the trajectories at time t = 5 to the
cornerstones c1, . . . , c7, respectively (magenta circles). Bottom right: affiliation qc7 (·) for m = 1.9, which
suggests that the 7th coherent region could contain a coherent set itself: the jet core. The horizontal axis
is x1, the vertical is x2 (Color figure online)
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Fig. 18 Sketch of the flow field of the rotating double gyre at initial (left) and final (right) times. The
horizontal axis is x1, the vertical is x2

5.2 The Rotating Double Gyre

Let us consider a prototype for a system,where transport is considered only on a limited
time interval. The rotating double-gyre system (Mosovsky andMeiss 2011) is given by
the stream functionψ(t, x1, x2) = (1−s(t))ψP (x1, x2)+s(t)ψF (x1, x2), with s(t) =
t2(3−2t),ψP (x1, x2) = sin(2πx1) sin(πx2), andψF (x1, x2) = sin(πx1) sin(2πx2),
and is considered on the state space X = [0, 1]2 and time interval t ∈ [0, 1]. The two
gyres, which initially occupy the left and right halves of the unit square, turn during
this time by π/2 to occupy the top and bottom halves at final time, see Fig. 18.

We choose a uniform 30×30 grid as initial conditions for the floaters at time t = 0;
i.e., I = 900. We sample the trajectories of these floaters at times tk = kτ , k =
0, 1, . . . , K , where K = 100 and τ = 0.01. We employ the cross-semidistance, and
start our cornerstone search. The first three values of the optimization problem (25) are

0.0274, 0.0474, 0.0262.

We identify the significant drop after two corner stones, hence we expect two
coherent sets with one mixing region dividing them. The drop in the distance is by a
factor 0.55, which is not below one half, the reason for this being again that the time
interval of consideration is not sufficient for perfect mixing of the transition region.

The semidistances from the three identified cores and the affiliations to these cores
for exponent m = 1.2 are shown in Figs. 19 and 20, respectively. Although both νcross

and νmeet have been shown to be able to detect coherent sets, we demonstrate their
different nature by showing the shortest paths in the respective distance in Fig. 21.

Finally, we demonstrate the approach for a scattered set of sparse data points,
taking 400 initial points randomly distributed in X , and repeating the analysis for their
trajectories. We show the resulting fuzzy affiliations in Fig. 22.

6 Discussion and Outlook

6.1 The Dynamic Laplacian

Froyland (2015) has introduced the dynamic Laplacian as a transport-related tool
to find coherent sets. Similarly to our approach, it makes use of a small random
perturbation of size ε, then ε is driven to zero.
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Numerical methods so far discretize directly the dynamic Laplacian (Froyland
and Junge 2015; Banisch and Koltai 2017; Froyland and Junge 2017). In light of
our analysis, which can be used both ways (derive the large-deviation principle in
continuous space, then discretize it to finite trajectories, cf. Sect. 3.6, or discretize the
dynamics to finite trajectories, then derive the large-deviation principle on them, cf.
Sect. 3.3), we ask whether there is a discrete dynamic Laplacian that can be derived
from a discretization of the perturbed dynamics?

Mimicking the construction in Froyland (2015) and sketching the idea while skip-
ping details, one should construct a discrete, ε-dependent transfer operator Tε ∈ R

I×I ,
that represents transition probabilities of a forward-backward process, then obtain
a discrete dynamic Laplace operator Ldyn := d

dε

∣∣
ε=0Tε. A discrete transfer opera-

tor Tε that is a consistent approximation of the continuous dynamics can be obtained
by a construction as in Sect. 3.2, by using the transition probabilities (17). Tech-
nical details aside, we see that the probabilities are linear combinations of terms
of the form e−�x/ε, where �x here is a formal distance term that appears in the
formulas. Differentiation with respect to ε immediately yields that all off-diagonal
entries (basically, where �x > 0) of Ldyn are zero, in fact the matrix is the iden-
tity.

Thus, this approach of discretizing the dynamics first, and then factoring out the
ε-small stochastic perturbation does not give a dynamically meaningful result. In
analytic terms the very same problem occurred in a different attempt to introduce
a discrete dynamic Laplacian from a discrete transfer operator, see (Banisch and
Koltai 2017, Section IV) . In general, it would be desirable to understand when and
how can the “first discretize, then factor out ε” methods work, such that they can
complement the methods that directly discretize the (continuous) dynamic Laplace
operator.

6.2 Other Distance Measures

The time-dependent shortest path problem used to compute our semidistances is com-
putationally demanding in our current algorithmic realization, which theoretically
limits the number of trajectories that can be handled. Moreover, they do not satisfy
the triangle inequality, hence they are not a metric. Although numerical efficiency is
not the main focus of this paper, and we demonstrated the usefulness of our semidis-
tances in unraveling the underlying dynamical structure of the example systems, a
more cheaply computable metric would enhance the utility and significance of the
analysis methods presented here.

Ultimately, one would like to understand the intrinsic, possibly low-dimensional
geometric organization of the state space with respect to transport and mixing, as
pioneered in Banisch and Koltai (2017). Employing proper metrics would allow,
e.g., the usage of low-dimensional embedding techniques, such as multidimensional
scaling, to represent and better understand this geometric organization. One canon-
ical candidate would be the metric structure related to the dynamic Laplacian,
considered in Karrasch and Keller (2016). This will be subject of future stud-
ies.
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To summarize, although other distance measures could be used to analyze compli-
cated dynamic behavior, we showed that the semidistances we derived in this paper
from the physical notion of transport and mixing in the vanishing diffusion setting are
natural and effective diagnostic tools.
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A Large Deviations of the Forward-Backward Conditions

In this appendix we explore the conditions (3) in the large-deviation regime. The
argument is based on the Laplace Principle, which states that for any measure ρ and
function f :

lim
ε→0

−ε log
∫
e− 1

ε
f (x)

ρ(dx) = inf
x∈supp ρ

f (x). (27)

As in (9),

−ε logP
[
x (ε)

T 
 y | x (ε)

0 = x
]

−−→
ε→0

inf
x(·) :x0=x,xT =y

1

2

∫ T

0
|ẋt − v(t, xt )|2 dt =: λT (x→y), (28)

where, contrary to (9), the symbol y now denotes a position at time T , that is,
μT (x→x̃) = λT (x→φ0,T [x̃]) = λT (x→y).

Fix an ε-independent initial probability measure ρ0(dx) = P[x0 ∈ dx]. For the
large deviations of the forward condition in (3), it follows from the Laplace principle
that

J fw
T (B|A) := lim

ε→0
−ε logP

[
x (ε)

T ∈ B | x0 ∈ A
]

= lim
ε→0

−ε log
∫

B

∫

A
P
[
x (ε)

T ∈ dy | x0 = x
]
ρ0(dx)

(28)= lim
ε→0

−ε log
∫

B

∫

A
e− 1

ε
λT (x→y)

ρ0(dx)

(27)= inf
y∈B

inf
x∈A∩supp ρ0

λT (x→y).

Observe that since the initial distribution ρ0 is independent of ε, it only appears in the
large deviations through its support supp ρ0.
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The large deviations of the backward conditions in (3) can be calculated analo-
gously, but now the conditioning does depend on ε. By Bayes’ rule, the rate function
of the backward condition is

J bw
T (A|B) := lim

ε→0
−ε logP[x0 ∈ A | x (ε)

T ∈ B]

= lim
ε→0

−ε logP[x (ε)

T ∈ B | x0 ∈ A] P[x0 ∈ A]
P[x (ε)

T ∈ B]
= lim

ε→0
−ε log

∫

B

∫

A
P
[
x (ε)

T ∈ dy | x0 = x
]
ρ0(dx)

+ ε log
∫

B

∫
P
[
x (ε)

T ∈ dy | x0 = x
]
ρ0(dx) − ε log ρ0(A)

(27,28)= inf
y∈B

inf
x∈A∩supp ρ0

λT (x→y) − inf
y∈B

inf
x∈supp ρ0

λT (x→y)

= J fw
T (B|A) − J fw

T (B|X).

If we assume that that there is at least one admissible path x(·) that starts in supp ρ0
and ends in B, then in fact J fw

T (B|X) = 0, and so J fw
T (B|A) = J bw

T (A|B).
These calculations have two important implications. First, observe that while the

forward and backward probabilitiesP[x (ε)

T ∈ B | x0 ∈ A] andP[x0 ∈ A | x (ε)

T ∈ B] are
not equal in general, the forward and backward rate functions are. The same argument
even holds if we shrink the sets A ad B down to single points x and y; in that case we
obtain for the “backward rates” that

λT (x←y) := lim
ε→0

−ε logP
[
x0 
 x | x (ε)

T = y
] = λT (x→y) ,

cf. Remark 2.1. Apparently, in the large-deviation scaling it does not matter whether
we consider the forward or the backward process. Since the forward condition
J fw

T (B|A) ≈ 0 in itself does not hold enough information to characterize coher-
ence and the backward condition J bw

T (A|B) ≈ 0 does not add information, these
conditions are not helpful to characterize coherence.

Secondly, we see that J fw
T (B|A) = 0 as soon as φ0,T [A ∩ supp ρ0] ∩ B 	= ∅.

Naturally, there are many such pairs A, B, and the set function J fw
T does not give any

quantitative information about which pairs are more coherent than others. Because
of this, the large deviations of the forward and backward conditions (3) are even less
useful to identify coherent sets.

We start to gain useful information about coherence, if there are at least two coherent
pairs, say A1, B1 and A2, B2. Then the rates J fw

T (B2|A1) and J fw
T (B1|A2) are in

general large, since coherence of the respective set pairs dictate that it is very unlikely
to encounter paths from pair #1 to pair #2. Using these rates as measures of farness is
one idea this paper exploits.
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B Algorithm: Shortest Path in Time-Dependent Graphs

Since we could not find an algorithm suited to our purpose,11 we describe in this
appendix a solution we came up with to solve the problem of finding shortest paths
in a graph with time-dependent nonnegative edge weights. Transition is only possible
between nodes that are connected by an edge of positive weight.

There are several solutions to the shortest path problem for time-independent
graphs, such as Dijkstra’s algorithm (Dijkstra 1959) or the Floyd–Warshall algorithm
(Floyd 1962). Each of them use in some sense a “monotonicity” argument, namely,
that sub-paths of shortest paths are shortest paths themselves. This does not hold for
time-dependent graphs, because at every step that we make the environment might
change completely, and the number of steps we can make is limited by the number of
time instances of the graph.

Wepropose the following algorithm to compute shortest paths froma specific node s
to all other nodes. Note that we can stay in a node for any time at zero cost. The weight
of the transition i → j at time t is denoted by wt (i → j).

Algorithm 1 Shortest distance in time-dependent graphs
1: Rold = {s}, Rnew = ∅ (reached states at times 0 and 1)
2: dist(s) = 0, dist(i) = ∞ for i 	= s
3: for t = 1, . . . , T do
4: while Rold 	= ∅ do
5: v = argmaxi∈Rold dist(i)
6: Rold ← Rold \ {v}
7: for j : wt (v → j) < ∞ do
8: if dist(v) + wt (v → j) < dist( j) then
9: dist( j) = dist(v) + wt (v → j)
10: Rnew ← Rnew ∪ { j}
11: Rold = Rnew

It is important to have the max on line 5, since if we does not start the update
procedure at the node which has the maximal distance, then we might erroneously cut
off nodes that could still be reached from it.

Algorithm 1 can clearly be extended to keep track of the shortest path as well. The
distance of a node j is updated to a smaller one, whenever there is a path through some
other node v that is shorter than the previous one (line 10). Hence, the new candidate
shortest path is the one leading to v and then jumping to j in the current time step.
This is implemented in Algorithm 2 (line 12). Herein, path(i→ j) is the shortest path
from node i to node j , such that patht (i→ j) is the node the walker resides in at
time t = 0, 1, . . . , T while going through the shortest path, and path0(i→ j) = i . If
there is no path from i to j , then path(i→ j) is the zero vector. We use 1 : k to denote
the index set 1, 2, . . . , k.

11 It should be mentioned here that every time-dependent shortest path problem can be rephrased as a
time-independent problem by considering each node at each time point as a distinct node of a large graph,
and then it could be solved by standard methods. We do not take this approach here, as it might introduce
memory requirement issues.
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Algorithm 2 Shortest path in time-dependent graphs
1: Rold = {s}, Rnew = ∅ (reached states at times 0 and 1)
2: dist(s) = 0, dist(i) = ∞ for i 	= s
3: path(s→ j) = 0 ∈ R

T +1 for all j , path0(s→s) = s
4: for t = 1, . . . , T do
5: while Rold 	= ∅ do
6: v = argmaxi∈Rold dist(i)
7: Rold ← Rold \ {v}
8: for j : wt (v → j) < ∞ do
9: if dist(v) + wt (v → j) < dist( j) then
10: dist( j) = dist(v) + wt (v → j)
11: path1:t−1(s→ j) = path1:t−1(s→v), patht (s→ j) = j
12: Rnew ← Rnew ∪ { j}
13: patht (s→s) = s
14: Rold = Rnew
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