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Stability of the solution set of quasi-variational inequalities and
optimal control

Amal Alphonse, Michael Hintermdiller, Carlos N. Rautenberg

Abstract

For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution
set and associated optimal control problems are considered. These optimal control problems are
non-standard in the sense that they involve an objective with set-valued arguments. The approach
to study the solution stability is based on perturbations of minimal and maximal elements to the
solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that
different assumptions are required for studying decreasing and increasing perturbations and that
the optimization problem of interest is well-posed.

1 Introduction

Quasi-variational inequalities (QVIs) are powerful mathematical models for the description of complex
physical phenomena. Such models arise in many scientific areas including superconductivity ([39, 149,
50, [111, 14} 45| [32, 131}, [30]), continuum mechanics ([23]), impulse control problems ([16] 17, 15} [18]),
growth of sandpiles ([12] (13| [14], 43|, [44], 46| [47])), and the formation of networks of lakes and rivers
([13, 44/, 146]), among others.

In general, QVIs are nonlinear, nonconvex, and nonsmooth problems with non-unique (i.e., set-valued)
solutions. In physical models like the growth of sandpiles or the determination of the magnetic field
in superconductors, each of these solutions fulfills physical laws confirming that they are not artifacts
of the mathematical formulation (compare the results in [11], 12| [13] (14} |43, [6]). In some cases, like
the QVI arising in impulse control problems, extremals of the solution set can be determined, in the
sense that there exist minimal and maximal elements of the solution set which are related to the value
functional [16].

The mathematical treatment of QVIs entails several possible directions. In addition to the “order” ap-
proach followed in this paper, at least two more are worth mentioning. In some cases, the QVI can
be expressed as a generalized equation, and hence a particular instance of a more general problem
class; see, e.g., [35,136] and also [24, 34} 25]. In problems involving constraints on derivatives, special
forms of constraint regularization that modify the original partial differential operator may be suitable,
see [49, 1408, [9]. For details on these and further approaches, we refer the reader to [4].

Given the complexity of QVIs, their optimal control represents a task which is yet even more complex
than the study of the QVI itself. While without any structural properties of the solution set the treatment
of the control problem appears very hard if not impossible, solution properties such as the availability of
extremal elements provide useful starting points for the successful analysis of the control problem and
characterizations of its solutions. For this purpose, the study of the stability of minimal and maximal
elements of the solution set with respect to perturbations of the forcing term represents a fundamental
analytical step for the subsequent study of the control problem. Concerning the latter considered in
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infinite dimensions, we note that the literature is rather scarce; we refer to [2, 22, [21], /42] for some of the
very few contributions. Finite dimensional cases have been studied in [41] and the references therein.
On the other hand, the study of optimal control problems for variational inequalities (VIs) has been the
subject of a number of recent studies; see, e.g., [28, 133, 129, 53] and the references therein. We note
here that—to the best of our knowledge—the study of the stability of minimal and maximal solutions
of QVIs and the optimal control thereof, with both being focus topics of this work, have not yet been
treated in the literature. We further note that the stability of the solution set is also of relevance in
identification problems involving QVIs; see [27].

The paper is organized as follows. In section [2] we introduce the optimal control problem associated
to the QVI of interest, and we provide the mathematical foundation of the structure of spaces under
consideration and their associated ordering. Additionally, in section[3|we study two classes of applica-
tions associated to impulse control problems and to QVIs arising as the coupling of VIs and nonlinear
partial differential equations (PDEs), respectively. In section |4} we discuss the fundamental results
due to Tartar that determine the existence of minimal and maximal solutions of the QVIs of interest.
Abstract stability results from the operator theoretic point of view are the subject of section [5] along
with an example exploring limitations. In section 6] we study minimal and maximal solutions under per-
turbations of the forcing term from below and from above. The paper ends in section [7] which studies
the well-posedness of the control problem for the QVI.

Notation

Throughout the paper we assume that €2 is an open subset of R", and LP(Q2) for1 < p < 0
denotes the usual Lebesgue space. For v > 0, we define

LX(Q):={z€ L*(Q): z(x) > v foralmostall (fa.a.) x € Q}.

Additionally, HJ(€2) and H'(£2) denote the usual Sobolev spaces; see [1].

For a Banach space X we write || - || x for a norm on X and X' for the topological dual of X with
(-,-)x’.x the associated duality pairing, respectively. For a sequence {z, },en in X we denote its
strong convergence to z € X by “z, — z” and weak convergence by “z, — z”. Further, for two
Banach spaces X; and X5, we write .2’ (X, X5) for the space of bounded linear operators from X
to XQ.

2 A class of optimization problems with QVI constraints

2.1 Preliminaries

Let (V, H,V') be a Gelfand triple of Hilbert spaces, i.e., V < H < V', where the embedding
V < H is dense and continuous, H is identified with H’, and the embedding H — V" is dense and
continuous as well (see [26] and also, e.g., [20]). Also, from now on we use (-, -) := (-, '>v’,v and
(-, -) for the inner product in H.

Let further H™ C H be a closed convex cone satisfying Ht = {v € H : (v,y) > Oforally €
H™}. Note that H* defines the cone of non-negative elements inducing the vector ordering: 2 <
yifandonlyify — x € H'. Given x € H, let 1 denote the orthogonal projection of  onto H ™,
and 2~ :=x — 2" theone onto H~ := —H™. Clearly, one has the decomposition z = 2+ — 2~ €
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H* — H* forevery x € H,and (27, 2~) = 0. Further, the infimum and supremum of two elements
z,y € H are defined as sup(z,y) := z+(y—x)" and inf(z,y) := x— (x—y)™, respectively. The
supremum of an arbitrary subset of H that is bounded (in the order) above is also properly defined
since H is Dedekind complete. In other words: For a set {x; };c; where J is completely ordered and
bounded from above, we have that {x;};c is a generalized Cauchy sequence in H (see [7, Chapter
15, §15.2, Proposition 1]), and then Dedekind completeness follows (see [3, Chapter 4, Theorem 4.9
and Corollary 4.10]). This additionally implies that norm convergence preserves order, i.e., if z, < y,
forevery n € Nand z, — z and y, — y bothin H, then z < y. Also, we write z,, | z in H if
Zn > Zpt1 foralln € Nand 2, — 2z in H, and analogously for z,, 1 z. Further, we have that if the
sequence {z,} is non-increasing (non-decreasing) and bounded from below (above) in the sense of
the order, then there exists z € H for which z,, | z (2, T 2) in H. Now, concerning V' we assume
that y € V implies y™ € V, and that (-)™ : V' — V is a bounded operator, i.e., we have M > 0
with ||y ||y < M|yl forally € V.

Given x,y € H such that x < y, we define the closed “interval” with x and y as its respective
endpoints by [z, y] := {z € H : ¥ < zand z < y}. Furthermore, we write [y, +00) and (—00, |
instead of {z € H : z > y}and {z € H : z < y}, respectively.

Next we get more specific with respect to V' and H. In fact, both are assumed to be spaces of maps
h : © — R over some open set & C R with the following dense and continuous embedding:
(Q) < H such that L>=(£2) — V", as well. Our prototypical example for this setting is V' :=
(Q) and H := L*(Q) with H := L3(Q), the closed convex cone of non-negative maps in
L2(Q) with “v < w” for v, w € H iff v(z) < w(z) almost everywhere (a.e.) on ). Here, we have
vt (z) := max{v(x), 0} for z € Q.

LOO
Hy

Let A: V — V' be a (possibly nonlinear) operator that is

(-) homogenous of order one, i.e., A(tu) = tA(u) forallu € V,t > 0;

(-) Lipschitz continuous, i.e., there exists C' > 0 such that
|A(u) — A(w)||v < Cllu—vl|ly, foral u,veV;
(-) strongly monotone, i.e., there exists ¢ > 0 such that
(A(u) — A(v),u —v) > cllu—v||}, foral u,v€V;
(-) T-monotone, i.e.,
(A(u) — A(v), (u—v)*) >0, forall w,veV,

where equality holds if and only if (u — v)™ = 0.

A well-known example for A in the case V = Hj(Q) (or V = H*(Q)) and H = L*(Q) is given by
the elliptic partial differential operator

ov Jw ov
(Av,w) = Z}Zj/Qaij(x)a—xjaxi dzr + ;/Qai(x)axiw + /an(x)vw dz, (1)

under suitable assumptions on a;;, @; and ag such as, e.g., a;j, agp € L>(2),a; = 0, a;;(x)&;€ >
c|¢fPforallé = {&} € RV, and ap(z) > € > 0faa z € Q.
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For the definition of the constraint set of the QVI we need a map ® with the following properties: There
exist y,y € H such that y < 7 for which @ : [y, 5] — H* U {+o0}, and @ is increasing in [y, 7].
The latter yields that if v, w € [y,7] and v < w then ®(v) < ®(w). Further properties of ® will be
specified below. B

Next, we define the set-valued map K : H+ — 2" as

K@) ={veV: vy} (2
Note that K (¢)) C V' is non-empty, closed and convex. We also set K(+o0) := V.
2.2 Problem formulations
The QVI problem of interest is the following one.
Problem (Pqyy) : Let f € V' be given.
Find y € K(®(y)) : (A(y) — f,v—y) 20, Vo € K(®(y)). (Pqvr)

This problem admits (in general) multiple solutions due to the non-convexity resulting from y +—
K(®(y)). Let Q(f) denote the associated solution set.

In applications, one is typically interested in confining the solution set Q( f) to a certain interval [g, 7]
for some given y,y € H. This can be done by considering f a control force and by solving the
following optimal control problem:

Problem (PP) :

minimize J(O, f) 1= Ji(Tuup(O), Tint (0)) + Jo(f) over (O, f) € 2 x U,
subjectto f € UL, ()

ye€ O, O={zeV:~zsolvesPqvl

Here U,q C U C V" is the set of admissible controls. Moreover, J; : H x H — Rand J, : U — R,
andfory,y € H we define the set-valued map

T (0) .= J SUPzeoniyy) % ONnlyy #0,
aup(0) = .
Y, otherwise,

and analogously

T (O) — infze()m[%g} Z, O ﬂ [Q, y] 7é @ ]
inf ' 7 otherwise.

Problems of type (P) have not yet been considered in the literature and pose several formidable chal-
lenges. For instance, the proof of existence of a solution is highly delicate due to the dependence
y — K(®(y)) and the fact that y = y(f). As a consequence, the direct method of the calculus of
variations is only applicable if certain convergence properties of that constraint set can be guaranteed.
Another delicacy is related to the potential set-valuedness of the solution of the QVI in the constraint
system of (P). This fact requires to identify a suitable selection mechanism such as the one identifying
the maximal or minimals solution, respectively, if available at all. We note, however, that in the special
case where Tin¢(Q(f)) and T4up(Q(f)) also belong to Q(f), they are the minimal and maximal
solution, respectively, to in V' N [y, 7] . Then the proof of existence of solutions to (P) reduces
to a stability result for this minimal and maximal solution to the QVI of interest.
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3 Examples of application

Our work here is motivated by the following two applications. The first one is associated to QVIs that
result from coupling a variational inequality (VI) to a nonlinear partial differential equation (PDE). Such
models have recently been studied in connection with thermoforming; see [5]. The other problem class
is given by QVIs arising in impulse control as pioneered by Bensoussan and Lions. We briefly describe
both problem types in the sequel.

3.1 QViIs arising from coupling VIs and nonlinear PDEs

Consider the following class of compliant obstacle problems where the obstacle is given implicitly by
solving a PDE, thus coupling a VI and a PDE. It consists in finding (y, ®, z) € V' x H x W such that

y<®, (Aly)—f,y—v) <0, YoeV:v<o, (3)
(Bz+ G(®,y) —g,w) =0 Yw € W, (4)
o= Lo, in H. (5)

Here, V < W —< H—< W' < V', f.ge H",G : HxV — H is continuous and bounded, i.e.,
for some Mg > 0, ||G(®, y)||n < Ma(||®||a + ||y||v), forall (®,y) € H x V. Further, L: W —
H is an increasing linear continuous map. Additionally, B € .Z (W, W) is strongly monotone and
satisfies (BzT,2z7) < Oforallz € W.

Under mild conditions, the above problem can be cast into the form of as follows. Let v € V/,
and consider the problem of finding z € W such that

(Bz + G(¢v) — g.w) = 0 Y € W, )
6= Lz, in H. @)

Assuming that for each v € V, z — G(Lz,v) is monotone, one can show the existence of a unique
solution z(v) € W of (€)—(7). Now set ®(v) := ¢. Suppose additionally that (G(Lz,y),2~) < 0 for
alz€ Wandy € VN HT sothat z(v) > 0and ®(v) = Lz(v) > 0 for all v for each v € V, and
that if v1 < vy then

(G(Lv,vy) — G(Lw,v3), (v —w)*) > 0,

for all w, v with (v — w)* # 0. Then z(vy) < z(vy) which implies for ®(v) := Lz(v) that v; < vy
implies ®(v;) < ®(v2), as L is increasing. This finally shows that ()—(B) has the form (Pqv1).

In view of controlling the outcome of a stationary industrial process one is clearly interested in forcing
the solution set Q( f) to be a singleton which is close to a pre-specified desired state y,. This can be
modelled as follows.

mininize 5 | [Zun( @A) = Tur @UNF + 5 [ lna = Tusl QU + 51775

subjectto 0 < v < f<F, felU,

(8)

for given A\, v, F' > 0. Here, U denotes the underlying control space. Note that the first term in the
objective aims at minimizing the distance between the maximal and minimal solution targeting single-
valued Q( f), the second term aims at tracking y4, whereas the last term associates an (U-) average
cost of A to the control action. Notice that the smaller A\ the cheaper the cost of the control gets and
the smaller one expects the first two terms in the objective. Clearly, (8) fits the form of ().
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Example 1. A possible setting for this problem class satisfying all assumptions invoked so far is given
by V = HL(Q), H = L*(Q), W = H(Q), with

dy 0z
(Ay, z) Z/ 8333/] o dx + /an(x)yz dz, Yy,z €V,

(Bv,w) Z/ aa;] gz dx +/Qbo(x)vw dz, Yo, w e W,

aij,bij7a0,bo - LOO(Q), Za1]<l‘)€]& 2 C|€’2 andel](:E)f]é} 2 C‘SP for a/lf = {51} € RN
and some ¢ > 0 and ag(x) > 0 and by(z) > € > 0 fa.a. x € Q. Additionally, fory > 0

G(@.y) = (2 —y)", and (Lz)(z) = k(x)z(z)

with k € L>(Q)*. Further, U = RM for some M € N, where f = M f.xa,., fm € R and
Higar. In this setting, ® : {y € H : 0 <y} — H" is

non-decreasing.

3.2 Impulse control

We consider impulse control problems (see [17]) for the following stochastic differential equation
du = b(u)dt + o(u)dw(t), u(0)=xcRY,
where b, : RY — R are Lipschitz functions whose regularity will be specified later. Let a;j =
T
0i0; /2.

The control is carried on instances 0 < #; < 0y < ---, and the system is forced from y(@ ) to
y(0:,) + &, on the instance 6,,. The energy associated to the process is given by the expected value

E {/ lult))e it Disqy Sk + co(&))e " aO(U(S))dSX9n,<oo} = H(f, w, z),
0 n

where w = {(0,,,&,)}5°,, and with 7, := inf{t : w(t™) ¢ Q or u(t) ¢ Q}, for some open
Q) C RV, In this setting, f uniquely determines the value function

min H(f, w, x),

wew

which represents the cost of the optimal control associated to the initial condition z and the cost
function f. Here, W is the set of all possible instances and jumps {(6,,,&,)}>2 . The optimization
of the above quantity via choosing f turns out to be of interest. Indeed, in specific applications f
determines the value of a certain stock or energy type per unit of time. The goal is then to solve

2
A
minimize / (3 — min H(f,w, x)) dx + §’f’2U subjectto [ € U,q, 9)
Q

weWw

where U,q C U is the set of admissible functions f, | f|? represents cost of the choice of f, A > O'is
a weight, and s > 0 is a desired average cost that could be zero.
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Stability of the solution set of quasi-variational inequalities and optimal control 7

3.2.1 Bounded case

We consider €2 bounded with a sufficiently smooth boundary, with V' = H}(Q), H = L?*(Q2), and
H* = L% (), where A is of the type (@) with

a; = aj; € WHO(RY), 1<4,j <N, Z%&gj > alé?, a >0,V eRY,
Ot
o € L@, b= a3 5 € W@
ag(x) >r >0, faa x€q.

Consider
(Py)(z) := k + essinf, , .cq(co(§) +y(z +€)),

where ¢y € C'(RY, R) is such that ¢y (0) = 0 is sub-linear and non-decreasing, with f € LP(£2) with
p> Nand f > 0.

In this setting one can show that the solution set Q( f) of is a singleton, Q(f) = {y*}, and
y* determines the value function of the impulse control problem of interest (see [17]), i.e.,

y*(z) = min H(f,w, x),

wew

a.e. for z € (2. Hence, problem (9) amounts to controlling the solution to the quasi-variational inequal-
ity and is, thus, of the form ().

3.2.2 Unbounded case

Let w(x) := exp(—pu+/1 + |z|?) for v € RY, and consider the weighted spaces V = H'(RY w),
and H = L*(RY,w) with H* = L2 (R",w) the usual cone of non-negative maps. In particular,
L*(RYN,w) is the space of (equivalence classes of) measurable functions i : RY — R for which
|h|ig(RN7w) = Jon [h(2)]Pw(2)?d2 < 400, and H' (RN, w) is the space of (equivalence classes
of) of functions g : RY — TR for which ¢ and its weak gradient Vg belong to L?(R",w) and
LA(RY,w)¥, respectively.

The operator A : V' — V" is given by

Jv Jy ) )
(Av,y) :Z,Zj/RNa”axjaxw dx—l—Z/ aza—x]yw dx+a0/RNUyw dz,

with a;;, a;, b; as in Section|3.2.1] but with ao(x) = r for all z and a real r > 0.

Define
U:={f:RY - R:measurableand 0 < f(z) < C(1 + |z|*), = €RY, s> 0},

and the map P by
(Py)(2) := k + essinfeso(co(§) + y(z + £)),

where k > 0,and ¢y € C(RY, R), with ¢y(0) = 0, is sub-linear, non-decreasing with lim¢|_, o ¢o(§) =
+00 and for which ¢y (&) < al&|" for some a,y > 0.
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In this scenario, the set of solutions Q(f) of (Pqvi) is not a singleton, and both 7;,:(Q(f)) and
Twup(Q(f)) have probabilistic interpretations associated to the value function in impulse control. In
particular,

ﬂnf(Q(f))(x) = gélvl\l;H(f7 w, l’),

i.e., Tine(Q(f)) is the value function associated with the initial impulse control problem. Then () has
the form of (P) for appropriate choices of J; and Js.

4 Increasing maps and QVI solutions

This section is strongly related to a result due to Tartar [51]; see also [7]. Upon converting (Pqy1) into
a fixed-point equation, the corresponding approach yields the existence of a solution for an increasing
fixed-point map under very mild assumptions. We note that the technique is analogous to the one by
Kolodner and Birkhoff; see [38, 10} [19].

We start by recalling Tartar’s result (compare [7, Chapter 15, §15.2]) which rests on increasing maps.
In this vein, we call 7" : H — H increasing iff v < w implies T'(v) < T'(w).

Theorem 2 (BIRKHOFF-TARTAR). Suppose 1" : H — H is an increasing map and let y be a sub-
solution and 7y be a super-solution of the map T, that is:

y<T(y) and T(H) <7
Ify <7y, then the set of fixed points of the map T in the interval [g , ] is non-empty and has a smallest

and a largest element. y e

We apply the above result to (PQVI) and first need to introduce the following VI.
Problem (Pvp):Lety € HT, f € V' be given.

Findy € K(¢) : (Ay — f,o —y) 20, Vo € K(¥). (Py1)
The solution to can be proven to be unique by standard methods. For (f, 1) € (V/, HT), we

denote the unique solution to (Py1) as S(f, v). Before we can make use of Theorem |2, we state the
following property of the map (f, ) — S(f, ). Its proof can be found on [48].

Proposition 1. Let f1, fo € V' and 1,1, € H" be such that f1 < foin V' and )1 < 1,. Then it
holds that S(f1,11) < S(f2,12).

We note that in the above result f; < fsin V" is well-defined, since V' inherits the order in H, so that
f1 < foiff (fo — f1,v) > Oforallv € V such that v > 0. Further observe that the case 1) = 400
is also allowed, where S( f, +00) denotes the solution of the unconstrained problem

Find y € Vsuchthat (A(y),v) = (f,v), forallve V.

This implies that
S(f,0) < S(f,+00), VfeV' ¢ecHY,

In order to apply the Birkhoff-Tartar Theorem to the QVI problem of interest, we need to identify a
proper interval [y, 7], with i a sub-solution and % a super-solution of the map y +— S(f, ®(y)). In our
case, we choose y = 0, since we infer from Proposition that

0= 5(0,®(0)) < S(f, ®(0)),

DOI 10.20347/WIAS.PREPRINT.2582 Berlin 2019



Stability of the solution set of quasi-variational inequalities and optimal control 9

forany f > 0in V’. On the other hand, we assume that [ € U,q C V" is bounded from above (in
the V'-order) by some F'. Then lety = S(F', +00), for which

S(f,2(y)) < S(F,+00) =7.
This leads to the following result.

Theorem 3 (TARTAR). LetUyq C {f € V' : 0 < f < F} forsome(0 < F € V'. Then, there are
Y,y such that for each f € U,q, the set of fixed points of the map y — S(f, ®(y)) in the interval
[_y, | is non-empty and contains a smallest and a largest element, i.e., there are fixed points v, and
/% inV such that

ymax

QM) N[y, 7l = Q) N Wi Yema) 7 0

In light of Theorems |2/ and [3| there exist operators m and M, which map an increasing map on
the interval [g, 7] to its minimal and maximal fixed points, respectively; insofar that sub- and super-
solutions y and ¥ exist.

We fix some notation now. In the case of a general increasing map 7', with sub- and super-solutions
y and 7, respectively, we denote by m(7") and M(T') its minimal and maximal fixed points in some
interval [, 7]. When the map T is given by y — S(f, ®(y)) for some f, we write m(f) and M(f).
In particular, it follows that if Q( f) is the set of solutions of (Pqvi). then

Tsup(Q(f)) - M(f)? and 7ﬂmf“‘)(f)) = m(f)7

where Ty, Tint are given in (P).

For an operator 1" as in Theorem |2} the fixed points m(7") and M(T') are determined (see [7] for a

proof) by the maximal and minimal elements of the sets Z(T") and Z(T), respectively, where
Z(T)={ze X(T):x <yforaly € Y(T

)}
Z(T)={yeY(T):z <yforallz € X(T)}

?

and

X(T)={zeH:zelyylandz <T(z)},
Y(T)={rveH:z€ly,ylandz > T(z)}.

In the following section, we use this setting for m(7") and M (T) to establish stability results. We also
provide an equivalent definition that is exploited subsequently.

5 Stability results

For the existence of optimal controls for our problem of interest, we need to study the stability of the
maps f — m(f) and f — M(f). In the general case of an increasing map 7', we now prove that
m(7") and M(T') are stable from below and above, respectively, provided 7" has certain complete
continuity properties.

Theorem 4. LetT, R,,U, : H — V C H be increasing mappings withn € N. Assume further:

() T :V — V is completely continuous with respect to monotone sequences, i.e., if v, — v in
V and v, < v,11 (orv, > v,.1) foralln € N, thenT(v,) — T'(v) inV.
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(i) Sets of fixed points of T', R,,, U,, (assuming they exist) are uniformly bounded in V' with respect
ton € N, and that

< Bp(v) < Bopa(v) <T(v) < Unga(v) <Un(v) <7, Yo €[y, 7)n €N,

|

for some y andy in'V'.

(i) If{v,} and {w,} are bounded sequences in V" such that v, < v,11 <7 andw, > w, 11 >
Y, then

lim ||R,(v,) — T (v,)|lvy =0 and lim ||U,(w,) — T'(w,)|lv = 0.

n—oo n—oo

Let m and M be the operators that take an increasing map with sub- and supersolutions [g, Y| into
the minimal and maximal solutions of Theorem[d, respectively. Then

m(R,) - m(T)inV, and  M(U,) — M(T)inV,
and

m(R,) T m(T) in H, and  M(U,) | M(T) inH,
asn — oo, respectively.

Proof. First note that since y < R, (v) < T(v) < U,(v) < ¥, the operators m and M are well
defined on 7', R,, and U, for each n € N since each of these maps is increasing with the same sub-
and supersolutions. We introduce the sets

X(T)={reH:z€[y,ylandz < T(x)},

Y(T)={reH:z€lyylandz > T(x)},

Z(T)={xze X(T):x <yforally € Y(T)};
and similarly for each R,, and U,,, n € N.

Since R, (v) < Rpy1(v) < T'(v) forallv € [y, 7] it follows that
X(R,) C X(T)and Y(T) C Y(R,), and hence Z(R,) C Z(T), (10)
and also

X(R,) C X(Ryy1)and Y (R,41) C Y(R,), and hence Z(R,) C Z(R,11). (11)

Clearly Z(R,) and Z(T') are not empty, since y belongs to either of them. Following the proof of Tar-
tar's Theorem (compare [7]) we observe that m(R,,) and m(7") correspond to the maximal elements
of Z(R,,) and Z(T), respectively. Consequently, it follows from and that

m(Rn) S m(Rn—I—l) S m(T)a Vn € N. (12)

Hence, {m(R,,)} is a monotonically increasing sequence which is bounded from above (for the or-
dering '<’), which implies that m(R,,) — ¢ in H, for some §j € H. We also know that the sets of
fixed points of the maps are uniformly bounded in V. Therefore, we infer m(R,,) — ¢ in V, that the
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sequence is non-decreasing, and hence T'(m(R,,)) — T'(y) in V. Since m(R,) = R,(m(R,))
and
it [ Ry (m(R,)) = Tm(R,) v =0,

we have R, (m(R,)) — T(y). Therefore, m(R,) — T(y), but since m(R,,) — ¥ it follows that
m(R,) — yin V, respectively, where ¥ is a fixed point of 7".

Since m(R,,) < m(7T) for all n, we have y < m(7"). However, m(7’) is the minimal fixed point of
T, and therefore § = m(7"). Summarizing we have

m(R,) > m(7T)inV and m(R,)Tm(T) in H.

Now we consider the upper bound. We define
Z(T) ={y e Y(T):z<yforalz € X(T)},

and analogously for U,, n € N. Since T'(v) < Uy 41(v) < Uy(v) forallv € [y, 7] andn € N it
follows that

X(T) c X(Uy,)and Y (U,) C Y(T), and hence Z(U,) C Z(T), (13)

and also B B
X(Ups1) € X(Uy)and Y (U,,) C Y(Upy1) hence Z(Uy,) C Z(Upy1). (14)

Clearly, 7 € Z(T), Z(U,) and then, as before, we apply Zorn's Lemma (with the reverse order) to
find minimal elements M(T") and M(U,, ), such that

M(T) € M(U 1) < M(U,)) < 7.

Then, {—M(U,,)} is a monotonically increasing sequence which is bounded above for the ordering
'<". This implies that M[(R,,) — ¢ in H for some j € H. Since {M(U,,) } is also uniformly bounded
in V, we have M(U,,) — g and this latter sequence is also non-increasing. Therefore, we infer
T(M(U,)) — T(y). Since M(U,,) = U,(M(U,,)) and

Jlim (U, (M(Un)) = TM(Un)llv =0,

we get U, (M(U,,)) — T(y) and M(U,,) — ¢, both in V', where y = T'(7)).

As in the previous case, since M(T') < M(U,,), we have that M(T") < 7. However, M(T) is the
maximal fixed point to 7, and therefore § = M(T"). Hence, we have

M(U,) - M(T)inV and M(U,) | M(T)in H,
which ends the proof. O

This result is sharp regarding lower and upper approximations, as it is generally not possible to obtain
M(R,) — M(T) and m(U,,) — m(7"). We illustrate this fact by means of the following one
dimensional example.

Example 5.1. LetT : [0, 1] — [0, 1] be defined as

a, 0<v<a;
Tw)y=<¢ v, a<v<b
b, b<v<1.
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with0 < a < b < 1 and wherem(T') = a and M(T) = b and

a, 0<w %, B
Rn(v) = { T(U . l), % S v 1’ Un(U) = { b,

Suppose thatn > N such that % <aandb <1-— % Then, all the assumptions of the previous
theorem hold, but m(R,,) = M(R,,) = a and m(U,,) = M(U,,) = b and hence a = M(R,,) —
M(T) =bandb=m(U,) — m(T) = a only hold for a = b, a contradiction.

IAN A

Although, as observed in the previous example, a general approximation theorem (under the hypothe-
ses of Theorem |4) for minimal and maximal fixed points seems elusive, we establish such a result
for the specific case of the QVIs of interest. In order to achieve this, we first determine an equivalent
definition of m and M but from slightly different means as in the Birkhoff-Tartar Theorem (see [7]).

Lemma . LetT : H — H be an increasing map with sub-solution y and super-solutiony such that
y < 3. Then m(T'), the maximal element of Z(T"), can also be defined as the maximal element of
the set Z*('T"), which is defined as follows

X(T)={reH:zelyylandz <T(x)},
Y*(T)={r € H:xz €[y, +oo)andx > T(x)},
(

‘T)={xe X(T):x<yforaly € Y*(T)}.

N

Similarly, M(T), the minimal element of Z(T), can also be defined as the minimal element of the set
Z*(T), defined as

X (T)={x€ H:x € (—o0,ylandz < T(x)},
Y(T)={x€e H:x€lyylandz >T(x)},

ZNT)={yeY(T):x <yforallz € X*(T)}.

Proof. We begin by noting that m(7") is the maximal element of Z(7"), and M(T') is the minimal
element of Z(T'), as shown in the proof of the Birkhoff-Tartar Theorem (see [7, Chapter 15, §15.2]).

Sincey € Z*(T) and Z*(T') C [y, 7], Z*(T) is nonempty and bounded in H, we may apply Zorn’s
Lemma (see [7]). Let 2* € Z*(T) be the maximal element of Z*(T'). It follows from Y (T') C Y*(T)
that Z*(T') C Z(T'). Therefore

" <m(7T),

where m(7T") is the maximal element of Z(7") and the minimum fixed point of 7" in [y, 7.

Since z* € Z*(T), it follows by definition that z* € X (T'). Hence, we have y < z* < 7 an
z* < T(z*). Also, since T is an increasing map, it holds that y < T'(y) < T'(z*) < T(§) < 7
and T'(z*) < T(T(x*)), i.e., T(z*) € X (T). Furthermore, if y € Y*(T), then z* < 3. Hence,
T(x*) < T(y) <wy,ie, T(x*) € Z*(T). However, z* € Z*(T) is maximal, i.e., T'(z*) < z*.
Consequently, z* = T'(x*) and 2* € [y, 7. Finally, m(7") is the minimal fixed point of 7" in [y, 7] so
that

(o}

m(T) < z*.

Noting that Z‘(T) C [y,y]and 7 € Z‘(T), we can once again apply Zorn’s Lemma (with the
reversed order). Let x* be the minimal element of Z*(T). We have that X(T') C X*(T') which
implies Z*(T") C Z(T). Therefore, it holds that

M(T) < a*,
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where M(T') is the minimum element of Z(T") and the maximum fixed point of T in ly, 7]

Since z* € Z*(T), we have by definition that z* € Y (T), ie, y < z* < Fand T(z*) <
*. Furthermore, the map 7' is increasing and therefore y < T'(y) < T(z*) < T(3) < 7 and
T(T(z*)) < T(z%),ie., T(z*) € Y(T). B -

For an arbitrary € X*(7T'), we have z < z* and xz < T'(z) < T'(x*), i.e., T'(z* ) Z*(T). As
* was the minimal element of Z*(T'), it follows that z* < T'(z*), yielding T(x*) = 2. However,
M(T') is the maximal fixed point of 7" on [y, 7/}, so that

z* < M(T),

which completes the proof. O

6 Monotone perturbations

We now prove a series of lemmas that are instrumental in establishing Theorem [5|in the subsequent
section. The latter is a form of stability result for perturbations of the operators m and IM. More
specifically, it turns out that the minimal and maximal solutions of the map y +— S(f, ®(y)) are stable
in the norm of H with respect to perturbations in L>°(2) < V"’ of the forcing term (under certain
assumptions on ®), i.e., if { f,,} isin L(Q2) and f,, — f*in L>(Q2), then

m(f,) > m(f*) and M(f,) — M(f*) inH.

The strategy of the proof consists in considering the cases of increasing and decreasing sequences
of { f..} separately and then combine both cases to obtain the final result. This strategy is due to the
different nature of these cases as indicated in Theorem[4land Example[5.1] It can also be corroborated
by the different structural hypotheses of Lemmal[1] [2] [3|and[4] As expected, stability results associated
to one-sided perturbations are more amenable than general ones.

In this section, all sequences of forcing terms { f,,} are assumed to satisfy 0 < f,, < F'foralln € N
and some F' € V' such F' > 0. Further, we consider the interval [y, 7], with y = 0,and y € V such
that B -

(A(y),v) = (F,v), YveV. (15)

For any f with 0 < f < F', we observe that
0<S(f,®(0)) and  S(f,@(y)) < S(F,+00) =7.

Hence, we denote by m(f) and M(f) the minimal and maximal fixed points of the map y
S(f,®(y)) = S(f,v). respectively, on the interval [y,7] = [0, A~'(F)]. Note that m(f) and
M( f) are well defined according to Theorem

In the following lemma, we start by considering the behavior of {m( f,,) } for non-increasing sequences

{/n}-

Lemma 1 (NON-INCREASING SEQUENCES OF m). Suppose that the following hold true:

(i) The sequence { f,} in L°(2) is non-increasing and lim,,_, f, = f* in L>°(§2) for some
f*e Le(9).
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(i) The upper bound mapping ® satisfies
AD(y) > O(\y), forall A>1,yeVNHT,

and if {v, } is bounded inV andv,, | v in H, then ®(v,,) — ®(v) in H.

Then, it follows that
m(f,) } m(f*)inH, and m(f,)— m(f*)inV. (16)

Proof. The proof is split into several steps for the sake of clarity.

Step 1: We start by showing: If a sequence {z,} satisfies z,, — z* in'V, for some z*, and is non-
increasing and non-negative: z, > z,.1 > 0 for alln € I, then it holds that S(f,, ®(z,)) —
S(f*,®(z*)) in V. We follow closely the ideas in [52] and include the proof here for the sake of
completeness. Note first that the non-increasing nature of the sequence implies also that z,, | z* in
H.

By our hypothesis on ®, we have that ®(z,,) — ®(2*) in H and ®(z,) > P(2,1), which implies
that K(®(2,,)) D K(®(2,11)) and K(®(z,)) O K(®(27)).
>

Since K(®(z*)) is non-empty (note that z* > 0 and ®(z*) > 0), we have 0 € K(®(z*)) and
0 € K(®(z,)) foralln € N. Let w,, := S(f,,, ®(2,)) and note that by Proposition|i]the associated
sequence is decreasing and bounded from below (in the ordering), so that w,, | w* in H for some
w* € H.

By definition (Aw,, — f,,,v—w,) > Oforallv € K(®(z,)), and then, using the uniform monotonicity
of A, we have

CHwn“V (Awn, wn) < (fo, wn). (17)

Also, (fr, wn) < (|| fallv)l|wnllv and || fullv: < Cl fall @) < 0o. Therefore, {w,} is bounded
in V', and hence for some subsequence w,, — w* in V (for the same w* as before). But since
wy, 4 w*in H, we getw,, — w*inV.

Since ®(z,) — ®(z*)in H and w,, < ®(z,), we conclude

w' < O(2%), e, w'eK(P(z)).

By Minty’'s Lemma (see [48]) applied to the VI arising from w,, = S(f,,, ®(z,)), we obtain
(Av = fr,v—wyp) >0, VveK(P(z,)),

and in particular for all v € K(®(2*)) € K(®(z,)). As f,, — f*in L>(Q2) (and hence in V"),
(v—w,) = (v—w*)inVand (v —w,) = (v—w*)in H, we have

lim (Av — f,,, v —wy,) = (Av — ff,o—w*) >0, YveK(®(z")).

k—o00
Additionally, since w* € K(®(z*)), Minty’s Lemma implies
(Aw™ — ffo—w") >0, Yve K(P(z")),

e, w" = S(f*, ®(z)).
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Given that w, — w* in V and || f,.|lv' < C|| full oo () < 00, by
cllw, —w* |} < (Aw, — Aw*, w, —w*) < (f, + Aw*, w* —w,),
we have w,, — w* in V. That is,

S(fon, ®(zn)) = S(f*, ®(z")) in V. (18)

Before we continue with the next step of the proof, we define for f € V'’ the set-valued mappings
X(f)={reH:y<z<yandz < S(f,®(x))},
Yo(f)={z € H:y<zandx > S(f, ®(x))},
(f)=f{z e X(f):x <yforaly € V*(f)}.

N

Step 2: Let {z,} be the sequence of Step 1, i.e., z, — z* inV that is also non-increasing in the
sense z, > zpy1 > 0 foralln. If z, € Z°(f,), thenz* € Z*(f*).

Since f, € LX(Q) with f,, > fuy1 foralln € Nand lim, o f, = f* > v > 0in L>®(Q), we
have that f* < f, foralln € N. Hence, S(f*, ®(z)) < S(fn, P(x)) for all n € IN and we obtain
the inequalities

X(f) € X(f,) and Y*(£,) C Y*(f*), and hence Z*(f*) C Z*(f.). (19)

Let z, € Z*(fn), then z, € X (fn), 1.6,y < 2z, <yand 2, < S(fn, P(2,)). Therefore, we have

y <z"<7yand 2" < S(f",®(2")), and hence 2" € X (f*). (20)

Lety € Y*(f*) be arbitrary and consider y,, := Ay, with Ay, := || f/ || Lo () Since Ay, | 1 (recall
fo = fin L®(Q) and f,, f € Ly°(Q) forall n € N), weinfer y < Ay < Ay = Y. Also,

Anf > fn and by the structural assumption over ®, we have A, ®(y) > ®(\,y). Furthermore, we
obtain the following chain of inequalities

Ay = MS(f,2(y) = SO S, M ®(y)) = S(fn, @(Any))

i.e., yn € Y*(fn) and y,, — yin L=(Q).

Now, we have that z, € Z°*(f,) and z,(z) — z*(z) a.e.inQand z* € X(f*), andforeachn € IN
we have z,, < gforally € Y*(f,). Choosing y = A,y as in the previous paragraph withy € Y*(f*)
arbitrary, we have that z,, < \,y. Henceforth, z* < yforally € Y*(f*),i.e., z* € Z°(f*).

Step 3. The minimal solutions m( f,,) and m( f*) are well defined as the maximal elements of Z°*( f,,)
and Z°*(f*), respectively. It follows immediately from that m(f*) < m(f,), and by the same
argument used to derive (T9), we have that 0 < m(f,11) < m(f,). Denote z, = m(f,), since
Zn = S(fn, P(2,)) and 0 € K(P(z2,)), a standard monotonicity argument gives ||z, ||y < M < oo.
Hence z, is bounded in V', non-increasing and bounded below in order, and z, € Z°(f,). The
monotone behaviour in addition to the boundedness implies that z,, — z* in V/, by Step 2 we have that
z* € Z*(f*).Since z, = S(fn, P(2n)), by Step 1, we have that z,, — z*inV, z* = S(f*, ®(2%)),
i.e., z* is a fixed point of the map z — S(f*, ®(z)) and hence m(f*) < z*. From the definition of
Z*(f*) we infer that 2* < y forally € Y*(f*), and we readily observe m(f*) € Y*(f*), so that
z* <m(f*),ie, m(f*) = z" 0O
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A fundamental step in the previous lemma utilizes that
S(fn, ®(20)) = S(f*,@(2)), in V

when f,, — f in V', A sufficient condition for this to hold true is related to the Mosco convergence
(see [48]) of {K(P(z,))} towards K(P(2*)):

Definition 1 (Mosco CONVERGENCE). Let K and K,,, for each n € N, be non-empty, closed and
convex subsets of V. Then the sequence {K,} is said to converge to K in the sense of Mosco as

n — o