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Stability of the solution set of quasi-variational inequalities and
optimal control

Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Abstract

For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution
set and associated optimal control problems are considered. These optimal control problems are
non-standard in the sense that they involve an objective with set-valued arguments. The approach
to study the solution stability is based on perturbations of minimal and maximal elements to the
solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that
different assumptions are required for studying decreasing and increasing perturbations and that
the optimization problem of interest is well-posed.

1 Introduction

Quasi-variational inequalities (QVIs) are powerful mathematical models for the description of complex
physical phenomena. Such models arise in many scientific areas including superconductivity ([39, 49,
50, 11, 14, 45, 32, 31, 30]), continuum mechanics ([23]), impulse control problems ([16, 17, 15, 18]),
growth of sandpiles ([12, 13, 14, 43, 44, 46, 47]), and the formation of networks of lakes and rivers
([13, 44, 46]), among others.

In general, QVIs are nonlinear, nonconvex, and nonsmooth problems with non-unique (i.e., set-valued)
solutions. In physical models like the growth of sandpiles or the determination of the magnetic field
in superconductors, each of these solutions fulfills physical laws confirming that they are not artifacts
of the mathematical formulation (compare the results in [11, 12, 13, 14, 43, 6]). In some cases, like
the QVI arising in impulse control problems, extremals of the solution set can be determined, in the
sense that there exist minimal and maximal elements of the solution set which are related to the value
functional [16].

The mathematical treatment of QVIs entails several possible directions. In addition to the “order” ap-
proach followed in this paper, at least two more are worth mentioning. In some cases, the QVI can
be expressed as a generalized equation, and hence a particular instance of a more general problem
class; see, e.g., [35, 36] and also [24, 34, 25]. In problems involving constraints on derivatives, special
forms of constraint regularization that modify the original partial differential operator may be suitable,
see [49, 40, 8, 9]. For details on these and further approaches, we refer the reader to [4].

Given the complexity of QVIs, their optimal control represents a task which is yet even more complex
than the study of the QVI itself. While without any structural properties of the solution set the treatment
of the control problem appears very hard if not impossible, solution properties such as the availability of
extremal elements provide useful starting points for the successful analysis of the control problem and
characterizations of its solutions. For this purpose, the study of the stability of minimal and maximal
elements of the solution set with respect to perturbations of the forcing term represents a fundamental
analytical step for the subsequent study of the control problem. Concerning the latter considered in
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infinite dimensions, we note that the literature is rather scarce; we refer to [2, 22, 21, 42] for some of the
very few contributions. Finite dimensional cases have been studied in [41] and the references therein.
On the other hand, the study of optimal control problems for variational inequalities (VIs) has been the
subject of a number of recent studies; see, e.g., [28, 33, 29, 53] and the references therein. We note
here that–to the best of our knowledge–the study of the stability of minimal and maximal solutions
of QVIs and the optimal control thereof, with both being focus topics of this work, have not yet been
treated in the literature. We further note that the stability of the solution set is also of relevance in
identification problems involving QVIs; see [27].

The paper is organized as follows. In section 2 we introduce the optimal control problem associated
to the QVI of interest, and we provide the mathematical foundation of the structure of spaces under
consideration and their associated ordering. Additionally, in section 3 we study two classes of applica-
tions associated to impulse control problems and to QVIs arising as the coupling of VIs and nonlinear
partial differential equations (PDEs), respectively. In section 4, we discuss the fundamental results
due to Tartar that determine the existence of minimal and maximal solutions of the QVIs of interest.
Abstract stability results from the operator theoretic point of view are the subject of section 5, along
with an example exploring limitations. In section 6, we study minimal and maximal solutions under per-
turbations of the forcing term from below and from above. The paper ends in section 7 which studies
the well-posedness of the control problem for the QVI.

Notation

Throughout the paper we assume that Ω is an open subset of RN , and Lp(Ω) for 1 ≤ p ≤ ∞
denotes the usual Lebesgue space. For ν > 0, we define

L∞ν (Ω) := {z ∈ L∞(Ω) : z(x) ≥ ν for almost all (f.a.a.) x ∈ Ω}.

Additionally, H1
0 (Ω) and H1(Ω) denote the usual Sobolev spaces; see [1].

For a Banach space X we write ‖ · ‖X for a norm on X and X ′ for the topological dual of X with
〈·, ·〉X′,X the associated duality pairing, respectively. For a sequence {zn}n∈N in X we denote its
strong convergence to z ∈ X by “zn → z” and weak convergence by “zn ⇀ z”. Further, for two
Banach spaces X1 and X2, we write L (X1, X2) for the space of bounded linear operators from X1

to X2.

2 A class of optimization problems with QVI constraints

2.1 Preliminaries

Let (V,H, V ′) be a Gelfand triple of Hilbert spaces, i.e., V ↪→ H ↪→ V ′, where the embedding
V ↪→ H is dense and continuous,H is identified withH ′, and the embeddingH ↪→ V ′ is dense and
continuous as well (see [26] and also, e.g., [20]). Also, from now on we use 〈·, ·〉 := 〈·, ·〉V ′,V and
(·, ·) for the inner product in H .

Let further H+ ⊂ H be a closed convex cone satisfying H+ = {v ∈ H : (v, y) ≥ 0 for all y ∈
H+}. Note that H+ defines the cone of non-negative elements inducing the vector ordering: x ≤
y if and only if y − x ∈ H+. Given x ∈ H , let x+ denote the orthogonal projection of x onto H+,
and x− := x− x+ the one onto H− := −H+. Clearly, one has the decomposition x = x+ − x− ∈
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H+−H+ for every x ∈ H , and (x+, x−) = 0. Further, the infimum and supremum of two elements
x, y ∈ H are defined as sup(x, y) := x+(y−x)+ and inf(x, y) := x−(x−y)+, respectively. The
supremum of an arbitrary subset of H that is bounded (in the order) above is also properly defined
since H is Dedekind complete. In other words: For a set {xi}i∈J where J is completely ordered and
bounded from above, we have that {xi}i∈J is a generalized Cauchy sequence in H (see [7, Chapter
15, §15.2, Proposition 1]), and then Dedekind completeness follows (see [3, Chapter 4, Theorem 4.9
and Corollary 4.10]). This additionally implies that norm convergence preserves order, i.e., if zn ≤ yn
for every n ∈ N and zn → z and yn → y both in H , then z ≤ y. Also, we write zn ↓ z in H if
zn ≥ zn+1 for all n ∈ N and zn → z in H , and analogously for zn ↑ z. Further, we have that if the
sequence {zn} is non-increasing (non-decreasing) and bounded from below (above) in the sense of
the order, then there exists z ∈ H for which zn ↓ z (zn ↑ z) in H . Now, concerning V we assume
that y ∈ V implies y+ ∈ V , and that (·)+ : V → V is a bounded operator, i.e., we have M > 0
with ‖y+‖V ≤M‖y‖V for all y ∈ V .

Given x, y ∈ H such that x ≤ y, we define the closed “interval” with x and y as its respective
endpoints by [x, y] := {z ∈ H : x ≤ z and z ≤ y}. Furthermore, we write [y,+∞) and (−∞, y]
instead of {z ∈ H : z ≥ y} and {z ∈ H : z ≤ y}, respectively.

Next we get more specific with respect to V and H . In fact, both are assumed to be spaces of maps
h : Ω → R over some open set Ω ⊂ RN with the following dense and continuous embedding:
L∞(Ω) ↪→ H such that L∞(Ω) ↪→ V ′, as well. Our prototypical example for this setting is V :=
H1

0 (Ω) and H := L2(Ω) with H+ := L2
+(Ω), the closed convex cone of non-negative maps in

L2(Ω) with “v ≤ w” for v, w ∈ H iff v(x) ≤ w(x) almost everywhere (a.e.) on Ω. Here, we have
v+(x) := max{v(x), 0} for x ∈ Ω.

Let A : V → V ′ be a (possibly nonlinear) operator that is

(-) homogenous of order one, i.e., A(tu) = tA(u) for all u ∈ V , t > 0;

(-) Lipschitz continuous, i.e., there exists C > 0 such that

‖A(u)− A(v)‖V ′ ≤ C‖u− v‖V , for all u, v ∈ V ;

(-) strongly monotone, i.e., there exists c > 0 such that

〈A(u)− A(v), u− v〉 ≥ c‖u− v‖2
V , for all u, v ∈ V ;

(-) T-monotone, i.e.,

〈A(u)− A(v), (u− v)+〉 ≥ 0, for all u, v ∈ V,

where equality holds if and only if (u− v)+ = 0.

A well-known example for A in the case V = H1
0 (Ω) (or V = H1(Ω)) and H = L2(Ω) is given by

the elliptic partial differential operator

〈Av,w〉 =
∑
i,j

∫
Ω

aij(x)
∂v

∂xj

∂w

∂xi
dx+

∑
i

∫
Ω

ai(x)
∂v

∂xi
w +

∫
Ω

a0(x)vw dx, (1)

under suitable assumptions on aij, ai and a0 such as, e.g., aij, a0 ∈ L∞(Ω), ai ≡ 0,
∑
aij(x)ξjξi ≥

c|ξ|2 for all ξ = {ξi} ∈ RN , and a0(x) ≥ ε > 0 f.a.a. x ∈ Ω.
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For the definition of the constraint set of the QVI we need a map Φ with the following properties: There
exist y, y ∈ H such that y ≤ y for which Φ : [y, y] → H+ ∪ {+∞}, and Φ is increasing in [y, y].
The latter yields that if v, w ∈ [y, y] and v ≤ w then Φ(v) ≤ Φ(w). Further properties of Φ will be
specified below.

Next, we define the set-valued map K : H+ → 2V as

K(ψ) := {v ∈ V : v ≤ ψ}. (2)

Note that K(ψ) ⊂ V is non-empty, closed and convex. We also set K(+∞) := V .

2.2 Problem formulations

The QVI problem of interest is the following one.

Problem (PQVI) : Let f ∈ V ′ be given.

Find y ∈ K(Φ(y)) : 〈A(y)− f, v − y〉 ≥ 0, ∀v ∈ K(Φ(y)). (PQVI)

This problem admits (in general) multiple solutions due to the non-convexity resulting from y 7→
K(Φ(y)). Let Q(f) denote the associated solution set.

In applications, one is typically interested in confining the solution set Q(f) to a certain interval [y, y]
for some given y, y ∈ H . This can be done by considering f a control force and by solving the
following optimal control problem:

Problem (P) :

minimize J(O, f) := J1(Tsup(O), Tinf(O)) + J2(f) over (O, f) ∈ 2H × U,
subject to f ∈ Uad,

y ∈ O, O = {z ∈ V : z solves PQVI}.
(P)

Here Uad ⊂ U ⊂ V ′ is the set of admissible controls. Moreover, J1 : H×H → R and J2 : U → R,
and for y, y ∈ H we define the set-valued map

Tsup(O) :=

{
supz∈O∩[y,y] z, O ∩ [y, y] 6= ∅ ,

y, otherwise,

and analogously

Tinf(O) :=

{
infz∈O∩[y,y] z, O ∩ [y, y] 6= ∅ ,
y, otherwise.

Problems of type (P) have not yet been considered in the literature and pose several formidable chal-
lenges. For instance, the proof of existence of a solution is highly delicate due to the dependence
y 7→ K(Φ(y)) and the fact that y = y(f). As a consequence, the direct method of the calculus of
variations is only applicable if certain convergence properties of that constraint set can be guaranteed.
Another delicacy is related to the potential set-valuedness of the solution of the QVI in the constraint
system of (P). This fact requires to identify a suitable selection mechanism such as the one identifying
the maximal or minimals solution, respectively, if available at all. We note, however, that in the special
case where Tinf(Q(f)) and Tsup(Q(f)) also belong to Q(f), they are the minimal and maximal
solution, respectively, to (PQVI) in V ∩ [y, y] . Then the proof of existence of solutions to (P) reduces
to a stability result for this minimal and maximal solution to the QVI of interest.
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3 Examples of application

Our work here is motivated by the following two applications. The first one is associated to QVIs that
result from coupling a variational inequality (VI) to a nonlinear partial differential equation (PDE). Such
models have recently been studied in connection with thermoforming; see [5]. The other problem class
is given by QVIs arising in impulse control as pioneered by Bensoussan and Lions. We briefly describe
both problem types in the sequel.

3.1 QVIs arising from coupling VIs and nonlinear PDEs

Consider the following class of compliant obstacle problems where the obstacle is given implicitly by
solving a PDE, thus coupling a VI and a PDE. It consists in finding (y,Φ, z) ∈ V ×H×W such that

y ≤ Φ, 〈A(y)− f, y − v〉 ≤ 0, ∀v ∈ V : v ≤ Φ, (3)

〈Bz +G(Φ, y)− g, w〉 = 0 ∀w ∈ W, (4)

Φ = Lz, in H. (5)

Here, V ↪→ W ↪→ H ↪→ W ′ ↪→ V ′, f, g ∈ H+,G : H×V → H is continuous and bounded, i.e.,
for some MG > 0, ‖G(Φ, y)‖H ≤MG(‖Φ‖H + ‖y‖V ), for all (Φ, y) ∈ H ×V . Further, L : W →
H is an increasing linear continuous map. Additionally, B ∈ L (W,W ′) is strongly monotone and
satisfies 〈Bz+, z−〉 ≤ 0 for all z ∈ W .

Under mild conditions, the above problem can be cast into the form of (PQVI) as follows. Let v ∈ V ,
and consider the problem of finding z ∈ W such that

〈Bz +G(φ, v)− g, w〉 = 0 ∀w ∈ W, (6)

φ = Lz, in H. (7)

Assuming that for each v ∈ V , z 7→ G(Lz, v) is monotone, one can show the existence of a unique
solution z(v) ∈ W of (6)–(7). Now set Φ(v) := φ. Suppose additionally that (G(Lz, y), z−) ≤ 0 for
all z ∈ W and y ∈ V ∩H+ so that z(v) ≥ 0 and Φ(v) = Lz(v) ≥ 0 for all v for each v ∈ V , and
that if v1 ≤ v2 then

(G(Lv, v1)−G(Lw, v2), (v − w)+) > 0,

for all w, v with (v − w)+ 6= 0. Then z(v1) ≤ z(v2) which implies for Φ(v) := Lz(v) that v1 ≤ v2

implies Φ(v1) ≤ Φ(v2), as L is increasing. This finally shows that (3)–(5) has the form (PQVI).

In view of controlling the outcome of a stationary industrial process one is clearly interested in forcing
the solution set Q(f) to be a singleton which is close to a pre-specified desired state yd. This can be
modelled as follows.

minimize
1

2

∫
Ω

|Tsup(Q(f))− Tinf(Q(f))|2 +
1

2

∫
Ω

|yd − Tinf(Q(f))|2 +
λ

2
|f |2U

subject to 0 < ν ≤ f ≤ F, f ∈ U,
(8)

for given λ, ν, F > 0. Here, U denotes the underlying control space. Note that the first term in the
objective aims at minimizing the distance between the maximal and minimal solution targeting single-
valued Q(f), the second term aims at tracking yd, whereas the last term associates an (U -) average
cost of λ to the control action. Notice that the smaller λ the cheaper the cost of the control gets and
the smaller one expects the first two terms in the objective. Clearly, (8) fits the form of (P).
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Example 1. A possible setting for this problem class satisfying all assumptions invoked so far is given
by V = H1

0 (Ω), H = L2(Ω), W = H1(Ω), with

〈Ay, z〉 =
∑
i,j

∫
Ω

aij(x)
∂y

∂xj

∂z

∂xi
dx+

∫
Ω

a0(x)yz dx, ∀y, z ∈ V,

〈Bv,w〉 =
∑
i,j

∫
Ω

bij(x)
∂v

∂xj

∂w

∂xi
dx+

∫
Ω

b0(x)vw dx, ∀v, w ∈ W,

aij, bij, a0, b0 ∈ L∞(Ω),
∑
aij(x)ξjξi ≥ c|ξ|2 and

∑
bij(x)ξjξi ≥ c|ξ|2 for all ξ = {ξi} ∈ RN

and some c > 0 and a0(x) ≥ 0 and b0(x) ≥ ε > 0 f.a.a. x ∈ Ω. Additionally, for y ≥ 0

G(Φ, y) = (Φ− y)+, and (Lz)(x) = k(x)z(x)

with k ∈ L∞(Ω)+. Further, U = RM for some M ∈ N, where f =
∑M

m=1 fmχΩm , fm ∈ R and
Ωm ⊂ Ω for each m, and ‖f‖U := ‖{fm}‖RM . In this setting, Φ : {y ∈ H : 0 ≤ y} → H+ is
non-decreasing.

3.2 Impulse control

We consider impulse control problems (see [17]) for the following stochastic differential equation

du = b(u)dt+ σ(u)dw(t), u(0) = x ∈ RN ,

where b, σ : RN → RN are Lipschitz functions whose regularity will be specified later. Let aij :=
σiσ

>
j /2.

The control is carried on instances 0 ≤ θ1 ≤ θ2 ≤ · · · , and the system is forced from y(θ−n ) to
y(θ−n ) + ξn on the instance θn. The energy associated to the process is given by the expected value

E

{∫ τx

0

f(u(t))e−
∫ t
0 a0(u(s))dsdt+

∑
n

(k + c0(ξn))e−
∫ θn
0 a0(u(s))dsχθn<∞

}
=: H(f, w, x),

where w = {(θn, ξn)}∞n=1, and with τx := inf{t : u(t−) /∈ Ω or u(t) /∈ Ω}, for some open
Ω ⊂ RN . In this setting, f uniquely determines the value function

min
w∈W
H(f, w, x),

which represents the cost of the optimal control associated to the initial condition x and the cost
function f . Here, W is the set of all possible instances and jumps {(θn, ξn)}∞n=1. The optimization
of the above quantity via choosing f turns out to be of interest. Indeed, in specific applications f
determines the value of a certain stock or energy type per unit of time. The goal is then to solve

minimize

∫
Ω

(
s− min

w∈W
H(f, w, x)

)2

dx+
λ

2
|f |2U subject to f ∈ Uad, (9)

where Uad ⊂ U is the set of admissible functions f , |f |2U represents cost of the choice of f , λ > 0 is
a weight, and s ≥ 0 is a desired average cost that could be zero.
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3.2.1 Bounded case

We consider Ω bounded with a sufficiently smooth boundary, with V = H1
0 (Ω), H = L2(Ω), and

H+ = L2
+(Ω), where A is of the type (1) with

aij = aji ∈ W 1,∞(RN), 1 ≤ i, j ≤ N,
∑

aijξiξj ≥ α|ξ|2, α > 0, ∀ξ ∈ RN ,

ai, a0 ∈ L∞(RN), bi = −ai +
∑
j

∂aij
∂xj
∈ W 1,∞(RN),

a0(x) ≥ r > 0, f.a.a. x ∈ Ω.

Consider

(Φy)(x) := k + essinfx+ξ∈Ω(c0(ξ) + y(x+ ξ)),

where c0 ∈ C(RN
+ ,R) is such that c0(0) = 0 is sub-linear and non-decreasing, with f ∈ Lp(Ω) with

p > N and f ≥ 0.

In this setting one can show that the solution set Q(f) of (PQVI) is a singleton, Q(f) = {y∗}, and
y∗ determines the value function of the impulse control problem of interest (see [17]), i.e.,

y∗(x) = min
w∈W
H(f, w, x),

a.e. for x ∈ Ω. Hence, problem (9) amounts to controlling the solution to the quasi-variational inequal-
ity and is, thus, of the form (P).

3.2.2 Unbounded case

Let ω(x) := exp(−µ
√

1 + |x|2) for x ∈ RN , and consider the weighted spaces V = H1(RN , ω),
and H = L2(RN , ω) with H+ = L2

+(RN , ω) the usual cone of non-negative maps. In particular,
L2(RN , ω) is the space of (equivalence classes of) measurable functions h : RN → R for which
|h|2L2(RN ,ω) :=

∫
RN |h(x)|2ω(x)2dx < +∞, and H1(RN , ω) is the space of (equivalence classes

of) of functions g : RN → R for which g and its weak gradient ∇g belong to L2(RN , ω) and
L2(RN , ω)N , respectively.

The operator A : V → V ′ is given by

〈Av, y〉 =
∑
i,j

∫
RN
aij

∂v

∂xj

∂y

∂xi
ω2 dx+

∑
i

∫
RN
ai
∂v

∂xj
yω2 dx+ a0

∫
RN
vyω2 dx,

with aij, ai, bi as in Section 3.2.1, but with a0(x) = r for all x and a real r > 0.

Define

U := {f : RN → R : measurable and 0 ≤ f(x) ≤ C(1 + |x|s), x ∈ RN , s ≥ 0},

and the map Φ by

(Φy)(z) := k + essinfξ≥0(c0(ξ) + y(z + ξ)),

where k > 0, and c0 ∈ C(RN
+ ,R), with c0(0) = 0, is sub-linear, non-decreasing with lim|ξ|→+∞ c0(ξ) =

+∞ and for which c0(ξ) ≤ a|ξ|γ for some a, γ > 0.
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In this scenario, the set of solutions Q(f) of (PQVI) is not a singleton, and both Tinf(Q(f)) and
Tsup(Q(f)) have probabilistic interpretations associated to the value function in impulse control. In
particular,

Tinf(Q(f))(x) = min
w∈W
H(f, w, x),

i.e., Tinf(Q(f)) is the value function associated with the initial impulse control problem. Then (9) has
the form of (P) for appropriate choices of J1 and J2.

4 Increasing maps and QVI solutions

This section is strongly related to a result due to Tartar [51]; see also [7]. Upon converting (PQVI) into
a fixed-point equation, the corresponding approach yields the existence of a solution for an increasing
fixed-point map under very mild assumptions. We note that the technique is analogous to the one by
Kolodner and Birkhoff; see [38, 10, 19].

We start by recalling Tartar’s result (compare [7, Chapter 15, §15.2]) which rests on increasing maps.
In this vein, we call T : H → H increasing iff v ≤ w implies T (v) ≤ T (w).

Theorem 2 (BIRKHOFF-TARTAR). Suppose T : H → H is an increasing map and let y be a sub-
solution and y be a super-solution of the map T , that is:

y ≤ T (y) and T (y) ≤ y.

If y ≤ y, then the set of fixed points of the map T in the interval [y, y] is non-empty and has a smallest
and a largest element. y e

We apply the above result to (PQVI) and first need to introduce the following VI.

Problem (PVI): Let ψ ∈ H+, f ∈ V ′ be given.

Find y ∈ K(ψ) : 〈Ay − f, v − y〉 ≥ 0, ∀v ∈ K(ψ). (PVI)

The solution to (PVI) can be proven to be unique by standard methods. For (f, ψ) ∈ (V ′, H+), we
denote the unique solution to (PVI) as S(f, ψ). Before we can make use of Theorem 2, we state the
following property of the map (f, ψ) 7→ S(f, ψ). Its proof can be found on [48].

Proposition 1. Let f1, f2 ∈ V ′ and ψ1, ψ2 ∈ H+ be such that f1 ≤ f2 in V ′ and ψ1 ≤ ψ2. Then it
holds that S(f1, ψ1) ≤ S(f2, ψ2).

We note that in the above result f1 ≤ f2 in V ′ is well-defined, since V inherits the order in H , so that
f1 ≤ f2 iff 〈f2 − f1, v〉 ≥ 0 for all v ∈ V such that v ≥ 0. Further observe that the case ψ = +∞
is also allowed, where S(f,+∞) denotes the solution of the unconstrained problem

Find y ∈ V such that 〈A(y), v〉 = 〈f, v〉, for all v ∈ V.

This implies that
S(f, ψ) ≤ S(f,+∞), ∀f ∈ V ′, ψ ∈ H+.

In order to apply the Birkhoff-Tartar Theorem to the QVI problem of interest, we need to identify a
proper interval [y, y], with y a sub-solution and y a super-solution of the map y 7→ S(f,Φ(y)). In our
case, we choose y = 0, since we infer from Proposition 1 that

0 = S(0,Φ(0)) ≤ S(f,Φ(0)),
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for any f ≥ 0 in V ′. On the other hand, we assume that f ∈ Uad ⊂ V ′ is bounded from above (in
the V ′-order) by some F . Then let y = S(F,+∞), for which

S(f,Φ(y)) ≤ S(F,+∞) = y.

This leads to the following result.

Theorem 3 (TARTAR). Let Uad ⊂ {f ∈ V ′ : 0 ≤ f ≤ F} for some 0 ≤ F ∈ V ′. Then, there are
y, y such that for each f ∈ Uad, the set of fixed points of the map y 7→ S(f,Φ(y)) in the interval
[y, y] is non-empty and contains a smallest and a largest element, i.e., there are fixed points y∗min and
y∗max in V such that

Q(f) ∩ [y, y] = Q(f) ∩ [y∗min, y
∗
max] 6= ∅.

In light of Theorems 2 and 3, there exist operators m and M, which map an increasing map on
the interval [y, y] to its minimal and maximal fixed points, respectively; insofar that sub- and super-
solutions y and y exist.

We fix some notation now. In the case of a general increasing map T , with sub- and super-solutions
y and y, respectively, we denote by m(T ) and M(T ) its minimal and maximal fixed points in some
interval [y, y]. When the map T is given by y 7→ S(f,Φ(y)) for some f , we write m(f) and M(f).
In particular, it follows that if Q(f) is the set of solutions of (PQVI), then

Tsup(Q(f)) = M(f), and Tinf(Q(f)) = m(f),

where Tsup, Tinf are given in (P).

For an operator T as in Theorem 2, the fixed points m(T ) and M(T ) are determined (see [7] for a
proof) by the maximal and minimal elements of the sets Z(T ) and Z̃(T ), respectively, where

Z(T ) = {x ∈ X(T ) : x ≤ y for all y ∈ Y (T )},
Z̃(T ) = {y ∈ Y (T ) : x ≤ y for all x ∈ X(T )},

and

X(T ) = {x ∈ H : x ∈ [y, y] and x ≤ T (x)},
Y (T ) = {x ∈ H : x ∈ [y, y] and x ≥ T (x)}.

In the following section, we use this setting for m(T ) and M(T ) to establish stability results. We also
provide an equivalent definition that is exploited subsequently.

5 Stability results

For the existence of optimal controls for our problem of interest, we need to study the stability of the
maps f 7→ m(f) and f 7→ M(f). In the general case of an increasing map T , we now prove that
m(T ) and M(T ) are stable from below and above, respectively, provided T has certain complete
continuity properties.

Theorem 4. Let T,Rn, Un : H → V ⊂ H be increasing mappings with n ∈ N. Assume further:

(i) T : V → V is completely continuous with respect to monotone sequences, i.e., if vn ⇀ v in
V and vn ≤ vn+1 (or vn ≥ vn+1) for all n ∈ N, then T (vn)→ T (v) in V .
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(ii) Sets of fixed points of T,Rn, Un (assuming they exist) are uniformly bounded in V with respect
to n ∈ N, and that

y ≤ Rn(v) ≤ Rn+1(v) ≤ T (v) ≤ Un+1(v) ≤ Un(v) ≤ y, ∀v ∈ [y, y], n ∈ N,

for some y and y in V .

(iii) If {vn} and {wn} are bounded sequences in V such that vn ≤ vn+1 ≤ y and wn ≥ wn+1 ≥
y, then

lim
n→∞

‖Rn(vn)− T (vn)‖V = 0 and lim
n→∞

‖Un(wn)− T (wn)‖V = 0.

Let m and M be the operators that take an increasing map with sub- and supersolutions [y, y] into
the minimal and maximal solutions of Theorem 2, respectively. Then

m(Rn)→m(T ) in V, and M(Un)→M(T ) in V,

and

m(Rn) ↑m(T ) in H, and M(Un) ↓M(T ) in H,

as n→∞, respectively.

Proof. First note that since y ≤ Rn(v) ≤ T (v) ≤ Un(v) ≤ y, the operators m and M are well
defined on T,Rn and Un for each n ∈ N since each of these maps is increasing with the same sub-
and supersolutions. We introduce the sets

X(T ) = {x ∈ H : x ∈ [y, y] and x ≤ T (x)},
Y (T ) = {x ∈ H : x ∈ [y, y] and x ≥ T (x)},
Z(T ) = {x ∈ X(T ) : x ≤ y for all y ∈ Y (T )};

and similarly for each Rn and Un, n ∈ N.

Since Rn(v) ≤ Rn+1(v) ≤ T (v) for all v ∈ [y, y] it follows that

X(Rn) ⊂ X(T ) and Y (T ) ⊂ Y (Rn), and hence Z(Rn) ⊂ Z(T ), (10)

and also

X(Rn) ⊂ X(Rn+1) and Y (Rn+1) ⊂ Y (Rn), and hence Z(Rn) ⊂ Z(Rn+1). (11)

Clearly Z(Rn) and Z(T ) are not empty, since y belongs to either of them. Following the proof of Tar-
tar’s Theorem (compare [7]) we observe that m(Rn) and m(T ) correspond to the maximal elements
of Z(Rn) and Z(T ), respectively. Consequently, it follows from (10) and (11) that

m(Rn) ≤m(Rn+1) ≤m(T ), ∀n ∈ N. (12)

Hence, {m(Rn)} is a monotonically increasing sequence which is bounded from above (for the or-
dering ’≤’), which implies that m(Rn) → ŷ in H , for some ŷ ∈ H . We also know that the sets of
fixed points of the maps are uniformly bounded in V . Therefore, we infer m(Rn) ⇀ ŷ in V , that the
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sequence is non-decreasing, and hence T (m(Rn)) → T (ŷ) in V . Since m(Rn) = Rn(m(Rn))
and

lim
j→∞
‖Rn(m(Rn))− T (m(Rn))‖V = 0,

we have Rn(m(Rn)) → T (ŷ). Therefore, m(Rn) → T (ŷ), but since m(Rn) ⇀ ŷ it follows that
m(Rn)→ ŷ in V , respectively, where ŷ is a fixed point of T .

Since m(Rn) ≤ m(T ) for all n, we have ŷ ≤ m(T ). However, m(T ) is the minimal fixed point of
T , and therefore ŷ = m(T ). Summarizing we have

m(Rn)→m(T ) in V and m(Rn) ↑m(T ) in H.

Now we consider the upper bound. We define

Z̃(T ) := {y ∈ Y (T ) : x ≤ y for all x ∈ X(T )},

and analogously for Un, n ∈ N. Since T (v) ≤ Un+1(v) ≤ Un(v) for all v ∈ [y, y] and n ∈ N it
follows that

X(T ) ⊂ X(Un) and Y (Un) ⊂ Y (T ), and hence Z̃(Un) ⊂ Z̃(T ), (13)

and also
X(Un+1) ⊂ X(Un) and Y (Un) ⊂ Y (Un+1) hence Z̃(Un) ⊂ Z̃(Un+1). (14)

Clearly, y ∈ Z̃(T ), Z̃(Un) and then, as before, we apply Zorn’s Lemma (with the reverse order) to
find minimal elements M(T ) and M(Un), such that

M(T ) ≤M(Un+1) ≤M(Un) ≤ y.

Then, {−M(Un)} is a monotonically increasing sequence which is bounded above for the ordering
’≤’. This implies that M(Rn)→ y̌ in H for some y̌ ∈ H . Since {M(Un)} is also uniformly bounded
in V , we have M(Un) ⇀ y̌ and this latter sequence is also non-increasing. Therefore, we infer
T (M(Un))→ T (y̌). Since M(Un) = Un(M(Un)) and

lim
j→∞
‖Un(M(Un))− T (M(Un)‖V = 0,

we get Un(M(Un))→ T (y̌) and M(Un)→ y̌, both in V , where y̌ = T (y̌).

As in the previous case, since M(T ) ≤ M(Un), we have that M(T ) ≤ y̌. However, M(T ) is the
maximal fixed point to T , and therefore y̌ = M(T ). Hence, we have

M(Un)→M(T ) in V and M(Un) ↓M(T ) in H,

which ends the proof.

This result is sharp regarding lower and upper approximations, as it is generally not possible to obtain
M(Rn) → M(T ) and m(Un) → m(T ). We illustrate this fact by means of the following one
dimensional example.

Example 5.1. Let T : [0, 1]→ [0, 1] be defined as

T (v) =


a, 0 ≤ v < a;
v, a ≤ v < b;
b, b ≤ v ≤ 1 .
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with 0 < a < b < 1 and where m(T ) = a and M(T ) = b and

Rn(v) =

{
a, 0 ≤ v < 1

n
,

T (v − 1
n
), 1

n
≤ v ≤ 1,

Un(v) =

{
T (v + 1

n
), 0 ≤ v < 1− 1

n
,

b, 1− 1
n
≤ v ≤ 1 .

Suppose that n > N such that 1
N
≤ a and b ≤ 1 − 1

N
. Then, all the assumptions of the previous

theorem hold, but m(Rn) = M(Rn) = a and m(Un) = M(Un) = b and hence a = M(Rn) →
M(T ) = b and b = m(Un)→m(T ) = a only hold for a = b, a contradiction.

Although, as observed in the previous example, a general approximation theorem (under the hypothe-
ses of Theorem 4) for minimal and maximal fixed points seems elusive, we establish such a result
for the specific case of the QVIs of interest. In order to achieve this, we first determine an equivalent
definition of m and M but from slightly different means as in the Birkhoff-Tartar Theorem (see [7]).

Lemma 1. Let T : H → H be an increasing map with sub-solution y and super-solution y such that
y ≤ y. Then m(T ), the maximal element of Z(T ), can also be defined as the maximal element of
the set Z•(T ), which is defined as follows

X(T ) = {x ∈ H : x ∈ [y, y] and x ≤ T (x)},
Y •(T ) = {x ∈ H : x ∈ [y,+∞) and x ≥ T (x)},
Z•(T ) = {x ∈ X(T ) : x ≤ y for all y ∈ Y •(T )}.

Similarly, M(T ), the minimal element of Z̃(T ), can also be defined as the minimal element of the set
Z̃•(T ), defined as

X•(T ) = {x ∈ H : x ∈ (−∞, y] and x ≤ T (x)},
Y (T ) = {x ∈ H : x ∈ [y, y] and x ≥ T (x)},
Z̃•(T ) = {y ∈ Y (T ) : x ≤ y for all x ∈ X•(T )}.

Proof. We begin by noting that m(T ) is the maximal element of Z(T ), and M(T ) is the minimal
element of Z̃(T ), as shown in the proof of the Birkhoff-Tartar Theorem (see [7, Chapter 15, §15.2]).

Since y ∈ Z•(T ) and Z•(T ) ⊂ [y, y], Z•(T ) is nonempty and bounded in H , we may apply Zorn’s
Lemma (see [7]). Let x∗ ∈ Z•(T ) be the maximal element of Z•(T ). It follows from Y (T ) ⊂ Y •(T )
that Z•(T ) ⊂ Z(T ). Therefore

x∗ ≤m(T ),

where m(T ) is the maximal element of Z(T ) and the minimum fixed point of T in [y, y].

Since x∗ ∈ Z•(T ), it follows by definition that x∗ ∈ X(T ). Hence, we have y ≤ x∗ ≤ y and
x∗ ≤ T (x∗). Also, since T is an increasing map, it holds that y ≤ T (y) ≤ T (x∗) ≤ T (y) ≤ y
and T (x∗) ≤ T (T (x∗)), i.e., T (x∗) ∈ X(T ). Furthermore, if y ∈ Y •(T ), then x∗ ≤ y. Hence,
T (x∗) ≤ T (y) ≤ y, i.e., T (x∗) ∈ Z•(T ). However, x∗ ∈ Z•(T ) is maximal, i.e., T (x∗) ≤ x∗.
Consequently, x∗ = T (x∗) and x∗ ∈ [y, y]. Finally, m(T ) is the minimal fixed point of T in [y, y] so
that

m(T ) ≤ x∗.

Noting that Z̃•(T ) ⊂ [y, y] and y ∈ Z̃•(T ), we can once again apply Zorn’s Lemma (with the

reversed order). Let x∗ be the minimal element of Z̃•(T ). We have that X(T ) ⊂ X•(T ) which
implies Z̃•(T ) ⊂ Z̃(T ). Therefore, it holds that

M(T ) ≤ x∗,
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where M(T ) is the minimum element of Z̃(T ) and the maximum fixed point of T in [y, y].

Since x∗ ∈ Z̃•(T ), we have by definition that x∗ ∈ Y (T ), i.e., y ≤ x∗ ≤ y and T (x∗) ≤
x∗. Furthermore, the map T is increasing and therefore y ≤ T (y) ≤ T (x∗) ≤ T (y) ≤ y and
T (T (x∗)) ≤ T (x∗), i.e., T (x∗) ∈ Y (T ).

For an arbitrary x ∈ X•(T ), we have x ≤ x∗ and x ≤ T (x) ≤ T (x∗), i.e., T (x∗) ∈ Z̃•(T ). As
x∗ was the minimal element of Z̃•(T ), it follows that x∗ ≤ T (x∗), yielding T (x∗) = x∗. However,
M(T ) is the maximal fixed point of T on [y, y], so that

x∗ ≤M(T ),

which completes the proof.

6 Monotone perturbations

We now prove a series of lemmas that are instrumental in establishing Theorem 5 in the subsequent
section. The latter is a form of stability result for perturbations of the operators m and M. More
specifically, it turns out that the minimal and maximal solutions of the map y 7→ S(f,Φ(y)) are stable
in the norm of H with respect to perturbations in L∞(Ω) ↪→ V ′ of the forcing term (under certain
assumptions on Φ), i.e., if {fn} is in L∞ν (Ω) and fn → f ∗ in L∞(Ω), then

m(fn)→m(f ∗) and M(fn)→M(f ∗) in H.

The strategy of the proof consists in considering the cases of increasing and decreasing sequences
of {fn} separately and then combine both cases to obtain the final result. This strategy is due to the
different nature of these cases as indicated in Theorem 4 and Example 5.1. It can also be corroborated
by the different structural hypotheses of Lemma 1, 2, 3 and 4. As expected, stability results associated
to one-sided perturbations are more amenable than general ones.

In this section, all sequences of forcing terms {fn} are assumed to satisfy 0 ≤ fn ≤ F for all n ∈ N
and some F ∈ V ′ such F ≥ 0. Further, we consider the interval [y, y], with y = 0, and y ∈ V such
that

〈A(y), v〉 = 〈F, v〉, ∀v ∈ V. (15)

For any f with 0 ≤ f ≤ F , we observe that

0 ≤ S(f,Φ(0)) and S(f,Φ(y)) ≤ S(F,+∞) = y.

Hence, we denote by m(f) and M(f) the minimal and maximal fixed points of the map y 7→
S(f,Φ(y)) = S(f, y), respectively, on the interval [y, y] = [0, A−1(F )]. Note that m(f) and
M(f) are well defined according to Theorem 3.

In the following lemma, we start by considering the behavior of {m(fn)} for non-increasing sequences
{fn}.

Lemma 1 (NON-INCREASING SEQUENCES OF m). Suppose that the following hold true:

(i) The sequence {fn} in L∞ν (Ω) is non-increasing and limn→∞ fn = f ∗ in L∞(Ω) for some
f ∗ ∈ L∞ν (Ω).
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(ii) The upper bound mapping Φ satisfies

λΦ(y) ≥ Φ(λy), for all λ ≥ 1, y ∈ V ∩H+,

and if {vn} is bounded in V and vn ↓ v in H , then Φ(vn)→ Φ(v) in H .

Then, it follows that

m(fn) ↓m(f ∗) in H, and m(fn)→m(f ∗) in V. (16)

Proof. The proof is split into several steps for the sake of clarity.

Step 1: We start by showing: If a sequence {zn} satisfies zn ⇀ z∗ in V , for some z∗, and is non-
increasing and non-negative: zn ≥ zn+1 ≥ 0 for all n ∈ N, then it holds that S(fn,Φ(zn)) →
S(f ∗,Φ(z∗)) in V . We follow closely the ideas in [52] and include the proof here for the sake of
completeness. Note first that the non-increasing nature of the sequence implies also that zn ↓ z∗ in
H .

By our hypothesis on Φ, we have that Φ(zn) → Φ(z∗) in H and Φ(zn) ≥ Φ(zn+1), which implies
that K(Φ(zn)) ⊃ K(Φ(zn+1)) and K(Φ(zn)) ⊃ K(Φ(z∗)).

Since K(Φ(z∗)) is non-empty (note that z∗ ≥ 0 and Φ(z∗) ≥ 0), we have 0 ∈ K(Φ(z∗)) and
0 ∈ K(Φ(zn)) for all n ∈ N. Let wn := S(fn,Φ(zn)) and note that by Proposition 1 the associated
sequence is decreasing and bounded from below (in the ordering), so that wn ↓ w∗ in H for some
w∗ ∈ H .

By definition 〈Awn−fn, v−wn〉 ≥ 0 for all v ∈ K(Φ(zn)), and then, using the uniform monotonicity
of A, we have

c‖wn‖2
V ≤ 〈Awn, wn〉 ≤ 〈fn, wn〉. (17)

Also, 〈fn, wn〉 ≤ (‖fn‖V ′)‖wn‖V and ‖fn‖V ′ ≤ C‖fn‖L∞(Ω) < ∞. Therefore, {wn} is bounded
in V , and hence for some subsequence wnk ⇀ w∗ in V (for the same w∗ as before). But since
wn ↓ w∗ in H , we get wn ⇀ w∗ in V .

Since Φ(zn)→ Φ(z∗) in H and wn ≤ Φ(zn), we conclude

w∗ ≤ Φ(z∗), i.e., w∗ ∈ K(Φ(z∗)).

By Minty’s Lemma (see [48]) applied to the VI arising from wn = S(fn,Φ(zn)), we obtain

〈Av − fn, v − wn〉 ≥ 0, ∀v ∈ K(Φ(zn)),

and in particular for all v ∈ K(Φ(z∗)) ⊂ K(Φ(zn)). As fn → f ∗ in L∞(Ω) (and hence in V ′),
(v − wn) ⇀ (v − w∗) in V and (v − wn)→ (v − w∗) in H , we have

lim
k→∞
〈Av − fnk , v − wnk〉 = 〈Av − f ∗, v − w∗〉 ≥ 0, ∀v ∈ K(Φ(z∗)).

Additionally, since w∗ ∈ K(Φ(z∗)), Minty’s Lemma implies

〈Aw∗ − f ∗, v − w∗〉 ≥ 0, ∀v ∈ K(Φ(z∗)),

i.e., w∗ = S(f ∗,Φ(z∗)).
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Given that wn ⇀ w∗ in V and ‖fn‖V ′ ≤ C‖fn‖L∞(Ω) <∞, by

c‖wn − w∗‖2
V ≤ 〈Awn − Aw∗, wn − w∗〉 ≤ 〈fn + Aw∗, w∗ − wn〉,

we have wn → w∗ in V . That is,

S(fn,Φ(zn))→ S(f ∗,Φ(z∗)) in V. (18)

Before we continue with the next step of the proof, we define for f ∈ V ′ the set-valued mappings

X(f) = {x ∈ H : y ≤ x ≤ y and x ≤ S(f,Φ(x))},
Y •(f) = {x ∈ H : y ≤ x and x ≥ S(f,Φ(x))},
Z•(f) = {x ∈ X(f) : x ≤ y for all y ∈ Y •(f)}.

Step 2: Let {zn} be the sequence of Step 1, i.e., zn ⇀ z∗ in V that is also non-increasing in the
sense zn ≥ zn+1 ≥ 0 for all n. If zn ∈ Z•(fn), then z∗ ∈ Z•(f ∗).

Since fn ∈ L∞ν (Ω) with fn ≥ fn+1 for all n ∈ N and limn→∞ fn = f ∗ ≥ ν > 0 in L∞(Ω), we
have that f ∗ ≤ fn for all n ∈ N. Hence, S(f ∗,Φ(x)) ≤ S(fn,Φ(x)) for all n ∈ N and we obtain
the inequalities

X(f ∗) ⊂ X(fn) and Y •(fn) ⊂ Y •(f ∗), and hence Z•(f ∗) ⊂ Z•(fn). (19)

Let zn ∈ Z•(fn), then zn ∈ X(fn), i.e., y ≤ zn ≤ y and zn ≤ S(fn,Φ(zn)). Therefore, we have

y ≤ z∗ ≤ y and z∗ ≤ S(f ∗,Φ(z∗)), and hence z∗ ∈ X(f ∗). (20)

Let y ∈ Y •(f ∗) be arbitrary and consider yn := λny, with λn := ‖fn/f‖L∞(Ω). Since λn ↓ 1 (recall
fn → f in L∞(Ω) and fn, f ∈ L∞ν (Ω) for all n ∈ N), we infer y ≤ λny ≤ λny = yn. Also,
λnf ≥ fn and by the structural assumption over Φ, we have λnΦ(y) ≥ Φ(λny). Furthermore, we
obtain the following chain of inequalities

λny ≥ λnS(f,Φ(y)) = S(λnf, λnΦ(y)) ≥ S(fn,Φ(λny))

i.e., yn ∈ Y •(fn) and yn → y in L∞(Ω).

Now, we have that zn ∈ Z•(fn) and zn(x)→ z∗(x) a.e. in Ω and z∗ ∈ X(f ∗), and for each n ∈ N
we have zn ≤ ỹ for all ỹ ∈ Y •(fn). Choosing ỹ = λny as in the previous paragraph with y ∈ Y •(f ∗)
arbitrary, we have that zn ≤ λny. Henceforth, z∗ ≤ y for all y ∈ Y •(f ∗), i.e., z∗ ∈ Z•(f ∗).

Step 3. The minimal solutions m(fn) and m(f ∗) are well defined as the maximal elements of Z•(fn)
and Z•(f ∗), respectively. It follows immediately from (19) that m(f ∗) ≤ m(fn), and by the same
argument used to derive (19), we have that 0 ≤ m(fn+1) ≤ m(fn). Denote zn = m(fn), since
zn = S(fn,Φ(zn)) and 0 ∈ K(Φ(zn)), a standard monotonicity argument gives ‖zn‖V ≤M <∞.
Hence zn is bounded in V , non-increasing and bounded below in order, and zn ∈ Z•(fn). The
monotone behaviour in addition to the boundedness implies that zn ⇀ z∗ in V , by Step 2 we have that
z∗ ∈ Z•(f ∗). Since zn = S(fn,Φ(zn)), by Step 1, we have that zn → z∗ in V , z∗ = S(f ∗,Φ(z∗)),
i.e., z∗ is a fixed point of the map z 7→ S(f ∗,Φ(z)) and hence m(f ∗) ≤ z∗. From the definition of
Z•(f ∗) we infer that z∗ ≤ y for all y ∈ Y •(f ∗), and we readily observe m(f ∗) ∈ Y •(f ∗), so that
z∗ ≤m(f ∗), i.e., m(f ∗) = z∗.
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A fundamental step in the previous lemma utilizes that

S(fn,Φ(zn))→ S(f ∗,Φ(z∗)), in V

when fn → f in V ′. A sufficient condition for this to hold true is related to the Mosco convergence
(see [48]) of {K(Φ(zn))} towards K(Φ(z∗)):

Definition 1 (MOSCO CONVERGENCE). Let K and Kn, for each n ∈ N, be non-empty, closed and
convex subsets of V . Then the sequence {Kn} is said to converge to K in the sense of Mosco as

n→∞, denoted by Kn
M−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, there exists {wn′} such that wn′ ∈ Kn′ for n′ ∈ N′ ⊂ N and wn′ → w in
V .

(ii) If wn ∈ Kn and wn ⇀ w in V along a subsequence, then w ∈ K.

Mosco convergence of unilaterally constrained sets is equivalent (in the case when the obstacles
are quasi-continuous and V a certain Sobolev space) to convergence of the obstacles in the sense
of the capacity (which might be cumbersome to prove beyond rather simple examples). It is also
well-known that the convergence of the obstacles in the sense of L∞(Ω) is a sufficient condition for
Mosco convergence, although this might be rather a strong assumption for some applications. In the
previous case, we are able to avoid that strong assumption rather elegantly by assuming only the
H convergence of the obstacles. In the next case, for non-increasing sequences, the L∞(Ω) or V
convergence might be avoided by using an argument of Toyoizumi (see [52]) by using geometrical
considerations of the obstacles. For this matter, we consider the following assumption.

Assumption 1. If vn ⇀ v in V , then Φ satisfies one of the following:

(a) Φ(vn)→ Φ(v) in L∞(Ω), or Φ(vn)→ Φ(v) in V .

(b) Φ(vn) → Φ(v) in H and if v ∈ V ∩ H+, then Φ(v) ∈ V and QΦ(v) ≥ 0 in V , for some
strongly monotoneQ ∈ L (V, V ′), such that 〈Qv−, v+〉 ≤ 0 for all v ∈ V .

With the above definition in mind we are now in the position to provide the stability result for minimal
solutions and for non-decreasing sequences of forcing terms.

Lemma 2 (NON-DECREASING SEQUENCES FOR m). Suppose the following:

(i) The sequence {fn} in H+ is non-decreasing and limn→∞ fn = f ∗ in H for some f ∗ ∈ H .

(ii) The upper bound mapping Φ satisfies Assumption 1.

Then, the following hold true:

m(fn) ↑m(f ∗) in H, and m(fn)→m(f ∗) in V.

Proof. We use the result of Theorem 4 with Rn(v) := S(fn,Φ(v)) and S(v) := S(f ∗,Φ(v)). The
classical continuity result for f 7→ S(f,Φ(y)) (see [37]) states:

‖S(f ∗,Φ(y))− S(fn,Φ(y))‖V ≤
1

c
‖f ∗ − fn‖V ′ . (21)
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Since fn → f ∗ in V ′ as n→∞, we have S(fn,Φ(y))→ S(f ∗,Φ(y)) in V , uniformly on bounded
sets for y. Additionally, by the usual monotonicity argument and using v = 0 as a test function,
we obtain that ‖S(f,Φ(y))‖V ≤ 1

c
‖f‖V ′ which implies that the set of fixed points of the maps

y 7→ S(fn,Φ(y)), for n ∈ N, and y 7→ S(f ∗,Φ(y)) is uniformly bounded. Since S(fn,Φ(y)) ≤
S(fn+1,Φ(y)) ≤ S(f ∗,Φ(y)) we are only left to prove that

lim
n→∞

S(fn,Φ(vn)) = S(f ∗,Φ(v)) in V. (22)

This will be achieved by proving Mosco convergence of the associated constraints.

Now we consider the two possible cases for Φ based on Assumption 1:

(a) Suppose {vn} in V satisfies vn ⇀ v in V and Φ(vn)→ Φ(v) in L∞(Ω). It is well-known that
the latter implies K(Φ(vn))→ K(Φ(v)) in the sense of Mosco (see for example [48]).

Suppose that Φ(vn) → Φ(v) in V . Let w ≤ Φ(v), and consider wn = w − Φ(v) + Φ(vn).
Then, wn ≤ Φ(vn) and also wn → w in V , i.e., (i) in Definition 1 holds. Furthermore, if
yn ≤ Φ(vn) and yn ⇀ y in V , then by Mazur’s lemma it follows that y ≤ Φ(v) which proves
(ii) in Definition 1.

(b) Suppose that {vn} in V satisfies 0 ≤ vn ≤ vn+1 for all n, and vn ⇀ v in V . Then 0 ≤
Φ(vn) ≤ Φ(vn+1) since Φ is increasing and Φ(vn) → Φ(v) in H by hypothesis. Hence, if
yn ≤ Φ(vn) and yn ⇀ y in V , then by Mazur’s lemma it follows that y ≤ Φ(v), which proves
(ii) in Definition 1.

In order to prove (i) in Definition 1, we now follow a modification of the argument in [52]. Let
w ∈ V such that w ≤ Φ(v) and wn be defined by

〈rnQwn + wn, v〉 = (φn, v), for all v ∈ V, (23)

where rn := ‖φn−w‖H and φn := min(w,Φ(vn)), and note that φn → w inH andw ∈ V .
Then, we can prove that wn → w in V . SinceQ is linear, bounded, and 〈Qv, v〉 ≥ c‖v‖2

V for
all v ∈ V , from the definition of wn we have

rnc‖wn − w‖2
V + ‖wn − w‖2

H ≤ 〈(rnQ+ I)(wn − w), wn − w〉
≤ 〈φn − w,wn − w〉 − rn〈Qw,wn − w〉 (24)

≤ rn(Cp + ‖Qw‖V ′)‖wn − w‖V ,

where Cp is the constant for the embedding V ↪→ H . This implies that, {wn} is bounded in
V , so that wn ⇀ w∗ (along a subsequence) for some w∗ ∈ V . By taking the limit in (23), it is
shown that w∗ = w and that wn ⇀ w∗ in V not only along a subsequence. It further follows
that wn → w in H , and since from (24) we observe

rnc‖wn − w‖2
V + ‖wn − w‖2

H ≤ rn(‖wn − w‖H + 〈Qw,w − wn〉), (25)

we have that wn → w in V .

Now we prove thatwn ≤ Φ(vn). Consider v = (wn−Φ(vn))+ and subtract 〈rnQΦ(vn) + Φ(vn), v〉
from both sides of (23). Then, we get

rn
〈
Q(wn − Φ(vn)), (wn − Φ(vn))+

〉
+ ‖(wn − Φ(vn))+‖2

H =

− rn
〈
QΦ(vn), (wn − Φ(vn))+

〉
+ (min(w,Φ(vn))− Φ(vn), (wn − Φ(vn))+).
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Note that min(w,Φ(vn)) − Φ(vn) ≤ 0 and by assumption QΦ(vn) ≥ 0. Therefore the
right hand side is less or equal to zero. Additionally, since Q is linear, 〈Qv−, v+〉 ≤ 0, and
〈Qv, v〉 ≥ c‖v‖2

V for all v ∈ V , we observe that

rnc‖(wn − Φ(vn))+‖2
V + ‖(wn − Φ(vn))+‖2

H ≤
rn
〈
Q(wn − Φ(vn))+, (wn − Φ(vn))+

〉
+ ‖(wn − Φ(vn))+‖2

H ≤ 0.

This yields wn ≤ Φ(vn), i.e., (i) in Definition 1 holds

This completes the proof.

Lemma 1 and 2 are associated to non-increasing and non-decreasing sequences of minimal solutions.
In the following we establish Lemma 3 and 4 that deal with the analogous results but for maximal
solutions.

Lemma 3 (NON-INCREASING SEQUENCES FOR M). Suppose the following:

(i) The sequence {fn} in H+ is non-increasing and limn→∞ fn = f ∗ in H for some f ∗ ∈ H .

(ii) The upper bound mapping Φ satisfies that if {vn} is bounded in V , vn ↓ v inH , then Φ(vn)→
Φ(v) in H .

Then, we have
M(fn) ↓M(f ∗) in H, and M(fn)→M(f ∗) in V. (26)

Proof. As obtained in the proof of Lemma 2, we have that S(fn,Φ(y))→ S(f ∗,Φ(y)) in V and that
the set of fixed points of the maps y 7→ S(fn,Φ(y)), for n ∈ N, and y 7→ S(f ∗,Φ(y)) are uniformly
bounded in V .

Let {vn} be such that vn ⇀ v in V and vn ≥ vn+1 ≥ 0 for all n, then vn → v in H , Φ(vn) ≥
Φ(vn+1) ≥ 0 and Φ(vn)→ Φ(v) in H . Note that fn → f ∗ in H is enough for step 1 of the proof of
Lemma 1 to hold, i.e.,

lim
n→∞

S(fn,Φ(vn)) = S(f,Φ(v)), in V.

Therefore applying Theorem 4 to Tn(v) := S(fn,Φ(v)) and S(v) := S(f ∗,Φ(v)), we obtain that
(26) holds true.

Lemma 4 (NON-DECREASING SEQUENCES FOR M). Suppose the following:

(i) The sequence {fn} in L∞ν (Ω) is non-decreasing and limn→∞ fn = f ∗ in L∞(Ω) for some
f ∗.

(ii) The upper bound mapping Φ satisfies

λΦ(y) ≤ Φ(λy), for all 0 < λ < 1, y ∈ V ∩H+,

and Assumption 1.

Then, we have
M(fn) ↑M(f ∗) in H, and M(fn)→M(f ∗) in V. (27)
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Proof. For f define the set-valued mappings

X•(f) = {x ∈ H : x ≤ y and x ≤ S(f,Φ(x))},
Y (f) = {x ∈ H : y ≤ x ≤ y and x ≥ S(f,Φ(x))},
Z̃•(f) = {y ∈ Y (f) : x ≤ y for all x ∈ X•(f)}.

If {zn} satisfies zn ⇀ z∗ in V for some z∗ ∈ V and is non-decreasing, i.e., zn ≤ zn+1 for all n ∈ N,
then

S(fn,Φ(zn))→ S(f ∗,Φ(z∗)), in V, (28)

as proven in Lemma 2. We now show that if zn ∈ Z̃•(fn), for all n ∈ N, then z∗ ∈ Z̃•(f ∗).

Since fn ≤ fn+1, for all n ∈ N, and limn→∞ fn = f ∗ in L∞(Ω), we have that fn ≤ f ∗ and
S(fn,Φ(x)) ≤ S(f ∗,Φ(x)), for all n ∈ N. Therefore,

X•(fn) ⊂ X•(f ∗) and Y (f ∗) ⊂ Y (fn), and hence Z̃•(f ∗) ⊂ Z̃•(fn). (29)

Also, zn ∈ Z̃•(fn) and hence zn ∈ Y (fn), i.e., y ≤ zn ≤ y and zn ≥ S(fn,Φ(zn)). Therefore, by
(28) and since zn → z∗ in H (note that zn ≤ zn+1 ≤ y) we observe that

y ≤ z∗ ≤ y and z∗ ≥ S(f ∗,Φ(z∗)), and hence z∗ ∈ Y (f ∗). (30)

Let x ∈ X•(f ∗) be arbitrary and consider xn := λnx, with λn := essinf |fn/f ∗| which yields
λn ↑ 1. Indeed, since fn ≤ fn+1, we have |fn/f ∗| ≤ |fn+1/f

∗| ≤ 1 and∣∣∣∣1− essinf

∣∣∣∣fnf ∗
∣∣∣∣∣∣∣∣ = essinf

∣∣∣∣1− ∣∣∣∣fnf ∗
∣∣∣∣∣∣∣∣ ≤ ‖f ∗ − fn‖L∞(Ω)

ν
,

where we have used that f ∗ ∈ L∞ν (Ω), and the result follows from the assumed convergence fn → f
in L∞(Ω).

Therefore, xn = λnx ≤ λny ≤ y, λnf ≤ fn, and by the structural assumption on Φ, we have
λnΦ(y) ≤ Φ(λny). Furthermore, we obtain the following chain of inequalities:

λnx ≤ λnS(f,Φ(x)) = S(λnf, λnΦ(x)) ≤ S(fn,Φ(λnx)),

i.e., xn ∈ X•(fn) and xn → x in H .

Since zn ∈ Z̃•(fn), we have xn ≤ zn given the fact that xn ∈ X•(fn). Additionally, along a
subsequence we have that xn → x and zn → z in H so that x ≤ z∗. However, x ∈ X•(f ∗) was
arbitrary and hence, by (30), z∗ ∈ Z̃•(f ∗).

Since M(fn) and M(f ∗) are well-defined as the minimal elements of Z̃•(fn) and Z̃•(f ∗), re-
spectively, it follows immediately from (29) that M(fn) ≤ M(f ∗), and furthermore, we have that
M(fn) ≤M(fn+1). Denoting zn = M(fn), we have zn = S(fn,Φ(zn)), and since 0 ∈ K(Φ(zn)),
a monotonicity arguement gives ‖zn‖V ≤ 1

c
‖fn‖V ′ ≤ 1

c
‖F‖V ′ < ∞. Hence, zn is bounded in

V , non-decreasing in order and zn ∈ Z̃•(fn). Therefore, by the above paragraphs, we have that
zn = M(fn) ⇀ z∗ in V and z∗ ∈ Z̃•(f ∗) and additionally, since zn = S(fn,Φ(zn)), by (28), we
have that zn → z∗ in V , z∗ = S(f ∗,Φ(z∗)), i.e., z∗ is a fixed point of the map z 7→ S(f ∗,Φ(z))
and hence z∗ ≤ M(f ∗). By definition of Z̃•(f ∗), we have that x ≤ z∗ for all x ∈ X•(f ∗) and we
readily observe M(f ∗) ∈ X•(f ∗), so that M(f ∗) ≤ z∗, i.e., M(f ∗) = z∗.
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7 Non-monotone perturbations and problem (P)

We are now in the position to establish our fundamental result concerning the behavior of the maps
f 7→ m(f) and f 7→ M(f). Although the hypotheses of lemmas 1, 2, 3 and 4 seem to be quite
diverse, when considering the intersection in the following theorem, the assumptions are simplified.
As in the previous section we assume that 0 ≤ fn ≤ F for any sequence {fn} and that [y, y] =
[0, A−1F ].

Theorem 5. Let {fn} in L∞ν (Ω) be such that lim fn = f ∗ in L∞(Ω) for some f ∗, and suppose that
the upper bound mapping Φ : V ∩H+ → H+ satisfies Assumption 1. Then the following hold true:

(i) If λΦ(y) ≥ Φ(λy) for any λ > 1 and any y ∈ V ∩H+, we have

m(fn)→m(f ∗) in H, and m(fn) ⇀m(f ∗) in V. (31)

(ii) If λΦ(y) ≤ Φ(λy) for any 0 < λ < 1 and any y ∈ V ∩H+, we have

M(fn)→M(f ∗) in H, and M(fn) ⇀M(f ∗) in V. (32)

Proof. Define f̂n := infm≥n fm and f̌n := supm≥n fm, so that 0 ≤ ν ≤ f̂n ≤ f̂n+1 ≤ F ,

F ≥ f̌n ≥ f̌n+1 ≥ ν > 0 for all n ∈ N, and also limn→∞ f̂n = limn→∞ f̌n = f ∗ in L∞(Ω).
Since 0 ≤ f̂n ≤ fn ≤ f̌n ≤ F and the map H 3 y 7→ S(f,Φ(y)) is increasing for any f ∈ V ′,
we have that m(f̂n),m(fn), m(f̌n) and m(f ∗) as well as M(f̂n),M(fn), M(f̌n) and M(f ∗) are
well defined (note that 0 ≤ f ∗ ≤ F ), respectively. Moreover, we have that

0 ≤ S(f̂n,Φ(y)) ≤ S(fn,Φ(y)) ≤ S(f̌n,Φ(y)) ≤ y ∀y ∈ [0, y], n ∈ N.

Hence from the inclusions (10) and (11), we obtain

0 ≤m(f̂n) ≤m(fn) ≤m(f̌n) ≤ y, ∀n ∈ N, (33)

and from the inclusions (13) and (14) that

0 ≤M(f̂n) ≤M(fn) ≤M(f̌n) ≤ y, ∀n ∈ N. (34)

Then, by lemmas 1, 2, 3 and 4 we have that m(f̂n)→m(f ∗), m(f̌n)→m(f ∗), M(f̂n)→M(f ∗)
and M(f̌n)→M(f ∗), all in V and H . Hence, we find

m(fn)→m(f ∗) in H and M(fn)→M(f ∗) in H

by (33) and (34). Since {m(fn)} and {M(fn)} are bounded in V , they are also weakly convergent
(along a subsequence) to m(f ∗) and M(f ∗), respectively. However, since the entire sequences
{m(fn)} and {M(fn)} strongly converge in H , it further follows that they converge weakly (not only
along a subsequence) in V . Hence (31) and (32) hold true.

With the aid of the previous theorem we can now formulate the result that proves the well-posedness
of (P̃). We assume that U ⊂ L∞(Ω) and in particular that

Uad ⊂ {f ∈ L∞ν (Ω) : f ≤ F},
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for some F ∈ V ′. As in previous sections y = 0 and y = A−1F , so that m(f) and M(f) are
defined as the minimal and maximal solutions, respectively, of the QVI in (PQVI). Hence, the reduced
version of (P) is given by

minimize J1(m(f),M(f)) + J2(f),

subject to f ∈ Uad.
(P̃)

The well posedness of (P̃) (and hence of (P)) is now shown in the following result.

Theorem 6. Suppose that

(i) J1 : V × V → R is weakly lower semicontinuous,

(ii) J2 : L∞(Ω)→ R is continuous,

and both are bounded from below. In addition suppose that for each α > 0 the set

{f ∈ Uad : J2(f) ≤ α},

is sequentially compact in L∞(Ω), and that Φ satisfies the assumptions of Theorem 5. Then, problem
(P̃), and hence of problem (P), admits a solution.

Proof. Given Theorem 5, the proof is just an application of the direct method of the calculus of varia-
tions.

7.1 Applications

We finally return to the applications considered earlier in the paper.

7.1.1 QVIs arising by coupling VIs and PDEs

We consider the problem class as described in section 3.1 and study conditions on G,B, and L
to establish stability of minimum and maximum solutions to the QVI of interest. Recall that Φ in this
setting is defined as Φ(y) = Lz(y) where z(y) solves

〈Bz +G(Lz, y)− g, w〉 = 0 ∀w ∈ W,

for y ∈ V .

Proposition 1. Under the assumptions of section 3.1 suppose that if λ ≥ 1 and v ∈ H+ ∩ V , then
for all z1, z2 ∈ V , it holds true that

(λG(Lz2, v)−G(Lz1, λv), (z1 − λz2)+) ≤ 0.

Then, we have λΦ(v) ≥ Φ(λv).

Analogously, suppose that if λ ∈ (0, 1) and v ∈ H+ ∩W , then for all z1, z2 ∈ V , it holds true that

(G(Lz2, λv)− λG(Lz1, v), (λz1 − z2)+) ≤ 0.

Then, it holds that λΦ(y) ≤ Φ(λy).
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Proof. Letw = z(λv)−λz(v) for λ ≥ 1 and v ∈ H+∩V . SinceB is coercive and 〈Bw−, w+〉 ≤ 0
we observe that

c|w+|2W ≤ 〈Bw,w+〉 = (λG(Lz(v), v)−G(Lz(λv), λv), w+) ≤ 0,

i.e., z(λv) − λz(v) ≤ 0, so that Lz(λv) − L(λz(v)) ≤ 0 given that L preserves order. Hence, it
follows that λΦ(v) ≥ Φ(λv).

Similarly, consider w = λz(v)− z(λv) for 0 < λ < 1 and v ∈ H+ ∩ V . Then,

c|w+|2W ≤ 〈Bw,w+〉 = (G(Lz(λv)− λG(Lz(v), v), λv), w+) ≤ 0,

i.e., λz(v)− z(λv) ≤ 0, so that λLz(v)− Lz(λv) ≤ 0 and hence λΦ(v) ≤ Φ(λv).

Note that the problem given in Example 1 satisfies the assumptions of the above proposition. Addi-
tionally, if the solution to By = h satisfies |y|H2(Ω) ≤ M |h|L2(Ω) with M independent of h, then for
dimensions N = 1, 2, 3 it is direct to infer that Φ : H1

0 (Ω) → L∞(Ω) is completely continuous via
Sobolev embeddings. Hence, all hypothesis of Theorem 5 are met, and the minimum and maximum
solutions are stable for perturbations of f in L∞(Ω). Finally, if

{f ∈ U : 0 < ν ≤ f ≤ F and ‖f‖U ≤ α},

is sequentially compact in L∞(Ω) for each α > 0, we have that Problem 8 has a solution. Further
note that this last compactness assumption is satisfied for Example 1.

7.1.2 The impulse control problems

The previous can be directly applied to the impulse control problem in the bounded case. Let Ω =
(0, 1). Then, we have that V = H1

0 (Ω) compactly embeds into C(Ω), and hence it follows that for

(Φy)(x) = k + essinfx+ξ∈Ω(c0(ξ) + y(x+ ξ)),

with k > 0 and c0 continuous, we have that if vn ⇀ v in V , then Φ(vn)→ Φ(v) in C(Ω) ⊂ L∞(Ω).
Hence, Φ satisfies Assumption 1. Furthermore, it follows that λΦ(y) ≥ Φ(λy) for any λ > 1 and any
y ∈ V ∩H+.

Consider U = H1(Ω) and Uad := {f ∈ U : 0 < ν ≤ f ≤ F} for some F ∈ H1(Ω)∗,
J1(a, b) =

∫
Ω

(A − a(x))2dx, and J2(f) := λ
2
|f |2U . It follows that {f ∈ Uad : J2(f) ≤ α} is

sequentially compact in L∞(Ω) for each α > 0 and that problem (P̃) (which is the reduced version of
problem (9)) has a solution by Theorem 6.

8 Conclusion

We have developed a theoretical framework for the study of optimal control problems with QVI con-
straints. Specifically, the reduced optimization problem of interest involves minimal and maximal points
of the solution set to the QVI. The existence question reduces to the stability of two operators m and
M, that relate the solution set of the QVI to its minimal and maximal elements, respectively. Stability of
such maps was developed for monotonic and non-monotonic perturbations, and we have applied such
results to applications involving QVIs arising from impulse control problems and problems involving
VIs coupled with nonlinear PDEs.
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