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Abstract 

For the production of high-class electrical steel grades a deeper understanding of the magnetic domain interaction with induced 
mechanical stresses is strongly required. This holds for non-oriented (NO) as well as grain-oriented (GO) steels. In the case of 
non-oriented steels the magnetic property degeneration after punching or laser cutting is essential for selecting correct 
obstructing material grades and designing efficient electrical machines. Until now these effects stay undiscovered due to the 
lack of adequate investigation methods that reveal local bulk information on processed laminations. Here we show how the use 
of a non-destructive testing method based on a neutron grating interferometry providing the dark-field image contrast delivers 
spatially-resolved transmission information about the local bulk domain arrangement and domain wall density. With the help of 
this technique it is possible to visualize magnetization processes within the NO laminations. Different representative 
manufacturing techniques are compared in terms of magnetic flux density deterioration such as punching, mechanically cutting 
by guillotine as well as laser fusion cutting using industrial high power laser beam sources. For GO steel laminations the 
method is applicable on the one hand to visualize the internal domain structure without being hindered by the coating layer. On 
the other hand, we can show the influence of the coating layer onto the underlying domain structure.  
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Introduction 

Manufacturing of electrical machines, such as fans, pumps and industrial motors, tends to various machine types 
and design variants. Adjusting machine design, the choice of correct material grade as well as the introduction of 
innovative manufacturing technologies gives an important contribution to fulfill upcoming IEC standard 
regulations for efficiency classes for electric motors. Unfortunately mentioned manufacturing technologies are only 
rated in terms of monetary aspects due to lack of adequate investigation methods. The deterioration of magnetic 
sample properties during manufacturing is commonly being investigated using rectangular or toroidal samples in 
magnetic measurement units [1-3]. Some further research has been carried out through analyzing microstructural 
changes and resulting increase of micro hardness after mechanical punching and laser cutting. In conclusion, the 
existence of two magnetic deterioration mechanisms was pointed out [4]. Nevertheless, the relation between the 
magnitude of mechanical or thermal deterioration and the resulting macroscopic magnetic property modification, 
i.e. the change of permeability as a function of the distance from the cutting edge, stays undiscovered. 

Nowadays the magnetic behavior of soft magnetic materials can be characterized by means of magneto-optical-
Kerr-microscopy (MOKE) which is sensitive to surface domains [5]. The bulk domain arrangement, however, is 
responsible for the macroscopic magnetic properties. Here the surface sensitive MOKE technique finally fails. 
Neutrons have the advantage to easily penetrate centimeter thick metallic samples and its magnetic moment makes 
the neutron sensitive to magnetic materials and hence to investigate domain structures in bulk materials.  

A new neutron imaging techniques based on a neutron grating interferometer (nGI) setup that delivers insight 
into bulk magnetic domain structures was recently developed at PSI. Detailed information can be found in the 
following references [6-8]. This setup delivers the so-called neutron dark-field image (DFI) and relies on 
diffraction gratings [9]. With this setup a field of view of 64 mm x 64 mm can be reached with a spatial resolution 
down to 50 µm. The image contrast in the DFI for magnetic samples is based on scattering of unpolarized neutrons 
at magnetic domain walls inside the sample. The neutron beam undergoes multiple refractions at magnetic domain 
walls in the sample, which results in a local degradation of the coherence for neutrons exiting the sample. This 
local degradation decreases the ability of the neutrons to interfere with each other and leads to a local decrease of 
the signal. A detailed description of the dark-field image contrast can be found in [10]. 

So far the nGI technique was used on the one hand to investigate bulk magnetic domain structures [7], and on 
the other hand to study bulk magnetization processes [6]. The relaxed requirements on spatial and temporal 
coherence of the grating interferometer setup lead to exposure times that are comparable to other ”non-neutron” 
domain observation techniques. The efficiency of our setup, with total exposure times of typically few minutes per 
DFI, allows us to study the dynamic response of the specimen under the influence of an externally applied 
magnetic field. 

In the presented paper the nGI method was applied to visualize 

(1) the geometry dependent volume magnetization processes in a steel plate 
(2) the domain structures of GO laminations and coating influence  
(3) the influence of different manufacturing techniques for NO laminations in terms of magnetic property 

deterioration and its spatial spread [11] 

Experimental results 

The DFI results of the nGI experiments were all carried out at the spallation neutron source SINQ at the Paul 
Scherrer Institut (PSI) using the beam port of the cold neutron imaging facility ICON [12]. Neutrons having a 
wavelength  = 4.1 Å and a wavelength spread of /  = 15% provided by a velocity selector. The L/D ratio was 
350. The nGI setup was combined with a state of the art neutron imaging detection system. The images were 
recorded using a 100 µm thick 6Li /ZnS scintillator screen and a cooled charge coupled device (CCD) [Andor Neo 
sCMOS, 2560x2160 pixels, pixel size: 6.5 µm]. The effective spatial resolution of the camera setup of 100 µm was 
determined by the intrinsic blurring of the scintillation screen. 
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2.1 Visualization of geometry dependent magnetization processes 

The sample was an untreated poly-crystalline steel plate [steel grade: DC 01 (St 12.03)] with an edge length of 
15 mm. The plate had a thickness of 750 µm and was mounted with plastic screws on the front of the sample 
holder made of aluminum. The sample holder is built-in in the setup on a three axis positioning system to 
accurately place the sample centered between the cylindrical pole shoes of an electromagnet. The poles gap was 40 
mm producing an almost uniform horizontal magnetic field in air up to 250 mT. 

The sample can be rotated around the beam axis by an angle, to study the geometry-dependent magnetization 
processes. The magnetization process of the steel plate for the 0° orientation is shown in Fig.1 (top row). In zero 
field configuration, H = 0 mT, the steel plate is clearly and fully visible in the DFI due to the rich multi-domain 
structure in the specimen. The bright color corresponds to domain wall rich areas, whereas red corresponds to 
domain wall free areas. When the magnetic field is increased to H = 88 mT, contrast starts to vanish. At field 
values of H  100 mT, a vertically elongated region in the middle of the plate becomes visible. 

Fig. 1: Neutron dark-field images of the geometry-dependent magnetization process of the poly-crystalline steel plate for different orientations 
0°, 22.5° and 45°. Different magnetization behaviors and starting points of the propagation of the volume magnetization for each orientation are 

observed. The bright color in the DFIs indicates domain-wall-rich areas. 

In this region the domain wall density is strongly reduced. For increasing field values between 113 mT  H 
150 mT, this area expands toward the sample edges, gaining rapidly in width. For the maximum external field 
value of H= 250 mT, the larger part of the plate is magnetized beside two small vertical domain-wall-rich strips at 
the edges. 

For the 22.5° orientation, the steel plate is rotated clockwise. When the magnetic field is increased to H= 
100 mT, the contrast recovers, forming a rectangular, vertically inclined stripe in the middle of the plate. The 
starting position in the middle of the sample is similar to that of the 0° case. However, the starting point of the 
contrast development is delayed. At field values between 113 mT  H  150 mT, the rectangular area in the middle 
expands again toward the sample edges and gains rapidly in width. However, at H= 125 mT, the rectangular area 
collapses and for field values between 125 mT  H 150 mT,  the area expands towards the sample corners, which 
are closer to the pole shoes (top right, bottom left), until these corners are fully magnetized. At maximum field, 
two small domain wall-rich rectangular areas are remaining on the top left and bottom right corners. 

For the 45° orientation, the steel plate is oriented with one diagonal along the magnetic field axis. Up to field 
values of H  88 mT, the steel plate is completely visible in the DFI. For the following magnet field step at H= 
100 mT the contrast starts to vanish again, in the form of two mirror-symmetrical vertically elongated areas. At H= 
113 mT, two oval grainy areas are visible, although the horizontal edges close to the pole shoes are still not 
magnetized. For field values between 113 mT  H  150 mT, these two oval areas expand towards the middle part 
of the plate as well as to the edges close to the pole shoes. The area of the rhombus decreases for increasing 
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external field values. For field H = 250 mT, the remaining rhombohedral domain wall-rich areas are found at the 
top and bottom corners. 

2.2 Domain structures of GO laminations and coating influence 

Grain oriented (GO) electrical steel is a soft magnetic material for applications that require low core losses and 
high permeability like distribution and power transformers. This silicon steel is manufactured in very complicated 
processes to achieve special alignment of the grains during the rolling process, the so-called Goss-texture with 
{110} <100> texture preferred orientation. Especially, the high permeability grades with misorientation of less the 
3° have huge grains and therewith large magnetic domains. For further improvement of the magnetic properties 
different techniques can be used, like thinner gauge material, improvement of the orientation and magnetic domain 
refinement through additional surface treatment or compressive stress of the isolation layer [13 -14].

The effect of the domain refinement is known from surface sensitive MOKE-microscopy and global magnetic 
measurements, but the spatially resolved, bulk behavior of the magnetic domains and their relation to the losses of 
the GO electrical steel can only indirectly be derived from surface observations. The nGI technique offers the 
possibility to observe bulk domains and the bulk magnetic domain structure through the isolation layer without the 
preparation of the GO steel under different magnetic fields [15].  

For the experiment we used a high permeability GO steel sheet with the dimension of 300mm x 30mm x 
0.27mm (comparable to M103-37P) with and without isolation layer. The sample without the coating layer was 
additionally polished for MOKE observation. The sample was mounted in a sample holder and build-in the nGI 
setup with parallel orientation of the gratings to the magnetic flux, similar to 0° orientation.  

The DFI image of the GO steel with and without coating is shown in Fig.2 in zero magnetic field. The GO 
lamination with coating shows domain walls or domain wall rich areas in black color almost parallel to the 
direction of rolling. The polishing and removal of the coating changes the domain structure dramatically resulting 
in a reduction of domain walls, as shown in Fig.2. 

Fig. 2: Neutron dark-field image (DFI) of a 270 µm thick GO lamination with coating. Black color corresponds to domain walls or domain wall 
rich areas. (left) lamination with coating which is transparent for neutrons and the DFI shows individual domain walls. (right) same lamination 

polished, without coating and the domain structure has changed dramatically. 
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2.3 Influence of different cutting techniques on NO laminations 

Several non-oriented fully processed electrical steel laminations were retrieved parallel (RD) to the rolling 
direction from the sheet (0.35 mm thick) and cut into Epstein strips with a size of 30x250 mm² by laser cutting. 
Afterwards, the samples were annealed at constant temperature (800°C) for 2 h and cooled down slowly for 
approximately 18 h. Subsequently, smaller strips with a width of 5 mm and 10 mm were cut off using different 
techniques: punching, guillotine, solid-state laser and CO2 laser cutting. Both laser beam sources were integrated 
into the same type of cutting machine (TruLaser 7025) to guarantee stable process conditions and comparable 
kinetic states. For each laser setup the chosen process parameters represent the typical industrial application for 
inert-gas fusion cutting of electrical steels. The punching machine equipped with a blank holder system (TruPunch 
3000) provided a maximum stroke rate of 1000 per minute at 1810 kN maximum punching force. The guillotine 
was used with no blank holder on one side to investigate the effect of asymmetric deformation on resulting 
magnetic parameters. 

The average grain size of 100±10 µm was analyzed near the cutting edge by scanning electron microscopy 
(SEM) after certain metallographic preparation. This sample was retrieved from the sheet by laser cutting to 
prevent any mechanical grain deformation. In order to measure the required magnetic field strength H (peak value) 
to achieve a certain magnetic flux density B within the material (B-H curve) a Brockhaus magnetic measurement 
unit (SST) that comprises the magnetizing and secondary windings and a U-shaped flux return path was used. The 
samples were measured at 50 Hz applying magnetic field control according to the fields of the neutron grating 
interferometry investigation. That field frequency choice results from the measurement unit configuration in order 
to gain a good form factor (<1.12) which describes the ratio of the root mean square value to the average rectified 
value of alternating current signals. 

In order to magnetize the sample for the neutron grating interferometer measurement a special holder was used, 
which consists of primary and secondary winding with two flux return paths that are constructed as double yoke. 
Additionally, an opening was cut, which is necessary to guarantee nonrestrictive neutron beam passing. Thus, 
samples width a maximum width of 30 mm can be analyzed. These samples were magnetized applying static 
magnetic fields with DC demagnetization after every single measurement. 
The DFI in Fig. 3 shows the bulk domain density at field value of 1500 A/m for the 4 different machined 
(mechanical or laser treated) samples. The DFI profile of the sample that was cut with the mechanical shear 
(guillotine) on top is caused by the unsymmetrical material deformation when the top edge was cut without blank 
holder. The DFI profile for the punch press causes a symmetric profile with slightly higher DFI values in the 
middle of the strip and thus a higher magnetic activity or less domain wall density. 

The DFI profiles clearly show that both mechanical techniques deteriorate the magnetic properties mostly in the 
regions of the cutting edge with decreasing extend towards the middle of the sample. The DFI provides 
information about the deterioration depth of the cutting processes 

In contrast to the mechanical cutting, the DFI profiles for both the laser fusion cutting with the disc and the CO2 
laser shows nearly no deterioration effects at the edges. Although, the intensity peak values regardless of their 
location are reduced slightly at high magnetic fields in comparison to mechanical processing.  

Presented DFI findings promote the scientific interpretation of magnetic deterioration mechanisms interacting 
with applied magnetic fields, especially for laser cutting. However, the sole DFI contrast distribution cannot be 
used to display directly magnetic induction values B within the material, whose understanding is necessary to 
promote selecting the correct obstructing material grades and designing efficient electrical machines.  
Because the local dark-field intensity represents the macroscopic flux density, the integral of the profile correlates 
with the magnetic flux density in the whole sample. Further work is foreseen to directly relate the local DFI value 
with the local macroscopic flux density. 
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Fig. 3: (left) Dark-field image (DFI) for four Epstein strips with 5 mm width applying four different manufacturing techniques. Dark color 
represents domain wall rich areas. (right) Vertical profiles through each strip from the top to the bottom edge. Clearly visible is the deterioration 

effect at the edges for the mechanical cutting techniques. 

Conclusion 

For the first time a unique measuring technique is presented that gives access to the domain bulk structure of 
electrical steels by detecting qualitatively the amount of domain walls in a specific material volume. With the help 
of the neutron grating interferometer geometry dependent volume magnetization processes can be visualized.  

In order to produce customized grain-oriented electrical steel grades with low core losses, high permeability and 
low noise at operating state this technique promotes a better understanding of manufacturing processes e.g. rolling, 
coating deposition or domain refinement and their influence on the magnetic domain structure by analyzing 
domain wall motion at a given magnetic field.  

Furthermore, by measuring the domain wall density distribution in non-oriented electrical steel strips, the 
resulting deterioration of magnetic properties, i.e. magnetization behavior can be analyzed spatially-resolved for a 
given material grade and cutting technique as a function of the external applied magnetic field. Herewith, the 
realization of a modeling approach for machine designers to forecast manufacturing related permeability drop is 
supported.  

Further work will concern the visualization of magnetization processes in sample laminations with complex 
stator, rotor and transformer contours. In addition this measuring technique might be suitable to promote the 
evaluation of various steel production processes due to the fact that for the first time new material parameters can 
be determined such as a domain wall density and possibly domain wall velocity. 
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