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Abstract

We show that continuum models for ideal plasticity can be obtained as a rigorous
mathematical limit starting from a discrete microscopic model describing a visco-
elastic crystal lattice with quenched disorder. The constitutive structure changes as
a result of two concurrent limiting procedures: the vanishing-viscosity limit and the
discrete to continuum limit. In the course of these limits a non-convex elastic prob-
lem transforms into a convex elastic problem while the quadratic rate-dependent
dissipation of visco-elastic solid transforms into a singular rate-independent dissipa-
tion of an ideally plastic solid. In order to emphasize ideas we employ in our proofs
the simplest prototypical system describing transformational plasticity of shape-
memory alloys. The approach, however, is sufficiently general and can be used for
similar reductions in the cases of more general plasticity and damage models.

1 Introduction

Phenomenological models involving rate-independent hysteresis appear in various solid
mechanics problems ranging from friction to plasticity and damage. Typically, the asso-
ciated systems of phenomenological equations contain empirical parameters characteriz-
ing the failure thresholds and the hardening rates. In sharp contrast to elastic moduli,
these measures of out-of-equilibrium behavior can rarely be formally linked to the struc-
ture of the underlining microscopic system. The main difficulty originates from the fact
that at finite temperature the microscopic dissipation is necessarily rate dependent while
the observed macroscopic dissipation is rate independent. This means that the correct
coarse graining, implying averaging out of the microscopic time and space scales, must
necessarily involve the basic change of the model structure. Essentially one needs to
understand the limit transition from quadratic dissipative potentials of Onsager type to
singular dissipative potentials used in the description of rate-independent dissipative pro-
cesses. The main physical ingredients of such a limit were identified in [PuT05|, where
rate-independent plasticity was obtained as a rheological model. Here we present the first
rigorous mathematical analysis of the problem and obtain the corresponding system of
partial differential equations in space and time.

The foundations of the general phenomenological theory of rate-independent systems
have been laid down in [Hil50, Mor74| (see also [NgR76, FeE89, Hac97, FrM98, OrR99,
Pet05]). The universal mathematical features of such models found their most clear
manifestation in the general concept of energetic rate-independent systems (ERIS) in-
troduced in [MiT99, MTL02]. The ERIS-based approach has been already used in the
description of fracture [DFT05, DeT09|, plasticity [DDM06, DD*08, MaM09]|, delami-
nation [KMRO6, RSZ09|, damage [FrG06, BMR09, GaL09] and phase transformations
[MTL02, Rou02, The02, KMRO5].

The microscopic models in all these areas rely on the existence of characteristic defects
carrying inelastic deformation (e.g. dislocations, phase boundaries, fracture fronts, etc.)
The microscopic dynamics of the individual defects is well understood, however, their
interaction is very complex which is the reason why the detailed bridge between the
microscopic and the phenomenological models has not been yet built. In this situation
simple prototypical meso-scopic models, even extremely schematic ones, still offer an
insight and have a considerable heuristic value.



In the framework of plasticity theory the microscopic origin of rate independent dis-
sipation was first studied by using simplified zero-dimensional models describing a single
particle on a periodic landscape (e.g. [Pra28, Deh29|). Later such models were applied to
a wide range of rate-independent dissipative phenomena from charge density waves and
magnetism to superconductivity and phase transitions [PBK79, Fis85, HB*94, CDP*99].
One-dimensional discrete models involving bi-stable snap-springs (soft spins) represent
the next level of schematization allowing one to model realistic hysteretic behavior with-
out introducing a periodic landscape [MuV77, FeZ92, PuT00, TrV05, PRTZ09|. Higher-
dimensional snap-spring models allow one to study pinning-depinning transition, critical-
ity and power law structure of fluctuations e.g. [Kar98, Zai06, PRTZ0S|.

Despite the considerable literature on the subject, no attempt has been made so far to
bridge the gap between viscous and rate independent plastic systems by rigorous math-
ematical analysis outside the simplest zero-dimensional case leading only to rheological
models [ACJ96, Men(02, PuT05, Sul09|. In the present paper we prove for the first time
some exact convergence results for the one-dimensional problem. Although we deal with
the simplest nontrivial case, we have to confront all the major problems associated with
non-convexity and coarse graining in both space and time. We therefore expect that our
technique can be extended to more general systems.

More specifically, we consider a quasi-statically driven discrete chain of bi-stable, visco-
elastic snap-springs and derive a coarse-grained model that is equivalent to continuum
rate-independent plasticity. The main ingredient of the microscopic model making such
reduction possible is the rugged energy landscape. Under slow external loading our system
remains in a local equilibrium (metastable state) till it is forced to undergo a fast transition
from an unstable state to a new local minimum of the energy. The energy dissipated during
the fast transitions can be described in the continuum limit by a dissipation potential that
is homogeneous function of degree one. Some formal computations justifying such limit
have been presented in [PuT05]. In particular, it was realized that the transition must
involve simultaneous averaging over the fast time scale and homogenization over spatial
inhomogeneity. In this paper we present the first rigorous analysis of the full dynamics and
show that in order to obtain in the limit a spatially nontrivial rate independent plasticity
problem it is necessary to regularize the discrete system by introducing quenched disorder.
Previously, the disorder in such systems was used to obtain hardening and produce realistic
inner hysteresis loops, but only in spatially independent rheological setting [PuT02].

In mathematical terms, our starting point is a system of N ordinary differential equa-
tions of the gradient flow type. The system is non-autonomous because the chain is
driven through applied displacement on the boundaries (hard device). We identify two
main small parameters. The parameter 0 is the rate of viscous relaxation on the time
scale of the loading. This parameter goes to zero when either driving is quasi-static or
the internal relaxation is fast. The second parameter € = 1/N is the macroscopic length
of the N snap springs and thus gives the scale of the inhomogeneity: it disappears when
the internal length is much smaller than the external one. To avoid degeneracy leading to
Neishtadt type phenomena |[Nei88| we introduce small random inhomogeneity, which adds
a third small parameter accounting for the dispersion r. We then assume that the random
properties of the system are fixed and focus on the study of a particular double limit: first
0 — 0, then ¢ — 0. We prove that in this limit the original finite dimensional visco-elastic
system reduces to an infinite-dimensional continuum model exhibiting rate-independent



hysteretic behavior.

The constitutive structure is changing as a result of two concurrent limiting procedures:
the vanishing-viscosity limit and the discrete to continuum limit. In the course of these
limits a non-convex elastic energy (in terms of microscopic strains) transforms into a
convex elastic energy (in terms of two macroscopic variables, namely the elastic strain and
the averaged phase indicators called plastic strain), while the quadratic rate-dependent
dissipation of visco-elastic solid transforms (given in terms of the rate of microscopic
strains) into a singular rate-independent dissipation of an ideally plastic solid (given in
terms of the rate of the plastic strain). As intermediate constructions we encounter
jump discontinuities in time and parametric measure-valued solutions in space. The
proof involves two main steps. The first is the reduction of a finite-dimensional gradient
system of ODEs to a discrete automaton, which gives a quasi-static evolution on the
time-dependent set of local energy minima. This automaton is then reformulated as
an energetic rate-independent system (ERIS) represented by an energy functional and a
dissipation distance. The second step is the limit passage from discrete to continuum in
the framework of I'-convergence of ERIS. Here we exploit the Young measures generated
through the disorder and thus are able to pass to the limit in both the energy and the
dissipative potential.

In order to emphasize ideas we employ in our proofs the simplest prototypical system
describing transformational plasticity of shape-memory alloys. The approach, however,
is sufficiently general and can be used for similar reductions in the cases of more general
plasticity and damage models.

The paper is organized as follows. In Sections 2 and 3 we set the general dynamic prob-
lem for the overdamped ODE system and introduce the regularization through quenched
disorder. We then define the macroscopic variables by embedding the discrete system
into L2(Q2) where Q = ]0,1[ is the reference configuration of a continuum bar. Most of
the rigorous analysis is done under the assumption that ® is a bi-quadratic and that
the body forces are time independent. These assumptions are not essential and are used
only to make calculations simpler and the proofs more transparent. In Section 4 we deal
with the vanishing-viscosity limit 6 — 0 for fixed €. We present careful estimates for
the viscous solutions comparing them to those of a limiting rate-independent discrete
automaton. The main difficulty is to control the phase state of each individual spring,
which becomes possible because our disorder and dynamics are consistent with the order-
ing of the springs. We show that the evolution of the system splits into equilibrium and
dissipative stages where the dissipative stages can be replaced by jump discontinuities in
isolated moments of time. The limiting ERIS leads to formulations involving incremental
minimization problems, which allows us to use direct variational techniques later on.

In Section 5 the limit e = 1/N — 0 is obtained through embedding the system into
Q = L*(N2)? and controlling the joint Young measures for elastic and plastic strains.
The convergence to the limiting plasticity model is interpreted in terms of I'-convergence
of energetic rate-independent systems as first suggested in [MRS08|. In Section 6 we
show that in the case of a bi-quadratic potential the more general double limit (¢,d) —
(0,0) with 0 < kye for some K, > 0 produces the same limiting plasticity problem.
(However, we do not expect the restriction 6 < k,e to be sharp.) In Section 7 we
return to the case of general (non necessarily bi-quadratic) potentials ® and general
time dependent body forces. We first study the ordered double limit “lim._,qlims_q”



and present a formal calculation showing how the effective dissipation potential and the
effective stored-energy density can be obtained from the microscopic elastic potential
and the probability distribution of the quenched disorder. We then sketch the proof of
the convergence, heavily relying on the corresponding proofs in the case of bi-quadratic
potential. Finally, in Section 7.5 we briefly discuss convergence along the generic sequences
in the (g, d) plane.

2  Preliminaries

Consider a macroscopic interval [0, 1] containing N—1 particles at the reference positions
e = j/N,j=1,...,N=1. The boundary points j = 0 and j = N are assumed to
be controlled and undergoing prescribed displacements. The remaining points are linked
in series by N identical snap-springs. The discreteness of this mechanical system can be
viewed as a schematic representation of an array of obstacles (defects, grain boundaries,
etc.).

Figure 2.1: Left: Non-monotone stress-strain relation. Right: Two branches v, and ¢_4
of the strain-stress relation

The most important ingredient of the model is the bi-stability of the individual elastic
elements. To be more precise we write the normalized elastic energy of the chain in the
form

N

~ 1

Ele) = + > d(e;) withe=(er,...,en) €RY,
j=1

where e; is the strain in the jth snap-spring. We assume that the elastic energy of a
snap-spring ® : R — R is a non-convex two-well potential. This means that the function
¢ = P’ is decreasing on the interval |e_, e[ (spinodal region) and strictly increasing on the
two intervals |—oo,e_[ and ]e,, oo[, representing phase “4” and phase “—", respectively

(see Fig. 2.1). We can formally define the corresponding energy wells by setting
o1 = dle) > o= Bles).

For future convenience we denote by v, : [0_,00] — [eq,00] and ¢_1 : |—00,04] —
] =00, e_| the inverse functions of ¢ : [e;, 00] — [o_,00[ and ¢ : |—00,e_] — |—00,0],
respectively. We also define e* =,1(0,) > e, and e* =¢_1(0_) <e_.
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In what follows a prominent role will be played by a particular bi-quadratic potential

Dpiy(e) == gmin{(e—i—a)Q, (e—a)?}, (2.1)

giving
| k(e+a) fore <0,
Pvial€) = { k(e—a) for e > 0.

Note that in this case ¢ is not continuous at e = 0 where ¢ can take the value either ka
or —ka. For the bi-quadratic energy ®y;, we find

1
ex =0, e} =22a, oyr==xka, Yi(0)= i + a.

The chain is loaded by time dependent macroscopic body forces G;(7) given by

N ]/N~
Gi(r) = /0 Gext (T, ¥) dy.

In addition we impose time-dependent Dirichlet boundary condition (hard device) repre-
senting external control of the total average strain ¢, namely

%Zej(ﬂ = U(7). (2.2)

It is natural to write the resulting energy function in terms of the relative strains ¢; =
e; — (7). The new unknowns form a vector € = (€,...,ex) € XV, where XV =
{(ay,...,ay) € RN | SV a; = 0}. In these notations the total energy of the chain can
be written as

N
E(r.&) = %Z (@@ +i(r) - G,(n)2, ).
j=1

In the framework of quasi-static elasticity theory the mechanical problem for the driven
chain reduces to parametric minimization of the energy £(7,€). Due to bi-stability of
the individual elastic elements such energy has an exponentially large number of critical
points. One can also expect that the corresponding metastable (local minimum) branches
e;(T) are not continuous with respect to the parameter 7. In this situation the knowledge
of dynamics is necessary to define uniquely the evolution of the system.

Assume that the microscopic dynamics is overdamped (for inertial limit see [YuT10])
and that the dissipation is characterized by a dissipation potential R(é) giving

D:R(€) = —DsE(7, ).

(We continue to use Do F to denote the (partial) Gateaux derivative of a functional with
respect to the variable a.) The standard viscous model is characterized by the quadratic
dissipation potential
N
. v 2
R(e) = ﬁ Z €j,

J=1



€j—1 €; €j+1
Figure 2.2: Viscoelastic chain with bi-stable springs.

where v is the viscosity parameter. The resulting dynamics is of gradient-flow type
v

Na = —Dgg(T, ~)

We further assume that the loading rate is small, i.e.,

0(7) = €(67)

where £(-) is a given smooth function and § is a measure of loading rate. By introducing
the slow time parameter ¢ = 7 and defining G(t,y) = G(7,y), we obtain

dé; = —¢p(ej) — G(t,j/N)+o(t) for j=1,..., N,

1 N
NZej(t) = ((t).

Jj=1

(2.3)

(Here we returned to the original stain variables e; = €;(t) + ¢(t) for a better physical

interpretation.) The new non-dimensional parameter § = v is the ratio of the rate of
loading and the rate of viscous relaxation (see also [PuT05]). The function o : [0,7] — R
representing total stress appears in (2.3) as the Lagrange multiplier associated with the
length constraint (2.2).

To gain some insight into the behavior of the system (2.3) subjected to quasi-static
loading we perform several numerical experiments. In these experiments we neglect body
forces and assume ¢(e) = e*—e. We also assume that viscosity is small but finite § = 0.015.
The initial data are chosen randomly distributed around the value e;(0) ~ —1.3. In all
experiments we prescribe the history of average strain and study the behavior of the
average stress 0 = SV b(e5).
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Figure 2.3: Simulation of system (2.3) for N = 9. Left: 5 = L 57V ¢(e;) versus £. Right:
€1, ..., €9 VErsus t.



Figure 2.4: Stress and strains for a model with N' = 9 and linear bias u? = 0.05(j—5).
Right: o versus £. Left: e, ..., eg versus t.

The first experiment was conducted with a homogeneous chain where all snap-springs
were identical. The resulting stress-strain curve and the strains inside individual snap-
springs are shown in Fig. 2.3. Observe that we do not obtain a plasticity-like hysteretic
behavior. Instead, we detect a “snap” phenomenon, when a large number of springs
transform simultaneously forming one big avalanche while the rest of the springs relaxes.
As the load subsequently increases, the inhomogeneous state becomes homogeneous again
in a smooth way.

We interpret the “snap” hehavior as synchronization, which leads to a delayed bifur-
cation, known as the Neishtadt phenomenon [Nei87, Nei88|. Indeed, in the stable regime
((t) < e_ the strains e}’ (t) are always close to the quasistatic equilibrium value £(t) and
the perturbations decay exponentially. More precisely the decay rate is —Apin/d, where
Amin > 0 is the smallest eigenvalue of the Hessian of the energy at e = (¢,..., (). Hence,
if a solution starts in the stable regime at ¢t = ¢, with perturbations of order 1 and reaches
the spinodal region at t = t;, the perturbations will be of order e~ *min(t1=%0)/%  Thys, the
instability of the steady state e(t) = (¢(t),...,£(t)) in the spinodal region needs some
time to establish oneself: the unstable eigenvalue will be of the form X/(i and to obtain
perturbations of order 1 we need to wait until ¢, satisfies X(tg—tl)/é = Amin(t1—10)/0.
The point is that (to—t1)/(t1—to) = )\min/X is independent of 0.

20-
15F
10F

05

| 00: L I
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Figure 2.5: Simulation of ODE with N = 15 and random bias. Left: & versus ¢. Right:
ej versus .



To obtain separation of trajectories of the dynamical system one needs to break the
permutational symmetry. The inhomogeneity can be generated through a discrete set of
microscopic body forces. This amounts to the following modification of the snap-spring
potentials ®;(e;) = ®(e;) — pje;, where p; with j = 1,..., N are the biasing forces. The
resulting system of the ODEs reads

dé; = —e;’ +e;j+pj+o(t)forj=1,..., N.

In our next numerical experiment we set u? = 0.05(j—5). Such inhomogeneity allows
us to generate an unsynchronized response, where each spring transformers at its own
critical stress starting from the weakest one, see also [PuT02|. The results are shown in
Fig. 2.4. Notice that now, instead of one big “snap”, we observe a serious of small “popping”
events so that the inhomogeneous system produces realistic plasticity-type behavior (with
hardening).

Observe however that plastic deformation (phase transition in our case) propagates
through the system in the form of a single front. This is not realistic because we know
that (outside very special “easy glide” regimes) plasticity usually develops simultaneously
all over the sample. To achieve the stochastic separation of the trajectories we need to
assume that parameters p; are stochastically independent.

The results of numerical loading-unloading test for the case when 1 are equi-distributed
in the segment [—0.1,0.1] is presented in Fig. 2.5. We see that the overall behavior of
the system is basically the same as in the previous case modulo the dispersion of the
“popping” events. The important difference, however, is that now the strain distribution
inside the sample is no longer monotone and instead becomes strongly oscillatory making
the system macroscopically homogeneous. The ensuing homogeneity at the coarse-grained
scale is exactly the property which is necessary to obtain a nontrivial continuum limit.

3 Main results

To formulate the main result we need to introduce random microscopic body forces p;
representing quenched disorder. We assume that the probability density f € L*(R), which
characterizes the distribution of ;; and satisfies the following natural constraints

2o, [rwde=1 [ufodu=0. wdr= [2fmdu=0. @
R R R
The dynamical system

(Séj = —¢(€j> +M] — G(t,]/N) -+ O’(t) for ] = 1, .. .,N,
| N
et =)
j=1
depends now on three nondimensional parameters, namely the discreteness level

e=1/N >0,

the normalized viscosity
0> 0,



pop
(plasticity)

Figure 3.1: Schematic phase diagram in the space of small parameters indicating location
of the ‘popping’ domain which we associate with rate-independent plasticity response.

and the measure of disorder
r > 0.

As our numerical experiments suggest, one can expect to obtain macroscopic continuum
rate-independent plasticity model only in certain triple limit of the form

(g,6,r) — (0,0,0).

We have seen that the limit » — 0 at fixed £,0 may lead to “snap” bhehavior, and
the subsequent driving € and ¢ to zero does not save the situation. To obtain the “pop”
behavior we need first to assume that » > 0 and consider the limit (¢,d) — (0,0). We can
then continue along the parametric path » — 0 leading to ideal plasticity limit.

At fixed 7 one can find for each € and ¢§ a set of solutions of the microscopic problem
e . [0,T] — RY . Here the vector e=°(t) is defined by

e’ (1) = (¢ ()=,
It will be convenient to rewrite the original ODE system (3.2) in the form
0=DeR.s(e(t)) + Del(t,e(t)) + o(t)DLCe(t, e(t)), C.(t,e(t)) =0. (3.3)

Here the energy
N
1
E-(tre) = 5 D (Be)—hY (D))

7j=1
depends on inhomogeneity through
Ny N -
hj (t) - uj - G(tuj/N)u
where we explicitly indicate the dependence of the random terms on the size of the system.

The time dependent constraint can be written as

N

C(t,e) = Z (ej_g(t))

J=1

and the dissipation potential is given by



In the vanishing viscosity limit the solutions e*%(t) of (3.3) can be expected to stay
most of the time close to elastic equilibrium. The corresponding elastic problem reduces
to solving the equations

0= —d(e;) + i — Gt j/N) + o™ (1), %Ze — o).

€,0 .

Since the function ¢(-) is non-monotone, the response e=° : [0, 7] — R¥ is not necessarily

single-valued. If we introduce the phase indicators
z; = sign(e;) € {—1,0,1},

specifying three individual sheets of the inverse function v, (-) (two stable phases and the
spinodal region, see Figure 2.1), we can write explicitly

= 4, (0N ()4 G2, §/N)). (3.4)

The phase indicators identify individual branches of the equilibrium stress-strain rela-
tion and, if the solution remains close to a particular branch, the phase indicators remain
unchanged. The discrete variables z; are the precursors of continuum plastic strain vari-
ables, which we introduce in the next section. One can see that if the ‘plastic’ configuration
z; is given, the elastic strains e; can be easily recovered from the solution of the convex
problem (3.4). This suggests that in the vanishing-viscosity limit the elastic problem can
be ‘condensed’ and the evolution of the system can be reformulated in terms of plastic
strains only.

In what follows we show that due to the quenched disorder the phase indicators
2%9(t) € {—1,0,1}" and consequentially the strains e*°(t) € R™ fluctuate in a ran-
dom fashion. The independence of the random choices at different spatial points leads
(due to central limit theorem) to controllable properties of the mean values and thus
allows one to construct a coarse-grained theory and explicate the macroscopic properties.

To be more specific, we assume that the quantities varying at the scale ¢ are micro-
scopic, while those varying at the scale 1 are macroscopic. To define the macroscopic
averages we first need to introduce a spatial averaging operator. We begin by embedding
the solutions e € RY into L2(€2) via the characteristic functions

{ 1 forz €](j—1)/N,j/NJ,

N .
Xj = X]G—1)/N,j/N[ T 0 otherwise.

This allows us to define the elastic strain field e° € L2(Q) as follows
N
et x) =Y e (X)) ().
j=1

Similarly, we introduce a continuum phase indicator (plastic strain) z° € L2(2) via

=8 0 (@)

j=1
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Here
—1 fore<e_,

s(e) = 0 fore. <e<ey,
+1 fore>e,.

The discrete-to-continuum limit concerns the asymptotics e = 1/N — 0. The strong
limits of the above sequences do not exist and our main task is to characterize the weak
limits

@), 70(t,) = (@), 5(0,) in @ = LAQ)

We understand them in the sense that
/Eg’é(t, z)vy (2) 4270 (¢, 2)ve () dz — / e(t, z)vi(z)+2(t, x)va(x) da
Q Q

for (¢,0) — 0 where the test functions satisfy vy, vy € L*(Q2). As we show, the limiting
mixtures of phases cannot be fully characterized by the value of the average elastic strain
€. The missing information, allowing one to close the coarse-grained description at the
macro-scale, is exactly the limit of the indicator function Z.

More precisely, we show that a sequence of limits 6 — 0 and then ¢ — 0 allow one to
obtain a one-dimensional elasto-plasticity problem in the form

0= DLE(t7,2(t)) + o(t) for = € O, / e(t, 2)dz = ((t): (3.52)
0 € TR(3(t)) + D-E(E(8), 2(1)). (3.5b)

Here the macroscopic elastic energy & is given by

?@@:A(@%mﬂ@%%wwﬂﬂﬂa

where the macroscopic energy density ® depends on ® and the probability density f
determining the random bias vectors (,uév)j:l,,,,,N. In the bi-quadratic case ® = Oy, (see
(2.1)) we obtain the explicit formula

T(e,7) =

(e—az)’+H(), (3.6)

| 7

where the kinematic hardening function H depends on f, see (5.3). In the general case
the macroscopic rate independent dissipative potential R takes the form

1
N oy 1 5. ) pyv forv >0,
R(Z) = /0 R(Z(z))dz with R(v) = { o o] for v <0,

where p, and p_ can be expressed in terms of ®, see (7.7). In the bi-quadratic case
P = Py, we obtain py = 2ka®.

The most unexpected feature of our result is the fundamental change in the nature of
the dynamical system in the limit. Indeed, while (3.3) is an N-dimensional ODE derived
from a gradient flow with quadratic dissipation potential, the limit is a rate-independent
system, where the dissipation related forces 8%(?) are homogeneous of degree 0 in Z

11



(as the dissipation potential R(-) is homogeneous function of degree 1). The origin of
the change is the ‘constructive interference’ of micro-elasticity and micro-viscosity in the
continuum limit. Notice that both the macroscopic energy and the macroscopic dissipation
are affected by these two constitutive components of the microscopic model. Notice also
that the memory of the specific nature of the microscopic dissipation has bheen lost in
the macroscopic double limit suggesting that linear viscosity is not the only microscopic
dissipative mechanism leading to our rate-independent macro-model.

If introduction of quenched disorder is perceived as an auxiliary technical step, the
disorder must be eliminated through yet another limit r — 0. The derivation of the
limiting model can follow a well-established path known in classical elasto-plasticity, see
e.g. [BMR10]. From the definition (5.3) of the hardening function H; in (3.6) it follows
that it depends on f in such a way that r? = [, 1 f(p) dp — 0 implies H(z) — 0 for
all z € ]—1,1] (while H(z) = oo if |z| > 1), see e.g. (5.4). Therefore the limiting model,
given again by (3.5) with ® from (3.6), has the property that H(z) = 0 for |z] < 1. One
can see that the resulting ® and hence &£ are only degenerate convex which means that
the model is not well-posed: as it is well known in ideal plasticity, several solutions may
exist for given initial data.

4 Vanishing-viscosity limit

Suppose that ¢ > 0 and r > 0 are fixed and consider the limit 6 — 0. In fact, the as-
sumption r > 0 is not crucial in this section; the only required property of the parameters
py ..., pyy is that the effective biases h; = Y — G(to, j/N) are pairwise different.

4.1 Energy landscape

We begin with the review of the structure of the elastic energy landscape at the given
loads (see also [PuT00]). To this end we fix the time ¢ = t, and consider the problem of
minimizing the energy

E(t,e) = %Z (o(e;) — hye;)

under the constraint

The critical points of (3.3) can be obtained as solutions of the algebraic equations

N

. 1
0=—¢(e;) +hj+oforj=1,.., N, N ;ej = {(to). (4.1)

Metastable equilibria (local minima of the energy) are selected by the condition of the
positive definiteness of the Hessian matrix. For sufficiently large /N none of the metastable
strains e; can lie in the spinodal region |e_, e[, see [PuT00|. To identify the remaining

two phases we define for each j a phase indicator z; € {—1,+1}, such that
€; = w2j<hj+0')-
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A metastable equilibrium corresponding to an indicator vector z = (21,...,2,) € {—1,1}
exists when the equations

N
1 B hj+o >o_ if z; =1,

N Zl%j(hﬁa) = and { hji+o <oy ifz;=-1
J:

can be satisfied simultaneously. For each metastable branch parameterized by z we can
define the equilibrium response functions o = o(l, z).

A crucial observation for this work is that, due to imposed inhomogeneity, not all
metastable equilibria will be accessible by our dynamics. Indeed, suppose that the bias
coefficients h; are pairwise different and define a subclass of metastable states, which we
call ordered states, via the condition

hy <h, = e(t)<ext)<---<ep(t). (4.2)

Then, the knowledge of the set of ordered states is sufficient for the study of the limiting
macroscopic problem because the set of ordered states is invariant under the evolution for
the viscous and for the limiting inviscid systems (see (4.8) and (DA1)-(DA3) in Definition
(4.2)). Moreover, one can see that a system that starts non-ordered will have the tendency
to return into an ordered state. For instance, the chain will acquire the ordering if it is
ever stretched beyond the transformation thresholds and will then maintain its ordering
during all future times. Nevertheless, the system may have an initial nontrivial virgin
curve involving some non-ordered states, which our limiting theory would not capture.

Remark 4.1 The disorder entering through the random microscopic body forces is very
special in the sense that it leads to a particular simple structure of the inner hysteresis
loops. A somewhat more realistic way of bringing disorder into the model would be through
a randomization of the thresholds o_ and oy as in [PuT02]. This, however, brings addi-
tional technical complications, which we would like to avoid here.

It will be convenient to simplify the ordering condition by using the permutational
symmetry of the system. Indeed, without loss of generality we can assume that the biases
h; are ordered as hy < hy < --- < hy, such that (4.2) reduces to the condition

61(t) < €Q(t) << €N(t). (43)

In Section 5, however, we need to return to the original ordering condition (4.2) because
the strains (e;);—1,. n of the springs in a one-dimensional bar {2 = ]0, 1[ will be naturally
ordered according to the material points (z = j/N).

The class of ordered equilibria in the sense of (4.3) have a sunple characterization: for
each such state there exists a threshold % such that all J with h; > T are in phase z; = +1

while those with h; < % are in phase z; = —1. We can then associate with each threshold
a particular distribution of snap-springs between the two energy wells
z; = sign(hj—/f;), (4.4)

where sign(hj—ﬁ) =1 for h; > h and sign(hj—/f;) = —1for h; < h. Tt will also be
convenient to introduce the following two functions

B (h) = min{ h; | h; >k}, h_(h) =max{h; |h; <h}. (4.5)

13



Figure 4.1: Eight monotone stress-strain equilibrium branches ¢ = M(ﬁ, o) representing
ordered choices of the phases.

Notice that hy : R — R are nondecreasing piecewise constant functions such that h_ (ﬁ) <
h< EJF(B). We shall also define EJF(E) = oo if all h; < hoand h_ (ﬁ) = —oc if all h; > h.

For each i € R we can now define the function M(ﬁ, ) [(L—Er(ﬁ), 0+—E,(ﬁ)] —R
given by the formula

N
- 1
M(h,0) =+ Zwsign(hrﬁ)(hj—i—a).
j=1
It is not hard to see that we can have at most N+1 different functions M(ﬁ, -). Each of

these functions is strictly increasing and has at most one solution for M(ﬁ,a) =/ (see
Figure 4.1). Such solutions form equivalence classes defining equilibrium branches

g =o0((¢)

where
E=m/N (4.6)
and m € {0,1,..., N} is the number of elements j with sign(e;) = 1. As we see, for ordered
states the metastable branch is defined not by the whole vector z but by a single parameter
&, which is the fraction of the springs in phase +1. It will serve as the predecessor of the
plastic strain appearing later in the limiting continuum problem.
It is easy to see that one can have at most N+1 solutions for each /. For instance, for

~

the case of a bi-quadratic potential ®y;, in (2.1) the functions M (h, -) take the form

N N

~ 1 1 a . -~

M(h,o) = i + N jzl h; + N jzl sign(h;—h),

which are N+1 parallel lines shifted by the same constant 2a/N. Under the simplifying
assumption that Zf[ hj = 0 we find the explicit representation of the equilibrium branches

e; =+ asign(e;) + hj/k + a(1-2¢), (4.7)
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where ¢ is defined by (4.6).

4.2 Jump discontinuities

Suppose now that the body forces h; remain ordered and constant with Zjvzl h; = 0,
while the total length of the change becomes a function of time ¢(¢). The resulting system
of ODEs takes the form

5y = —0les) + by +o(0), D eslt) =€) (48)

where ¢ € C'([0,T]) is a given datum. We again restrict our attention to ordered states
and consider the case of bi-quadratic potential. In this case we can define a unique limiting
solution as § — 0.

Suppose first that § is finite. Observe that if all the e;(¢) are ordered and are different
from 0, then the solution of the ODE (4.8) can be extended uniquely as differentiable
function. Such a differentiable extension will work up to the time ¢, when e; (¢,) = 0 for
some j, (here e;(s™) = limy »; €;(t) means the limit from the left), and until that time the
solution is unique. If the solution is smoothly extendable, then we choose this as the unique
extension, i.e. e;, does not change sign at ¢, (and we ignore the other solution where e;,
would change sign and é has a jump at ¢,). If there is no extension where é is continuous,
we can construct a unique differentiable solution on [t,, t.47] with initial condition e(t.)
that is uniquely determined by choosing e;, () such that its signs differ for ¢ < ¢, and
t > t,. Concatenating this to the solution on [0,t,] defines the unique global solution,
which is still Lipschitz continuous in time. Observe that the system always remains in
the set of ordered states. In the next subsection we prove that the viscous solution e€°(t)
converges to a solution €°(¢) of a well-defined limit problem. The configurations e°(t)
can be viewed as a time-dependent family of metastable states described in the previous
subsection. This family splits into branches and when the branch ends the extension
constituting €°(t) is selected by a suitable jump rule which is the only memory of the
viscous dissipative mechanism (see also [PuT05]).

The parameter defining plastic dissipation in the coarse-grained model is the release
of energy in a single jump. The energy is defined as follows

E(t,e) = { % Zj:l (q)(ej) - hjej) if % Zj:l ej = L(t), (4.9)

00 else.
In the case of the bi-quadratic potential @, the energy release can be calculated explicitly
E(t,,e(t;)) — E(t.,e(t})) = py/N >0 where py = 2ka® — 2ka®/N. (4.10)

Here the first term in py corresponds to the integral f:} o, —o¢(e)de, see Lemma 7.2. The
second term is due to the relaxation of the stress from o(t;) = o4 to o(t}) = oL F2ak/N.
Because of our special choice of the disorder the critical values e_ and e, are not affected
by the disorder. For ®u;, both thresholds are equal to 0 and the strains satisfy the
following explicit jump relations

e)(th) = e;(t7) —aA /N for j # j., () =0, e.(t)) = aA(1-1/N),  (411)

*

~

where A = z(tT) — z(t7) € {-2,2}.
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4.3 The automaton

As we have already mentioned, one can expect the solution €’ of the viscous ODE (4.8)
to slide along the metastable branches with finitely many well-separated fast jumps from
one curve to the next. The limiting dynamics then includes the periods, when the system
remains on one of the metastable branch with parameter £ fixed, and the jumps, when &
changes and the system switches metastable branches. The resulting dynamical system
takes the form of a discrete threshold-type automaton (see [PRTZ08, PRTZ09]).

Definition 4.2 Given an ordered bias vector (h;); and a loading profile £ € C*([0,T]) a
function e : [0, T] — RY is called a solution of the automaton, if the following conditions

hold:

(DA1) Forallt € [0,T] the state e(t) is an ordered steady state as described in Section 4.1
with + 3"V e;(t) = £(1).

(DA2) There are al most a finitely many times 0 = tg <ty <ty < ---ty, =T such that for
I =1,...,L the function ey, . has a C' estension to [t;_1,t].

(DA3) At each jump time t,, | = 1,..., L—1 the following holds:
(i) the strain is critical, i.e. e;(t]) € {e4,e_},
1) the jump conditions (4.11) hold for t. = t;, and
(1i) Jump L
iii) the energy release E(t;,e’(t;)) — E(t;, (")) is exactly pn/N,
! l

Notice that the jump conditions in (DA3) are redundant and it would be sufficient to
state only (iii), since the special form of ¢ implies that (i) and (ii) must hold. This will be
implicitly shown in the proof of Proposition 4.4. Here we stated the redundant conditions
to highlight all the special features of the jumps.

Another technical issue is that as in the case of the viscous ODE system (4.8) the
solution of the discrete automaton is not unique. A nonuniqueness can occur if a steady
state reaches e;, (t,) = 0 exactly at a moment when ¢ has a local extremum. Then, the
phase jump may occur or may not occur. We define a unique extension by asking the so-
lution to stay continuous as long as possible, i.e. we assume that jumps only occur if they
are necessary. This additional “rule” for the bi-quadratic problem can be obtained rigor-
ously if one considers an additional limit when a finite spinodal region is asymptotically
shrinking to zero.

4.4 An energetic rate-independent system

Before giving the convergence proof for 6 — 0, we show that the automaton (DA1)—(DA3)
can be reformulated in terms of an energetic rate-independent system (ERIS) in the sense
of [Mie05]. This reformulation will serve as a basis of the subsequent continualization of
our discrete dynamical system in Section 5.

A general ERIS is given in terms of the state space Q, time-dependent energy func-
tional E: [0,7] x Q@ — R, := RU{oc}, and a dissipation distance D : Q x Q — [0, o0].
Our state space is Q@ = RY and the energy functional E is defined in (4.9). The new
quantity is the dissipation distance D, which measures the energy that is dissipated due
to fast viscous motion. If the strains vary quasistatically in one of the two wells, there
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will be no dissipative contribution in the inviscid limit 6 — 0. However, if a strain jumps
into the other well (i.e. by Changing sign), then the viscous motion is fast, namely of order
1/6 and the energy ft2((§ * Z] L 0€5(t)dt has a finite limit (see also [PuT05]).

We can define the dissipation dlqtance by counting the number of phase jumps as
follows:

pn if e%e! <0 (phase jump),
, NZDN s ] , where DN(e 6) { 0 if %! >0 (nophase jump),

where py is defined in (4.10). Using the triple (Q, E, D) we can further define the notion
of energelic solutions as follows, see e.g. [Mie05, Miel0|. This notion is especially adapted
to solutions that may have jumps like in the present case.

Definition 4.3 Given a loading { € C'([0,T]) and a (hj)j—1. .~ € RY, a function e :
[0,T] — Q is called an energetic solution of the FRIS (Q, E, D) if for allt € [0,T] we
have the stability (S) and the energy balance (E):

(S) oo > E(t,e(t)) < E(t,e)+ D(e(t),e) for all € € Q,

_ t . (4.12)
(B)  B(t.e(t) + Dissple.0.t) = B0.e(0) - | S(e(s))i(s)ds,

0
where Dissp(e, [0,1)) is the supremum of 3 n-, D(e(7_1), (1)) over all M € N and all
partitions 0 < 79 <7 < - <7y <t 0f [0,¢] and X(e) = & Z;VZI (¢(e5)—hy).

Note that the dissipation functional Dissp(e, [r,t]) gives a counting measure, since it is
equal to py /N times the number of all the phase jumps of e in the time interval [r, t].

The following result states that the evolution given in terms of the discrete automaton
is exactly the same as the energetic solutions of (Q, E, D). For this result the order-
ing property of the solutions is in fact not necessary and it also applies to non-ordered
solutions.

Proposition 4.4 Consider an ordered bias vector (h;)j—1, ~ and that ¢ € C'([0,T7).
Then, an ordered function e : [0,T] — Q = RY is an energetic solution of (Q, E, D)
given via (4.12) if and only if it satisfies (DA1)—(DA3) in Definition 4.2.

Proof: (S)&(E) = (DA1)-(DA3).

From (S) we conclude that for each t € [0, T] the solution satisfies the length constraint
and is in equilibrium. For the latter, simply consider variations € such that D(e(t),e) = 0,
i.e. with no additional phase jumps. Then, e(t) is a local minimizer of E(¢,-) und thus a
stable equilibrium. Thus, (DA1) is established. In particular, we know that e(t) lies in
the finite set of stable equilibria. Along these branches the dependence of e(t) on £(t) is
smooth, see (4.7).

From (E) we conclude that Dissp(e, [0,7]) is finite. Since D only takes the discrete
values {kpy/N |k = 0,1,..., N} we conclude that the monotone function & : [0,7] —
[0, 00[; ¢ +— Dissp(e, [0, t]) is piecewise constant with finitely many jump points ¢; < - - <
tr—1, where each jump is an integer multiple of py/N. Since jumping between the solution
branches generates a jump in 5, we conclude that on the intervals |t;_1,¢] the solution
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remains on one branch and hence can be extended smoothly to [t;_1,¢]. Hence (DA2) is
established.

(E) implies energy balance on all subintervals, namely E(t,e(t)) + Dissp(e, [r,t]) =
E(r,e(r)) — f:E(e(S))f(s) ds. Taking the limits ¢ — ¢ and r» — ¢; we find the jump
relation

E(t,e(th) + D(e(t;), e(t?) = E(t e(t))) (113)

However, the choice of py was exactly such that it corresponds to the energy loss for a
jump arising from critical strains e;, (t;) € {e_,e4 }, which establishes (i). Properties (ii)
and (iii) follow from the assumption that all h; are pairwise disjoint. Then, at most one
e; can have a phase jump.

(DA1)-(DA3) = (S)&(E). From (DA1) we obtain easily (S): Every stable equi-
librium is globally stable in the sense of (S), since stability with respect to e satisfying
D(e(t), e) = 0 follows from the equilibrium conditions and convexity of ® in the two wells.
Moreover, py was chosen as the maximal energy loss when jumping from one branch to
a neighboring one. Thus, the energy release E(t,e(t)) — E(t,¢) will be always less than
D(e(t),e).

Using (DA2) and (DA3) the energy balance (E) is obtained by joining the smooth parts
in Jt;_1,min{¢, ¢;}[ and the jumps. In the first case set t, = min{¢,¢;}, the smoothness

gives E(t.,e(t;)) = E(t_1,e(t ) — ft* Y(e(s))l(s)ds. At the jumps we have (4.13)

ti—1
and (E) follows by addition. m

4.5 Convergence proof

We finally prove the convergence for 6 — 0 of the viscous ODE system (4.8) to the
automaton (DA1)—(DA3) and consequently to the ERIS system (Q, E, D). The proof is
constructive and provides explicit error estimates in terms of the small parameter § and
e=1/N.

A main point is that there will be different sources of error that need to be estimated
in different norms. During the equilibrium phase, when the system slides close to a
particular metastable branch, the non-zero viscosity prevents the solution from relaxing
to the exact equilibrium state and this gives rise to an error (i) of order ¢ in all of the
components. Two other errors occur during jumps: (ii) one of the strains, namely e;,, is
far away from a stable steady state, while (iii) all the other strains have an error of order
. The first and the third type of errors is most efficiently measured in the maximum norm
|R|oo = max{|R;||j =1,...,N } whereas the second type of errors is better evaluated in
the 1-norm |R|; = SV | R

Under the assumption that body forces are time independent and the potential is
bi-quadratic, we have the following result:

Theorem 4.5 Consider an ordered bias vector (h;); with ZJIV hj =0 and a loading profile
¢ € CHP([0,T)) that is piecewise C* with [{(t)] > X > 0 a.e. in [0,T]. Take any ordered
steady state € € RY associated with ¢ = €(0). Then, the solution €° € CUP([0, T|; RY) of
(4.8) with €°(0) = €° constructed above converges to the unique solution €° : [0,T] — RY
with €°(0) = €° of the discrete automaton (DA1)-(DA3) constructed above, i.e. for almost
every t € [0,T] we have €(t) — €°(t) as 6 — 0.
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Moreover, for each given data k, a, T, and £ € C*([0,T]) there are positive constants

C and k. such that for all § € ]0,1] and N € N with 6N < k. we have €’(t) = e°(t) +
RY(t) + R*(t) with

|IR'Y(t)|so < C(6+1/N) and |R*(t)]; < C. (4.14)

Proof: To simplify the notations we drop the superscript ¢ for the viscous solutions but
keep the superscript 0 for the limit. Throughout the proof the constant C' may vary, but
it is always independent of §, N and the given solutions. We use sometimes constants
C1, Oy, ... to indicate how certain estimates follow from others.

We decompose the time interval into finitely many subintervals on each of which 7 is
monotone. If we allow for a suitable error for the initial condition it is then sufficient to
consider only one of these intervals. Indeed, without loss of generality we can assume that
¢ is monotonically increasing on [0, 7], however, to be able to concatenate several pieces
we allow for a nontrivial shift e(0)—e’(0) .

From the monotonicity of £ and the ordering of the solutions e we obtain jump times
0<t; <---<ty <T. For the following it is more convenient to reorder these numbers
and to use as the switching times parameters s;, j = 1, ..., N defined such that signe;(t) =
sign(t—s;). Then, 0 < sy < 5,1 < ---s7 < T, where strict inequality holds as soon as
the times are different from 0 or 7. With m(t) we count the number of e;(t) and ef(t)
bigger than 0, namely m(t) = N—j for t € |s;_1, s;[. Similarly, for the solution €, where
0 =0, we define s) and m°(t) having exactly the same properties.

For sufficiently small § + 1/N we conclude that m(0) = m°(0). Using m° and m the
average stresses o’ and o can be calculated as

— %Z )+ hj +0¢;(t)) = k(1) + 56(t) + %(Qm(t)—N%

<.
—_

(2m°(t)—N).

With these stress histories known, the strains solving (4.8) have the explicit representation

t
1
e;(t) = e */%;(0) + / e_k(t_s)/‘sg(ak sign(s—s;) + hj — o(s)) ds, (4.15a)
0

1
e)(t) = asign(t—s)) + —

(hy+0°(t)). (4.15b)

P?‘

We write the difference p;(t) = ¢;(t) — €J(t) in the form
(1) = H(t) + 22(0) + p2(6) + (1) with

t
O = 0 g0 = [ R as

_ / =9/ 20K 00y n(s)) d,

p3(t) i
p;i(t)

ON
efk(t*S)/(S%(si n(t—so) —si n(s—&)) ds
5 g j g J :

[e=]
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We immediately find |pj(t)] + [p5(t)| < C(6+1/N) as desired.
To estimate the other terms we need to estimate the difference between s; and s?. The
nontrivial s? are defined via

0=—a+h;/k+{(s)) +a(2j—N)/N, (4.16)
which implies ((s9) — £(s7,,) = (hj11—h;)/k + 2a/N > 2a/N. Hence with C' = a|f]|so/2

we find
lj=tl

|5§) — 8| > N for j,l=1,...,N. (4.17)
For the moment we assume a similar estimate
|s; —s|>!;3J for j,l=1,...,N, (4.18)

m

where the constant (), is still to be determined by choosing 0N < k, sufficiently small.
Using this assumption we can estimate ¢é;(s;) (limit from the left) via the explicit form of
e; in (4.15a). Note that o is piecewise smooth with jumps of size O(1/N) at each s; The
contributions of the initial condition and the smooth parts are bounded by a constant C}
independently of 6, N and C,,. Including the terms from the jumps gives the estimate

‘éj(3;)| <O+ CCm’Y(l/(Cm(SN)), where ~y(r Z re”UIT <1 4,
l=75+1
As the nontrivial s; are obtained from
0 = e(s;) = —ah; [k + ((s;) + a(2j—N)/N + 3(i(s;)=¢5(s7)).

we can compare with (4.16). Using A < ¢(t) < C and éj(s;)| < C(1+Cy,) we find a
constant C such that

|s; — 5% < ~(C(1+C) + [[]|o) =1 6Co(1+Cyp). (4.19)

> &

From this we can now derive (4.18) as follows. For nontrival j and [ with j # [ we have

I
[5j—s1] > |s9—s0| — |s0—s;| — [s0—s1| > = — 2605 (14C,y,)

CN
el © |5
> = — - ———
> o (1-20NCCy(1+Cy)) > CN

To justify (2) we use 0N < k, with s, := 1/(4Cy max{C,2C?}) and set C,, = (2x,Cy) /2.
Thus, (4.18) is finally established.

Using the above estimates between the jump times s; and s} we are able to control
the difference between m°(t) and m(s). First assume m(t) = N—j > m°(t) = N—I, then
by the definition of m and m° we have s; > s ;. Thus, we find

I—1—j

sg+5025j25?_125?+ oN
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which yields [—j < 14+6NC? Hence, [—j < N, := [1+rx,C?| € N. With a similar
argument for m(t) = N—j < m°(t) = N—[ and using (4.17) we obtain

|m(s) —m°(t)] < N, +CN(t—s) for0<s<t<T.
Hence, p? can be estimated via
P2 < C(6+1/N) forall j=1,.. N andtel0,T].
Let s and s"** be the minimun and maximum of {s;, s7}. Using (4.19) yields

0 for s < s¥,
()] < 2 for st < 5 < smex,

2 k=790 for 5 > s

Ui PLA) — ol 2 3 -
To conclude the theorem we define R' via Rj(t) = p;(t) + pj(t) + p;(t) and obtain

immediately |R'(t)]oc < C(6 +1/N). For R:(t) = p*(t) we use the fact that in a given
time ¢ only for a few js there has been a recent jump, namely

N
P )] = 1pi(t)] < 2(N. + 3 e M) < ¢,
1

Thus, estimate 4.14 is established.

We still have to show the convergence RO (t) + R>*(t) — 0 for § — 0 but N fixed.
We now display the dependence on ¢ again by adding the superscript 0 where convenient.
We show that this convergence holds for all ¢ in 7 := [0,7]\ {sY, ..., s%}, which is a set
of full measure.

It is now easy to see that p?’l(t) + p?’Q(t) — 0 for all t. To estimate ,0;5-’3 and p§’4 we
fix t € T and let 7 = $dist(, {s), ..., s%}). Then, for all sufficiently small ¢ the interval

Jt—7, [ does not contain any s7 or 7. Whence m°(t) = m’(s) and sign(t—s9) = sign(s—s9)
for s € [t—7,t], because s) — s¥, and pj’?’(t) + ,0?-’4(75) — 0 follows easily.
Thus, the proof of Theorem 4.5 is complete. n

5 Continuum limit

We are now interested in the limit ¢ — 0, i.e. the number N of elements goes to infinity,
which means that we apply the second limiting procedure to the automaton representing
the primary inviscid limit of the original ODE system. The main challenge is to replace
the automaton type evolution of the plastic variable formulated in terms of discrete space
and discrete time by a dynamical system employing a continuous time variable ¢ and
continuous space variable x. This is feasible because in the limit ¢ — 0 the elastic stages
become progressively shorter while the plastic jumps becomes weaker and more frequent
(see also [PuTO05]). As a result the limiting evolution involves simultaneous elastic and
plastic stages and the corresponding continuum variables change all the time.

To justify this picture it will be convenient to use the formulation as an energetic
system (Qy, En, Dy). The strategy is to embed this system into a system defined on
Q = L2(Q) x L*(Q), which contains the strains and a plastic variable. For the embedded
system we are able to pass to the limit ¢ — 0 in the pure rate-independent setting.
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5.1 Embedding into physical space

Note that now we are treating a sequence of problems with /N as a parameter. Hence, for
each N there is a bias vector Y with components hév, j=1,...,N. All solutions e(t) we
consider satisfy the original ordering condition (4.2), namely

h; < h, = e;(t) <eg(t).
We define an embedding of RY into L?(Q) via the characteristic functions
ij = Xj(j—1)/N,j/N| (characteristic function of } Tl %[ C Q).
The piecewise constant interpolants ¥ and a plastic variable pVV are given by

Py :RY = Q:=1%Q) x L}(Q), Pn(e):=(&,7") with

:Zej(t)xj-v(x) and 7" (t,2)

j=1 7j=1

Mz

sign(e; (t))x Y (2).

For N € N we now specify the choice of the random bias coefficients h; in the form

hY = p — G(j/N), where G(z) = ¢+ [ gext(y)dy with fo x)dx =0,

J

and where the random contributions ,uév for N € Nand 5 = 1,..., N are independent,
identitically distributed random variables taking values in R. The distribution is given
through a density f € L'(R) with compact support and average 0.

5.2 Macroscopic system

To specify the structure of the limiting energy, which incorporates kinematic hardening
component, we need to associate to each density f satisfying (3.1) an auxiliary function
F*. We first define

F ,ur—>/ f(y)dy and F: ,ur—>/ y)dy, (5.1)

which gives F”(u) = f(u) > 0. Now, F*: R — RU{oc} is defined as Legendre transform
of F, namely
Fr(n) = sup{un — F(p) | p € R} (5.2)

Thus, F* is convex as well and satisfies F*(n) = oo for u ¢ [0,1]. We can now define the
(kinematic) hardening function H : R — R, associated with the density f as

H(p) = 207" ((a—p)/(2a) ) (5.3)
which is convex and satisfies H(p) = oo for |p| > a, by definition.

For the simple example f (1) = 5-X[ -y, We obtain H(p) = pu.(p*—a*)/(2a). Con-
sider now a family of densities f,. satisfying f,.(u) = %fl(%) Then, we obtain F,(u) =
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Fi(p/r) and F,.(u) = rFi(p/r). For the Legendre transform this leads to F(n) = rFi(n).
Thus, we obtain that

H,(p) =rHi(p) - 0 forr — 0 and |p| < a fixed. (5.4)

By using the definitions above we can now describe the limiting continuum problem.
We define an effective macroscopic energy functional € : [0,7] x Q@ — R, and the
macroscopic dissipation functional D as follows:

o) ={ 207 o et =0 g (5.52)
D7) = | 2kalp(a)-pio) o (5.5b)
where &(@.7) = | (o). pe) +Gla)e(o)dr ~ Ty (5.5¢)
with B(e.p) = (e + H) and 1y = o [ 1) (5.54)

Here @ is the continuum energy density depending on the macroscopic elastic and the
plastic strain variables.

Using the uniform convexity of H one can show that the macroscopic ERIS (Q, &, D)
has a unique energetic solution for each stable initial condition (€°,p"). This solution
(e,p) is Lipschitz continuous in time and satisfies the following plasticity problem (cf.
[Vis94, BrS96, Kre99, Mie05]):

k(e(t,z)—p(t,z)) + G(z) = o(t), /ﬂé(t, y)dy = ((t), (5.6a)
0 € kaSign (p(t,z)) + k(p(t, x)—e(t,x)) + OH (p(t, x)), (5.6h)

where “Sign” denotes the set-valued function with Sign( ) = [-1,1] and Sign(v) =
{sign(v)} for v # 0. Introducing the displacement u(t,z) = [; €(t,y) dy we can rewrite
the system in the more classical form

0, (K(@uu(t)=(t,2))) = goa @), u(t.0) =0, u(t,1) = (1)
0 € kaSign(p(t,z)) + k(p(t, z)—0,u(t,z)) + OH (p(t, x)).

Note that H, and I'f, are the only terms in £ and D depending on the probability distri-
bution density f,. Obviously, I'y, is irrelevant for the elasto-plastic evolution, whereas the
hardening function H, is essential. When r — 0 one can show that F,.(u) — max{0, u}
and H,(p) — Hy(p) = 0 for |p| < a, see (5.4) for a special case. As we have already
mentioned, there is no hardening in the case H = Hy, therefore existence of solutions can
still be established but uniqueness fails.

5.3 Convergence proof

In this sub-section we prove our second main theorem, which establishes a rigorous relation
between the discrete automaton (DA1)-(DA3) and the continuum system (5.6) by using
the I'-convergence for ERIS developed in [MRS08].
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More precisely we consider the sequence of discrete ERIS (RY, Ey, Dy) described
in Section 4.4 with solutions ey : [0,7] — RY and show that the embedded functions
(&N, pY) = Py(en) : [0,T] — Q weakly converge to the unique solution of the macroscopic
ERIS (Q, &, D), where Py is defined in Section 5.1. In fact, we show more, namely that
the associated energies and dissipations converge as well. In fact, it is the convergence of

the energies and dissipations that allows us to show that the limit is an energetic solution
for (Q,&,D).

Theorem 5.1 Fiz a loading profile ¢ € CY([0,T]), which is piecewise monotone, and
assume that the bias vectors u € RY are chosen as described above. Define h;v =
uY =G (j/N) + XV with AN such that S hy = 0 and take initial conditions el € RY
that are ordered with respect to hYN such that

Py(e)) — (€0,7,) in Q =L12(Q) x L2(Q) and Ey(0,e)) — £(0,%,7,) < co.

Then the embeddings of the ordered solutions of eV : [0,T] — RY of (RN, Ex, Dy) con-
structed in Section 4.2 converge to the unique solution (€,p) : [0,T] — Q of (Q,&,D)

with (€(0),p(0)) = (€9, py), namely
Py(eN(t)) — (&t),p(t)) in Q  for allt € [0,T).
Moreover, we have Ex(t, €™ (t)) — E(t,e(t),p(t)) and Dissp, (e, [0,t]) — Dissp(p, [0,]).

Proof: Step 1: For the proof we use our precise knowledge of the solutions €”. Note that
the ordered states are uniquely determined by the function m®™(¢) : [0,7] — {0,..., N}
counting the number of j such that ej»v(t) is bigger 0. Moreover, we have

oV (t) = k() — ak(2m® (t)—N)/N. (5.7)

Thus, o™V (t) also allows us to recover the solution e (¢) completely as follows. For given
t we define b (t) > h¥(t) such that

#{ilh=h (8) = m™ (1), kY (t) = min{ A7 [h =R (¢) }, AN (¢) = max{ " |h)’ <h{ (1) }.

Along solutions, the values of hy are equal to those of hy (cf. (4.5)), but now they depend
on t € [0,7]. We have

1 for hé-v > hﬂf(t),

5.8
—1 for BY < hN(t). (5.8)

ej-v(t) = sign(ej-v(t))a + %(ON(t)—i-h;V) and sign(eﬁy(t)) = {

Step 2: We only prove that convergence holds along a subsequence. However, since
the limit problem has a unique solution, we know a priori that the whole sequence must
converge. To find a convergence subsequence we consider the functions o. Since ¢
is piecewise monotone the interval [0, 7] can be decomposed into finitely many, let us
say P, subintervals where ¢ is monotone. However, each m" is also monotone in these
subintervals. Since the variation of m” in a montone part is bounded by N, the variation
of each m” is at most PN. Thus, (5.7) shows that the variation of ¢ is bounded by

k|| + 2akP.
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Thus, Helly’s selection principle allows us to extract a subsequence (not relabeled)
such that o™ (t) — o°(t) for all t € [0,T]. As a consequence we find

m¥ ()N — (1) = MU= 20 (5.9)

Step 3: Next we show that this convergence implies the convergence of (eV,p") =
Pn(eV) as well as that of the energy and the dissipation. In fact, we show that for each ¢ €
[0,T] the sequence (eV(t),p" (t))nen generates a well-defined Young measure v(t) : Q —
Prob(R?) (Radon measures on R with total measure 1). This follows from the independent
random choices of ,ué-v using the law of large numbers. It is here, where we exploit the
disorder in an essential fashion. Because the biases h;v are chosen independently and
identically distributed (with density f), the law of large numbers can be applied to any
continuous function = to obtain

FOoE) [ =0 de (5.10)

In fact, much less than the assumed randomness is sufficient to derive the following con-
clusions. We only need a type of weak ergodicity that could, e.g., be also generated by
quasiperiodic functions.

For a general test function ¥ € C°(Q2 x R?) we consider the limit of

N (t) = /Q\I/(x,EN(t, x),p" (t,x))dz

for N — oo. Using the definition of (eV,p") = Py(e") and defining ¥ (e,p) =
/N
% (jj/,l)/N V(y, e, p)dy we find
|
W) = D W (e)(t), asign(e;(t))
j=1

Inserting the explicit formula (5.8) for e} (t) we find

1 1 1 1
YN (t) = N Z \Iféy(—a—i-E(ON(t)—i-h;V), —a) t Z \Ifﬁ-v(a+E(UN(t)+h§-V), a).
{31V <hN (1)} {3 1R >N (1)}

Recalling by = Y — G(j/N), where all the p} are independently chosen according to

the density distribution f, we can pass to the limit N — oco. First observe that h} ()
converge to h°(t) defined by
he(t) =sup{ h| Fa(h) <&>(t)} and hS°(t) =inf{h | Fa(h) > £>(1) },

where F(h) := [ fnhzioo f(n+G(x))dndz € [0,1] and £ is defined in (5.9). Note that
F¢ is a probability distribution with compact support since f has compact support and G
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is bounded. Subsequently it suffices to take any h>(t) € [h>°(t), h(t)]. Using ¥ — o>
and the law of large numbers on p (cf. (5.10)) we find ™ (t) — woo(t) with

B /Q/_"““ U(z, —a+(0™(t)+h)/k, —a) f(h+G(z))dhdz
- /Q /hoo » U(z, a+(o™(t)+h)/k,a) f(h+G(z)) dhdz.

The Young measure v is defined via [, [o. ¥(z,e,p)v(t, z, de, dp)dz = ¢>(t) giving

/]R2 U(e, p)u(t, x, de, dp)
— [ ¥asign(ult, ) + (0(6)4u-Gia)) ks asignlie=At ) £ b
where 7i(t,z) is any solution of £>*(t) = Fu(u—G(2)), e.g.

u(t,x) = h*(t) + G(x). (5.11)

Using the identity [, sign(fi—p) f(p)dp = 2F(f))—1 and the testfunctions \/I}(e,p) = e and
\/I}(e,p) = p we obtain the weak limits é(¢) and p(t), respectively, via

ot z) = / (asian(u—f(t,2)) + (0 (1) =G () /k) £ (1)

— 6Pt 2))1) + (0*()~G(x) [k, o12)
p(t, x) = a(2F (u(t, x))—1).
Step 4. For the convergence of the energy we use
Ey (e (1) = EiV(BN(t)) + By (e"(t)), where
N(_N 1 ko n NYy2 N( o S
E (e ):NZQ(GJ —asign(e;' )" and E, Zh] ej .
1
Using the explicit form (5.8) of e}’ we obtain
1 L 1
ENEN() == — N —(0™(t)—G(x))" dz + T,
N 2 g OGN ) = [ S (0-G) ar T,
where I} is defined in (5.5). For EY we proceed as for 9" (t) and obtain
EY(eN Z WY ( a+ o™ (t)+h))) Z WY ( a+ N (t)+hi))

hN<hN(t hN>hN(t)

o /Q /IR (u—G(z)) asign(u—ﬁ(t,x))—|—(aoo(t)—G(x)+/J)/k>f(ﬂ)dﬂdﬂi-
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Using the representations of the weak limits in (5.12) we obtain
N( N k. - 2
EY V(1) — | 5((ta)-p(t,2)? d + Ty,
Q

To compute the limit of the last term EY (e”(t)) we define the auxiliary function

Flu) = 5 [ wsien(uy) £(0) o

and denote by pu = fi(n) € [—oo, oo] any solution of F'(u) =n € [0, 1]. Then one can show
that the following holds: B

(a) For n € [0, 1] we have F*(n) = F(ji(n)).

(b) For all u,n € R we have: p € 0F*(n) < n= F(u).

Indeed, the standard Legendre-Fenchel theory gives

n=F ) =F(u) & pecdF () < un=7F) +F@n).

Thus, differentiating n = F(7i(n)) vields 1 = f(7i(n))@(n). Moreover, the definition of F
casily gives F'(p) = puf(p). Thus, the function J : 5 — F(fi(n)) satisfies J'(n) = fi(n)
which leads to J”(n) = '(n) = 1/f(7i(n)). By the properties of the Legrendre transform
we have (F*)() = 1/F"((n)) = 1/ (n)) = J"(n).

Finally, using F(+£o00) = 0 we obtain J(0) = J(1) = 0. The definition of F gives
F(u) = max{0, u} + m(p) with 0 < m(u) — 0 for |u| — oo, which implies F*(0) =
F*(1) = 0. Since J and F coincide at n = 0 and 1 and have the same second derivative,
they are the same on all of [0, 1]. Thus, (a) and (b) are established.

Based on these properties of the function F we can now write

EY(eN(t) — /ﬂzaf(ﬁ(t, 7)) + G(x)e(t, r)dz — 2T},

Then, by using the representation of p in (5.12), the definition of H via F*, and the
relation
pedt(p) <« p=a(l-2F(n))

we find _
Hp(t,2)) = 2aF (1, 2)).
The convergence EN(t,eN(t)) — E(t,e(t),p(t)) is therefore shown.

Step 5. To show the convergence of the dissipation we use that ¢ is piecewise monotone,
i.e. there exist times 0 =ty < t; < --- < t;, = t such that ¢ is monotone on [¢;_1,t]. As
a consequence the solutions e” and p are monotone on these intervals. By the definition
of the dissipation functionals Dissp, and Dissp we then have

Disspy (e",[0,1]) = 3 D(e"(tir), e (1)), Dissp(@, [0,4) = 3 D(B(ti1), B(tr)):
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Thus, it suffices to show convergence for these time increments only. Without loss of
generality we consider the case £(t;_1) < £(t;). With py — peo = 2ka® we have

N

Di(e™(t12), (1) = 1= 3 pn (sin(el (1)~ sien(e} (1)) = 2 (m® () —m" (t11))

7j=1

—>poo(§°°(tz)—€°°(tl—1))Z/ka( (t1, x)=p(ti-1, 7)) dx = D(p(t;-1),D(t1))

Thus, Dissp, (e",[0,]) — Dissp(p, [0,t]) is established as well.

Step 6: It remains to show that (€,p) is the unique energetic solution for the macro-
scopic ERIS (Q,&,D). We first consider the energy balance. For all N we have the
microscopic energy balance

En(t,e"(t)) + Dissp, (eV,[0,t]) = Ex(0,el) + /0 o™ (s)l(s)ds.

Since all four terms converge to the desired limits for N we immediately obtain the energy
balance (E) for the limit (€, p) with respect to the ERIS (Q, &, D).
To establish the stability condition

E(t,e(t),p(t)) < E(t,e,p) + D(p(t),p) for all (¢,p) € Q,

we use the stability of eV (t) with respect to (RY, Ex, Dy). We test the stability using
the state €V, which is defined like e (¢) but with a different function G replacing G.
We choose an arbitrary G e H'(Q) with [, G(z)dz = 0 and define the new bias vector

h = (hY); € RN via

N
hjy:uéy—é(j/N)+XN, where Z}VL;V:O

We define Fg via Fg(h) = [, F( h+G ))dz. Then, for every pair ({, %) satisfying
1-€ = Fx ( ) and |5+h| < ka, where & = kl(t) — ak(26—1),

where exists a sequence KN such that

1t > BV,

eN — asigneéV + L TN TN
i 1 A
Vi )

J

L N 5N~ s ~N
E(O‘ +h;') and signe;" = {

N5, BN —>h, (@mN-1)/N = ¢,
where m" = (N + S sign €] )/2 oV = kl(t) — ak(2m™ —1)/N.
Repeating the Calculatlons in Step 3 we obtain the convergence Py(e”) — (¢,p) in

Q, where
0=Fk(E—p)+G—5 and p(z) = a(1-2F(h+G(x)). (5.13)
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Repeating the calculations in Step 4, while carefully dlstlngmshmg between the still rele-
vant 2 and the artificial hjv which only differ by G(j/N) — G(j/N)+ AN, we find
the Convergence Ex(t,eV) — E(t,e,D).

Moreover, we are able to calculate the limit of Dy (e (¢),e") as follows (using h" =
hY (t) and neglecting AN, AN — 0):

N
Dy(eM(t),eN) = pWN Z | sign el (t)—sign el |

= O (5 WY+ GU/N) < ) <TG/}

+#{5 WV +G/N) < i < V+G(/N) })
. /Q ([P Gla) - P +G )]+ [P +G(@)~F(+G(a))] ) da
P / |F(h+G(z))— F(ht-Gi(2))| da

= 2ka? / ’— (a—p(t, ) 21a(a—’ﬁ(m))}dx = l{:a/Q p(t,2)—p(z)| dz
= t),p),

where [a]+ = max{(), a}. Hence, we can pass to the limit in the stability condition for
eV (t), namely Ey(t,e"(t)) < En(t,e") + Dy(e"(t),e") and obtain E(t,e(t),p(t)) <
E(e,p) +D(p(t),p), where the comparison states (€, p) are the ones constructed in (5.13).
Via the free choice of G we are able to generate a dense set of p in L2(Q; [—a, a]). However,
the associated strains € are the equilibrium strains. By the quadratic nature of £, we easily

find £(t,e,p) > E(t,¢,p) for all € € L2(Q). Thus, the stability of (e(t),p(t)) is established,
and (e,p) : [0,7] — Q is shown to be an energetic solution for (Q, &, D). "

6 Double asymptotics

Let us now show that in the case of bi-quadratic potential the limit does not change if
one performs the double asymptotics (g,9) — (0,0) under the constraint that ¢ tends to 0
faster than €. The result is a consequence of the estimates obtained in Theorem 4.5, which
allow one to show that the L? difference between the viscous solutions and the discrete
solutions tends to 0 with (£,0) — (0,0). Since the latter converge weakly, it follows that
the former also converge weakly:.

Theorem 6.1 Consider the solutions eV : [0,T] — RN of the viscous problem (4.8),
where hj»v = uj —G(j/N)+ N is as above. Then, there exists a constant k. such that the

following holds. If the initial conditions €>™(0) are ordered equilibrium states for given
0(0) such that

Py (e(0)) = (e0,Fp) in Q  and E™(0,&(0)) — £(0,2.7,)

for (g,0) — 0. Then, for (£,0) — 0 with 0 < § < k. the solutions eV : [0,T] — RY of
the viscous problem (4.8) satisfy

Py (N (1)) — (2(t),p(t)) in Q for allt € [0,T],
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where (€,p) is the unique solution of the plasticity problem (5.6) with (€(0),p(0)) =
(607]_90)'

Proof: The crucial observation is that the definition of the norms |- |, in RY and
in LP(Q) together with the embedding Py lead to an additional factor 1/N'=%/?. For
(¢,p) = Pn(eY) and (€,p) = Pn(€") we have

- 1 - . . .
&= Clla@) < ;1" = €, for p € [1, 0] with g = min{1/2,1/p},

~ 2a o N 1/2
1P = PllLz) = \/—N(#{j | signel #signel }) 7

If § < ky/N = R.e, where £, is the same as in Theorem 4.5, estimate (4.14) (with p = oo
and p =1 for Ry and Ry, respectively) yields

18N (t) — €"N|12() < C(6 + 1/NY?).

Moreover, the number of different signs between eV (¢) and €% (¢) is bounded by N,
(independently of § and N), which leads to the estimate

1Px (e (1)) = P (™™ ()2 < Co(0+1/N?) < O3/ N2 = Cye'/?,

where we have used § < k,/N = k,e again. Combining this with the convergence stated
in Theorem 5.1 we obtain the desired convergence result. [

7 General potentials

In the previous sections we have restricted our analysis to the special case of a biquadratic
potential ®p;q. Moreover, the loading gexs was assumed to be time independent. Here we
drop both assumptions and discuss the necessary changes for generalizing the results to
arbitrary loadings and generic stress-strain relations. More precisely, we show that in
the case of a general double-well potential and a rather general time dependent body
forces the sequence of limits, first 6 — 0 and then ¢ = 1/N — 0, leads to basically the
same general picture modulo appropriate modification of the hardening function and the
dissipative potential in the limiting model.

7.1 Microscopic model

To replace G(z) by a general time-dependent function G(t, x) satisfying [, G(t,)dz = 0
for all ¢ € [0, 7] we need to generalize the concept of ordered states. Indeed, since the
loading may now depend on time, a state that is ordered for £; may no longer be ordered
for to > t;. Therefore we need to interpret the order condition locally in (¢, ) € [0, 7] x Q.
This is possible, since G(t,x), £(t), and o(t) vary only on the macroscopic scale while the
bias coefficients fluctuate on the microscopic scale and are independent of time.
Moreover, since the general double-well potential & does not allow us to define a
plastic strain p = asign(e) as in the bi-quatratic case, we need to use the microscopic

phase indicator variable z; € {—1,0,1} as in Section 2. The threshold fi(¢,z) is now

30



active in a microscopically large but macroscopically small region7 which can be defined
as follows |7 — xN| < +/N. For j in this domain, the condition p} > fi(t, x) then implies
e (t) > ey and 2} (t) = 1, whereas p} < fi(t,z) implies e} (t) < e_ and 2 () = —1.

In the formal proof Whl(‘h followa the important issue Wlll he to control the evolution
of the threshold fi(¢, x). Looking at the dynamics of the discrete automaton in Definition
4.2 we see that phase changes should only occur if the strain is critical. In terms of
the macroscopic stress &(t,z) = o(t) — G(t,x), we need to have o = 1+ 7, if © <0,
and o_ = i+ 7, if 1 > 0. Moreover, the threshold value [i(¢,z) must always satisfy
o+ e o, o4

7.2 Macroscopic energy

As in the special case of bi-quadratic energy, we begin with formally computing the
limiting continuum energy and determining the hardening potential.

Notice that the relation (3.4) provides a strong correlation between e; and y; and thus
controls the joint Young measures v generated by (eV,z"), which takes the form

/ U(e, 2)v(t, z, de, dz)
R2
= /]R (I} ( Sign(u_ﬁ(tv 1‘)), wsign(yfﬁ(t,x)) (E(t, x)—i—u)) f(:u) d,u

In particular, we can define the macroscopic constitutive relations

B ™ [ e G f ) dn and ZG0 % [ sl fGodu. (1)

R

such that the limits € and Z satisfy

~

e(t,z) = B(a(t, ), fi(t.x)) and Z(t,z) = Z(f(t, z)).

By o = §(e, 1) we denote the unique solution o of e = E(cr, w). We can now compute the
effective potential as a function of € and 1 via

EI\)(Ev ,l/I) - /]w < (w&gn(u ) (:9\(67 ﬁ)+ﬂ)) - ﬂwsign(lt—ﬁ)(é\(éu ﬁ)+#))f(ﬂ) d:u

The joint Young measure v 5 generated by (e;, p1;) and associated with the macroscopic
pair (€, 1) has the form

/ B (e, 1o (de, djr) = / G (Wgngory (S B)12), 1) £ (1)
R2 M

where W € CO(Rz) is an arbitrary test function. In particular, it can by checked that the
definitions of S and ® are compatible in the sense that S(e n) = 8—<I>(e 1).
To calculate the partial derivative of ® with respect to 1 we introduce the functions

p=(0) = P(0)o — ©(Y(0)), (7.2)
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which satisfy the relations

P(0) = 4(0), ¢4(0) = sup ce — B(e), and p_(0) = sup oe — (e).

e>ey e<e_
For the derivative we obtain (after some elementary calculations involving the chain rule)

0(e.) = 5| [ (@Bl t) — i (B B+ ) d

—00

+/AOO( (1 (S (6 w)+p)) — p (S (e M)"’H))f(ﬂ)du]

m
= (p+(S(E m)+i) — o-(S(e i)+7)) f (1)
Notice that the disorder threshold i enters our formulas as a parametrization and

that the energy representation in terms of elastic and plastic variable is still implicit. To
abolish the auxiliary variable fi(¢, x) and to replace it by the continuous internal variable

Z(t,x) = Z(ﬁ) we assume that the latter relation is invertible. We write © = (%) and
apply the chain rule in (7.1) to obtain

We can now define the stored energy density ® and the stress S via
o(¢,7) = B(2,/i(%)) and S(¢,%) = S(e, fi(2)),
which still satisfy the relation 9:® = S. Moreover, we find the identities
0:3(2,%) = 901 = ¢_(S(2,2)+]i(2)) — ¢+ (52, 2)+7i(2)), (7.3a)
028(7.%) = (V- (5. 21471(2) — (5@ 2)+719)) (05(6.2) + F=y) > 0. (730)
Next we show that the function (g,%) + ®(€,Z%) is convex, which is an important

property for proving existence and uniqueness of solutions for the associated plasticity
problem. For this we introduce the auxiliary functions

E(0,%, 1) = Ysign(u-jicz)) (0+p) and E(0,z) = /R E(o, %, p) (1) dp,

which satisfy 0:F(0,%z) = _(0+Ji(Z)) — ¢4 (0+7(Z)). We then have o = S(e,7%) if and
only if € = F(0,z) = E(0,1(Z)). Moreover, we define

E(z,7,1) = E(S(2,%),%. 1)

>

and find the relations
e= / Bz 0 f(n)dp and  ¢(E@ 3, 1)~ = S, 7). (7.4)
R

Then, the stored-energy density takes the form

B(z,7) = / (®(BE.71) ~ wE@.2m) () d. (7.5)
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Lemma 7.1 The derivatives of ® take the following form

OT =T, 0.8 =, (S(E2)+il(2) — v (S(,2)+7i(2)),

D = ( NEDOL e )
¢ € f(a(z))
where 9.5 = m >0 and A =, (S(€,2)+u(z)) —¥_(S(e,2)+u(z)) > 0. Hence,
d is uniformly conver.

Proof: The formula for 9,® follows by differentiation under the integral and using (7.4).
The formula for 9:® follows by using i'(z) = 1/f(ji(2)) and E(e, z, ) = ¢+(S(e, 2))+p
for > (z) and p < pi(2), respectively.

Differentiating e = F(S(e, 2), z) with respect to e and using the definition of E we
obtain the formula for &S = 02®. For the mixed derivative we can use ¢/, (o) = ¥4 (o)
to find 9¢(9:®). For 92® we differentiate e = E(S(e, z),z) with respect to z and find
0.5(e, 2) = _ai—ZEE = AJ,.S. Together this gives

02 — (¢, — ) (DOSHI(2)) = A(BOS+L/((2))).

which is the desired result. m

The above calculations can be done explicity for the biquadratic potential ®yq, see

(2.1). We have ¢, (0) = 0/k £ a and find

[

B(0,2) = [ (o/k +asign(u—7) () dp = § + a7
Hence, S(€,%) = k(e—az), which results in

E(E,zp =e—az+ % + asign(p—pu(z)).

Inserting this into the definition (7.5) of ® (with @ = ®y;,) we can use the crucial identity
Dpi(E(€,7, 1)) = 5(6—az+%)%. This follows from the stress relation S(e,z) + u(z) €
l0_,04] = [~ka, ka], which implies sign(u—i(Z)) = sign £. Hence, on the one hand we
have [, Priq(E(e,z, 1)) f () dp = £(e—az)? + 21}, while on the other hand we have

/R (—)E(e, %, 1) f(u)dp = —T} + aF (=) = ~Ty + H(z/a).

This gives the desired formula in (5.5).

7.3 Macroscopic dissipative potential

We now turn to the analysis of the dynamics of Z, which is strongly linked to that of i
via Z = Z(fi). From the above we know that & + i € [0_, 0] and that o = i + 7, if
i <0,and o_ =i+ 7, if 1 > 0. These conditions can be formulated as a play operator
in the form .

0 € OR(u(t,x)) + u(t,z) +o(t, x), (7.6)
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Figure 7.1: Evolution of the play operator generated by Eqn. (7.6)

AJ+ /

P+

/ [0
Figure 7.2: Energies dissipates when the system jumps

where the 1-homogeneous friction potential R:R—Ris given via

—o_p for >0,

R(ft) = =0 sign(ft = { —o i for i <0.

This is a classical hysteresis operator that provides for each @ a unique solution i, see
[BrS96, Kre99, Vis94| and also Figure 7.1. Note that i + @ always lie in the interval
[0_,0.]. Moreover, i can only change if [i + @ is either o_ or 0.

To define the macroscopic dissipative potential we introduce the two quantities

wr [P wr [t
pr = / or —¢e)de >0 and p_ = / ¢(e) —o_de > 0. (7.7)
e p—(0-)

Recalling ¢ defined in (7.2) we have the following identities, see also Figure 7.2:

Lemma 7.2 For the areas enclosed by the the graph of ¢ and the hysteresis loop we have

p+ =¢(04) —p-(01) >0 and p_=p_(0-)—pi(o-) >0,
Moreover, we have the force relation S(€,Z) + ji(2) = 0. = 0:0(€,%) = Fp=.
Proof: The integral formulae follow easily using ez = Ey (o) and the definition of ¢
in (7.2). The second statement follows directly from (7.3a). "

The above computations show that the critical thresholds —oy for o+ are reached
if and only if 9,®(e, Z) reaches the critical values p.. Hence, the play operator in (7.6) is
equivalent to

0 € OR(Z) + 0:®(e,Z) with R(0) = pugn(w)|T]. (7.8)
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7.4 Plasticity problem

We can now formulate the general macroscopic equations in terms of the variables € and Z.
Consider the solutions e : [0, 7] — R of (3.2). Under the above hypotheses we expect
that the embedding (V9,29 : [0, 7] — L*(Q)? converge in the limit “limy ., lim;_¢”
(weakly in L?(Q)?) to the solutions (€, Z) of the macroscopic elastoplasticity system:

0=0:D(e(t,x),z(t,z)) — G(t,z) + o(t) for x € Q, / e(t,z)dx = £(t); (7.9a)
Q
0 € OR(Z(t,x)) + 0:®(e(t, x), Z(t, x)). (7.9b)

The convergence proof must follow the proof of Theorem 4.5 for the limit § — 0
and the proof of Theorem 5.1 for N — oco. While the former convergence is tedious and
lengthy it does not need any substantial new ideas. For the second limit we see easily that
by construction and the definition (¢, ) = o(t) — G(t,z) the macroscopic equilibrium
equation (7.9a) is a direct consequence of (4.1).

For the flow rule (7.9b) one can start from (7.6) which is stated in terms of 7. Since
Il = [i(Z), we have the identity i = fi/(Z)Z. Since [’ is assumed to be strictly negative
and the limit problem is rate independent, we can replace i by —7% in any 0-homogeneous
subdifferential. At first sight, R and R are not directly related. However, since we
are dealing with a simply play operator, we only have to match the thresholds. While
(7.6) corresponds to the bounds o_ < i+ 7 < o4, the flow rule (7.9b) corresponds to
—p_ < —0:® < p,. Now we can apply the relations derived in Lemma 7.2 to obtain
system (7.9).

7.5 Other scalings

In this subsection we briefly discuss how one can study the case when the order of the
limits is reversed and we first perform a limit € — 0, and then the limit 6 — 0 (see also
[PuT05]).

Choose a finite 6 > 0. In the case pu; = 0 for all j (i.e. 7 = 0) the formal pointwise
limit N — oo leads to the following continuous system

sélt, ) = =oe(t.a)) = [ gmltp)dy+ o) [ elt.o)de = u)

Introducing the displacement u(t, z) fo e(t,£)d¢ and taking the derivative with respect
to x we obtain the classical quasistatic visco-elastic problem in space dimension 1:

0= (P (us) + (Mx)x + Gext (t, ), wu(t,z) =0 and u(t,1) = ((1). (7.10)

In general we cannot expect the convergence of solutions of (3.2) to solutions of (7.10),
because of the nonconvexity of ®.

The limiting behavior may be analyzed by introducing distribution function F(t x,-) €
L'(R x R) that account for the fluctuations of the strains e}’ and the biases x via

. 1 N N
| Pl By B B) = Jim s Z o e} (1),



where J(z,N) = {j € {l,...,N}||j—Nz| < NY2}. The fluctuations of the initial strain
(}7(0)); may be chosen independently of the bias (1)) and they do not disappear in finite
time because of the viscosity 0 > 0. Assuming that the above limits exist we obtain the

following transport equation:
SOF (L, ) + (= 9le) + p = Glt,x) + 0(t) ) A F (1,2, . ) = O, (7.11a)
/ /eF (t,x, u,e)d(z, p,e) = £(t), / F(t,z,p,e)de = f(u). (7.11Db)
RxR

The first constraint in (7.11b) gives the total length of the deformed body, while the
second says that the quenched disorder has the bias distribution f, which is independent
of t and x. System (7.11) may also be seen as transport equation for a Young measure
vt € Prob(R x R) and can be treated as in [Tar87, The98, Mie99, BFS01].

The problem can be simplified substantially if we chose initial data such that F(0,-)
degenerates to a o-distribution. This property is preserved by the dynamics and leads
to solutions e = €(t,x, u) and F(t,z,p,e) = Oz (e)f(1). Then, (7.11) reduces to a
transport, equation for €.

00e(t, x, p) = —p(e(t, z, 1)) + p— G(t,x) + o(t),
(7.12)
// e(t,z, p)f(p)dpdr = £(t).

The convergence of the ODE-system in RY is now trivial, as the discrete setting can be
embedded via functions that are piecewise constant in x € €2. Moreover, the right-hand
side is locally Lipschitz continuous on L*°(£2 x R), and classical continuous dependence
on the initial data yields convergence.

The limit 6 — 07 forces the solutions to stay in equilibria for all ¢ € [0,7]. This
means that for small § the solution should satisfy 0 ~ —¢(e(t, z, p)) + pu— G(t,x) + o(t).
Thus, it should be possible to establish the second convergence for 6 — 0% and to obtain
the same plasticity limit as in the case lim._olims_.o. Again we face the problem that
the limiting system is governed by steady states which are non-unique because of the
non-monotonicity of ¢. In the ODE case we were able to derive the corresponding jump
rules by hand (see (DA3)), but in the general case the problem remains open.
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