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Abstra
tWe show that 
ontinuum models for ideal plasti
ity 
an be obtained as a rigorousmathemati
al limit starting from a dis
rete mi
ros
opi
 model des
ribing a vis
o-elasti
 
rystal latti
e with quen
hed disorder. The 
onstitutive stru
ture 
hanges asa result of two 
on
urrent limiting pro
edures: the vanishing-vis
osity limit and thedis
rete to 
ontinuum limit. In the 
ourse of these limits a non-
onvex elasti
 prob-lem transforms into a 
onvex elasti
 problem while the quadrati
 rate-dependentdissipation of vis
o-elasti
 solid transforms into a singular rate-independent dissipa-tion of an ideally plasti
 solid. In order to emphasize ideas we employ in our proofsthe simplest prototypi
al system des
ribing transformational plasti
ity of shape-memory alloys. The approa
h, however, is su�
iently general and 
an be used forsimilar redu
tions in the 
ases of more general plasti
ity and damage models.1 Introdu
tionPhenomenologi
al models involving rate-independent hysteresis appear in various solidme
hani
s problems ranging from fri
tion to plasti
ity and damage. Typi
ally, the asso-
iated systems of phenomenologi
al equations 
ontain empiri
al parameters 
hara
teriz-ing the failure thresholds and the hardening rates. In sharp 
ontrast to elasti
 moduli,these measures of out-of-equilibrium behavior 
an rarely be formally linked to the stru
-ture of the underlining mi
ros
opi
 system. The main di�
ulty originates from the fa
tthat at �nite temperature the mi
ros
opi
 dissipation is ne
essarily rate dependent whilethe observed ma
ros
opi
 dissipation is rate independent. This means that the 
orre
t
oarse graining, implying averaging out of the mi
ros
opi
 time and spa
e s
ales, mustne
essarily involve the basi
 
hange of the model stru
ture. Essentially one needs tounderstand the limit transition from quadrati
 dissipative potentials of Onsager type tosingular dissipative potentials used in the des
ription of rate-independent dissipative pro-
esses. The main physi
al ingredients of su
h a limit were identi�ed in [PuT05℄, whererate-independent plasti
ity was obtained as a rheologi
al model. Here we present the �rstrigorous mathemati
al analysis of the problem and obtain the 
orresponding system ofpartial di�erential equations in spa
e and time.The foundations of the general phenomenologi
al theory of rate-independent systemshave been laid down in [Hil50, Mor74℄ (see also [NgR76, FeE89, Ha
97, FrM98, OrR99,Pet05℄). The universal mathemati
al features of su
h models found their most 
learmanifestation in the general 
on
ept of energeti
 rate-independent systems (ERIS) in-trodu
ed in [MiT99, MTL02℄. The ERIS-based approa
h has been already used in thedes
ription of fra
ture [DFT05, DeT09℄, plasti
ity [DDM06, DD∗08, MaM09℄, delami-nation [KMR06, RSZ09℄, damage [FrG06, BMR09, GaL09℄ and phase transformations[MTL02, Rou02, The02, KMR05℄.The mi
ros
opi
 models in all these areas rely on the existen
e of 
hara
teristi
 defe
ts
arrying inelasti
 deformation (e.g. dislo
ations, phase boundaries, fra
ture fronts, et
.)The mi
ros
opi
 dynami
s of the individual defe
ts is well understood, however, theirintera
tion is very 
omplex whi
h is the reason why the detailed bridge between themi
ros
opi
 and the phenomenologi
al models has not been yet built. In this situationsimple prototypi
al meso-s
opi
 models, even extremely s
hemati
 ones, still o�er aninsight and have a 
onsiderable heuristi
 value.1



In the framework of plasti
ity theory the mi
ros
opi
 origin of rate independent dis-sipation was �rst studied by using simpli�ed zero-dimensional models des
ribing a singleparti
le on a periodi
 lands
ape (e.g. [Pra28, Deh29℄). Later su
h models were applied toa wide range of rate-independent dissipative phenomena from 
harge density waves andmagnetism to super
ondu
tivity and phase transitions [PBK79, Fis85, HB∗94, CDP∗99℄.One-dimensional dis
rete models involving bi-stable snap-springs (soft spins) representthe next level of s
hematization allowing one to model realisti
 hystereti
 behavior with-out introdu
ing a periodi
 lands
ape [MüV77, FeZ92, PuT00, TrV05, PRTZ09℄. Higher-dimensional snap-spring models allow one to study pinning-depinning transition, 
riti
al-ity and power law stru
ture of �u
tuations e.g. [Kar98, Zai06, PRTZ08℄.Despite the 
onsiderable literature on the subje
t, no attempt has been made so far tobridge the gap between vis
ous and rate independent plasti
 systems by rigorous math-emati
al analysis outside the simplest zero-dimensional 
ase leading only to rheologi
almodels [ACJ96, Men02, PuT05, Sul09℄. In the present paper we prove for the �rst timesome exa
t 
onvergen
e results for the one-dimensional problem. Although we deal withthe simplest nontrivial 
ase, we have to 
onfront all the major problems asso
iated withnon-
onvexity and 
oarse graining in both spa
e and time. We therefore expe
t that ourte
hnique 
an be extended to more general systems.More spe
i�
ally, we 
onsider a quasi-stati
ally driven dis
rete 
hain of bi-stable, vis
o-elasti
 snap-springs and derive a 
oarse-grained model that is equivalent to 
ontinuumrate-independent plasti
ity. The main ingredient of the mi
ros
opi
 model making su
hredu
tion possible is the rugged energy lands
ape. Under slow external loading our systemremains in a lo
al equilibrium (metastable state) till it is for
ed to undergo a fast transitionfrom an unstable state to a new lo
al minimum of the energy. The energy dissipated duringthe fast transitions 
an be des
ribed in the 
ontinuum limit by a dissipation potential thatis homogeneous fun
tion of degree one. Some formal 
omputations justifying su
h limithave been presented in [PuT05℄. In parti
ular, it was realized that the transition mustinvolve simultaneous averaging over the fast time s
ale and homogenization over spatialinhomogeneity. In this paper we present the �rst rigorous analysis of the full dynami
s andshow that in order to obtain in the limit a spatially nontrivial rate independent plasti
ityproblem it is ne
essary to regularize the dis
rete system by introdu
ing quen
hed disorder.Previously, the disorder in su
h systems was used to obtain hardening and produ
e realisti
inner hysteresis loops, but only in spatially independent rheologi
al setting [PuT02℄.In mathemati
al terms, our starting point is a system of N ordinary di�erential equa-tions of the gradient �ow type. The system is non-autonomous be
ause the 
hain isdriven through applied displa
ement on the boundaries (hard devi
e). We identify twomain small parameters. The parameter δ is the rate of vis
ous relaxation on the times
ale of the loading. This parameter goes to zero when either driving is quasi-stati
 orthe internal relaxation is fast. The se
ond parameter ε = 1/N is the ma
ros
opi
 lengthof the N snap springs and thus gives the s
ale of the inhomogeneity: it disappears whenthe internal length is mu
h smaller than the external one. To avoid degenera
y leading toNeishtadt type phenomena [Ne��88℄ we introdu
e small random inhomogeneity, whi
h addsa third small parameter a

ounting for the dispersion r. We then assume that the randomproperties of the system are �xed and fo
us on the study of a parti
ular double limit: �rst
δ → 0, then ε→ 0. We prove that in this limit the original �nite dimensional vis
o-elasti
system redu
es to an in�nite-dimensional 
ontinuum model exhibiting rate-independent2



hystereti
 behavior.The 
onstitutive stru
ture is 
hanging as a result of two 
on
urrent limiting pro
edures:the vanishing-vis
osity limit and the dis
rete to 
ontinuum limit. In the 
ourse of theselimits a non-
onvex elasti
 energy (in terms of mi
ros
opi
 strains) transforms into a
onvex elasti
 energy (in terms of two ma
ros
opi
 variables, namely the elasti
 strain andthe averaged phase indi
ators 
alled plasti
 strain), while the quadrati
 rate-dependentdissipation of vis
o-elasti
 solid transforms (given in terms of the rate of mi
ros
opi
strains) into a singular rate-independent dissipation of an ideally plasti
 solid (given interms of the rate of the plasti
 strain). As intermediate 
onstru
tions we en
ounterjump dis
ontinuities in time and parametri
 measure-valued solutions in spa
e. Theproof involves two main steps. The �rst is the redu
tion of a �nite-dimensional gradientsystem of ODEs to a dis
rete automaton, whi
h gives a quasi-stati
 evolution on thetime-dependent set of lo
al energy minima. This automaton is then reformulated asan energeti
 rate-independent system (ERIS) represented by an energy fun
tional and adissipation distan
e. The se
ond step is the limit passage from dis
rete to 
ontinuum inthe framework of Γ-
onvergen
e of ERIS. Here we exploit the Young measures generatedthrough the disorder and thus are able to pass to the limit in both the energy and thedissipative potential.In order to emphasize ideas we employ in our proofs the simplest prototypi
al systemdes
ribing transformational plasti
ity of shape-memory alloys. The approa
h, however,is su�
iently general and 
an be used for similar redu
tions in the 
ases of more generalplasti
ity and damage models.The paper is organized as follows. In Se
tions 2 and 3 we set the general dynami
 prob-lem for the overdamped ODE system and introdu
e the regularization through quen
heddisorder. We then de�ne the ma
ros
opi
 variables by embedding the dis
rete systeminto L2(Ω) where Ω = ]0, 1[ is the referen
e 
on�guration of a 
ontinuum bar. Most ofthe rigorous analysis is done under the assumption that Φ is a bi-quadrati
 and thatthe body for
es are time independent. These assumptions are not essential and are usedonly to make 
al
ulations simpler and the proofs more transparent. In Se
tion 4 we dealwith the vanishing-vis
osity limit δ → 0 for �xed ε. We present 
areful estimates forthe vis
ous solutions 
omparing them to those of a limiting rate-independent dis
reteautomaton. The main di�
ulty is to 
ontrol the phase state of ea
h individual spring,whi
h be
omes possible be
ause our disorder and dynami
s are 
onsistent with the order-ing of the springs. We show that the evolution of the system splits into equilibrium anddissipative stages where the dissipative stages 
an be repla
ed by jump dis
ontinuities inisolated moments of time. The limiting ERIS leads to formulations involving in
rementalminimization problems, whi
h allows us to use dire
t variational te
hniques later on.In Se
tion 5 the limit ε = 1/N → 0 is obtained through embedding the system into
Q = L2(Ω)2 and 
ontrolling the joint Young measures for elasti
 and plasti
 strains.The 
onvergen
e to the limiting plasti
ity model is interpreted in terms of Γ-
onvergen
eof energeti
 rate-independent systems as �rst suggested in [MRS08℄. In Se
tion 6 weshow that in the 
ase of a bi-quadrati
 potential the more general double limit (ε, δ) →
(0, 0) with δ ≤ κ+ε for some κ∗ > 0 produ
es the same limiting plasti
ity problem.(However, we do not expe
t the restri
tion δ ≤ κ+ε to be sharp.) In Se
tion 7 wereturn to the 
ase of general (non ne
essarily bi-quadrati
) potentials Φ and generaltime dependent body for
es. We �rst study the ordered double limit �limε→0 limδ→0�3



and present a formal 
al
ulation showing how the e�e
tive dissipation potential and thee�e
tive stored-energy density 
an be obtained from the mi
ros
opi
 elasti
 potentialand the probability distribution of the quen
hed disorder. We then sket
h the proof ofthe 
onvergen
e, heavily relying on the 
orresponding proofs in the 
ase of bi-quadrati
potential. Finally, in Se
tion 7.5 we brie�y dis
uss 
onvergen
e along the generi
 sequen
esin the (ε, δ) plane.2 PreliminariesConsider a ma
ros
opi
 interval [0, 1] 
ontaining N−1 parti
les at the referen
e positions
xNj = j/N , j = 1, . . . , N−1. The boundary points j = 0 and j = N are assumed tobe 
ontrolled and undergoing pres
ribed displa
ements. The remaining points are linkedin series by N identi
al snap-springs. The dis
reteness of this me
hani
al system 
an beviewed as a s
hemati
 representation of an array of obsta
les (defe
ts, grain boundaries,et
.).PSfrag repla
ements
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Figure 2.1: Left: Non-monotone stress-strain relation. Right: Two bran
hes ψ+1 and ψ−1of the strain-stress relationThe most important ingredient of the model is the bi-stability of the individual elasti
elements. To be more pre
ise we write the normalized elasti
 energy of the 
hain in theform
Ẽ(e) =

1

N

N∑

j=1

Φ(ej) with e = (e1, . . . , eN) ∈ R
N ,where ej is the strain in the jth snap-spring. We assume that the elasti
 energy of asnap-spring Φ : R → R is a non-
onvex two-well potential. This means that the fun
tion

φ = Φ′ is de
reasing on the interval ]e−, e+[ (spinodal region) and stri
tly in
reasing on thetwo intervals ]−∞, e−[ and ]e+,∞[, representing phase �+� and phase �−�, respe
tively(see Fig. 2.1). We 
an formally de�ne the 
orresponding energy wells by setting
σ+ := φ(e−) > σ− := φ(e+).For future 
onvenien
e we denote by ψ+1 : [σ−,∞[ → [e+,∞[ and ψ−1 : ]−∞, σ+] →

]−∞, e−] the inverse fun
tions of φ : [e+,∞[ → [σ−,∞[ and φ : ]−∞, e−] → ]−∞, σ+],respe
tively. We also de�ne e∗− = ψ+1(σ+) > e+ and e∗− = ψ−1(σ−) < e−.4



In what follows a prominent role will be played by a parti
ular bi-quadrati
 potential
Φbiq(e) :=

k

2
min{(e+a)2, (e−a)2}, (2.1)giving

φbiq(e) =

{
k(e+a) for e < 0,
k(e−a) for e > 0.Note that in this 
ase φ is not 
ontinuous at e = 0 where φ 
an take the value either kaor −ka. For the bi-quadrati
 energy Φbiq we �nd

e± = 0, e∗± = ±2a, σ± = ±ka, ψ±1(σ) =
1

k
σ ± a.The 
hain is loaded by time dependent ma
ros
opi
 body for
es G̃j(τ) given by

G̃j(τ) =

∫ j/N

0

g̃ext(τ, y)dy.In addition we impose time-dependent Diri
hlet boundary 
ondition (hard devi
e) repre-senting external 
ontrol of the total average strain ℓ̃, namely
1

N

N∑

1

ej(τ) = ℓ̃(τ). (2.2)It is natural to write the resulting energy fun
tion in terms of the relative strains ẽj =
ej − ℓ̃(τ). The new unknowns form a ve
tor ẽ = (ẽ1, . . . , ẽN) ∈ XN , where XN =

{ (a1, . . . , aN) ∈ R
N | ∑N

1 aj = 0 }. In these notations the total energy of the 
hain 
anbe written as
Ẽ(τ, ẽ) =

1

N

N∑

j=1

(
Φ(ẽj+ℓ̃(τ))− G̃j(τ)ẽj

)
.In the framework of quasi-stati
 elasti
ity theory the me
hani
al problem for the driven
hain redu
es to parametri
 minimization of the energy Ẽ(τ, ẽ). Due to bi-stability ofthe individual elasti
 elements su
h energy has an exponentially large number of 
riti
alpoints. One 
an also expe
t that the 
orresponding metastable (lo
al minimum) bran
hes

ej(τ) are not 
ontinuous with respe
t to the parameter τ . In this situation the knowledgeof dynami
s is ne
essary to de�ne uniquely the evolution of the system.Assume that the mi
ros
opi
 dynami
s is overdamped (for inertial limit see [YuT10℄)and that the dissipation is 
hara
terized by a dissipation potential R(ė) giving
D

ėe
R( ˙̃e) = −DeeẼ(τ, ẽ).(We 
ontinue to use DaF to denote the (partial) Gateaux derivative of a fun
tional withrespe
t to the variable a.) The standard vis
ous model is 
hara
terized by the quadrati
dissipation potential
R(ė) =

ν

2N

N∑

j=1

˙̃e
2

j ,5
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PSfrag repla
ements
ej−1 ej ej+1Figure 2.2: Vis
oelasti
 
hain with bi-stable springs.where ν is the vis
osity parameter. The resulting dynami
s is of gradient-�ow type

ν

N
˙̃e = −DeeẼ(τ, ẽ).We further assume that the loading rate is small, i.e.,
ℓ̃(τ) = ℓ(δ̃τ)where ℓ(·) is a given smooth fun
tion and δ̃ is a measure of loading rate. By introdu
ingthe slow time parameter t = δ̃τ and de�ning G(t, y) = G̃(τ, y), we obtain

δėj = −φ(ej)−G(t, j/N) + σ(t) for j = 1, . . . , N,

1

N

N∑

j=1

ej(t) = ℓ(t).





(2.3)(Here we returned to the original stain variables ej = ẽj(t) + ℓ(t) for a better physi
alinterpretation.) The new non-dimensional parameter δ = δ̃ν is the ratio of the rate ofloading and the rate of vis
ous relaxation (see also [PuT05℄). The fun
tion σ : [0, T ] → Rrepresenting total stress appears in (2.3) as the Lagrange multiplier asso
iated with thelength 
onstraint (2.2).To gain some insight into the behavior of the system (2.3) subje
ted to quasi-stati
loading we perform several numeri
al experiments. In these experiments we negle
t bodyfor
es and assume φ(e) = e3−e.We also assume that vis
osity is small but �nite δ = 0.015.The initial data are 
hosen randomly distributed around the value ej(0) ≈ −1.3. In allexperiments we pres
ribe the history of average strain and study the behavior of theaverage stress σ̂ = 1

N

∑N
1 φ(εj).
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Figure 2.3: Simulation of system (2.3) for N = 9. Left: σ̂ = 1
N

∑N
1 φ(ej) versus ℓ. Right:

e1, ..., e9 versus t. 6
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Figure 2.4: Stress and strains for a model with N = 9 and linear bias µ9
j = 0.05(j−5).Right: σ̂ versus ℓ. Left: e1, ..., e9 versus t.The �rst experiment was 
ondu
ted with a homogeneous 
hain where all snap-springswere identi
al. The resulting stress-strain 
urve and the strains inside individual snap-springs are shown in Fig. 2.3. Observe that we do not obtain a plasti
ity-like hystereti
behavior. Instead, we dete
t a �snap� phenomenon, when a large number of springstransform simultaneously forming one big avalan
he while the rest of the springs relaxes.As the load subsequently in
reases, the inhomogeneous state be
omes homogeneous againin a smooth way.We interpret the �snap� behavior as syn
hronization, whi
h leads to a delayed bifur-
ation, known as the Neishtadt phenomenon [Ne��87, Ne��88℄. Indeed, in the stable regime

ℓ(t) < e− the strains eNj (t) are always 
lose to the quasistati
 equilibrium value ℓ(t) andthe perturbations de
ay exponentially. More pre
isely the de
ay rate is −λmin/δ, where
λmin > 0 is the smallest eigenvalue of the Hessian of the energy at e = (ℓ, . . . , ℓ). Hen
e,if a solution starts in the stable regime at t = t0 with perturbations of order 1 and rea
hesthe spinodal region at t = t1, the perturbations will be of order e−λmin(t1−t0)/δ. Thus, theinstability of the steady state e(t) = (ℓ(t), . . . , ℓ(t)) in the spinodal region needs sometime to establish oneself: the unstable eigenvalue will be of the form λ̂/δ, and to obtainperturbations of order 1 we need to wait until t2 satis�es λ̂(t2−t1)/δ = λmin(t1−t0)/δ.The point is that (t2−t1)/(t1−t0) = λmin/λ̂ is independent of δ.
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Figure 2.5: Simulation of ODE with N = 15 and random bias. Left: σ̂ versus ℓ. Right:
ej versus t. 7



To obtain separation of traje
tories of the dynami
al system one needs to break thepermutational symmetry. The inhomogeneity 
an be generated through a dis
rete set ofmi
ros
opi
 body for
es. This amounts to the following modi�
ation of the snap-springpotentials Φj(ej) = Φ(ej) − µjej, where µj with j = 1, ..., N are the biasing for
es. Theresulting system of the ODEs reads
δėj = −e3j + ej + µj + σ(t) for j = 1, ..., N.In our next numeri
al experiment we set µ9

j = 0.05(j−5). Su
h inhomogeneity allowsus to generate an unsyn
hronized response, where ea
h spring transformers at its own
riti
al stress starting from the weakest one, see also [PuT02℄. The results are shown inFig. 2.4. Noti
e that now, instead of one big �snap�, we observe a serious of small �popping�events so that the inhomogeneous system produ
es realisti
 plasti
ity-type behavior (withhardening).Observe however that plasti
 deformation (phase transition in our 
ase) propagatesthrough the system in the form of a single front. This is not realisti
 be
ause we knowthat (outside very spe
ial �easy glide� regimes) plasti
ity usually develops simultaneouslyall over the sample. To a
hieve the sto
hasti
 separation of the traje
tories we need toassume that parameters µj are sto
hasti
ally independent.The results of numeri
al loading-unloading test for the 
ase when µj are equi-distributedin the segment [−0.1, 0.1] is presented in Fig. 2.5. We see that the overall behavior ofthe system is basi
ally the same as in the previous 
ase modulo the dispersion of the�popping� events. The important di�eren
e, however, is that now the strain distributioninside the sample is no longer monotone and instead be
omes strongly os
illatory makingthe system ma
ros
opi
ally homogeneous. The ensuing homogeneity at the 
oarse-graineds
ale is exa
tly the property whi
h is ne
essary to obtain a nontrivial 
ontinuum limit.3 Main resultsTo formulate the main result we need to introdu
e random mi
ros
opi
 body for
es µjrepresenting quen
hed disorder. We assume that the probability density f ∈ L1(R), whi
h
hara
terizes the distribution of µj and satis�es the following natural 
onstraints
f ≥ 0,

∫

R

f(µ)dµ = 1,

∫

R

µf(µ)dµ = 0, and r2 =

∫

R

µ2f(µ)dµ > 0. (3.1)The dynami
al system
δėj = −φ(ej) + µj −G(t, j/N) + σ(t) for j = 1, . . . , N,

1

N

N∑

j=1

ej(t) = ℓ(t)





(3.2)depends now on three nondimensional parameters, namely the dis
reteness level

ε = 1/N > 0,the normalized vis
osity
δ > 0,8
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popPSfrag repla
ements ε = 1/N

r

ε→ 0

r → 0Figure 3.1: S
hemati
 phase diagram in the spa
e of small parameters indi
ating lo
ationof the `popping' domain whi
h we asso
iate with rate-independent plasti
ity response.and the measure of disorder
r > 0.As our numeri
al experiments suggest, one 
an expe
t to obtain ma
ros
opi
 
ontinuumrate-independent plasti
ity model only in 
ertain triple limit of the form

(ε, δ, r) → (0, 0, 0).We have seen that the limit r → 0 at �xed ε, δ may lead to �snap� behavior, andthe subsequent driving ε and δ to zero does not save the situation. To obtain the �pop�behavior we need �rst to assume that r > 0 and 
onsider the limit (ε, δ) → (0, 0).We 
anthen 
ontinue along the parametri
 path r → 0 leading to ideal plasti
ity limit.At �xed r one 
an �nd for ea
h ε and δ a set of solutions of the mi
ros
opi
 problem
eε,δ : [0, T ] → R

N . Here the ve
tor eε,δ(t) is de�ned by
eε,δ(t) = (eε,δj (t))j=1,...,N .It will be 
onvenient to rewrite the original ODE system (3.2) in the form

0 = DėRε,δ(ė(t)) + DeEε(t, e(t)) + σ(t)DeCε(t, e(t)), Cε(t, e(t)) = 0. (3.3)Here the energy
Eε(t, e) =

1

N

N∑

j=1

(
Φ(ej)−hNj (t)ej

)depends on inhomogeneity through
hNj (t) = µNj −G(t, j/N),where we expli
itly indi
ate the dependen
e of the random terms on the size of the system.The time dependent 
onstraint 
an be written as
Cε(t, e) =

N∑

j=1

(
ej−ℓ(t)

)and the dissipation potential is given by
Rε,δ(ė) =

δ

2N

N∑

j=1

ėj(t)
2.9



In the vanishing vis
osity limit the solutions eε,δ(t) of (3.3) 
an be expe
ted to staymost of the time 
lose to elasti
 equilibrium. The 
orresponding elasti
 problem redu
esto solving the equations
0 = −φ(ej) + µNj −G(t, j/N) + σN(t),

1

N

N∑

j=1

ej = ℓ(t).Sin
e the fun
tion φ(·) is non-monotone, the response eε,0 : [0, T ] → R
N is not ne
essarilysingle-valued. If we introdu
e the phase indi
ators

zj = sign(ej) ∈ {−1, 0, 1},spe
ifying three individual sheets of the inverse fun
tion ψzj
(·) (two stable phases and thespinodal region, see Figure 2.1), we 
an write expli
itly

ej = ψzj
(σN(t)+µNj −G(t, j/N)). (3.4)The phase indi
ators identify individual bran
hes of the equilibrium stress-strain rela-tion and, if the solution remains 
lose to a parti
ular bran
h, the phase indi
ators remainun
hanged. The dis
rete variables zj are the pre
ursors of 
ontinuum plasti
 strain vari-ables, whi
h we introdu
e in the next se
tion. One 
an see that if the `plasti
' 
on�guration

zj is given, the elasti
 strains ej 
an be easily re
overed from the solution of the 
onvexproblem (3.4). This suggests that in the vanishing-vis
osity limit the elasti
 problem 
anbe `
ondensed' and the evolution of the system 
an be reformulated in terms of plasti
strains only.In what follows we show that due to the quen
hed disorder the phase indi
ators
zε,δ(t) ∈ {−1, 0, 1}N and 
onsequentially the strains eε,δ(t) ∈ R

N �u
tuate in a ran-dom fashion. The independen
e of the random 
hoi
es at di�erent spatial points leads(due to 
entral limit theorem) to 
ontrollable properties of the mean values and thusallows one to 
onstru
t a 
oarse-grained theory and expli
ate the ma
ros
opi
 properties.To be more spe
i�
, we assume that the quantities varying at the s
ale ε are mi
ro-s
opi
, while those varying at the s
ale 1 are ma
ros
opi
. To de�ne the ma
ros
opi
averages we �rst need to introdu
e a spatial averaging operator. We begin by embeddingthe solutions e ∈ R
N into L2(Ω) via the 
hara
teristi
 fun
tions

χNj = χ](j−1)/N,j/N [ : x 7→
{

1 for x ∈ ](j−1)/N, j/N [ ,
0 otherwise.This allows us to de�ne the elasti
 strain �eld eε,δ ∈ L2(Ω) as follows

eε,δ(t, x) =
N∑

j=1

eε,δj (t)χNj (x).Similarly, we introdu
e a 
ontinuum phase indi
ator (plasti
 strain) zε,δ ∈ L2(Ω) via
zε,δ(t, x) =

N∑

j=1

ŝ(eε,δj (t))χNj (x).10



Here
ŝ(e) =





−1 for e ≤ e−,
0 for e− < e < e+,

+1 for e ≥ e+.The dis
rete-to-
ontinuum limit 
on
erns the asymptoti
s ε = 1/N → 0. The stronglimits of the above sequen
es do not exist and our main task is to 
hara
terize the weaklimits
(eε,δ(t, ·), zε,δ(t, ·)) ⇀ (e(t, ·), z(t, ·)) in Q = L2(Ω)2.We understand them in the sense that

∫

Ω

eε,δ(t, x)v1(x)+z
ε,δ(t, x)v2(x)dx→

∫

Ω

e(t, x)v1(x)+z(t, x)v2(x)dxfor (ε, δ) → 0 where the test fun
tions satisfy v1, v2 ∈ L2(Ω). As we show, the limitingmixtures of phases 
annot be fully 
hara
terized by the value of the average elasti
 strain
e. The missing information, allowing one to 
lose the 
oarse-grained des
ription at thema
ro-s
ale, is exa
tly the limit of the indi
ator fun
tion z.More pre
isely, we show that a sequen
e of limits δ → 0 and then ε→ 0 allow one toobtain a one-dimensional elasto-plasti
ity problem in the form

0 = DeE(t, e, z(t)) + σ(t) for x ∈ Ω,

∫

Ω

e(t, x)dx = ℓ(t); (3.5a)
0 ∈ ∂R(ż(t)) + DzE(e(t), z(t)). (3.5b)Here the ma
ros
opi
 elasti
 energy E is given by

E(e, z) =

∫ 1

0

(
Φ(e(x), z(x))−G(t, x)e(x)

)
dx,where the ma
ros
opi
 energy density Φ depends on Φ and the probability density fdetermining the random bias ve
tors (µNj )j=1,...,N . In the bi-quadrati
 
ase Φ = Φbiq (see(2.1)) we obtain the expli
it formula

Φ(e, z) =
k

2

(
e− a z

)2
+H(z), (3.6)where the kinemati
 hardening fun
tion H depends on f , see (5.3). In the general 
asethe ma
ros
opi
 rate independent dissipative potential R takes the form

R(ż) =

∫ 1

0

R(ż(x))dx with R(v) =

{
ρ+v for v ≥ 0,
ρ−|v| for v ≤ 0,where ρ+ and ρ− 
an be expressed in terms of Φ, see (7.7). In the bi-quadrati
 
ase

Φ = Φbiq we obtain ρ± = 2ka2.The most unexpe
ted feature of our result is the fundamental 
hange in the nature ofthe dynami
al system in the limit. Indeed, while (3.3) is an N-dimensional ODE derivedfrom a gradient �ow with quadrati
 dissipation potential, the limit is a rate-independentsystem, where the dissipation related for
es ∂R(ż) are homogeneous of degree 0 in ż11



(as the dissipation potential R(·) is homogeneous fun
tion of degree 1). The origin ofthe 
hange is the `
onstru
tive interferen
e' of mi
ro-elasti
ity and mi
ro-vis
osity in the
ontinuum limit. Noti
e that both the ma
ros
opi
 energy and the ma
ros
opi
 dissipationare a�e
ted by these two 
onstitutive 
omponents of the mi
ros
opi
 model. Noti
e alsothat the memory of the spe
i�
 nature of the mi
ros
opi
 dissipation has been lost inthe ma
ros
opi
 double limit suggesting that linear vis
osity is not the only mi
ros
opi
dissipative me
hanism leading to our rate-independent ma
ro-model.If introdu
tion of quen
hed disorder is per
eived as an auxiliary te
hni
al step, thedisorder must be eliminated through yet another limit r → 0. The derivation of thelimiting model 
an follow a well-established path known in 
lassi
al elasto-plasti
ity, seee.g. [BMR10℄. From the de�nition (5.3) of the hardening fun
tion Hf in (3.6) it followsthat it depends on f in su
h a way that r2 =
∫

R
µ2f(µ) dµ → 0 implies Hf (z) → 0 forall z ∈ ]−1, 1[ (while H(z) = ∞ if |z| > 1), see e.g. (5.4). Therefore the limiting model,given again by (3.5) with Φ from (3.6), has the property that H(z) = 0 for |z| ≤ 1. One
an see that the resulting Φ and hen
e E are only degenerate 
onvex whi
h means thatthe model is not well-posed: as it is well known in ideal plasti
ity, several solutions mayexist for given initial data.4 Vanishing-vis
osity limitSuppose that ε > 0 and r > 0 are �xed and 
onsider the limit δ → 0. In fa
t, the as-sumption r > 0 is not 
ru
ial in this se
tion; the only required property of the parameters

µN1 , . . . , µ
N
N is that the e�e
tive biases hj = µNj −G(t0, j/N) are pairwise di�erent.4.1 Energy lands
apeWe begin with the review of the stru
ture of the elasti
 energy lands
ape at the givenloads (see also [PuT00℄). To this end we �x the time t = t0 and 
onsider the problem ofminimizing the energy

Eε(t, e) =
1

N

N∑

1

(
φ(ej)− hjej

)under the 
onstraint
1

N

N∑

1

ej = ℓ.The 
riti
al points of (3.3) 
an be obtained as solutions of the algebrai
 equations
0 = −φ(ej) + hj + σ for j = 1, ..., N,

1

N

N∑

1

ej = ℓ(t0). (4.1)Metastable equilibria (lo
al minima of the energy) are sele
ted by the 
ondition of thepositive de�niteness of the Hessian matrix. For su�
iently large N none of the metastablestrains ej 
an lie in the spinodal region ]e−, e+[, see [PuT00℄. To identify the remainingtwo phases we de�ne for ea
h j a phase indi
ator zj ∈ {−1,+1}, su
h that
ej = ψzj

(hj+σ).12



Ametastable equilibrium 
orresponding to an indi
ator ve
tor z = (z1, . . . , zn) ∈ {−1, 1}Nexists when the equations
1

N

N∑

j=1

ψzj
(hj+σ) = ℓ and {

hj+σ ≥ σ− if zj = 1,
hj+σ ≤ σ+ if zj = −1
an be satis�ed simultaneously. For ea
h metastable bran
h parameterized by z we 
ande�ne the equilibrium response fun
tions σ = σ(l, z).A 
ru
ial observation for this work is that, due to imposed inhomogeneity, not allmetastable equilibria will be a

essible by our dynami
s. Indeed, suppose that the bias
oe�
ients hj are pairwise di�erent and de�ne a sub
lass of metastable states, whi
h we
all ordered states, via the 
ondition

hj < hk =⇒ e1(t) < e2(t) < · · · < en(t). (4.2)Then, the knowledge of the set of ordered states is su�
ient for the study of the limitingma
ros
opi
 problem be
ause the set of ordered states is invariant under the evolution forthe vis
ous and for the limiting invis
id systems (see (4.8) and (DA1)�(DA3) in De�nition(4.2)). Moreover, one 
an see that a system that starts non-ordered will have the tenden
yto return into an ordered state. For instan
e, the 
hain will a
quire the ordering if it isever stret
hed beyond the transformation thresholds and will then maintain its orderingduring all future times. Nevertheless, the system may have an initial nontrivial virgin
urve involving some non-ordered states, whi
h our limiting theory would not 
apture.Remark 4.1 The disorder entering through the random mi
ros
opi
 body for
es is veryspe
ial in the sense that it leads to a parti
ular simple stru
ture of the inner hysteresisloops. A somewhat more realisti
 way of bringing disorder into the model would be througha randomization of the thresholds σ− and σ+ as in [PuT02℄. This, however, brings addi-tional te
hni
al 
ompli
ations, whi
h we would like to avoid here.It will be 
onvenient to simplify the ordering 
ondition by using the permutationalsymmetry of the system. Indeed, without loss of generality we 
an assume that the biases
hj are ordered as h1 < h2 < · · · < hN , su
h that (4.2) redu
es to the 
ondition

e1(t) < e2(t) < · · · < eN (t). (4.3)In Se
tion 5, however, we need to return to the original ordering 
ondition (4.2) be
ausethe strains (ej)j=1,...,N of the springs in a one-dimensional bar Ω = ]0, 1[ will be naturallyordered a

ording to the material points (x = j/N).The 
lass of ordered equilibria in the sense of (4.3) have a simple 
hara
terization: forea
h su
h state there exists a threshold ĥ su
h that all j with hj ≥ ĥ are in phase zj = +1while those with hj < ĥ are in phase zj = −1. We 
an then asso
iate with ea
h thresholda parti
ular distribution of snap-springs between the two energy wells
zj = sign(hj−ĥ), (4.4)where sign(hj−ĥ) = 1 for hj ≥ ĥ and sign(hj−ĥ) = −1 for hj < ĥ. It will also be
onvenient to introdu
e the following two fun
tions

h+(ĥ) = min{ hj | hj ≥ ĥ }, h−(ĥ) = max{ hj | hj < ĥ }. (4.5)13
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Figure 4.1: Eight monotone stress-strain equilibrium bran
hes ℓ = M(ĥ, σ) representingordered 
hoi
es of the phases.Noti
e that h± : R → R are nonde
reasing pie
ewise 
onstant fun
tions su
h that h−(ĥ) <

ĥ ≤ h+(ĥ). We shall also de�ne h+(ĥ) = ∞ if all hj < ĥ and h−(ĥ) = −∞ if all hj ≥ ĥ.For ea
h ĥ ∈ R we 
an now de�ne the fun
tion M(ĥ, ·) : [σ−−h+(ĥ), σ+−h−(ĥ)] → Rgiven by the formula
M(ĥ, σ) =

1

N

N∑

j=1

ψsign(hj−bh)(hj+σ).It is not hard to see that we 
an have at most N+1 di�erent fun
tions M(ĥ, ·). Ea
h ofthese fun
tions is stri
tly in
reasing and has at most one solution for M(ĥ, σ) = ℓ (seeFigure 4.1). Su
h solutions form equivalen
e 
lasses de�ning equilibrium bran
hes
σ = σ(ℓ, ξ)where
ξ = m/N (4.6)andm ∈ {0, 1, ..., N} is the number of elements j with sign(ej) = 1. As we see, for orderedstates the metastable bran
h is de�ned not by the whole ve
tor z but by a single parameter

ξ, whi
h is the fra
tion of the springs in phase +1. It will serve as the prede
essor of theplasti
 strain appearing later in the limiting 
ontinuum problem.It is easy to see that one 
an have at most N+1 solutions for ea
h ℓ. For instan
e, forthe 
ase of a bi-quadrati
 potential Φbiq in (2.1) the fun
tions M(ĥ, ·) take the form
M(ĥ, σ) =

1

k
σ +

1

kN

N∑

j=1

hj +
a

N

N∑

j=1

sign(hj−ĥ),whi
h are N+1 parallel lines shifted by the same 
onstant 2a/N . Under the simplifyingassumption that ∑N
1 hj = 0 we �nd the expli
it representation of the equilibrium bran
hes

ej = ℓ + a sign(ej) + hj/k + a(1−2ξ), (4.7)14



where ξ is de�ned by (4.6).4.2 Jump dis
ontinuitiesSuppose now that the body for
es hj remain ordered and 
onstant with ∑N
j=1 hj = 0,while the total length of the 
hange be
omes a fun
tion of time ℓ(t). The resulting systemof ODEs takes the form

δėj = −φ(ej) + hj + σ(t),
1

N

N∑

j=1

ej(t) = ℓ(t), (4.8)where ℓ ∈ C1([0, T ]) is a given datum. We again restri
t our attention to ordered statesand 
onsider the 
ase of bi-quadrati
 potential. In this 
ase we 
an de�ne a unique limitingsolution as δ → 0.Suppose �rst that δ is �nite. Observe that if all the ej(t) are ordered and are di�erentfrom 0, then the solution of the ODE (4.8) 
an be extended uniquely as di�erentiablefun
tion. Su
h a di�erentiable extension will work up to the time t∗ when ej∗(t−∗ ) = 0 forsome j∗ (here ej(s−) = limtրs ej(t) means the limit from the left), and until that time thesolution is unique. If the solution is smoothly extendable, then we 
hoose this as the uniqueextension, i.e. ej∗ does not 
hange sign at t∗ (and we ignore the other solution where ej∗would 
hange sign and ė has a jump at t∗). If there is no extension where ė is 
ontinuous,we 
an 
onstru
t a unique di�erentiable solution on [t∗, t∗+τ ] with initial 
ondition e(t∗)that is uniquely determined by 
hoosing ej∗(·) su
h that its signs di�er for t < t∗ and
t > t∗. Con
atenating this to the solution on [0, t∗] de�nes the unique global solution,whi
h is still Lips
hitz 
ontinuous in time. Observe that the system always remains inthe set of ordered states. In the next subse
tion we prove that the vis
ous solution eδ(t)
onverges to a solution e0(t) of a well-de�ned limit problem. The 
on�gurations e0(t)
an be viewed as a time-dependent family of metastable states des
ribed in the previoussubse
tion. This family splits into bran
hes and when the bran
h ends the extension
onstituting e0(t) is sele
ted by a suitable jump rule whi
h is the only memory of thevis
ous dissipative me
hanism (see also [PuT05℄).The parameter de�ning plasti
 dissipation in the 
oarse-grained model is the releaseof energy in a single jump. The energy is de�ned as follows

E(t, e) =

{
1
N

∑N
j=1

(
Φ(ej)− hjej

) if 1
N

∑N
j=1 ej = ℓ(t),

∞ else. (4.9)In the 
ase of the bi-quadrati
 potential Φbiq the energy release 
an be 
al
ulated expli
itly
E(t∗, e(t−∗ ))−E(t∗, e(t+∗ )) = ρN/N > 0 where ρN = 2ka2 − 2ka2/N. (4.10)Here the �rst term in ρN 
orresponds to the integral ∫ e∗+

e−
σ+−φ(e)de, see Lemma 7.2. These
ond term is due to the relaxation of the stress from σ(t−∗ ) = σ± to σ(t+∗ ) = σ±∓2ak/N .Be
ause of our spe
ial 
hoi
e of the disorder the 
riti
al values e− and e+ are not a�e
tedby the disorder. For Φbiq both thresholds are equal to 0 and the strains satisfy thefollowing expli
it jump relations

ej(t
+
∗ ) = ej(t

−
∗ )− a∆̂/N for j 6= j∗, ej∗(t

−
∗ ) = 0, ej∗(t

+
∗ ) = a∆̂(1−1/N), (4.11)where ∆̂ = z(t+)− z(t−) ∈ {−2, 2}. 15



4.3 The automatonAs we have already mentioned, one 
an expe
t the solution eδ of the vis
ous ODE (4.8)to slide along the metastable bran
hes with �nitely many well-separated fast jumps fromone 
urve to the next. The limiting dynami
s then in
ludes the periods, when the systemremains on one of the metastable bran
h with parameter ξ �xed, and the jumps, when ξ
hanges and the system swit
hes metastable bran
hes. The resulting dynami
al systemtakes the form of a dis
rete threshold-type automaton (see [PRTZ08, PRTZ09℄).De�nition 4.2 Given an ordered bias ve
tor (hj)j and a loading pro�le ℓ ∈ C1([0, T ]) afun
tion e : [0, T ] → R
N is 
alled a solution of the automaton, if the following 
onditionshold:(DA1) For all t ∈ [0, T ] the state e(t) is an ordered steady state as des
ribed in Se
tion 4.1with 1

N

∑N
1 ej(t) = ℓ(t).(DA2) There are at most a �nitely many times 0 = t0 < t1 < t2 < · · · tL = T su
h that for

l = 1, ..., L the fun
tion e|]tl−1,tl[ has a C1 extension to [tl−1, tl].(DA3) At ea
h jump time tl, l = 1, ..., L−1 the following holds:(i) the strain is 
riti
al, i.e. ej(t−l ) ∈ {e+, e−},(ii) the jump 
onditions (4.11) hold for t∗ = tl, and(iii) the energy release E(tl, e
0(t−l ))−E(tl, e

0(t+l )) is exa
tly ρN/N ,Noti
e that the jump 
onditions in (DA3) are redundant and it would be su�
ient tostate only (iii), sin
e the spe
ial form of φ implies that (i) and (ii) must hold. This will beimpli
itly shown in the proof of Proposition 4.4. Here we stated the redundant 
onditionsto highlight all the spe
ial features of the jumps.Another te
hni
al issue is that as in the 
ase of the vis
ous ODE system (4.8) thesolution of the dis
rete automaton is not unique. A nonuniqueness 
an o

ur if a steadystate rea
hes ej∗(t∗) = 0 exa
tly at a moment when ℓ has a lo
al extremum. Then, thephase jump may o

ur or may not o

ur. We de�ne a unique extension by asking the so-lution to stay 
ontinuous as long as possible, i.e. we assume that jumps only o

ur if theyare ne
essary. This additional �rule� for the bi-quadrati
 problem 
an be obtained rigor-ously if one 
onsiders an additional limit when a �nite spinodal region is asymptoti
allyshrinking to zero.4.4 An energeti
 rate-independent systemBefore giving the 
onvergen
e proof for δ → 0, we show that the automaton (DA1)�(DA3)
an be reformulated in terms of an energeti
 rate-independent system (ERIS) in the senseof [Mie05℄. This reformulation will serve as a basis of the subsequent 
ontinualization ofour dis
rete dynami
al system in Se
tion 5.A general ERIS is given in terms of the state spa
e Q, time-dependent energy fun
-tional E : [0, T ]×Q → R∞ := R∪ {∞}, and a dissipation distan
e D : Q×Q → [0,∞].Our state spa
e is Q = R
N and the energy fun
tional E is de�ned in (4.9). The newquantity is the dissipation distan
e D, whi
h measures the energy that is dissipated dueto fast vis
ous motion. If the strains vary quasistati
ally in one of the two wells, there16



will be no dissipative 
ontribution in the invis
id limit δ → 0. However, if a strain jumpsinto the other well (i.e. by 
hanging sign), then the vis
ous motion is fast, namely of order
1/δ and the energy ∫ t2(δ)

t1(δ)
1
N

∑N
j=1 δė

2
j (t)dt has a �nite limit (see also [PuT05℄).We 
an de�ne the dissipation distan
e by 
ounting the number of phase jumps asfollows:

D(e0, e1) =
1

N

N∑

j=1

DN(e0j , e
1
j), where DN(e0, e1) =

{
ρN if e0e1 < 0 (phase jump),
0 if e0e1 ≥ 0 (no phase jump),where ρN is de�ned in (4.10). Using the triple (Q,E,D) we 
an further de�ne the notionof energeti
 solutions as follows, see e.g. [Mie05, Mie10℄. This notion is espe
ially adaptedto solutions that may have jumps like in the present 
ase.De�nition 4.3 Given a loading ℓ ∈ C1([0, T ]) and a (hj)j=1,...,N ∈ R

N , a fun
tion e :
[0, T ] → Q is 
alled an energeti
 solution of the ERIS (Q,E,D), if for all t ∈ [0, T ] wehave the stability (S) and the energy balan
e (E):(S) ∞ > E(t, e(t)) ≤ E(t, ẽ) + D(e(t), ẽ) for all ẽ ∈ Q,(E) E(t, e(t)) + DissD(e, [0, t]) = E(0, e(0))−

∫ t

0

Σ(e(s))ℓ̇(s)ds,
(4.12)where DissD(e, [0, t]) is the supremum of ∑M

k=1 D(e(τk−1), e(τk)) over all M ∈ N and allpartitions 0 ≤ τ0 < τ1 < · · · < τM ≤ t of [0, t] and Σ(e) = 1
N

∑N
j=1

(
φ(ej)−hj

).Note that the dissipation fun
tional DissD(e, [r, t]) gives a 
ounting measure, sin
e it isequal to ρN/N times the number of all the phase jumps of e in the time interval [r, t].The following result states that the evolution given in terms of the dis
rete automatonis exa
tly the same as the energeti
 solutions of (Q,E,D). For this result the order-ing property of the solutions is in fa
t not ne
essary and it also applies to non-orderedsolutions.Proposition 4.4 Consider an ordered bias ve
tor (hj)j=1,...,N and that ℓ ∈ C1([0, T ]).Then, an ordered fun
tion e : [0, T ] → Q = R
N is an energeti
 solution of (Q,E,D)given via (4.12) if and only if it satis�es (DA1)�(DA3) in De�nition 4.2.Proof: (S)&(E) ⇒ (DA1)�(DA3).From (S) we 
on
lude that for ea
h t ∈ [0, T ] the solution satis�es the length 
onstraintand is in equilibrium. For the latter, simply 
onsider variations ẽ su
h that D(e(t), ẽ) = 0,i.e. with no additional phase jumps. Then, e(t) is a lo
al minimizer of E(t, ·) und thus astable equilibrium. Thus, (DA1) is established. In parti
ular, we know that e(t) lies inthe �nite set of stable equilibria. Along these bran
hes the dependen
e of e(t) on ℓ(t) issmooth, see (4.7).From (E) we 
on
lude that DissD(e, [0, T ]) is �nite. Sin
e D only takes the dis
retevalues { kρN/N | k = 0, 1, ..., N } we 
on
lude that the monotone fun
tion δ̂ : [0, T ] →

[0,∞[ ; t 7→ DissD(e, [0, t]) is pie
ewise 
onstant with �nitely many jump points t1 < · · · <
tL−1, where ea
h jump is an integer multiple of ρN/N . Sin
e jumping between the solutionbran
hes generates a jump in δ̂, we 
on
lude that on the intervals ]tl−1, tl[ the solution17



remains on one bran
h and hen
e 
an be extended smoothly to [tl−1, tl]. Hen
e (DA2) isestablished.(E) implies energy balan
e on all subintervals, namely E(t, e(t)) + DissD(e, [r, t]) =
E(r, e(r)) −

∫ t

r
Σ(e(s))ℓ̇(s) ds. Taking the limits t → t+l and r → t−L we �nd the jumprelation

E(tl, e(t+l )) + D(e(t−l ), e(t+l )) = E(tl, e(t−l )). (4.13)However, the 
hoi
e of ρN was exa
tly su
h that it 
orresponds to the energy loss for ajump arising from 
riti
al strains ej∗(t−l ) ∈ {e−, e+}, whi
h establishes (i). Properties (ii)and (iii) follow from the assumption that all hj are pairwise disjoint. Then, at most one
ej 
an have a phase jump.(DA1)�(DA3) ⇒ (S)&(E). From (DA1) we obtain easily (S): Every stable equi-librium is globally stable in the sense of (S), sin
e stability with respe
t to ẽ satisfying
D(e(t), ẽ) = 0 follows from the equilibrium 
onditions and 
onvexity of Φ in the two wells.Moreover, ρN was 
hosen as the maximal energy loss when jumping from one bran
h toa neighboring one. Thus, the energy release E(t, e(t))−E(t, ẽ) will be always less than
D(e(t), ẽ).Using (DA2) and (DA3) the energy balan
e (E) is obtained by joining the smooth partsin ]tl−1,min{t, tl}[ and the jumps. In the �rst 
ase set t∗ = min{t, tl}, the smoothnessgives E(t∗, e(t−∗ )) = E(tl−1, e(t+l−1)) −

∫ t∗
tl−1

Σ(e(s))ℓ̇(s) ds. At the jumps we have (4.13)and (E) follows by addition.4.5 Convergen
e proofWe �nally prove the 
onvergen
e for δ → 0 of the vis
ous ODE system (4.8) to theautomaton (DA1)�(DA3) and 
onsequently to the ERIS system (Q,E,D). The proof is
onstru
tive and provides expli
it error estimates in terms of the small parameter δ and
ε = 1/N .A main point is that there will be di�erent sour
es of error that need to be estimatedin di�erent norms. During the equilibrium phase, when the system slides 
lose to aparti
ular metastable bran
h, the non-zero vis
osity prevents the solution from relaxingto the exa
t equilibrium state and this gives rise to an error (i) of order δ in all of the
omponents. Two other errors o

ur during jumps: (ii) one of the strains, namely ej∗ , isfar away from a stable steady state, while (iii) all the other strains have an error of order
ε. The �rst and the third type of errors is most e�
iently measured in the maximum norm
|R|∞ = max{ |Rj| | j = 1, ..., N } whereas the se
ond type of errors is better evaluated inthe 1-norm |R|1 =

∑N
1 |Rj|.Under the assumption that body for
es are time independent and the potential isbi-quadrati
, we have the following result:Theorem 4.5 Consider an ordered bias ve
tor (hj)j with ∑N

1 hj = 0 and a loading pro�le
ℓ ∈ CLip([0, T ]) that is pie
ewise C1 with |ℓ̇(t)| ≥ λ > 0 a.e. in [0, T ]. Take any orderedsteady state e0 ∈ R

N asso
iated with ℓ = ℓ(0). Then, the solution eδ ∈ CLip([0, T ]; RN) of(4.8) with eδ(0) = e0 
onstru
ted above 
onverges to the unique solution e0 : [0, T ] → R
Nwith e0(0) = e0 of the dis
rete automaton (DA1)�(DA3) 
onstru
ted above, i.e. for almostevery t ∈ [0, T ] we have eδ(t) → e0(t) as δ → 0.18



Moreover, for ea
h given data k, a, T , and ℓ ∈ C1([0, T ]) there are positive 
onstants
C and κ∗ su
h that for all δ ∈ ]0, 1] and N ∈ N with δN ≤ κ∗ we have eδ(t) = e0(t) +
R1(t) +R2(t) with

|R1(t)|∞ ≤ C(δ+1/N) and |R2(t)|1 ≤ C. (4.14)Proof: To simplify the notations we drop the supers
ript δ for the vis
ous solutions butkeep the supers
ript 0 for the limit. Throughout the proof the 
onstant C may vary, butit is always independent of δ, N and the given solutions. We use sometimes 
onstants
C1, C2, ... to indi
ate how 
ertain estimates follow from others.We de
ompose the time interval into �nitely many subintervals on ea
h of whi
h ℓ ismonotone. If we allow for a suitable error for the initial 
ondition it is then su�
ient to
onsider only one of these intervals. Indeed, without loss of generality we 
an assume that
ℓ is monotoni
ally in
reasing on [0, T ], however, to be able to 
on
atenate several pie
eswe allow for a nontrivial shift e(0)−e0(0) .From the monotoni
ity of ℓ and the ordering of the solutions e we obtain jump times
0 < t1 < · · · < tL < T . For the following it is more 
onvenient to reorder these numbersand to use as the swit
hing times parameters sj , j = 1, ..., N de�ned su
h that sign ej(t) =
sign(t−sj). Then, 0 ≤ sN ≤ sn−1 ≤ · · · s1 ≤ T , where stri
t inequality holds as soon asthe times are di�erent from 0 or T . With m(t) we 
ount the number of ej(t) and e0j(t)bigger than 0, namely m(t) = N−j for t ∈ ]sj−1, sj[. Similarly, for the solution e0, where
δ = 0, we de�ne s0

j and m0(t) having exa
tly the same properties.For su�
iently small δ + 1/N we 
on
lude that m(0) = m0(0). Using m0 and m theaverage stresses σ0 and σ 
an be 
al
ulated as
σ(t) =

1

N

N∑

j=1

(
φ(ej(t)) + hj + δėj(t)

)
= kℓ(t) + δℓ̇(t) +

ak

N
(2m(t)−N),

σ0(t) = kℓ(t) +
ak

N
(2m0(t)−N).With these stress histories known, the strains solving (4.8) have the expli
it representation

ej(t) = e−kt/δej(0) +

∫ t

0

e−k(t−s)/δ
1

δ

(
ak sign(s−sj) + hj − σ(s)

)
ds, (4.15a)

e0j (t) = a sign(t−s0
j) +

1

k
(hj+σ

0(t)). (4.15b)We write the di�eren
e ρj(t) = ej(t)− e0j (t) in the form
ρ(t) = ρ1

j(t) + ρ2
j (t) + ρ3

j (t) + ρ4
j (t) with

ρ1
j (t) = e−kt/δρj(0), ρ2

j(t) =

∫ t

0

e−k(t−s)/δkℓ̇(s)ds,

ρ3
j (t) =

∫ t

0

e−k(t−s)/δ
2ak

δN

(
m0(t)−m(s)

)
ds,

ρ4
j (t) =

∫ t

0

e−k(t−s)/δ
ak

δ

(
sign(t−s0

j )− sign(s−sj)
)
ds.19



We immediately �nd |ρ1
j (t)|+ |ρ2

j(t)| ≤ C(δ+1/N) as desired.To estimate the other terms we need to estimate the di�eren
e between sj and s0
j . Thenontrivial s0

j are de�ned via
0 = −a+ hj/k + ℓ(s0

j) + a(2j−N)/N, (4.16)whi
h implies ℓ(s0
j )− ℓ(s0

j+1) = (hj+1−hj)/k + 2a/N > 2a/N . Hen
e with C = a‖ℓ̇‖∞/2we �nd
|s0
j − s0

l | ≥
|j−l|
CN

for j, l = 1, ..., N. (4.17)For the moment we assume a similar estimate
|sj − sl| ≥

|j−l|
CmN

for j, l = 1, ..., N, (4.18)where the 
onstant Cm is still to be determined by 
hoosing δN ≤ κ∗ su�
iently small.Using this assumption we 
an estimate ėj(s−j ) (limit from the left) via the expli
it form of
ej in (4.15a). Note that σ is pie
ewise smooth with jumps of size O(1/N) at ea
h sl The
ontributions of the initial 
ondition and the smooth parts are bounded by a 
onstant C1independently of δ, N and Cm. In
luding the terms from the jumps gives the estimate

|ėj(s−j )| ≤ C1 + CCmγ
(
1/(CmδN)

)
, where γ(r) =

N∑

l=j+1

re−(l−j)r ≤ 1 + r.As the nontrivial sj are obtained from
0 = ej(sj) = −ahj/k + ℓ(sj) + a(2j−N)/N + δ

(
ℓ̇(sj)−ėj(s−j )

)
,we 
an 
ompare with (4.16). Using λ ≤ ℓ̇(t) ≤ C and |ėj(s−j )| ≤ C(1+Cm) we �nd a
onstant C su
h that

|sj − s0
j | ≤

δ

λ

(
C(1+Cm) + ‖ℓ̇‖∞

)
=: δC2(1+Cm). (4.19)From this we 
an now derive (4.18) as follows. For nontrival j and l with j 6= l we have

|sj−sl| ≥ |s0
j−s0

l | − |s0
j−sj| − |s0

l−sl| ≥
|j−l|
CN

− 2δC2(1+Cm)

≥ |j−l|
CN

(
1− 2δNCC2(1+Cm)

) (∗)

≥ |j−l|
CmN

.To justify (∗)

≥ we use δN ≤ κ∗ with κ∗ := 1/(4C2 max{C, 2C2}) and set Cm = (2κ∗C2)
−1/2.Thus, (4.18) is �nally established.Using the above estimates between the jump times sj and s0

l we are able to 
ontrolthe di�eren
e between m0(t) and m(s). First assume m(t) = N−j ≥ m0(t) = N−l, thenby the de�nition of m and m0 we have sj ≥ s0
l−1. Thus, we �nd

s0
j + δC ≥ sj ≥ s0

l−1 ≥ s0
j +

l−1−j
CN

,20



whi
h yields l−j ≤ 1+δNC2. Hen
e, l−j ≤ N∗ := ⌊1+κ∗C
2⌋ ∈ N. With a similarargument for m(t) = N−j ≤ m0(t) = N−l and using (4.17) we obtain

|m(s)−m0(t)| ≤ N∗ + CN(t−s) for 0 ≤ s ≤ t ≤ T.Hen
e, ρ3
j 
an be estimated via

|ρ3
j(t)| ≤ C(δ + 1/N) for all j = 1, ..., N and t ∈ [0, T ].Let smin

j and smax
j be the minimun and maximum of {sj, s0

j}. Using (4.19) yields
|ρ4
j(t)| ≤





0 for s ≤ smin
j ,

2 for smin
j < s ≤ smax

j ,

2e−k(t−s
max
j )/δ for s ≥ smax

j .To 
on
lude the theorem we de�ne R1 via R1
j (t) = ρ1

j (t) + ρ2
j (t) + ρ3

j (t) and obtainimmediately |R1(t)|∞ ≤ C(δ + 1/N). For R2
j (t) = ρ4(t) we use the fa
t that in a giventime t only for a few js there has been a re
ent jump, namely

|ρ4(t)|1 =
N∑

1

|ρ4
j(t)| ≤ 2

(
N∗ +

∑N
1 e−k/(Cδ)

)
≤ C4.Thus, estimate 4.14 is established.We still have to show the 
onvergen
e Rδ,1(t) + Rδ,2(t) → 0 for δ → 0 but N �xed.We now display the dependen
e on δ again by adding the supers
ript δ where 
onvenient.We show that this 
onvergen
e holds for all t in T := [0, T ] \ {s0
1, ..., s

0
N}, whi
h is a setof full measure.It is now easy to see that ρδ,1j (t) + ρδ,2j (t) → 0 for all t. To estimate ρδ,3j and ρδ,4j we�x t ∈ T and let τ = 1

2
dist(t, {s0

1, ..., s
0
N}). Then, for all su�
iently small δ the interval

]t−τ, t[ does not 
ontain any s0
l or sδl . When
em0(t) = mδ(s) and sign(t−s0

j ) = sign(s−sδj)for s ∈ [t−τ, t], be
ause sδl → s0
l , and ρδ,3j (t) + ρδ,4j (t) → 0 follows easily.Thus, the proof of Theorem 4.5 is 
omplete.5 Continuum limitWe are now interested in the limit ε→ 0, i.e. the number N of elements goes to in�nity,whi
h means that we apply the se
ond limiting pro
edure to the automaton representingthe primary invis
id limit of the original ODE system. The main 
hallenge is to repla
ethe automaton type evolution of the plasti
 variable formulated in terms of dis
rete spa
eand dis
rete time by a dynami
al system employing a 
ontinuous time variable t and
ontinuous spa
e variable x. This is feasible be
ause in the limit ε→ 0 the elasti
 stagesbe
ome progressively shorter while the plasti
 jumps be
omes weaker and more frequent(see also [PuT05℄). As a result the limiting evolution involves simultaneous elasti
 andplasti
 stages and the 
orresponding 
ontinuum variables 
hange all the time.To justify this pi
ture it will be 
onvenient to use the formulation as an energeti
system (QN ,EN ,DN). The strategy is to embed this system into a system de�ned on

Q = L2(Ω)× L2(Ω), whi
h 
ontains the strains and a plasti
 variable. For the embeddedsystem we are able to pass to the limit ε→ 0 in the pure rate-independent setting.21



5.1 Embedding into physi
al spa
eNote that now we are treating a sequen
e of problems with N as a parameter. Hen
e, forea
h N there is a bias ve
tor hN with 
omponents hNj , j = 1, ..., N . All solutions e(t) we
onsider satisfy the original ordering 
ondition (4.2), namely
hj < hk =⇒ ej(t) < ek(t).We de�ne an embedding of R

N into L2(Ω) via the 
hara
teristi
 fun
tions
χNj

def

= χ](j−1)/N,j/N [ (
hara
teristi
 fun
tion of ]
j−1
N
, j
N

[
⊂ Ω).The pie
ewise 
onstant interpolants eN and a plasti
 variable pN are given by

PN : R
N → Q := L2(Ω)× L2(Ω), PN (e) := (eN , pN ) with

eN (t, x) =

N∑

j=1

ej(t)χ
N
j (x) and pN (t, x) = a

N∑

j=1

sign(ej(t))χ
N
j (x).For N ∈ N we now spe
ify the 
hoi
e of the random bias 
oe�
ients hj in the form

hNj = µNj −G(j/N), where G(x) = c +
∫ x

0
gext(y)dy with ∫ 1

0
G(x)dx = 0,and where the random 
ontributions µNj for N ∈ N and j = 1, ..., N are independent,identiti
ally distributed random variables taking values in R. The distribution is giventhrough a density f ∈ L1(R) with 
ompa
t support and average 0.5.2 Ma
ros
opi
 systemTo spe
ify the stru
ture of the limiting energy, whi
h in
orporates kinemati
 hardening
omponent, we need to asso
iate to ea
h density f satisfying (3.1) an auxiliary fun
tion

F∗. We �rst de�ne
F : µ 7→

∫ µ

−∞

f(y)dy and F : µ 7→
∫ µ

−∞

F (y)dy, (5.1)whi
h gives F ′′(µ) = f(µ) ≥ 0. Now, F∗ : R → R∪{∞} is de�ned as Legendre transformof F , namely
F∗(η) := sup{µη − F(µ) | µ ∈ R }. (5.2)Thus, F∗ is 
onvex as well and satis�es F∗(η) = ∞ for µ 6∈ [0, 1]. We 
an now de�ne the(kinemati
) hardening fun
tion H : R → R∞ asso
iated with the density f as

H(p) = 2aF∗
(
(a−p)/(2a)

)
, (5.3)whi
h is 
onvex and satis�es H(p) = ∞ for |p| > a, by de�nition.For the simple example f(µ) = 1

2µ∗
χ[−µ∗,µ∗] we obtain H(p) = µ∗(p

2−a2)/(2a). Con-sider now a family of densities fr satisfying fr(µ) = 1
r
f1(

µ
r
). Then, we obtain Fr(µ) =22



F1(µ/r) and Fr(µ) = rF1(µ/r). For the Legendre transform this leads to F∗
r (η) = rF1(η).Thus, we obtain that

Hr(p) = rH1(p) → 0 for r → 0 and |p| < a �xed. (5.4)By using the de�nitions above we 
an now des
ribe the limiting 
ontinuum problem.We de�ne an e�e
tive ma
ros
opi
 energy fun
tional E : [0, T ] × Q → R∞ and thema
ros
opi
 dissipation fun
tional D as follows:
E(t, e, p) =

{
E0(e, p) for ∫

Ω
e(x)dx = ℓ(t),

∞ otherwise, and (5.5a)
D(p0, p1) =

∫

Ω

2ka|p1(x)−p0(x)|dx, (5.5b)where E0(e, p) =

∫

Ω

Φ(e(x), p(x))+G(x)e(x)dx − Γf (5.5
)with Φ(e, p) =
k

2
(e−p)2 +H(p) and Γf =

1

2k

∫

R

µ2f(µ)dµ. (5.5d)Here Φ is the 
ontinuum energy density depending on the ma
ros
opi
 elasti
 and theplasti
 strain variables.Using the uniform 
onvexity of H one 
an show that the ma
ros
opi
 ERIS (Q, E ,D)has a unique energeti
 solution for ea
h stable initial 
ondition (e0, p0). This solution
(e, p) is Lips
hitz 
ontinuous in time and satis�es the following plasti
ity problem (
f.[Vis94, BrS96, Kre99, Mie05℄):

k
(
e(t, x)−p(t, x)

)
+G(x) = σ(t),

∫

Ω

e(t, y)dy = ℓ(t), (5.6a)
0 ∈ kaSign

(
ṗ(t, x)

)
+ k

(
p(t, x)−e(t, x)

)
+ ∂H(p(t, x)), (5.6b)where �Sign� denotes the set-valued fun
tion with Sign(0) = [−1, 1] and Sign(v) =

{sign(v)} for v 6= 0. Introdu
ing the displa
ement u(t, x) =
∫ x

0
e(t, y) dy we 
an rewritethe system in the more 
lassi
al form

−∂x
(
k
(
∂xu(t, x)−p(t, x)

))
= gext(x), u(t, 0) = 0, u(t, 1) = ℓ(t),

0 ∈ kaSign
(
ṗ(t, x)

)
+ k

(
p(t, x)−∂xu(t, x)

)
+ ∂H(p(t, x)).Note thatHr and Γfr

are the only terms in E andD depending on the probability distri-bution density fr. Obviously, Γfr
is irrelevant for the elasto-plasti
 evolution, whereas thehardening fun
tion Hr is essential. When r → 0 one 
an show that Fr(µ) → max{0, µ}and Hr(p) → H0(p) = 0 for |p| < a, see (5.4) for a spe
ial 
ase. As we have alreadymentioned, there is no hardening in the 
ase H = H0, therefore existen
e of solutions 
anstill be established but uniqueness fails.5.3 Convergen
e proofIn this sub-se
tion we prove our se
ond main theorem, whi
h establishes a rigorous relationbetween the dis
rete automaton (DA1)�(DA3) and the 
ontinuum system (5.6) by usingthe Γ-
onvergen
e for ERIS developed in [MRS08℄.23



More pre
isely we 
onsider the sequen
e of dis
rete ERIS (RN ,EN ,DN ) des
ribedin Se
tion 4.4 with solutions eN : [0, T ] → R
N and show that the embedded fun
tions

(eN , pN) = PN (eN) : [0, T ] → Q weakly 
onverge to the unique solution of the ma
ros
opi
ERIS (Q, E ,D), where PN is de�ned in Se
tion 5.1. In fa
t, we show more, namely thatthe asso
iated energies and dissipations 
onverge as well. In fa
t, it is the 
onvergen
e ofthe energies and dissipations that allows us to show that the limit is an energeti
 solutionfor (Q, E ,D).Theorem 5.1 Fix a loading pro�le ℓ ∈ C1([0, T ]), whi
h is pie
ewise monotone, andassume that the bias ve
tors µN ∈ R
N are 
hosen as des
ribed above. De�ne hNj =

µNj −G(j/N) + λN with λN su
h that ∑N
1 h

N
j = 0 and take initial 
onditions eN0 ∈ R

Nthat are ordered with respe
t to hN su
h that
PN(eN0 ) ⇀ (e0, p0) in Q = L2(Ω)× L2(Ω) and EN(0, eN0 ) → E(0, e0, p0) <∞.Then the embeddings of the ordered solutions of eN : [0, T ] → R

N of (RN , EN ,DN) 
on-stru
ted in Se
tion 4.2 
onverge to the unique solution (e, p) : [0, T ] → Q of (Q, E ,D)with (e(0), p(0)) = (e0, p0), namely
PN (eN(t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ].Moreover, we have EN(t, eN (t)) → E(t, e(t), p(t)) and DissDN

(eN , [0, t]) → DissD(p, [0, t]).Proof: Step 1: For the proof we use our pre
ise knowledge of the solutions eN . Note thatthe ordered states are uniquely determined by the fun
tion mN (t) : [0, T ] → {0, ..., N}
ounting the number of j su
h that eNj (t) is bigger 0. Moreover, we have
σN(t) = kℓ(t)− ak(2mN (t)−N)/N. (5.7)Thus, σN (t) also allows us to re
over the solution eN(t) 
ompletely as follows. For given

t we de�ne hN+ (t) > hN− (t) su
h that
#{ j |hj≥hN+ (t) } = mN(t), hN+ (t) = min{ hNj |hNj ≥hN+ (t) }, hN− (t) = max{ hNl |hNl <hN+ (t) }.Along solutions, the values of h± are equal to those of h± (
f. (4.5)), but now they dependon t ∈ [0, T ]. We have
eNj (t) = sign(eNj (t))a+

1

k
(σN(t)+hNj ) and sign(eNj (t)) =

{
1 for hNj ≥ hN+ (t),

−1 for hNj ≤ hN− (t).
(5.8)Step 2: We only prove that 
onvergen
e holds along a subsequen
e. However, sin
ethe limit problem has a unique solution, we know a priori that the whole sequen
e must
onverge. To �nd a 
onvergen
e subsequen
e we 
onsider the fun
tions σN . Sin
e ℓis pie
ewise monotone the interval [0, T ] 
an be de
omposed into �nitely many, let ussay P , subintervals where ℓ is monotone. However, ea
h mN is also monotone in thesesubintervals. Sin
e the variation of mN in a montone part is bounded by N , the variationof ea
h mN is at most PN . Thus, (5.7) shows that the variation of σN is bounded by

k‖ℓ̇‖L1 + 2akP . 24



Thus, Helly's sele
tion prin
iple allows us to extra
t a subsequen
e (not relabeled)su
h that σN (t) → σ∞(t) for all t ∈ [0, T ]. As a 
onsequen
e we �nd
mN(t)/N → ξ∞(t) =

k(ℓ(t)−a)− σ∞(t)

2ak
(5.9)Step 3: Next we show that this 
onvergen
e implies the 
onvergen
e of (eN , pN) =

PN (eN) as well as that of the energy and the dissipation. In fa
t, we show that for ea
h t ∈
[0, T ] the sequen
e (eN (t), pN (t))N∈N generates a well-de�ned Young measure ν(t) : Ω →
Prob(R2) (Radon measures on R with total measure 1). This follows from the independentrandom 
hoi
es of µNj using the law of large numbers. It is here, where we exploit thedisorder in an essential fashion. Be
ause the biases hNj are 
hosen independently andidenti
ally distributed (with density f), the law of large numbers 
an be applied to any
ontinuous fun
tion Ξ to obtain

1

N

N∑

j=1

Ξ(hj) →
∫

R

Ξ(µ)f(µ)dµ. (5.10)In fa
t, mu
h less than the assumed randomness is su�
ient to derive the following 
on-
lusions. We only need a type of weak ergodi
ity that 
ould, e.g., be also generated byquasiperiodi
 fun
tions.For a general test fun
tion Ψ ∈ C0(Ω× R
2) we 
onsider the limit of

ψN(t) =

∫

Ω

Ψ(x, eN(t, x), pN(t, x))dxfor N → ∞. Using the de�nition of (eN , pN) = PN(eN ) and de�ning ΨN
j (e, p) =

1
N

∫ j/N

(j−1)/N
Ψ(y, e, p)dy we �nd

ψN(t) =
1

N

N∑

j=1

ΨN
j (eNj (t), a sign(ej(t)))Inserting the expli
it formula (5.8) for eNj (t) we �nd

ψN(t) =
1

N

∑

{ j | hN
j ≤h

N
−

(t) }

ΨN
j (−a+1

k
(σN(t)+hNj ),−a) +

1

N

∑

{ j | hN
j ≥h

N
−

(t) }

ΨN
j (a+

1

k
(σN(t)+hNj ), a).Re
alling hNj = µNj − G(j/N), where all the µNj are independently 
hosen a

ording tothe density distribution f , we 
an pass to the limit N → ∞. First observe that hN± (t)
onverge to h∞± (t) de�ned by

h∞− (t) = sup{ h | FG(h) < ξ∞(t) } and h∞+ (t) = inf{ h | FG(h) > ξ∞(t) },where FG(h) :=
∫
Ω

∫ h

η=−∞
f(η+G(x)) dη dx ∈ [0, 1] and ξ∞ is de�ned in (5.9). Note that

FG is a probability distribution with 
ompa
t support sin
e f has 
ompa
t support and G25



is bounded. Subsequently it su�
es to take any h∞(t) ∈ [h∞− (t), h∞+ (t)]. Using σN → σ∞and the law of large numbers on µNj (
f. (5.10)) we �nd ψN (t) → ψ∞(t) with
ψ∞(t) =

∫

Ω

∫ h∞(t)

−∞

Ψ(x,−a+(σ∞(t)+h)/k,−a)f(h+G(x))dhdx

+

∫

Ω

∫ ∞

h∞(t)

Ψ(x, a+(σ∞(t)+h)/k, a)f(h+G(x))dhdx.The Young measure ν is de�ned via ∫
Ω

∫
R2 Ψ(x, e, p)ν(t, x, de, dp)dx = ψ∞(t) giving

∫

R2

Ψ̂(e, p)ν(t, x, de, dp)

=

∫

R

Ψ̂
(
a sign(µ−µ̂(t, x)) + (σ∞(t)+µ−G(x))/k, a sign(µ−µ̂(t, x))

)
f(µ)dµ,where µ̂(t, x) is any solution of ξ∞(t) = FG(µ−G(x)), e.g.

µ̂(t, x) = h∞(t) +G(x). (5.11)Using the identity ∫
R

sign(µ̂−µ)f(µ)dµ = 2F (µ̂)−1 and the testfun
tions Ψ̂(e, p) = e and
Ψ̂(e, p) = p we obtain the weak limits e(t) and p(t), respe
tively, via

e(t, x) =

∫

R

(
a sign(µ−µ̂(t, x)) + (σ∞(t)+µ−G(x))/k

)
f(µ)dµ

= a(2F (µ̂(t, x))−1) + (σ∞(t)−G(x))/k,

p(t, x) = a(2F (µ̂(t, x))−1).

(5.12)Step 4. For the 
onvergen
e of the energy we use
EN

0 (eN(t)) = EN
1 (eN(t)) + EN

2 (eN(t)), where
EN

1 (eN) =
1

N

N∑

1

k

2
(eNj −a sign(eNj ))2 and EN

2 (eN ) = − 1

N

N∑

1

hNj e
N
j .Using the expli
it form (5.8) of eNj we obtain

EN
1 (eN(t)) =

1

N

N∑

1

1

2k

(
σN(t)−G(j/N)+µNj

)2 →
∫

Ω

1

2k

(
σ∞(t)−G(x)

)2
dx+ Γf ,where Γf is de�ned in (5.5). For EN

2 we pro
eed as for ψN(t) and obtain
EN

2 (eN(t)) = − 1

N

∑

hN
j ≤h

N
−

(t)

hNj
(
−a+

1

k
(σN (t)+hNj )

)
− 1

N

∑

hN
j ≥h

N
−

(t)

hNj
(
a+

1

k
(σN(t)+hNj )

)

→ −
∫

Ω

∫

R

(µ−G(x))
(
a sign(µ−µ̂(t, x)) + (σ∞(t)−G(x)+µ)/k

)
f(µ)dµdx.26



Using the representations of the weak limits in (5.12) we obtain
EN

1 (eN(t)) →
∫

Ω

k

2
(e(t, x)−p(t, x))2 dx+ Γf .To 
ompute the limit of the last term EN

2 (eN (t)) we de�ne the auxiliary fun
tion
F̃ (µ) =

1

2

∫

R

y sign(µ−y)f(y)dy,and denote by µ = µ̂(η) ∈ [−∞,∞] any solution of F (µ) = η ∈ [0, 1]. Then one 
an showthat the following holds:(a) For η ∈ [0, 1] we have F∗(η) = F̃ (µ̂(η)).(b) For all µ, η ∈ R we have: µ ∈ ∂F∗(η) ⇐⇒ η = F (µ).Indeed, the standard Legendre-Fen
hel theory gives
η = F ′(µ) = F (µ) ⇔ µ ∈ ∂F∗(η) ⇔ µη = F(µ) + F∗(η).Thus, di�erentiating η = F (µ̂(η)) yields 1 = f(µ̂(η))µ̂′(η). Moreover, the de�nition of F̃easily gives F̃ ′(µ) = µf(µ). Thus, the fun
tion J : η 7→ F̃ (µ̂(η)) satis�es J ′(η) = µ̂(η)whi
h leads to J ′′(η) = µ̂′(η) = 1/f(µ̂(η)). By the properties of the Legrendre transformwe have (F∗)′′(η) = 1/F ′′(µ̂(η)) = 1/f(µ̂(η)) = J ′′(η).Finally, using F̃ (±∞) = 0 we obtain J(0) = J(1) = 0. The de�nition of F gives

F(µ) = max{0, µ} + m(µ) with 0 ≤ m(µ) → 0 for |µ| → ∞, whi
h implies F∗(0) =
F∗(1) = 0. Sin
e J and F 
oin
ide at η = 0 and 1 and have the same se
ond derivative,they are the same on all of [0, 1]. Thus, (a) and (b) are established.Based on these properties of the fun
tion F̃ we 
an now write

EN
2 (eN(t)) →

∫

Ω

2aF̃ (µ̂(t, x)) +G(x)e(t, x)dx− 2Γf .Then, by using the representation of p in (5.12), the de�nition of H via F∗, and therelation
µ ∈ ∂H(p) ⇔ p = a(1−2F (µ))we �nd

H(p(t, x)) = 2aF̃ (µ̂(t, x)).The 
onvergen
e EN(t, eN(t)) → E(t, e(t), p(t)) is therefore shown.Step 5. To show the 
onvergen
e of the dissipation we use that ℓ is pie
ewise monotone,i.e. there exist times 0 = t0 < t1 < · · · < tL = t su
h that ℓ is monotone on [tl−1, tl]. Asa 
onsequen
e the solutions eN and p are monotone on these intervals. By the de�nitionof the dissipation fun
tionals DissDN
and DissD we then have

DissDN
(eN , [0, t]) =

L∑

l=1

DN (eN(tl−1), e
N(tl)), DissD(p, [0, t]) =

L∑

l=1

D(p(tl−1), p(tl)).

27



Thus, it su�
es to show 
onvergen
e for these time in
rements only. Without loss ofgenerality we 
onsider the 
ase ℓ(tl−1) < ℓ(tl). With ρN → ρ∞ = 2ka2 we have
DN (eN(tl−1), e

N(tl)) =
1

N

N∑

j=1

ρN
(
sign(eNj (tl))− sign(eNj (tl1))

)
=
ρN
N

(mN (tl)−mN(tl−1))

→ ρ∞(ξ∞(tl)−ξ∞(tl−1)) =

∫

Ω

ka(p(tl, x)−p(tl−1, x))dx = D(p(tl−1), p(tl)).Thus, DissDN
(eN , [0, t]) → DissD(p, [0, t]) is established as well.Step 6: It remains to show that (e, p) is the unique energeti
 solution for the ma
ro-s
opi
 ERIS (Q, E ,D). We �rst 
onsider the energy balan
e. For all N we have themi
ros
opi
 energy balan
e

EN(t, eN(t)) + DissDN
(eN , [0, t]) = EN(0, eN0 ) +

∫ t

0

σN (s)ℓ̇(s)ds.Sin
e all four terms 
onverge to the desired limits for N we immediately obtain the energybalan
e (E) for the limit (e, p) with respe
t to the ERIS (Q, E ,D).To establish the stability 
ondition
E(t, e(t), p(t)) ≤ E(t, ẽ, p̃) +D(p(t), p̃) for all (ẽ, p̃) ∈ Q,we use the stability of eN(t) with respe
t to (RN ,EN ,DN). We test the stability usingthe state ẽN , whi
h is de�ned like eN(t) but with a di�erent fun
tion G̃ repla
ing G.We 
hoose an arbitrary G̃ ∈ H1(Ω) with ∫

Ω
G(x) dx = 0 and de�ne the new bias ve
tor

h̃ = (h̃Nj )j ∈ R
N via

h̃Nj = µNj − G̃(j/N) + λ̃N , where N∑

1

h̃Nj = 0.We de�ne F eG via F eG(h) =
∫
Ω
F (h+G̃(x))dx. Then, for every pair (ξ̃, h̃) satisfying

1−ξ̃ = F eG(h̃) and |σ̃+h̃| ≤ ka, where σ̃ = kℓ(t)− ak(2ξ̃−1),where exists a sequen
e h̃N su
h that
ẽNj = a sign eNj +

1

k
(σ̃N+h̃Nj ) and sign ẽNj =

{
1 if h̃Nj ≥ h̃N ,

−1 if h̃Nj < h̃N ,

σ̃N → σ̃, h̃N → h̃, (2m̃N−1)/N → ξ̃,where m̃N =
(
N +

∑N
1 sign ẽNj

)
/2, σ̃N = kℓ(t)− ak(2m̃N−1)/N .Repeating the 
al
ulations in Step 3 we obtain the 
onvergen
e PN (ẽN) ⇀ (ẽ, p̃) in

Q, where
0 = k(ẽ−p̃) + G̃− σ̃ and p̃(x) = a(1−2F (h̃+G̃(x)). (5.13)28



Repeating the 
al
ulations in Step 4, while 
arefully distinguishing between the still rele-vant hNj and the arti�
ial h̃Nj whi
h only di�er by G̃(j/N)− λ̃N −G(j/N) + λN , we �ndthe 
onvergen
e EN(t, ẽN) → E(t, ẽ, p̃).Moreover, we are able to 
al
ulate the limit of DN (eN(t), ẽN) as follows (using hN =

hN± (t) and negle
ting λN , λ̃N → 0):
DN(eN (t), ẽN) =

ρN
N

N∑

j=1

| sign eNj (t)− sign ẽNj |

=
ρN
N

(
#{ j | hN+G(j/N) ≤ µNj < h̃N+G̃(j/N) }

+ #{ j | h̃N+G̃(j/N) ≤ µNj < hN+G(j/N) }
)

→ ρ∞

∫

Ω

([
F (h̃+G̃(x))−F (h∞+G(x))

]+
+

[
F (h∞+G(x))−F (h̃+G̃(x))

]+
)

dx

= 2ka2

∫

Ω

|F (h∞+G(x))−F (h̃+G̃(x))|dx

= 2ka2

∫

Ω

∣∣ 1

2a
(a−p(t, x))− 1

2a
(a−p̃(x))

∣∣dx = ka

∫

Ω

∣∣p(t, x)−p̃(x)
∣∣dx

= D(p(t), p̃),where [a]+ = max{0, a}. Hen
e, we 
an pass to the limit in the stability 
ondition for
eN(t), namely EN(t, eN(t)) ≤ EN(t, ẽN ) + DN (eN(t), ẽN) and obtain E(t, e(t), p(t)) ≤
E(e, p) +D(p(t), p̃), where the 
omparison states (ẽ, p̃) are the ones 
onstru
ted in (5.13).Via the free 
hoi
e of G̃ we are able to generate a dense set of p̃ in L2(Ω; [−a, a]). However,the asso
iated strains ẽ are the equilibrium strains. By the quadrati
 nature of E , we easily�nd E(t, ê, p̃) ≥ E(t, ẽ, p̃) for all ê ∈ L2(Ω). Thus, the stability of (e(t), p(t)) is established,and (e, p) : [0, T ] → Q is shown to be an energeti
 solution for (Q, E ,D).6 Double asymptoti
sLet us now show that in the 
ase of bi-quadrati
 potential the limit does not 
hange ifone performs the double asymptoti
s (ε, δ) → (0, 0) under the 
onstraint that δ tends to 0faster than ε. The result is a 
onsequen
e of the estimates obtained in Theorem 4.5, whi
hallow one to show that the L2 di�eren
e between the vis
ous solutions and the dis
retesolutions tends to 0 with (ε, δ) → (0, 0). Sin
e the latter 
onverge weakly, it follows thatthe former also 
onverge weakly.Theorem 6.1 Consider the solutions eδ,N : [0, T ] → R

N of the vis
ous problem (4.8),where hNj = µNj −G(j/N)+λN is as above. Then, there exists a 
onstant κ∗ su
h that thefollowing holds. If the initial 
onditions eδ,N(0) are ordered equilibrium states for given
ℓ(0) su
h that

PN (eδ,N(0)) ⇀ (e0, p0) in Q and EN (0, eδ,N(0)) → E(0, e0, p0)for (ε, δ) → 0. Then, for (ε, δ) → 0 with 0 < δ < κ∗ε the solutions eδ,N : [0, T ] → R
N ofthe vis
ous problem (4.8) satisfy

PN(eδ,N(t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ],29



where (e, p) is the unique solution of the plasti
ity problem (5.6) with (e(0), p(0)) =
(e0, p0).Proof: The 
ru
ial observation is that the de�nition of the norms | · |p in R

N andin Lp(Ω) together with the embedding PN lead to an additional fa
tor 1/N1−1/p. For
(ẽ, p̃) = PN(ẽN ) and (ê, p̂) = PN(êN ) we have

‖ẽ− ê‖L2(Ω) ≤
1

N q
|ẽN − êN |p for p ∈ [1,∞] with q = min{1/2, 1/p},

‖p̃− p̂‖L2(Ω) =
2a√
N

(
#{ j | sign ẽNj 6= sign êNj }

)1/2
.If δ ≤ κ∗/N = κ∗ε, where κ∗ is the same as in Theorem 4.5, estimate (4.14) (with p = ∞and p = 1 for R1 and R2, respe
tively) yields

‖eδ,N(t)− e0,N‖L2(Ω) ≤ C
(
δ + 1/N1/2

)
.Moreover, the number of di�erent signs between eδ,N(t) and e0,N(t) is bounded by N∗(independently of δ and N), whi
h leads to the estimate

‖PN(eδ,N(t))− PN(e0,N(t))‖L2(Ω) ≤ C2

(
δ+1/N1/2

)
≤ C3/N

1/2 = C3ε
1/2,where we have used δ ≤ κ∗/N = κ∗ε again. Combining this with the 
onvergen
e statedin Theorem 5.1 we obtain the desired 
onvergen
e result.7 General potentialsIn the previous se
tions we have restri
ted our analysis to the spe
ial 
ase of a biquadrati
potential Φbiq. Moreover, the loading gext was assumed to be time independent. Here wedrop both assumptions and dis
uss the ne
essary 
hanges for generalizing the results toarbitrary loadings and generi
 stress-strain relations. More pre
isely, we show that inthe 
ase of a general double-well potential and a rather general time dependent bodyfor
es the sequen
e of limits, �rst δ → 0 and then ε = 1/N → 0, leads to basi
ally thesame general pi
ture modulo appropriate modi�
ation of the hardening fun
tion and thedissipative potential in the limiting model.7.1 Mi
ros
opi
 modelTo repla
e G(x) by a general time-dependent fun
tion G(t, x) satisfying ∫

Ω
G(t, x)dx = 0for all t ∈ [0, T ] we need to generalize the 
on
ept of ordered states. Indeed, sin
e theloading may now depend on time, a state that is ordered for t1 may no longer be orderedfor t2 > t1. Therefore we need to interpret the order 
ondition lo
ally in (t, x) ∈ [0, T ]×Ω.This is possible, sin
e G(t, x), ℓ(t), and σ(t) vary only on the ma
ros
opi
 s
ale while thebias 
oe�
ients �u
tuate on the mi
ros
opi
 s
ale and are independent of time.Moreover, sin
e the general double-well potential Φ does not allow us to de�ne aplasti
 strain p = a sign(e) as in the bi-quatrati
 
ase, we need to use the mi
ros
opi
phase indi
ator variable zj ∈ {−1, 0, 1} as in Se
tion 2. The threshold µ̂(t, x) is now30



a
tive in a mi
ros
opi
ally large but ma
ros
opi
ally small region, whi
h 
an be de�nedas follows |j − xN | ≤
√
N . For j in this domain, the 
ondition µNj > µ̂(t, x) then implies

eNj (t) ≥ e+ and zNj (t) = 1, whereas µNj < µ̂(t, x) implies eNj (t) ≤ e− and zNj (t) = −1.In the formal proof whi
h follows, the important issue will be to 
ontrol the evolutionof the threshold µ̂(t, x). Looking at the dynami
s of the dis
rete automaton in De�nition4.2 we see that phase 
hanges should only o

ur if the strain is 
riti
al. In terms ofthe ma
ros
opi
 stress σ(t, x) = σ(t) − G(t, x), we need to have σ+ = µ̂ + σ, if ˙̂µ < 0,and σ− = µ̂ + σ, if ˙̂µ > 0. Moreover, the threshold value µ̂(t, x) must always satisfy
σ + µ̂ ∈ [σ−, σ+].7.2 Ma
ros
opi
 energyAs in the spe
ial 
ase of bi-quadrati
 energy, we begin with formally 
omputing thelimiting 
ontinuum energy and determining the hardening potential.Noti
e that the relation (3.4) provides a strong 
orrelation between ej and µj and thus
ontrols the joint Young measures ν generated by (eN , zN), whi
h takes the form

∫

R2

Ψ̂(e, z)ν(t, x, de, dz)

=

∫

R

Ψ̂
(
sign(µ−µ̂(t, x)), ψsign(µ−bµ(t,x))(σ(t, x)+µ)

)
f(µ)dµ.In parti
ular, we 
an de�ne the ma
ros
opi
 
onstitutive relations

Ê(σ̃, µ̃)
def

=

∫

R

ψsign(µ−eµ)(σ̃+µ)f(µ)dµ and Ẑ(µ̃)
def

=

∫

R

sign(µ−µ̃)f(µ)dµ, (7.1)su
h that the limits e and z satisfy
e(t, x) = Ê(σ(t, x), µ̂(t, x)) and z(t, x) = Ẑ(µ̂(t, x)).By σ = Ŝ(e, µ) we denote the unique solution σ of e = Ê(σ, µ). We 
an now 
ompute thee�e
tive potential as a fun
tion of e and µ̂ via

Φ̂(e, µ̂) =

∫

M

(
Φ

(
ψsign(µ−bµ)(Ŝ(e, µ̂)+µ)

)
− µψsign(µ−bµ)(Ŝ(e, µ̂)+µ)

)
f(µ)dµ.The joint Young measure ν̂(e,bµ) generated by (ej , µj) and asso
iated with the ma
ros
opi
pair (e, µ̂) has the form

∫

R2

Ψ̂(e, µ)ν(e,bµ)(de, dµ) =

∫

M

Ψ̂
(
ψsign(µ−bµ)(Ŝ(e, µ̂)+µ), µ

)
f(µ)dµ,where Ψ̂ ∈ C0(R

2) is an arbitrary test fun
tion. In parti
ular, it 
an by 
he
ked that thede�nitions of Ŝ and Φ̂ are 
ompatible in the sense that Ŝ(e, µ̂) = ∂eΦ̂(e, µ̂).To 
al
ulate the partial derivative of Φ̂ with respe
t to µ̂ we introdu
e the fun
tions
ϕ±(σ) = ψ±(σ)σ − Φ(ψ±(σ)), (7.2)31



whi
h satisfy the relations
ϕ′±(σ) = ψ±(σ), ϕ+(σ) = sup

e≥e+

σe− Φ(e), and ϕ−(σ) = sup
e≤e−

σe− Φ(e).For the derivative we obtain (after some elementary 
al
ulations involving the 
hain rule)
∂bµΦ̂(e, µ̂) =

∂

∂µ̂

[ ∫
bµ

−∞

(
Φ(ψ−1(Ŝ(e, µ̂)+µ))− µψ−1(Ŝ(e, µ̂)+µ)

)
f(µ)dµ

+

∫ ∞

bµ

(
Φ(ψ1(Ŝ(e, µ̂)+µ))− µψ1(Ŝ(e, µ̂)+µ)

)
f(µ)dµ

]

=
(
ϕ+(Ŝ(e, µ̂)+µ̂)− ϕ−(Ŝ(e, µ̂)+µ̂)

)
f(µ̂)Noti
e that the disorder threshold µ̂ enters our formulas as a parametrization andthat the energy representation in terms of elasti
 and plasti
 variable is still impli
it. Toabolish the auxiliary variable µ̂(t, x) and to repla
e it by the 
ontinuous internal variable

z(t, x) = Ẑ(µ̂) we assume that the latter relation is invertible. We write µ̂ = µ̃(z) andapply the 
hain rule in (7.1) to obtain
µ̃′(z) =

−1

2f(µ̃(z))
< 0.We 
an now de�ne the stored energy density Φ and the stress S via

Φ(e, z) = Φ̂(e, µ̃(z)) and S(e, z) = Ŝ(e, µ̃(z)),whi
h still satisfy the relation ∂eΦ = S. Moreover, we �nd the identities
∂zΦ(e, z) = ∂bµΦ̂µ̃

′ = ϕ−(S(e, z)+µ̃(z))− ϕ+(S(e, z)+µ̃(z)), (7.3a)
∂2
zΦ(e, z) =

(
ψ−(S(e, z)+µ̃(z))− ψ+(S(e, z)+µ̃(z))

)(
∂zS(e, z) +

1

f(µ̃(z))

)
> 0. (7.3b)Next we show that the fun
tion (e, z) 7→ Φ(e, z) is 
onvex, whi
h is an importantproperty for proving existen
e and uniqueness of solutions for the asso
iated plasti
ityproblem. For this we introdu
e the auxiliary fun
tions

Ẽ(σ, z, µ) = ψsign(µ−eµ(z))(σ+µ) and E(σ, z) =

∫

R

Ẽ(σ, z, µ)f(µ)dµ,whi
h satisfy ∂zE(σ, z) = ψ−(σ+µ̃(z)) − ψ+(σ+µ̃(z)). We then have σ = S(e, z) if andonly if e = E(σ, z) = Ê(σ, µ̃(z)). Moreover, we de�ne
E(e, z, µ)

def

= Ẽ(S(e, z), z, µ)and �nd the relations
e =

∫

R

E(e, z, µ)f(µ)dµ and φ(E(e, z, µ))−µ = S(e, z). (7.4)Then, the stored-energy density takes the form
Φ(e, z) =

∫

R

(
Φ(E(e, z, µ))− µE(e, z, µ)

)
f(µ)dµ. (7.5)32



Lemma 7.1 The derivatives of Φ take the following form
∂eΦ = S, ∂zΦ = ϕ+(S(e, z)+µ̃(z))− ϕ−(S(e, z)+µ̃(z)),

D2Φ =

(
∂eS ∆∂eS

∆∂eS ∆2∂eS + ∆
f(eµ(z))

)where ∂eS = 1
∂σE(S(e,z),z)

> 0 and ∆ = ψ+(S(e, z)+µ̃(z))− ψ−(S(e, z)+µ̃(z)) > 0. Hen
e,
Φ is uniformly 
onvex.Proof: The formula for ∂eΦ follows by di�erentiation under the integral and using (7.4).The formula for ∂zΦ follows by using µ̃′(z) = 1/f(µ̃(z)) and E(e, z, µ) = ψ±(S(e, z))+µfor µ > µ̃(z) and µ < µ̃(z), respe
tively.Di�erentiating e = E(S(e, z), z) with respe
t to e and using the de�nition of E weobtain the formula for ∂eS = ∂2

eΦ. For the mixed derivative we 
an use ϕ′±(σ) = ψ±(σ)to �nd ∂e
(
∂zΦ

). For ∂2
zΦ we di�erentiate e = E(S(e, z), z) with respe
t to z and �nd

∂zS(e, z) = −∂zE
∂σE

= ∆∂eS. Together this gives
∂2
zΦ = (ϕ′+−ϕ′−)

(
∆∂eS+µ̃(z)

)
= ∆

(
∆∂eS+1/f(µ̃(z))

)
,whi
h is the desired result.The above 
al
ulations 
an be done expli
ity for the biquadrati
 potential Φbiq, see(2.1). We have ψ±(σ) = σ/k ± a and �nd

E(σ, z) =

∫

R

(
σ/k + a sign(µ−µ̃(z))

)
f(µ)dµ =

σ

k
+ az.Hen
e, S(e, z) = k(e−az), whi
h results in

E(e, z, µ) = e− az +
µ

k
+ a sign(µ−µ̃(z)).Inserting this into the de�nition (7.5) of Φ (with Φ = Φbiq) we 
an use the 
ru
ial identity

Φbiq(E(e, z, µ)) = k
2
(e−az+µ

k
)2. This follows from the stress relation S(e, z) + µ̃(z) ∈

[σ−, σ+] = [−ka, ka], whi
h implies sign(µ−µ̃(z)) = signE. Hen
e, on the one hand wehave ∫
R

Φbiq(E(e, z, µ))f(µ)dµ = k
2
(e−az)2 + 2Γf , while on the other hand we have

∫

R

(−µ)E(e, z, µ)f(µ)dµ = −Γf + aF̃ (µ̃(z)) = −Γf +H(z/a).This gives the desired formula in (5.5).7.3 Ma
ros
opi
 dissipative potentialWe now turn to the analysis of the dynami
s of z, whi
h is strongly linked to that of µ̂via z = Ẑ(µ̂). From the above we know that σ + µ̂ ∈ [σ−, σ+] and that σ+ = µ̂ + σ, if
˙̂µ < 0, and σ− = µ̂+ σ, if ˙̂µ > 0. These 
onditions 
an be formulated as a play operatorin the form

0 ∈ ∂R̂( ˙̂µ(t, x)) + µ̂(t, x) + σ(t, x), (7.6)33
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Figure 7.1: Evolution of the play operator generated by Eqn. (7.6)PSfrag repla
ements
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σ−Figure 7.2: Energies dissipates when the system jumpswhere the 1-homogeneous fri
tion potential R̂ : R → R is given via
R̂(µ̇) = −σ− sign(µ̇)µ̇ =

{
−σ−µ̇ for µ̇ ≥ 0,
−σ+µ̇ for µ̇ ≤ 0.This is a 
lassi
al hysteresis operator that provides for ea
h σ a unique solution µ̂, see[BrS96, Kre99, Vis94℄ and also Figure 7.1. Note that µ̂ + σ always lie in the interval

[σ−, σ+]. Moreover, µ̂ 
an only 
hange if µ̂+ σ is either σ− or σ+.To de�ne the ma
ros
opi
 dissipative potential we introdu
e the two quantities
ρ+

def

=

∫ ψ+(σ+)

e−

σ+ − φ(e)de > 0 and ρ−
def

=

∫ e+

ψ−(σ−)

φ(e)− σ−de > 0. (7.7)Re
alling ϕ± de�ned in (7.2) we have the following identities, see also Figure 7.2:Lemma 7.2 For the areas en
losed by the the graph of φ and the hysteresis loop we have
ρ+ = ϕ+(σ+)− ϕ−(σ+) > 0 and ρ− = ϕ−(σ−)− ϕ+(σ−) > 0,Moreover, we have the for
e relation S(e, z) + µ̃(z) = σ± =⇒ ∂zΦ(e, z) = ∓ρ±.Proof: The integral formulae follow easily using e∓ = E±(σ±) and the de�nition of ϕ±in (7.2). The se
ond statement follows dire
tly from (7.3a).The above 
omputations show that the 
riti
al thresholds −σ± for σ+µ̂ are rea
hedif and only if ∂zΦ(e, z) rea
hes the 
riti
al values ρ±. Hen
e, the play operator in (7.6) isequivalent to

0 ∈ ∂R(ż) + ∂zΦ(e, z) with R(v)
def

= ρsign(v)|v|. (7.8)34



7.4 Plasti
ity problemWe 
an now formulate the general ma
ros
opi
 equations in terms of the variables e and z.Consider the solutions eN,δ : [0, T ] → R
N of (3.2). Under the above hypotheses we expe
tthat the embedding (eN,δ, zN,δ) : [0, T ] → L2(Ω)2 
onverge in the limit �limN→∞ limδ→0�(weakly in L2(Ω)2) to the solutions (e, z) of the ma
ros
opi
 elastoplasti
ity system:

0 = ∂eΦ(e(t, x), z(t, x))−G(t, x) + σ(t) for x ∈ Ω,

∫

Ω

e(t, x)dx = ℓ(t); (7.9a)
0 ∈ ∂R(ż(t, x)) + ∂zΦ(e(t, x), z(t, x)). (7.9b)The 
onvergen
e proof must follow the proof of Theorem 4.5 for the limit δ → 0and the proof of Theorem 5.1 for N → ∞. While the former 
onvergen
e is tedious andlengthy it does not need any substantial new ideas. For the se
ond limit we see easily thatby 
onstru
tion and the de�nition σ(t, x) = σ(t) − G(t, x) the ma
ros
opi
 equilibriumequation (7.9a) is a dire
t 
onsequen
e of (4.1).For the �ow rule (7.9b) one 
an start from (7.6) whi
h is stated in terms of µ̂. Sin
e

µ̂ = µ̃(z), we have the identity ˙̂µ = µ̃′(z)ż. Sin
e µ̃′ is assumed to be stri
tly negativeand the limit problem is rate independent, we 
an repla
e ˙̂µ by −ż in any 0-homogeneoussubdi�erential. At �rst sight, R̂ and R are not dire
tly related. However, sin
e weare dealing with a simply play operator, we only have to mat
h the thresholds. While(7.6) 
orresponds to the bounds σ− ≤ µ̂ + σ ≤ σ+, the �ow rule (7.9b) 
orresponds to
−ρ− ≤ −∂zΦ ≤ ρ+. Now we 
an apply the relations derived in Lemma 7.2 to obtainsystem (7.9).7.5 Other s
alingsIn this subse
tion we brie�y dis
uss how one 
an study the 
ase when the order of thelimits is reversed and we �rst perform a limit ε → 0, and then the limit δ → 0 (see also[PuT05℄).Choose a �nite δ > 0. In the 
ase µj = 0 for all j (i.e. r = 0) the formal pointwiselimit N →∞ leads to the following 
ontinuous system

δė(t, x) = −φ(e(t, x))−
∫ x

0

gext(t, y)dy + σ(t),

∫ 1

0

e(t, x)dx = ℓ(t).Introdu
ing the displa
ement u(t, x) =
∫ x

0
e(t, ξ)dξ and taking the derivative with respe
tto x we obtain the 
lassi
al quasistati
 vis
o-elasti
 problem in spa
e dimension 1:

0 =
(
Φ′(ux) + δu̇x

)
x

+ gext(t, x), u(t, x) = 0 and u(t, 1) = ℓ(t). (7.10)In general we 
annot expe
t the 
onvergen
e of solutions of (3.2) to solutions of (7.10),be
ause of the non
onvexity of Φ.The limiting behavior may be analyzed by introdu
ing distribution fun
tion F (t, x, ·) ∈
L1(R× R) that a

ount for the �u
tuations of the strains eNj and the biases µNj via

∫

R×R

F (t, x, µ, E)ψ(µ,E)d(µ,E) = lim
N→∞

1

#J(x,N)

∑

j∈J(x,N)

ψ(µNj , e
N
j (t)),35



where J(x,N) = { j ∈ {1, ..., N} | |j−Nx| < N1/2 }. The �u
tuations of the initial strain
(eNj (0))j may be 
hosen independently of the bias (µNj ) and they do not disappear in �nitetime be
ause of the vis
osity δ > 0. Assuming that the above limits exist we obtain thefollowing transport equation:

δ∂tF (t, x, µ, e) +
(
− φ(e) + µ−G(t, x) + σ(t)

)
∂eF (t, x, µ, e) = 0, (7.11a)

∫

Ω

∫

R

∫

R

e F (t, x, µ, e)d(x, µ, e) = ℓ(t),

∫

R×R

F (t, x, µ, e)de = f(µ). (7.11b)The �rst 
onstraint in (7.11b) gives the total length of the deformed body, while these
ond says that the quen
hed disorder has the bias distribution f , whi
h is independentof t and x. System (7.11) may also be seen as transport equation for a Young measure
νt,x ∈ Prob(R× R) and 
an be treated as in [Tar87, The98, Mie99, BFS01℄.The problem 
an be simpli�ed substantially if we 
hose initial data su
h that F (0, ·)degenerates to a δ-distribution. This property is preserved by the dynami
s and leadsto solutions e = ẽ(t, x, µ) and F (t, x, µ, e) = δee(t,x,µ)(e)f(µ). Then, (7.11) redu
es to atransport equation for ẽ:

δ∂tẽ(t, x, µ) = −φ(ẽ(t, x, µ)) + µ−G(t, x) + σ(t),∫

Ω

∫

R

ẽ(t, x, µ)f(µ)dµdx = ℓ(t).
(7.12)The 
onvergen
e of the ODE-system in R

N is now trivial, as the dis
rete setting 
an beembedded via fun
tions that are pie
ewise 
onstant in x ∈ Ω. Moreover, the right-handside is lo
ally Lips
hitz 
ontinuous on L∞(Ω × R), and 
lassi
al 
ontinuous dependen
eon the initial data yields 
onvergen
e.The limit δ → 0+ for
es the solutions to stay in equilibria for all t ∈ [0, T ]. Thismeans that for small δ the solution should satisfy 0 ≈ −φ(e(t, x, µ)) + µ−G(t, x) + σ(t).Thus, it should be possible to establish the se
ond 
onvergen
e for δ → 0+ and to obtainthe same plasti
ity limit as in the 
ase limε→0 limδ→0. Again we fa
e the problem thatthe limiting system is governed by steady states whi
h are non-unique be
ause of thenon-monotoni
ity of φ. In the ODE 
ase we were able to derive the 
orresponding jumprules by hand (see (DA3)), but in the general 
ase the problem remains open.Referen
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