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Abstract
The transport sector is a crucial bottleneck in the decarbonization challenge. To study the sector’s decarbonization potential 
in the wider systems perspective, we couple a large-scale integrated assessment model, Regionalized Model of INvestments  
and Development (REMIND), to a detailed transport model, Energy Demand Generator-Transport (EDGE-T). This approach allows the  
analysis of mobility futures in the context of long-term and global energy sector transformations, at a high level of modal and 
technological granularity and internal consistency. The runtime of the coupled system increases by ~ 15–20% compared with 
a REMIND standalone application, and first convergence tests are promising. To illustrate the capabilities of our modeling 
approach, we focus on a reference pathway for Europe. Preliminary results indicate that transport service demands grow in 
the next decades for both passenger and freight transport. Transport system emissions are expected to decrease in the same 
time range, due to a shift towards electric drivetrains, advanced vehicles, more efficient modes as well as a slight increase  
in the share of biofuels.
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Abbreviations
BEV	� Battery Electric Vehicle
CES	� Constant Elasticity of Substitution
EDGE-T	� Energy Demand GEnerator-Transport
FCEV	� Fuel Cell Electric Vehicle
GCAM	� Global Change Assessment Model
HSR	� High-speed Rail
IAM	� Integrated Assessment Model
ICE	� Internal Combustion Engine
LDV	� Light Duty Vehicle
NG	� Natural Gas
REMIND	� Regionalized Model of INvestments and 

Development

1  Introduction

Mobility is a key energy service for economic development 
[1]. The transport sector is quite energy intensive, account-
ing for 28% of total global final energy demand and 23% of 
global energy-related CO2 emissions [2]. The sector largely 
relies on fossil fuels: in 2014, 95% of the sector’s energy 
consumption consisted of oil products [3]. With the aim of 
halting global warming and transitioning to CO2 neutrality in 
the coming decades, the sector should undergo a deep trans- 
formation [4]. Transport is, however, considered a crucial 
bottleneck of the transition towards carbon neutrality [5, 6,  
7]. Models have been used in the past in an attempt to capture  
the sector dynamics and analyze decarbonization strategies 
of the transport system, and a variety of transport-focused 
models have been developed. Transport sector models tend 
to either (1) be structured as very detailed technology-rich 
sectoral models that only marginally account for larger sys-
tem transformations, or (2) be part of aggregated energy 
system models with key feedbacks across economic sec-
tors but limited detail on the specific technologies (see, 
e.g., [8]). Transport models in IAMs usually suffer from the 
shortcomings of (2) and provide highly aggregated demand 
sector proxies in aggregate macroeconomic environments, 
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as their level of detail on the demand representation is 
usually limited by computational restrictions. IAMs are 
traditionally more focused on the supply side (see, e.g., 
[9]), but an increasing interest in demand oriented policy 
analysis [10–13] calls for improvements also in the demand 
representation.

The advantages of integrating models to increase sec-
toral detail but limiting complexity are also underlined in 
[14]. There have been previous efforts to overcome this 
limitation. The system engineering energy-economy model 
TIMES/MARKAL of the USA has been coupled to a bot-
tom-up, technology-rich model for transportation [15]. In 
[16], a hybrid model with top-down and bottom-up charac-
teristics was applied to analyze consumers’ preferences in 
the industrial, residential, and transportation sectors. The 
authors of [17] overcome the limited representation of per-
fectly informed consumers in an economic simulation model 
by integrating a road transport sub-component. In [18], the 
authors emphasize the importance of a careful calibration of 
the coupled system comprising a multi-sector multi-region 
model and a technology-rich transport model.

We contribute to this research area by coupling the 
global-scale, multi-region energy economy-climate model 
Regionalized Model of INvestments and Development 
(REMIND) to a detailed model of the transport sector, the 
“Energy Demand Generator Model for the Transport Sec-
tor” (EDGE-T in the remainder of this article). This sys-
tem allows a consistent representation of final energy sup-
ply, modal and technology choice, and transport service 
demand, focusing on the feedbacks between the competition 
for scarce resources at a macroeconomic level and detailed 
transport modeling and preferences. The purpose of EDGE-
T is further to provide a detailed and easily extendable envi-
ronment to evaluate transport-specific policies. REMIND 

on the other hand provides a coherent framework of the full 
energy-economy system, which ensures the consistency of 
transportation demand with economic drivers, the energy 
supply system, and competing demands from other energy 
end uses. Coupling the two models allows both the assess-
ment of the feedbacks between the transport system and 
the economy, and consistent evaluation of the impact of 
detailed transport policy scenarios within a complete mac-
roeconomic framework. The implementation of EDGE-T in 
this configuration can still be used as a flexible standalone 
environment for transport-specific assessments with limited 
computational burden. Both models are available on GitHub 
(see “Availability” in Table 1). The models and their main 
characteristics are schematically reported in Table 1 and 
described in detail in Sects. 2 and 3. Section 4 describes the 
coupling between the two models. In Sects. 5–6 we report 
the results, with a focus on Europe, and in Sect. 7 we syn-
thesize the main conclusions of this study.

2 � Description of the Modeling Tools: 
REMIND

REMIND is a global energy-economy-climate model [20, 
21]. The model incorporates the economic and climate 
systems, with a fairly detailed representation of the energy 
sector. The model time frame spans from 2005 to 2100 
and represents the world divided into a set of aggregated 
regional entities. The spatial aggregation adopted for this 
study is reported in the Appendix (A1) and comprises 12 
regions. For each region, the model maximizes utility gener-
ated by labor, capital, and energy use by means of a nested 
constant elasticity of substitution (CES) function [22]. The 
CES stages the competition between alternative production 

Table 1   REMIND and EDGE-T main characteristics

REMIND EDGE-T

Model type Energy-Economy-Climate model Transport Energy Model
Sectors represented Buildings, industry, transport, power sector Transport
Spatial resolution Global model, regional resolution Global model, country-level resolution
Sectoral resolution Aggregate sectoral representation Detailed representation of transport system
Year first release 2020 (open version. The REMIND-R model was first 

published in 2010 [19])
2020

Hardware required 16-GB RAM or higher, Core i7CPU Tested on a laptop with 16-GB RAM and Core i7CPU
System required Operating system:

Windows, Linux, MacOS
Software:
GAMS (solver: CONOPT 4)
R
Latex
R packages:
PIK-PIAM libraries https://​github.​com/​pik-​piam

Operating system:
Windows, Linux, MacOS
Software:
R
R packages:
PIK-PIAM libraries https://​github.​com/​pik-​piam

Availability https://​github.​com/​remin​dmodel https://​github.​com/​pik-​piam/​edgeT​ransp​ort
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factors and accounts for the utility value associated. The 
substitutability between factors is expressed via elasticity 
parameters � , which define the demand response to a varia-
tion in prices. Low elasticity ( � → 0 ) represents a competi-
tion between production factors that are hardly substitut-
able, and therefore will tend to be used in fixed proportions, 
whereas high elasticity ( 𝜎 > 1) refers to production factors 
that are good substitutes.

For the purpose of this study, we modified the pre-existent  
representation of the transport branch in REMIND [23]. The 
substitutability between the short/medium and long sub-
nodes within the passenger and freight nests is assumed to 
be slightly higher than 1 ( � = 1.3 ) to represent the possible 
(but limited) interchangeability across short-medium and 
long-distance travel in an increasingly globalized world. The 
elasticity between freight and passenger is instead assumed 
lower than 1 ( � = 0.8 ), to represent the difference in nature 
of transport for goods and passengers. While one might 
argue that the fundamental difference between freight and 
passenger transport should lead to no substitutability at all 
between the two nodes, a certain substitutability is required 
to allow both nodes to react independently to price signals—
e.g., if cheap decarbonization options exist for passenger 
but not freight transport, one would expect to see a stronger 
reaction to high carbon prices in the demand for freight 
transport compared with the demand for passenger transport. 
If one would use very low elasticities close to 0 between 
the two nodes, both demands would be depressed similarly.

In a policy scenario, changes in relative energy prices, 
e.g., due to carbon prices that make carbon-intensive ener-
gies more expensive, modify the initial demand configura-
tion, leading the model to favor specific production factors 

at the expense of others (e.g., towards more efficient energy 
forms, like electrification). A representation of the CES 
structure in the coupled version of REMIND is provided 
in Fig. 1.

In the CES, the energy node comprises the most energy-
intensive economic sectors: buildings, industry, and trans-
portation. The three energy demand sectors compete for 
energy use, and are substitutable with low elasticity.

The transport branch of the CES has been modified 
for consistency with the EDGE-T model presented in this 
study.1 Transport is divided into passenger and freight 
demand, which each include a short-to-medium and a long-
distance option. Transport CES nodes represent energy ser-
vice demands (units: ton kilometers for freight, passenger 
kilometers for passenger transport), as the benefit to house-
holds and firms comes from the amount of traveling and 
transported goods. The initial configuration of demand for 
each production factor is provided exogenously in the model 
calibration phase, where the set of CES efficiency param-
eters is calculated for the baseline economic and technologi-
cal development scenario. The unit conversions along the 
CES tree are included in the efficiency parameters. The rep-
resentation of the transport sector in the standalone version 
of REMIND is limited by two important constraints. First, 
given that the model represents the full energy, economy, 
and climate systems, the level of granularity achievable in 
the transport sector is limited due to computational con-
straints. Second, REMIND determines the amount of energy 

Fig. 1   REMIND CES structure. Energy carriers are provided by the 
Energy System Module (ESM) to the CES lowest-level nodes. Three 
energy-demanding sectors, Buildings, Industry, and Transport, are 

explicitly represented in the model. The area of the CES interacting 
with EDGE-T is highlighted in the blue box

1  To compare with the previous structure, the reader is invited to 
refer to [23].
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to allocate to the different demand sectors (transport, build-
ings, industry), depending on the initially provided demand 
pathways and the marginal utility associated with each extra 
unit of energy demand, in a decision-making process mainly 
driven by historic demands and resource scarcity.

The coupling with EDGE-T improves the representation 
of transport in REMIND. It significantly increases the level 
of detail on the technological and modal choice. It also adds 
further criteria to the decision-making process. This enables 
the representation of market failures and myopic customers, 
overcoming the idealizations of pure economic optimization. 
The literature shows that many factors, monetary or not, 
influence transport choices. Actual decisions result from a 
combination of tangible costs and other decision drivers: 
time invested in traveling [24, 25], inertia of the infrastruc-
ture system [26], and behavior of consumers [15, 27–30], 
among others. Technology-related costs and intangible costs 
are shared differently across modes and vehicle types.

The consistency between REMIND and EDGE-T is achieved 
via two distinct steps. First, the baseline demand for transport 
energy services in REMIND’s production function is calibrated 
to the baseline projections from EDGE-T for all regions and  

time steps. Second, REMIND and EDGE-T are solved itera-
tively to ensure consistency between the prices and quantities of 
energy services required by the transport system. In the iterative 
process, EDGE-T informs REMIND about the market shares 
gained by the fuel alternatives of a transport node (orange boxes 
in Fig. 1), as well as the per-unit costs and per-unit energy inten-
sity of each node. On the basis of this information, REMIND 
determines the volume of energy services demand for transport.

3 � Description of the Modeling Tools: EDGE‑T

EDGE-T is derived from the Global Change Assessment 
Model (GCAM) transport module [31, 32] with a high level 
of detail in its representation of technological and modal 
options. It is a partial equilibrium model with a nested 
Weibull-based function [33, 34]. The nested structure is 
reported in Table 2 for an illustrative case.2

Table 2   Representation of the Weibull-based nested structure from EDGE-T

a Passenger navigation is not included due to the small share in total travel
b Gasoline and diesel are not separately modeled
c In the current model version, only mild Hybrid and full Hybrid are implemented

Aggregate mode Sublevel Vehicle size Powertrain

Transport passengera LDV 4 wheelers (mini, subcompact car, compact car, mid-
size car, large car, van)

ICE-Liquidsb

ICE-NG
ICE-Hybridc

BEV
Fuel Cell Elec-

tric Vehicle 
(FCEV)

2 wheelers (small motorcycle, large motorcycle) ICE-Liquids
BEV

Buses and coaches - ICE-Liquids
ICE-NG
Electricity
Hydrogen

Rail and HSR - Liquids
Electricity

Aviation - Liquids
Transport freight Road Truck (< 3.5)

Truck (> 3.5 t and < 16 t)
Truck (> 16 t)

ICE-Liquids
ICE-NG
Electricity
Hydrogen

Rail - Liquids
Electricity

Shipping - Liquids
International passenger transport Aviation - Liquids
International freight transport Shipping - Liquids

2  The structure depends on the available data for the selected coun-
try/region: vehicle classes can vary.
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EDGE-T achieves a detailed representation of fleet com-
position in a flexible structure. It covers both passenger and 
freight transport, further distinguished by domestic and 
international travel. Investments and capacity additions are 
accounted for using levelized cost per kilometer (tangible 
and intangible), with a default depreciation rate of 5%. It 
includes an explicit representation of vintages for light-
duty vehicles (LDV). EDGE-T provides also projections of 
demand for transportation, based on regression formulations. 
In a standalone operation, EDGE-T runtime is 1 min on a 
single core thereby utilizing around 1 GB of RAM.

In order to reflect the competition for scarce resources, 
fuels, and emissions, a macroeconomic framework is 
required, represented by a set of inputs: GDP, population, 
fuel prices, income and price elasticity, and a set of assump-
tions on technological development. The model has country- 
level geographic aggregation and spans the time period 
from 1990 to 2100, with time steps of 5 years initially and 
10 years after 2060, and is calibrated to historical data up 
to 2010.

For European countries, the historical demand is based 
on the TRACCS database [35] and ACEA [36], as well as 
on the GCAM model database [32]. For energy efficiency of 
European LDVs, we base our assumptions on [37], for both 
historical and projected values. Transport costs and the value 
of time are based on [32, 38, 39]. For China, we base our 
assumptions on [40] as well as on the GCAM database [32]. 
For other regions, we rely solely on historical data from the 
GCAM database [32]. If necessary,3 we perform a downscal-
ing from regions to country level using GDP as a weight for 
extensive variables (e.g., transport demand), while intensive 
variables (e.g., energy intensity) are kept constant for each of 
the sub-countries of a given region. GDP and population are 
usually determined by a “Shared Socioeconomic Pathway” 
scenario [41]. A learning rate4 of 20% induces a decrease in 
purchase costs for battery electric vehicles over time [42]. 
The income elasticity for passenger modes is based on own 
calculations derived from [43] and [32]. The data input 
structure by source is represented in Table 3.

3.1 � Market Share Allocation

Transport is represented as a nested structure of subse-
quent choices among comparable alternatives. The market 
shares among alternatives are attributed at each level of the 
nested structure via a Weibull-based modification of the 

logit approach [34]. As summarized in [33], this approach 
is consistent with a wide body of literature that uses logit-
type functions in order to represent consumer choices under 
probabilistic conditions. The utility maximization function 
of a decision maker facing J choices is assumed to feature 
an independently, identically, distributed error �j associated 
to each j th choice. If �j follows a Gumbel (type I extreme 
value) distribution, the approach is defined as conditional 
logit model or multinomial logit model, since the difference 
between two Gumbel distribution is distributed logistic. In 
[34], the authors describe a modification of this approach 
in the context of energy technology choice, employing a 
Weibull (type III extreme value) distribution for the error in 
lieu of the Gumbel distribution. The Weibull-based formula-
tion is adopted in the present study.

Given the global scope of the REMIND model, a very 
rich dataset of historical data about market shares and prices 
of transport technologies would be required for a solid sta-
tistical model estimation. Unfortunately, the data available 
to the authors shows large differences in quality across 
world regions. However, given the long-term scope of the 
REMIND model, the authors consider a statistical analysis 
being beyond the purpose of this study. The introduction of 
new players in the transport sector, the economic growth of 
developing countries, and the increasing importance of cli-
mate change mitigation policies could dramatically change 
the historical patterns, calling into question the reliability of 
historically determined parameters. To compensate the lack 
of statistical foundation in the model estimation, a sensitivity 
analysis of the key parameters is provided.

Each option present in the nested structure gains a mar-
ket share which depends on its price, in comparison with 
the associated price of alternative technological options and 
fuels. Non-price-based preferences of consumers towards 
specific options are considered as well. The allocation of 
market share for alternative i occurs by means of the follow-
ing equation, defined across the available n alternatives, for 
country c and at time step t:

Table 3   Input data of EDGE-T classification

Region Entry Source

EU Countries Historical demand [32, 35, 36]
Energy efficiency LDV [37]
Energy efficiency (non-LDV) [32]

Non-EU countries Historical demand [32, 40]
Energy efficiency [32]

All countries Costs, value of time [32, 38, 39]
GDP, population [41]
BEV learning rate [42]
Income elasticity [32, 43]

3  In the current model version, detailed data have been gathered only 
for Europe and we analyze results at regional level for non-European 
regions. The model is conceived on a country level to allow country-
specific studies, provided that data is available.
4  We only consider learning by doing, i.e., existing capacities deter-
mine technology costs.
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where si,c,t is the obtained market share, the exponent � is 
an intrinsic parameter common to all technologies in the 
node, Wi,c,t is the preference parameter (weight), and pi,c,t 
is the price.

A synthetic description of the variables in Eq. 1 follows 
below.

Exponent: This determines the sensitivity of the market 
share to the price ratio, i.e., how large the price ratio between 
alternatives must be in order to produce a change in the 
related market shares. High values lead to a high sensitivity 
to price variations. The values of the exponents we adopt are 
reported in Table 4.

Preference Factor: Preference factors are synthetic 
parameters that describe country-specific preference 
towards transport alternatives. Their historical trend is 
calibrated based on historical data, while their trend in 
time is exogenously set on the basis of scenario assump-
tions. This requires assumptions on the evolution of the 
transport system (e.g., development in the infrastruc-
ture, shifts in new technology acceptance, evolution of 
the consumer preferences, government policies). For 
instance, the current market for private cars shows a pro-
nounced preference towards conventional vehicles. As a 
case point, only 3.4% of the total European fleet today 
falls into the alternative-powered vehicles classification 
[44], due to a number of rational economic reasons (e.g., 
higher upfront investment, lack of recharging infrastruc-
ture, relatively short range for a full charge) as well as a 
number of behavioral and societal reasons (e.g., neigh-
borhood effect5 [45], inertia of consumers, range anxi-
ety). In the model, the various drivers contribute each 
with a different weight to the economically driven deci-
sions of a household. We translate the consumer prefer-
ence W  into an economic equivalent 

∼
p by equating the 

two formulations, i.e.,

(1)si,c,t =
Wi,c,t

�
pi,c,t

��

∑n

k
Wk,c,t

�
pk,c,t

��
so that it follows

This formulation allows us to represent Eq. 1 as

From Eq. 3, we notice that W → 1 corresponds to a 
∼
p→ 0 

(high acceptance leads to low inconvenience costs), and 
W → 0 corresponds to 

∼
p→ ∞ (low acceptance leads to high 

inconvenience costs).
Price: Prices are taken as the combination of different 

components, namely, fuel price, non-fuel price, and value 
of time, following this formulation:

where Pf

i,c,t
 represents the price of fuel per travelled km, 

P
nf

i,c,t
 accounts for all vehicle-related costs6 (purchase cost, 

O&M costs, registration taxes and subsidies), and PT
i,c,t

 rep-
resents the intangible cost of the time invested in traveling. 
In EDGE-T, it is directly proportional to the average wage 
Rw
c,t

 and inversely proportional to the transport speed vi,c [32], 
i.e.,

Equation 6 implies that consumers are “investing” their 
time while traveling, which they value proportionally to their 
working time. Therefore, as per capita income increases, 
households prefer faster transport modes [46]. Currently, it 
is only attributed to passenger transport.

Figure  1 provides a graphical representation of the 
impact of the parameters mentioned above (exponent, 

(2)Wp� =
(
p+

∼
p
)�

(3)p̃ = p ⋅
(
W

1

� − 1
)

(4)si,c,t =

�
pi,c,t +

∼
p
i,c,t

��

∑n

k
(pk,c,t +

∼
p
k,c,t)

�

(5)pi,c,t = P
f

i,c,t
+ P

nf

i,c,t
+ PT

i,c,t

(6)PT
i,c,t

∝
Rw
c,t

vc,t

Table 4   Summary of the market 
allocation exponents in the 
EDGE-T model: λ represents the 
exponent in Eq. 1 concerning 
the decision amongst the 
categories in the sub-level. The 
sub-level column represents the 
nested sub-nodes for any given 
Level (first column)

Level Sub-level λ Source

LDVs and trucks
Buses

Powertrain choice (oil, NG, H2, BEV…) −4
−4

Own calculation
(see Supplemen-

tary information, 
A3)

4-Wheelers Vehicle choice (small car, SUV…) −2 [32]
Passenger transport
Freight transport

Mode choice (rail, road, shipping, aviation…) −3
−2

[32]

5  Influence of the community on the lifestyle of individuals, which 
might affect the preferences in vehicle choice. 6  Annual costs including discounting.
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preference factors, and prices). In this example, we con-
sider a two-node nest, where private cars compete with 
buses to supply road passenger demand. On the x-axis in 
Fig. 2a–c, we report the ratio between car price and bus 
price, on the y-axis the market share of cars. The three pan-
els of Fig. 2 refer to the different relative values of prefer-
ence factors for cars and buses, respectively. The range of 
line styles represent different values of� , i.e., −2 (dotted), 
−4 (dashed), and −8 (solid). In all cases (Fig. 2a–c), high 
� in absolute value determines a high sensitivity to a vari-
ation in price ratio (steep curves), while small � is asso-
ciated to small sensitivity to price variation (flat curves). 
The effect of preference factors is evident when compar-
ing panel (a) with (c): strong preference towards buses 
( WBus ≫ WCar , Fig. 2a) leads to sCar ≪ sBus if buses and 
cars are equally expensive ( pCar∕pBus = 1 ). The opposite 
occurs for WCar ≫ WBus (Fig. 2c): cars gain a high market 
share ( sCar ≫ sBus ) at pCar∕pBus = 1 . Curves are symmet-
ric at log

(
pCar∕pBus

)
= 0 if the weight attributed to both 

alternatives is equal ( WCar∕WBus = 1 , Fig. 2b): in this con-
figuration, a decrease and an equal increase in price of cars 
have the same effect in terms of |ΔsCar| . In Fig. 2a–c, for 

p�
Car

≡ p�
Bus

 the shares of cars and buses are indifferent to � 
as prices are simplified as shown in Eq. 1 and sCar is only a 
function of WCar and WBus.

The resulting prices for the aggregate node (road) are 
given by the weighted average of the sub-nodes,

Please note that the nested function does not minimize 
the aggregate cost pRoad : it performs the most cost-effec-
tive choice at every given level, but this does not neces-
sarily imply that the upper-level cost will be minimized, 
as represented graphically in Fig. 3. In Fig. 3a, we report 
the market shares for cars and buses as a function of the 
price ratio of the two alternatives, and in Fig. 3b the price 
of the top node (road) along with the partial price of cars 
and buses (respectively sCarpCar and sBuspBus ). W  is set to 
1 for both cars and buses, � = −8 , and pBus = 0.5$∕pkm 
(constant). For every given combination of pCar and pBus , 
the shares of cars and buses are allocated according to 
Eq. 1 in a cost-effective way (e.g., higher price leads to 
lower share). However, the total price is not monotonous: 

(7)pRoad = sCarpCar + sBuspBus

Fig. 2   The market share of 
cars as a function of the ratio 
between car price and bus price 
in a two-node nest, for different 
values of λ. Three cases are rep-
resented: low preference for cars 
(a), equal preference for cars 
and buses (b), and high prefer-
ence for cars (c). λ influences 
the steepness of the curves; W 
ratio influences the sensitivity to 
price ratio change. The x-axis is 
on a log10 scale
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following the x-axis from right to left, as cars become 
increasingly cheaper, road price slightly increases at first 
and then decreases.

3.2 � Total Demand Projections

EDGE-T provides estimates of total energy service projec-
tions through the following regression formulations for 
country c and time step t .

For passenger transport, the demand is calculated as

while for freight transport, the adopted equation is

(8)Dc,t = Dc

(
gc,t

gc,t−1

)�( pc,t

pc,t−1

)�( Qc,t

Qc,t−1

)

where Dc,t is the energy services demand, Dc represents a 
calibration value for demand in the base year, � is the income 
elasticity, � is the price elasticity, Gc,t and gc,t are the GDP and  
per capita GDP, respectively, Qc,t is population, and pc,t is the  
transport price. As can be seen from Eqs. 8 and 9, a price trend  
estimate is required as an input, along with assumptions on the  
socio-economic developments (i.e., population and GDP), from  
today until 2100. The demand trend is estimated by regression  
analysis using the income and price elasticities in Table 5.

1Based on [43] value for aviation
2High-income countries, based on [43]: average value of a 

fleet consisting of 65% LDVs, 12% aviation, 12% buses, 12% rail
3Low-income countries

(9)Dc,t = Dc

(
Gc,t

Gc,t−1

)�( pc,t

pc,t−1

)�

Fig. 3   Share of cars and buses on total road transport (a) and price of 
transport mode (total road and partial car and bus) (b) as a function 
of the ratio between Car and Bus price. Partial price represents pi · si 
for i in car, bus, while total price represents the aggregate road price 

as in Eq. 7. Total price does not decrease monotonously for car price 
decreasing (from right to left on the x-axis), given constant Bus price. 
The x-axis is on a log10 scale

Table 5   Price and income 
elasticity for all transport 
aggregate modes. Values from 
[32] unless noted otherwise

Transport mode Income elasticity Price elasticity

Passenger Long distance: 1.011

Short-medium distance: 0.42–1.003
Long distance: −1.00
Short-medium distance: −1.25

Freight Long distance: 0.40
Short-medium distance: 0.75

Long distance: −0.65
Short-medium distance: −0.65
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3.3 � Vintages Calculation for LDVs

The fleet is explicitly tracked for light-duty vehicles, the average 
lifetime of which is assumed to be 15 years. Vintages are calcu-
lated in annual time steps, to enable a better representation of the 
fleet turnover. The depreciation factor for each year is calculated 
according to the following equation:

where dy is the depreciation factor, y is the year, and l is the 
vehicle lifetime. We calculate the composition of the last his- 
torical year (2010) assuming that the new additions were con- 
stant for the previous 14 years and equal to the new additions in  
2010. This assumption is in line with figures from [47]: consid- 
ering the fleet composition in 2016 divided by age groups, each  
country shows similar figures of passenger cars registered in 
2014, 2015, and 2016. If we assume low depreciation for this 
short time range, this is an indication of rather stable vehicle 
additions each year for most European countries.

In case the depreciated fleet inherited from the previ-
ous time steps is higher than the total demand for LDVs 
projected for the following time step, a mechanism of 
early retirement decreases the inherited stock to ensure 
that 10% of the current fleet is newly added, thus avoid-
ing the unrealistic configuration with 0% sales.

The vehicle mix resulting from the vintages calcula-
tion is therefore based on the formulation described in 
Sect. 3.1, which is applied to the new additions of each 
year. The overall fleet composition is therefore derived 
from the market shares gained by each alternative in the 
current year’s sales, and the composition of the previ-
ous years’ sales, depreciating in time. As a consequence, 
vintages increase the inertia of the system.

3.4 � Input Data Calibration and Evolution in Time

3.4.1 � Learning by Doing and Its Influence on Costs

Battery electric LDVs are assumed to be subjected to 
learning effects, which only apply to the battery com-
ponent of the non-fuel cost of a battery car. We assume 
that batteries represent 20% of the total purchase price 
for each vehicle type, and purchase price represents 80% 
of the non-fuel price in Eq. 5. The total volume of bat-
tery cars at a global level decreases costs in each country, 
implying a full spillover effect.

3.4.2 � Preference Factor Evolution in Time

Preference factors are calibrated from historical obser-
vations, and therefore reflect the historical status of the 

(10)dy = 1 −

[
(y − 0.5)

l

]4

transport system in each region. For developed countries, 
which have mature transport systems—i.e., per-capita  
mobility is relatively high and the basic infrastructures are 
not expected to drastically change—we may assume time-
independent preference factors as a baseline trend. For 
developing countries, however, the major changes expected 
in future per-capita GDP, along with economic development, 
urbanization, population growth, and extensive infrastruc-
ture investments, are likely to impact on mobility demand 
patterns [1]. Under the assumption that developing coun-
tries will catch up with richer economies (convergence 
hypothesis, see among others [48]), consumption patterns 
will likely also resemble each other. To this end, we model 
their preferences to converge over time to the ones observed 
in comparable developed countries by 2100. We take into 
account that the preference for specific modes is influenced 
by the territorial morphology [49–51]: a relatively uniformly 
densely populated region like Europe offers more grounds 
for a diffused rail system, which is hindered by sub-urban 
sprawl in vast regions like the USA. We identify clusters of 
regions on the basis of their population density in 2015, and 
implement convergence for all regions in each cluster to the 
region with highest per capita GDP.

For the vehicle powertrain selection, we apply a slightly 
different approach. Preference factors at the technology 
level directly represent household acceptance. The gradual 
increase of the preference factors is equivalent to a reduction 
in the inconvenience cost over time following Eq. 3. Note 
that infrastructure is not directly represented in EDGE-T, 
but REMIND accounts for the fuel transport and distribu-
tion infrastructure capacity needed. A more detailed descrip-
tion of the preference factors assumptions is provided in the 
Appendix (A2).

4 � Coupling Mechanism Design

The coupling mechanism is designed to improve the mod-
eling of transportation projections within the full macroeco-
nomic system. Given the structure of REMIND’s calibration 
routine, (see Sect. 2), this also requires the definition of a 
baseline transport demand trend. To this end, there are two 
realizations of EDGE-T: (i) as a stand-alone model, appli-
cable for the calibration of REMIND, and (ii) as a model 
coupled to REMIND in a system that provides detail on the 
transportation sector’s energy requirements. The two model 
realizations are represented in Fig. 4 and discussed in detail 
in the following paragraph.

Standalone (calibration) Mode: EDGE-T can be used as 
a standalone model or to calibrate REMIND in the base-
line scenario (Fig. 4a). During the REMIND calibration 
process, the CES efficiency parameters are adjusted until 
the model replicates exogenous demand trends [52]. A set 
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of demand-focused models, called EDGE models (Energy 
Demand Generators), provides REMIND with sector-spe-
cific energy demand pathways. Three EDGE models have 
been developed in the past years to obtain sector-specific 
demand trends: EDGE-Buildings [52, 53], EDGE-Industry 
(Pehl et al., in preparation), and EDGE-T. In the calibration 
mode, EDGE-T calculates the fuel mix demanded by the 
transport sector, the associated costs, energy efficiency, and 
total transport energy demand (based on Eqs. 8 and 9). The 
input data that are required for the standalone mode include 
fuel prices (e.g., from previous REMIND runs), socio-eco-
nomic parameters, and technological development param-
eters. A full list including the sources that have been used 
for the results in this work are given in Table 3.

Iterative Mode: In a coupled run, EDGE-T runs in 
between REMIND iteration (Fig. 4b). During each itera-
tion, REMIND performs an intertemporal optimization 
over the full time period (2005–2150). In between itera-
tions, it provides a complete set of prices to EDGE-T, 
which in turn uses the fuel prices to calculate the result-
ing market shares of the different vehicles and fuels 
(Eqs. 5 and 1). EDGE-T delivers to REMIND the mix 
of energy carriers required by the transport sector, and 
its energy intensity and costs per kilometer, calculated 

on the basis of the detailed Weibull-based share calcula-
tion. Convergence is reached after a series of iterations 
between REMIND runs and EDGE-T runs. To suppress 
fluctuations due to the coupling (flip-flopping), EDGE-
T is set to run every 5th REMIND iteration. In Fig. 5, 
the flow of information from EDGE-T to REMIND is 
represented in more detail. EDGE-T determines the 
energy efficiency of the conversion from Final Energy 
to Energy Services for each energy carrier and each CES 
node. EDGE-T also determines the composition of the 
fuel mix that is demanded by each node of the CES struc-
ture: the available energy carriers among liquids, gases, 
power, and hydrogen are set to sum up to 1 for each CES 
node. Both energy efficiency and fuel mix directly inter-
act with the CES structure (blue arrow in Fig. 5). Capital 
costs for the vehicles in EDGE-T are accounted for as 
investments required for transportation (orange arrow 
in Fig. 5). REMIND then determines the total energy 
service demand, balancing the required investments in 
transport capital and fuel provisions on the one side 
against the associated utility from the aggregated trans-
port CES node. In between iterations, the costs of BEVs 
are adjusted in EDGE-T according to the learning rate 
applied to the cumulative amount of batteries in the fleet.

Fig. 4   The working principle of EDGE-T and REMIND in calibration 
or standalone mode (a) and in iterative mode (b). In a, REMIND and 
other input sources provide EDGE-T with the required input data, and 
EDGE-T provides the fuel mix, capital costs, energy efficiency, and 
total transport demand for REMIND calibration. In b, EDGE-T runs 

in between REMIND iterations: REMIND informs EDGE-T about 
fuel prices and total energy services demand; EDGE-T delivers to 
REMIND the mix of energy carriers required by the transport sector, 
and its energy efficiency and costs per energy services unit
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5 � Performance

In this section, we present the results we obtain from the 
REMIND/EDGE-T system. We perform a diagnostic analy-
sis of the coupled system, aiming to assess the computa-
tional performance and the quality of the convergence.

5.1 � Computational Performance

Apart from EDGE-T, three other algorithms modify the state 
of the REMIND model between iterations of the solver: (1) 
the clearing of international markets disturbs the optimiza-
tion for the regions, (2) emission reduction targets can lead 
to changing regional CO2 tax curves for regions, and (3) the 
coupling to the land-use model MAgPIE [54]. In the follow-
ing paragraphs, we compare the REMIND/EDGE-T system 
to REMIND without coupling to EDGE-T (standalone).

We report the computational performance of the cou-
pled REMIND/EDGE-T system compared with the perfor-
mances of REMIND standalone, based on the CES structure 
as in [23]. REMIND standalone runtime is between 1h 30 
min and 3 h for a 12-region setup on 12 cores with shared 
memory allocation, depending on the scenario settings and 
the starting point provided to the optimization. On average, 
the number of iterations per run is between 30 and 40. A 
REMIND/EDGE-T coupled run requires between 10 and 

20% more than standalone runs for 40 iterations in a baseline 
scenario. The increase in runtime can be explained by the 
additional runtime of EDGE-T: An EDGE-T run lasts around 
90 s, there are 8 runs in 40 iterations leading to a share of 
12 min compared with a 90 min baseline run without EDGE-
T. For REMIND runs with additional boundary conditions, 
i.e., climate policies, the REMIND runtime increases and the 
fraction of the EDGE-T runtime further decreases. We are 
thus confident that the computational burden of the EDGE-T 
coupling is moderate.

5.2 � Convergence Performance

EDGE-T modifies the state of REMIND between iterations. 
In order to understand if the models are converging towards 
a common optimal solution, we identify a measure of the 
convergence stability and use this measure to pinpoint prob-
lems for specific regions, timesteps, and markets. In general, 
the two most prominent quantities which take part in the 
coupling cycle (Fig. 4) can be used to assess the market 
stability: (I) fuel prices as given by REMIND or (II) shares 
of specific fuels in the transport sector supply as derived 
by EDGE-T. We choose to focus on fuel prices as they are 
a direct output of the solving procedure. As a measure, we 
apply the standard deviation in the iteration domain for 
region r , timestep t , and fuel type i , i.e.,

Fig. 5   The flow of information from EDGE-T to REMIND. EDGE-T 
determines the energy efficiency of the conversion from Final Energy 
to Energy Services and the composition of the fuel mix that flows in 

the transport branch of the CES structure (blue arrow). Capital costs 
are accounted for as transport-related investments on the budget equa-
tion (orange arrow)
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where �r,t,i represents the standard deviation, pr,t,i,k is the 
fuel price in iteration k , and pr,t,i is the average value of the 
fuel price across iterations. N is the total number of itera-
tions. In Fig. 6a, we report �10,1

r,t,i
 , i.e., the deviation for 12 

regions and years 2010 to 2100 in the first 10 iterations, 
and in Fig. 6b �29,20

r,t,i
 is shown. High deviation (red) implies 

variability in the fuel price trend, low deviation (green) 
indicates quite stable prices. As a general trend, fuel prices 
show some variability in the first 10 iterations (Fig. 6a), 
while prices are more stable in the last 10 model iterations 

(11)�N,m
r,t,i

=

�∑N

k=m

�
pr,t,i,k − pr,t,i

�2

N − m + 1

(Fig. 6b). The most critical case is represented by hydro-
gen in the first 10 iterations, which shows significantly high 
deviation level for many countries and in selected time steps 
(Fig. 6a). The regions CAZ and USA, for time steps between 
2010 and 2020, show the highest variability. Low deviations 
are reached in the last 10 iterations for all combinations of 
region, time step, and fuel (Fig. 6b). In Fig. 7, we report 
fuel price in the most critical case (USA, hydrogen) in the 
iteration domain for the critical year 2015 and in 2100 as a 
comparison. In Fig. 7, values for 2015 show a significant 
variability, but the price becomes increasingly stable towards 
the last iterations. Values for 2100 are quite stable until itera-
tion 20, then have a negative spike, and later stabilize around 
the former stability level.

Fig. 6   Standard deviation as in Eq. 11 for the fuel price level of different fuels for all REMIND regions from 2010 to 2100. For the region defini-
tion, the reader is invited to refer to the Appendix

Fig. 7   Electricity price variation across iteration for USA, for the 
critical years 2015 and 2100. The initial iterations show a significant 
variability in 2015 that smoothens down gradually leading to a quite 
stable price in the last 10 iterations

Fig. 8   Preference trend at technology level for Europe, in the illus-
trative case of LDVs. Consumers equally prefer BEVs and FCEVs 
by the end of the century. The takeover of hybrid liquids and NG is 
instead limited
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6 � Simulation Results

In this section, we report on preliminary results from a refer-
ence model run, with a focus on Europe and BEV diffusion 
in the market. Results indicate that the system REMIND/
EDGE-T produces results well in line with other studies. We 
performed a comparison exercise between the REMIND/
EDGE-T system (referred to as RE-T) and the 2016 EC 
Reference scenario (referred to as EURef) [55]. The set of 
preference factors for technology adoption in this scenario 
is reported in Fig. 8  for the representative case of LDVs. 
Concerning hybrid engines and natural gas engines, we 
set the preference factors to linearly grow over time, until 
reaching a saturation level. Electric railway evolves simi-
larly, catching up to fossil-fueled railway. Concerning BEV 
and FCEV cars, we model the preference factors following 

S-shaped (logistic) curves.7 This trend emulates the diffu-
sion of new technologies and has already been applied to 
alternative technologies in the automotive industry [55]. A 
more detailed description of the preference factors trend is 
provided in the Appendix (A2).

In Fig. 9, we present the values for energy services demand8 
in Europe for EURef and RE-T, both for freight (Fig. 9a) and 
passenger transport (Fig. 9b), aggregated by transport mode. 
In terms of freight demand, RE-T results are closely aligned 
with EURef for 2015 (the first projected time step) as well as 
2050. As for Passenger demand, RE-T slightly overestimates 
energy services demand values with respect to EURef in both 
2015 and 2050. In Fig. 10, we report the final energy demand 
values of EURef, RE-T, and a REMIND standalone run, based 
on the model prior to EDGE-T implementation (referred to as 
RS). RE-T shows a higher energy demand than EURef, both in 

Fig. 9   Energy services demand for selected transport mode in a base-
line run for Europe, in the reference scenario EURef and in EDGE-T, 
for freight (a) and passenger (b). For freight demand, the EDGE-T 
regression is very much in line with EURef for both 2015 and 2050. 
For passenger demand (Small cars include compact cars, subcompact 

cars, mini cars; large cars include large cars, SUVs, vans, and midsize 
cars.), the RE-T regression slightly overestimates the energy services 
demand in 2015 with respect to 2016EU-Ref, but results in 2050 are 
quite in line for the two models

7  Infrastructure is not directly represented in EDGE-T, but REMIND 
accounts for the fuel transport and distribution infrastructure capacity 
needed.
8  International aviation and international shipping are not included.
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2015 and 2050. Comparing RE-T with EURef, energy demand 
for freight is higher in RE-T than in RS for both 2015 and 
2050. The difference could be related to the different values 
of energy efficiency across the two models, as well as to the 

absence of inland navigation9 in RE-T. RS shows on the other 
hand slightly overestimated values in 2015 with respect to both 
RE-T and EURef, while it projects significantly lower values 
for both Passenger non-LDV demand and LDV demand in 

Fig. 10   Final energy demand for the transport sector in a base-
line scenario in a REMIND standalone run (RS), in a coupled run 
REMIND/EDGE-T (RE-T) and in the 2016 EU Reference scenario 
(EURef). RE-T demand is shown in the detailed composition (Small 

cars include compact cars, subcompact cars, mini cars; large cars 
include large cars, SUVs, vans, and midsize cars.), RS and EURef 
are given in aggregate values (international shipping and aviation for 
EURef are integrated with own calculations.)

Fig. 11   Total CO2 emissions from transport sector in Europe, divided into Domestic and International transport (Bunkers)

9  Passenger and freight transport on lakes and rivers.
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2050. This is a consequence of the purely (fuel- and vehicle-) 
price-driven decision-making process of REMIND. In RS, 
BEV and FCEV cars enter the market along an exogenous 
trajectory and are widely adopted as soon as the vehicle prices 
become competitive, resulting in a low final energy demand.

Total CO2 emissions from transportation are reported in 
Fig. 11, for RE-T and EURef. Emissions are reported sepa-
rately for domestic and International transportation, when 
available. While both models see a limited increase in 
demand, the resulting emissions vary due to varied shifts 
towards low-carbon options. Emissions from domestic 
transport show a 30% decrease from 2015 to 2050 in RE-T, 
while the decrease is less pronounced in EURef with only 

10% reduction. The decrease in emissions in RE-T has 
two main drivers: the increasing importance of biofuels, 
and the significant share of advanced and alternative fuel 
vehicles. In Fig. 12, we report the percentage of different 
sources for liquid fuels in 2015 and 2050: more than 10% 
of liquids in 2050 come from biomass. In Fig. 13, the 
LDV mix composition is represented by powertrain, dis-
tinguishing between previously bought vehicles (vintages) 
and annual new additions. By 2050, alternatives such as 
BEVs, FCEVs, and Hybrids gain market shares of around 
20%, 5% and 20% of the fleet, respectively.

High uncertainty exists, however, on the deployment 
of alternative vehicles, both in terms of technological 

Fig. 12   Liquid fuels composi-
tion in a coupled run REMIND/
EDGE-T

Fig. 13   LDV composition in 
Europe by powertrain, divided 
in Vintages (solid fill) and 
yearly New additions (faded 
fill), in a coupled run REMIND/
EDGE-T
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improvements (and the corresponding cost savings), con-
sumer acceptance, and infrastructure availability. To test the 
range of possible costs and acceptancy values of BEVs, we 
perform a sensitivity analysis to determine the relative influ-
ence of the preference factor and the non-fuel costs, on BEV 
market share in 2050 (Fig. 14). For this sensitivity analysis, 
prices and preference factors for all other technologies are left 
unchanged, and BEVs are compared with the strongest com-
petitor in the market, ICE cars. The price of BEVs is set to 
vary between 40 and 160% of an ICE car, while preferences for 
BEV range from 0 (very low acceptance) to indifference from 
ICE cars ( WBEV∕WICE = 1 ). At equal prices ( pBEV∕pICE = 1 ), 
high acceptance ( WBEV∕WICE ≅ 1 ) would lead BEVs to gain 
almost 40% of the market, while ICE (traditional and hybrid) 
retain around 60%. Lower prices of BEV cars ( pBEV∕pICE < 1 ) 
push the market towards BEVs, even at low acceptance rates 
( WBEV∕WICE ≪ 1 ); at WBEV ∼ 10%WICE and pBEV ∼ 0.5pICE , 
the share of BEVs would be around 50%.

7 � Conclusions and Further Developments

In this work, we describe the newly developed EDGE-T 
model and the coupling mechanism with the Integrated 
Assessment Model REMIND. The coupled system rep-
resents a consistent framework in which competition for 
scarce resources (fuels, CO2 emissions in a mitigation 

scenario), socio-economic development, and transport 
demand interact. The coupling enhances the global full-
system IAM-based scenarios by providing a much higher 
level of detail on the different transportation modes and 
vehicle choices, and creates a consistent modeling frame-
work that enables representation of behavioral aspects 
and detailed policies. The additional computation bur-
den remains moderate. We perform a diagnostic of the 
coupling mechanism, analyzing the quality of the conver-
gence. The modifications of the internal state are accom-
panied by initial fluctuations which die out gradually 
in later iterations and eventually the system converges 
towards a stable solution in the cases studied for this work. 
Results indicate that for the current parametrization and 
in the absence of specific policy measures, the REMIND-
EDGE-T system anticipates an increase in energy services 
demand in Europe of about 20% for passenger transport 
and 40% for freight between 2015 and 2050, in line with 
the EC Reference 2016 scenario [55]. Emissions from the 
transport sector decrease by 30% with respect to 2015 val-
ues due to advancements in technology, increased accept-
ance levels of alternative vehicles, and a shift to bioliquids. 
Penetration of BEV cars reaches 20% of the fleet in 2050, 
while internal combustion engines (both traditional and 
hybrid) retain 75%. A sensitivity analysis on the influence 
of consumer preferences underlines their important role 
for EDGE-T model outputs.

Fig. 14   Sensitivity analysis 
on the costs and acceptancy of 
BEV cars. Y-axis: ratio between 
an average BEV car and an 
average ICE-car. X-axis: ratio 
between acceptancy of BEVs 
and ICEs. Fill: share of BEV 
cars
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The preliminary REMIND/EDGE-T results already pro-
vide interesting insights on the possible development of the 
transport system. Further developments to improve applicabil-
ity of the tool for scenario-based policy analyses will focus 
mainly on consumer preferences. In the current implementa-
tion, technological and modal switches heavily depend on the 
initial calibration and the time path of the preference factors, 
which are set exogenously until 2100. The constituents of 
these factors are challenging to disentangle and rely on a host 
of ad hoc assumptions. For the plausibility of EDGE-T results, 
it is therefore key to improving the representation of prefer-
ences or inconvenience costs to endogenize mode switch and 
technology choice, and eventually distinguishing between the 
most significant barriers to alternative technology adoption.
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