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Synchronization of non-identical oscillators coupled through complex networks is an important exam-

ple of collective behavior, and it is interesting to ask how the structural organization of network interac-

tions influences this process. Several studies have explored and uncovered optimal topologies for

synchronization by making purposeful alterations to a network. On the other hand, the connectivity pat-

terns of many natural systems are often not static, but are rather modulated over time according to their

dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can

shape the organization of the network itself are less well understood. Here, we study initially randomly

connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a

co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of

neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reor-

ganization to be isolated. We find that a simple rule—which preserves connections between more out-

of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially

disordered networks to organize into more structured topologies that support enhanced synchronization

dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic fre-

quencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive

mechanism reorganizes the network and influences the dynamics. Importantly, for large enough cou-

pling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including

degree–frequency and frequency–neighbor frequency correlations. These properties have previously

been associated with optimal synchronization or explosive transitions in which the networks were con-

structed using global information. On the contrary, by considering a time-dependent interplay between

structure and dynamics, this work offers a mechanism through which emergent phenomena and organi-

zation can arise in complex systems utilizing local rules. VC 2017 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4994819]

Electrical activity in populations of neurons and the spread

of information or disease across social networks are com-

mon examples of dynamical processes unfolding on net-

works. In many real-world systems, synchronization of

dynamics, and its dependence on network architecture, is of

critical interest. Importantly, network interactions can also

be adaptive, such that connections rearrange over time

according to the dynamical states of the nodes. A prevalent

example of adaptation in connectivity takes place in biologi-

cal neuronal networks, which reconfigure via local plasticity

mechanisms that are informed by the dynamical relation-

ships between directly coupled elements. Motivated by these

types of systems, here we address the question of how both

structured network topology and global synchronization

can develop through a co-evolution of the underlying net-

work connectivity and the dynamics. Using the canonical

Kuramoto model, we suggest a simple, adaptive rewiring

scheme based on local phase information that can evolve

initially unstructured random graphs towards topologies

with specific organizational principles. In turn, we find that

this process simultaneously enhances synchronization. The

structure that arises in the co-evolving systems manifests as

specific relationships between the natural frequencies of the

oscillators and the network topology, properties that have

previously been associated with optimal synchronization in

which networks were purposefully constructed using com-

plete information of the network and node properties. Yet

here, without any global information, we consider a time-

dependent interplay between structure and dynamics and

offer a mechanism through which organization can emerge

in complex systems utilizing local rules.

I. INTRODUCTION

Exactly how dynamical processes unfold on networks

with non-trivial coupling between individual units remains ana)dsb@seas.upenn.edu
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important question in complex systems science.1–4 Examples

of such dynamical systems on networks include the time-

dependent patterns of electrical activity in populations of neu-

rons,5–11 the spread of information or disease across social

networks,12–15 or regulatory mechanisms in biological net-

works.16–19 In each case, the way the system evolves over

time is dependent on the specific form of the dynamics, intrin-

sic properties of each element (either of nodes or edges), and

the architecture of connectivity. Intriguing questions are if

and how collective behavior can emerge in these systems. A

significant and widespread manifestation of this is synchroni-

zation,20–24 in which a group of interacting elements converge

to the same state or evolve in unison over time. Real-world

illustrations of this phenomenon range from circadian clock

cycles,21,25 to the rhythmic patterns of functional activity in

the human brain,26–37 and synchronization in power-grid

networks.38–41

One of the most common and useful models for studying

synchronization is the canonical Kuramoto model,42,43 which

originally described the evolution of a population of N all-to-all

coupled phase oscillators that were in general non-identical

(see Refs. 44 and 45 for reviews). In recent years, this model

has been extended to study systems with heterogeneous net-

work topologies, in order to investigate how the architecture of

complex connectivity affects the onset of synchronization in

diverse oscillator populations.24,46 Such efforts have provided

important insights into the nature of the synchronization transi-

tion in different graph models including those that display a

scale-free degree distribution,47–50 those with small-world

architecture,51 and those with community structure.52–57

Within this body of work, particular attention has been

paid to understanding what features of a network inhibit or

enhance the ability to support collective dynamics. For the

case of identical oscillators, this is often studied from the per-

spective of minimizing a ratio of eigenvalues that depend

only on the structure of the network.58,59 However, the ques-

tion of “optimal” networks for synchronization can be more

interesting and complex when the oscillators’ natural fre-

quencies are heterogeneous, a characteristic of many real-

world systems. In particular, for non-identical oscillators, a

crucial consideration becomes how the structure of the net-

work is intertwined with dynamical properties. For example,

in the Kuramoto model, synchronization can be enhanced

when there are specific types of correlations between node

degrees and oscillator frequencies or between the natural fre-

quencies of adjacent oscillators.60,61 Reference 62 demon-

strated that in scale-free networks, positive frequency-degree

correlations can lead to a first-order, or explosive transition to

synchronization. More recently, discontinuous transitions

have been found by imposing constraints on the minimal dif-

ference between connected nodes’ natural frequencies.63,64

There has also been progress in analytical work on determin-

ing network topologies that enhance synchronization. For

example, it has been shown that optimal networks for syn-

chronizing collections of non-identical oscillators exhibit par-

ticular relationships between Laplacian eigenvectors and

oscillator frequencies.65–67 In addition, dimensionality reduc-

tion approaches68 have recovered many previous numerical

results and have been used to derive analytical conditions for

optimizing synchronization of Kuramoto oscillators in net-

works with attractive and repulsive interactions.69

Notably, while the coupling structure between oscilla-

tors can drive their dynamics, network dynamics can also

modulate structure. Specifically, in adaptive systems, the pat-

tern of connectivity itself is continuously updated and modi-

fied in response to the dynamics that occur on top of it.70–72

Systems that display these processes can be observed across

biological, ecological, social, and distribution networks,70,71

and collectively they can be characterized by topology and

dynamical states that co-evolve with one another. Kuramoto-

like models in particular provide a useful framework in

which to explore the effects of co-evolution and adapta-

tion,73–85 and allow one to address questions such as (i) can

and how might these systems organize themselves towards

network configurations that enhance local or global synchro-

nization? and (ii) from an initially unstructured topology,

can and how do different adaptive mechanisms lead to the

emergence of certain architectural patterns or correlations

between dynamical properties and network structure?

In addition to being adaptive, it is important to note that

the evolution of many real-world networks is often governed

by local rules, in which node dynamics update as a function

of only neighboring node states, and in turn, the placement or

weights of edges update primarily as a function of the states

of the nodes they directly couple.70–72 This type of behavior

is especially pertinent in biological systems, which typically

co-evolve in the absence of global or top-down controllers

of node states and/or the network structure. A particularly

salient example of this occurs in biological neuronal net-

works, where, under Hebbian plasticity rules, increases in

synaptic weights occur when connected neurons exhibit cor-

related dynamics,86–88 while under anti-Hebbian plasticity

rules, the opposite occurs.89,90 Other systems that obey such

local adaptation are prevalent, and studied examples include

models of reconfiguration of social networks under disease

propagation91 and opinion formation,92 or reorganization

under feedback mechanisms in boolean models with applica-

tions to gene regulatory or neural networks.93,94

In this study, we use the Kuramoto model to investigate

how a simple, adaptive rewiring scheme can evolve initially

unstructured random graphs towards ordered topologies, and

also simultaneously lead to enhanced synchronization in the

system. Importantly, the rule is informed by only local infor-

mation of neighboring nodes’ states at a given instant of time,

and works by regularly breaking and randomly rewiring con-

nections between more instantaneously phase-synchronized

oscillators, while maintaining connections between more de-

synchronized pairs of oscillators. This process repeats contin-

ually over time, and can be thought of as a repulsive mecha-

nism, or one that tends to represses assortativity (in terms of

nodes connecting to other nodes with similar instantaneous

states). We find that co-evolution of the network and dynam-

ics can promote the degree of synchronization in the system,

which occurs in tandem with the development of specific cor-

relations between the topology and the natural frequencies of

the oscillators. In previous work, these features have been

imposed by purposeful selection, or have been shown to arise

in studies on optimizing synchronization. Here, however, the
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properties emerge from the interplay between network struc-

ture and dynamics. Focusing on the simplest situation of binary,

undirected networks, we isolate the effects of adaptive reconfig-

uration alone and thereby uncover a process through which

heightened collective dynamics and organized network structure

can simultaneously arise in a local, unsupervised way.

The remainder of this paper is organized as follows.

Section II states the formulation of Kuramoto dynamics on

complex networks. In Sec. III, we first briefly outline past

work to motivate the specific mechanism studied here and

then detail the proposed co-evolutionary strategy. Section IV

describes several interesting results of the adaptive process,

and in Sec. V, we discuss the implications of our findings

and conclude.

II. THE KURAMOTO MODEL ON COMPLEX
NETWORKS

Of the many models that exist for studying synchroniza-

tion phenomena on complex networks, one of the most use-

ful has been the paradigmatic Kuramoto model.42,43 It

describes the dynamical evolution of a population of N phase

oscillators coupled on a network according to the following

equation:

_hi ¼ xi þ a
XN

j¼1

Aij sin ðhj � hiÞ: (1)

In this formulation, hi is the instantaneous phase of the ith
oscillator, xi is its natural frequency, a is the overall cou-

pling strength, and A is the N�N adjacency matrix describ-

ing the connectivity of the network. In this report, we

consider binary, undirected networks, such that

Aij ¼
1 if there is an edge between nodes i and j;

0 otherwise:

(
(2)

The natural frequencies {xi} are distributed according to a

probability density g(x), which we will take to be symmetric

and centered around a mean frequency of zero.

The overall amount of synchrony in the population at a

given time t is typically quantified with the Kuramoto order

parameter42,43

R tð Þeiw tð Þ ¼ 1

N

XN

j¼1

eihj tð Þ; (3)

which can be thought of as the centroid of the N phases on a

unit circle in the complex plane.46 Here, w is the average

phase of the population, and the modulus R, given by,

R tð Þ ¼ 1

N

����XN

j¼1

eihj tð Þ
����; (4)

quantifies the amount of phase coherence. When the oscilla-

tors’ phases are uniformly spread, R� 0 and the system

exhibits low synchrony. On the other hand, when the phases

become tightly clustered, R� 1 and the system exhibits high

levels of synchrony.

We can also use this order parameter, which ranges

from R¼ 0 (complete incoherence) to R¼ 1 (complete phase

synchronization), to monitor the global degree of synchrony

in the system as a function of the coupling a. In this case,

one typically reports a time-averaged value

hRi ¼ 1

TA

ðTRþTA

TR

R tð Þdt; (5)

computed on an interval of length TA after several transient

or relaxation time steps TR have been discarded.

III. MOTIVATION AND THE CO-EVOLUTIONARY
MODEL

In this study, we consider a feedback process between

dynamics and the restructuring of network topology that inte-

grates different ideas and results from previous studies on

adaptation or enhancing synchronization in networks of non-

identical Kuramoto oscillators. To better frame and motivate

our contributions, we briefly outline some past work on these

topics below.

A. Inspiration from prior investigations

In general, it is expected that different adaptive strategies

will lead to the emergence of different patterns in both the

network topology and the dynamics, and a number of studies

have explored these ideas using, for example, chaotic dynam-

ics,74–76,95,96 models of neuronal dynamics,79,97,98 and non-

identical Kuramoto oscillators.73,77,78,80–85,99–104 Focusing on

the latter of these classes, one early study found that dynami-

cal rewiring to force links between nodes with more similar

time-averaged frequencies creates strongly synchronized

clusters of nodes, and the network reaches a small-world con-

figuration.80 More recently, local, competitive adaptation

mechanisms, which tend to strengthen (weaken) connections

between more dynamically coherent (incoherent) oscillators,

have been shown to lead to the emergence of modular organi-

zation in Kuramoto networks,73,84,85,101 and positive feedback

can simultaneously enhance synchronization and percolation

in initially fragmented networks.105 In complementary efforts,

the authors of Refs. 82, 83 studied a growth process in which

heterogeneous oscillators make connections to external pace-

maker nodes so as to become locked with the pace-maker

dynamics. When the attachment process is preferential and

determined from differences in the dynamical states of the

heterogeneous oscillators and pace-maker nodes, entrainment

can occur simultaneously with the emergence of a power law

degree distribution. In addition, adaptive processes that favor

the strengthening of edges between more out of phase oscilla-

tors can significantly improve global synchronization in non-

identical Kuramoto networks.99,100 However, the resulting

networks were not necessarily evolved under fixed total

weight and the topology was not analyzed in depth for rela-

tionships between the structure and dynamical properties as a

function of the global coupling, both of which are aims of the

present work.
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Another line of inquiry revolves around the problem of

optimizing synchronization of non-identical systems of

Kuramoto oscillators in order to understand what structural

properties of the network are important. For example, using

an optimization procedure to maximize the order parameter

R, the author of Refs. 60, 61 uncovered key features that can

enhance synchronization. These include the placement of

more edges on oscillators with natural frequencies further

from the mean (yielding positive correlations between

degrees and frequency magnitudes) as well as the preferential

attachment of oscillators with positive frequencies to other

oscillators with negative frequencies (and vice-versa, yielding

negative correlations between the intrinsic frequencies of

adjacent oscillators). These findings have been corroborated

in several other studies on optimizing networks of non-

identical Kuramoto oscillators as well.106–109 Furthermore,

forcing positive versus negative correlations between adja-

cent frequencies appears to change the critical coupling and

exponents for the synchronization transition.110 Other work

has considered the enhancement of both global and local

phase synchronization,111,112 finding that local synchroniza-

tion leads to an onset of collective dynamics at lower cou-

plings—facilitated by clustering and the grouping together of

nodes with similar frequencies—but makes the state of full

synchronization more difficult to achieve. More recently,

spectral analyses have been employed to show that synchro-

nization is optimized under specific couplings of the natural

frequencies to eigenvectors of the Laplacian, i.e., when the

frequencies are maximally aligned with the dominant eigen-

vector.65–67 Importantly, the previously reviewed works

indeed uncover several crucial network features for optimiz-

ing collective dynamics. However, the question of if or via

what type of mechanism such networks could be generated or

evolved for using solely local adaptive strategies—and how

such a process occurs over time and at different couplings—

remains open.

In this study, we numerically investigate the interplay

between network structure and oscillator dynamics. We report

on a local, state-dependent rewiring mechanism that can (i)
evolve initially random and uncorrelated networks towards

structured configurations with specific relationships between

dynamical and topological properties and (ii) through a recip-

rocal process, simultaneously improve synchronization. While

the ideas of dynamical self-organization from local rules and

global network optimization strategies have been studied on

separate fronts, here, we attempt to specifically consider them

in tandem. In what follows, we first state the initial setup and

parameters of the system (Sec. III B) and then describe the co-

evolutionary process in detail (Sec. III C).

B. Initial network construction

All simulations were carried out with a 4th order Runge-

Kutta method using a time step of Dt¼ 0.02. Initial phases

{hi(0)} were distributed at random in the interval [–p, p],

and the natural frequencies {xi} were drawn at random from

a uniform distribution in the range of [–2, 2], denoted as

{xU}. In Appendix B, we also show results for the case of a

Gaussian distribution with zero mean and unit standard devi-

ation, denoted as {xG}.

The initial network configurations are binary and undi-

rected Erd€os-Renyi (ER) random graphs of type G(N, M)

(i.e., the network is drawn from the distribution of random

graphs with N nodes and M edges), with a corresponding

average degree hki ¼ 2M=N. Importantly, this initialization

produces networks without special topological characteris-

tics and without relationships between network properties

and dynamical properties. We will denote the initial network

configurations as Go and the networks at the end of the adap-

tive process as G?, and similarly, we will use “o” and “?” to

denote quantities computed on each network. For the remain-

der of the main text, we fix N¼ 100 and examine two differ-

ent values of M chosen such that hki ¼ 12:5 or hki ¼ 25. (In

the supplementary material, we also explore the robustness

of several results with respect to variations in system size,

the network density, the initial network topology, and the

presence of asymmetry in the frequency distribution).

Reported measures correspond to ensemble averages over

independent simulations using different instantiations of the

initial network, initial phases, and node frequencies.

C. Mechanism of adaptive rewiring

We turn now to an explanation of the co-evolutionary

scheme, whereby the network is restructured according to

the dynamics. Motivated by the previous literature,99,100 we

take as our starting point a mechanism that aims to maintain

connectivity between a given node and its neighbors with

which it is more instantaneously out of phase, and rewire

connections between a given node and its neighbor that it is

most instantaneously synchronized with. After setting up the

initial conditions and network Go as described in Sec. III B,

the dynamics are first run for a relaxation interval TR. Then

at regular times tm¼ TRþmT, where m is the number of

attempted rewirings and T is an associated interval character-

izing the adaptation process (which will be some multiple of

the time step), rewiring is invoked as follows. A node i is

chosen at random from the network and the quantity

fij ¼
1

2
1� cos hi tmð Þ � hj tmð Þ

� �� �
(6)

is computed for all j 2 N i, where N i denotes the set of

nodes directly connected to i. Note that this function is local
in the sense that it depends only on the instantaneous phases

of node i and of the nodes j 2 N i that are neighbors of i at

the current time tm. It takes on a value of 1 when hi – hj

¼6p (maximal phase separation) and a value of 0 when

hi � hj mod 2p ¼ 0 (perfectly in-phase). The edge (i, k),

where k is the node in N i minimizing fik, is then broken, and

a new link (i, q) is formed between node i and a randomly

selected node q that was not one of i0s neighbors. This step

corresponds to the breaking and rewiring of the link between

node i and the neighbor k with which it is currently most in

phase (Fig. 1). These dynamical update rules are repeated m
times, resulting in an evolved network G?. We use m¼ 2.5

� 104, which allows us to observe interesting dynamical and

structural changes in the system, while being within enough
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computational reason to allow for the exploration of several

different networks and natural frequency parameter changes

(however, we also point out places where the capability to run

more adaptation steps may offer additional insight). Finally,

once rewiring has ceased, the dynamics continue to run atop

G? for another relaxation interval. For clarity, in the figures

that follow, all quantities that change every time step will be

plotted as a function of “time, t,” and all quantities that

change only when the network is rewired will be plotted as a

function of “rewiring step, m.”
Before continuing, we wish to point out some features of

this mechanism. First, it applies to the case of binary, undirected

connectivity, and maintains the density of the network through-

out co-evolution. Setting these constraints disambiguates the

role of rearrangements in the network topology in shaping

results from other factors such as increases in the total number

of edges, heterogeneous weighting, or directionality of edges.

Furthermore, it allows for the cleanest comparison against

much of the previous work on optimizing synchronization via

rewiring. Second, we note that this adaptive process is a type of

repulsive or suppressive strategy, but unlike Refs. 74–78, 99,

100, which consider weight plasticity, or Refs. 82 and 83 which

consider a growth mechanism, we consider connectivity reorga-

nization where edges in an initially random configuration are

periodically pruned and rewired between the most instanta-

neously and locally in-phase oscillators, but remain in place

between the more locally dissonant oscillators. The random

rewiring after edge deletion introduces realistic stochasticity

and allows for a sampling of the network, without breaking the

locality condition for determining which edge is rewired.71

Though not a model of a specific system, this type of disassorta-

tive mechanism has real-world counterparts. For example, it is

in the same vein as anti-Hebbian learning rules in neural sys-

tems, where synapses weaken between more dynamically

correlated neurons and strengthen between more incoherent

neurons.89,90 It may also mimic some strategies of opinion for-

mation and influence on social networks, where people prefer-

entially link with those of more different opinions from

themselves.113

IV. RESULTS

A. Co-evolved networks exhibit enhanced global
synchronization

Our first main result is that the adaptive rewiring mecha-

nism is able to enhance global synchronization over a broad

range of coupling values. This result holds for both fre-

quency distributions (see Appendix B for the analysis with

the normally distributed frequencies) and values of average

degree. In addition, the result is quite robust to an order of

magnitude difference in the structural reconfiguration inter-

val, T.

We first discuss the time evolution of the order parame-

ter R(t) for the co-evolving networks. Figure 2 depicts exam-

ples of R(t) vs. time t for the case of uniformly distributed

frequencies {xU} and T¼ 0.2 time units. The top row corre-

sponds to networks with hki ¼ 25, at representative cou-

plings (a) a¼ 0.065 and (b) a¼ 0.085, and the bottom row

corresponds to networks with hki ¼ 12:5, at representative

couplings (c) a¼ 0.135 and (d) a¼ 0.22. In each case, the

dynamics are first run atop the initially static ER network for

several time steps. Adaptation begins at the time denoted by

the first red line and ends after several time steps at the sec-

ond red line. We observe that at lower coupling values—

where the dynamics on the initial network exhibit little

coherence across time—the adaptive strategy is able to sig-

nificantly increase R to an intermediate value during the

rewiring stage, though the order parameter may still exhibit

fluctuations. As a is increased, the order parameter in the

non-adaptive regime sits at an intermediate average value,

but once co-evolution begins, the self-organizing network

rearranges such that R again increases and reaches a value

near 1. When rewiring ceases after several cycles, the result-

ing networks are able to maintain these states of heightened

collective dynamics, and the global order parameter remains

at an increased value from its initial location. However,

though the time-averaged value hRi remains high for the net-

works with hki ¼ 12:5, we find that in some cases the order

parameter still exhibits fluctuations, even after the adaptation

period has ceased. This intuitively suggests that the co-

evolved networks with higher average degree are more

robust to the stochasticity in the rewiring and the exact

placement of edges in the network, in terms of their ability

to support a smooth, frequency-synchronized steady-state.

Appendix B 1 contains additional figures of R(t) vs. time for

the case of normally distributed frequencies. Also, in the

supplementary material, we examine another measure of

synchronization that quantifies how the number of locally
synchronized clusters53 of oscillators changes as a function

of time due to the network rearranging.113

In order to obtain a more complete picture of the effect

of adaptive rewiring, we performed a sweep over a compre-

hensive coupling range. For hki ¼ 12:5 we considered a

range a 2 [0, 0.4], and for hki ¼ 25, we considered a 2 [0,

0.2]; in both cases, couplings were sampled at a resolution

Da¼ 0.005. At each value of a, networks and initial

FIG. 1. A schematic of the network

update process. (a) At a time tm¼TR

þmT, node i is selected at random

from all nodes in the network, and it

breaks its connection to the node k,

which (b) is the node it is instanta-

neously most in phase with. (c) A new

edge (i, q) is then created between i
and a randomly selected node q with

phase hq.
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conditions were initialized as described in Sec. III B. We

then ran a set of simulations on the original, uncorrelated

networks Go, and obtained a time-averaged value of the

global order parameter hRi [Eq. (5)] over the last 1� 104

time steps. A second set of simulations were then run with

the same initial conditions, but under the co-evolutionary

scheme (i.e., the network topology was allowed to co-evolve

with the dynamics for m rewiring steps, after which a time-

averaged order parameter was computed on the final adapted

network G?).
We show the outcome of this analysis in Fig. 3, where

each panel is a plot of hRi vs. a. Panels (a) and (b) corre-

spond to networks with hki ¼ 12:5 and hki ¼ 25, respec-

tively. Furthermore, we plot curves for two different values

of the waiting time between structural changes to the net-

work: T¼ 0.2 and T¼ 2. As can be seen from each of the

curves, there is a broad range of a over which the rewiring

mechanism for network restructuring leads to improvements

(higher values) of the time-averaged global order parameter

compared to the random networks. This enhancement does

not begin immediately at a¼ 0, but once the coupling is high

enough (still at a relatively low value), the order parameter

for the adaptive networks G? begins to increase at a much

steeper rate. Once this begins, we find that hRi remains

noticeably higher for the adaptive networks compared to the

static networks Go, across all couplings beyond a certain

point. These trends are robust for both rewiring intervals and

average degree values, and as can be seen in Appendix B 1,

the results hold for the case of normally distributed natural

frequencies as well. (The supplementary material shows

additional and qualitatively similar findings for simulations

on slightly larger networks or those with lower mean degree,

and for the case of a non-symmetric frequency distribution.)

It is also worth noting that—although the total number of

times the network is allowed to rewire is limited by compu-

tational constraints—since there is no built-in condition for

FIG. 2. Examples of the global order

parameter R(t) vs. time t for various

representative couplings a. In each

case, the dynamics were first run atop

an initially ER random graph with an

average degree hki, after which co-

evolution of the network and dynamics

took place between the two red lines.

The natural frequencies were drawn

from the uniform distribution {xU},

and the mean degree hki and the cou-

pling a used for each panel were (a)

hki ¼ 25, a¼ 0.065, (b) hki ¼ 25,

a¼ 0.085, (c) hki ¼ 12:5, a¼ 0.135,

and (d) hki ¼ 12:5, a¼ 0.22. During

the adaptation period, the network was

continually rewired once every T¼ 0.2

time units. The co-evolving networks

exhibit enhanced collective dynamics,

as observed by increases in the global

order parameter.

FIG. 3. The time-averaged order parameter hRi vs. coupling a. In each panel, the gray data points correspond to static ER random graphs Go, and the blue and

yellow points correspond to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from

the uniform distribution {xU}, and the mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations, and

the lines between data points serve as guides for the eye.

073115-6 Papadopoulos et al. Chaos 27, 073115 (2017)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-013707


adaptation to cease and since there is a stochastic component

to the network reconfiguration, the ability to run more adap-

tation steps may yield even further improved results.

B. Emerging structure and correlations between
network topology and dynamical properties

Given that dynamical reconfiguration of the network—

informed by local information on the states of connected

oscillators—can improve the overall amount of synchroniza-

tion in the system, a second line of inquiry is understanding

what properties of the evolved networks lend themselves to

this capability. In particular, does the self-enacted rewiring

mechanism generate the interesting topological features and

correlations that arise with global optimization schemes,

which, in a cyclic process, then allow synchronization to

occur?

We begin by investigating the networks G? for certain

relationships between their topology and the natural frequen-

cies of the oscillators. Two properties in particular—degree-

frequency correlations and frequency-neighbor frequency

correlations—have been associated with networks optimized

for synchronization60,61,65 (see Secs. I and III).

Though the natural frequencies of each node remain

fixed here, the way oscillators of different frequencies are

coupled to one another changes over time from the initial,

random configuration to the end of adaptation. In Fig. 4, we

show examples of how two specific relationships manifest in

an ER network Go and the corresponding adaptively rewired

network G?. The top and bottom two rows of Fig. 4 corre-

spond to networks with hki ¼ 12:5 and hki ¼ 25, respec-

tively, and in both cases, the first column corresponds to the

ER network and the second column corresponds to the

rewired network. For each node i, we first computed the off-

set ~xi of i’s intrinsic frequency from the mean of the popula-

tion, such that ~xi ¼ xi � hxi where hxi is the mean

intrinsic frequency averaged over all oscillators. Panels (a,
b) and (g, h) then show node degree ki vs. frequency offset

~xi, and panels (d, e) and (j, k) show the average frequency

offset of oscillator i0s neighbors, h~xiN i
¼
P

j2N i
~xj=ki, vs.

frequency offset ~xi. Note that the coupling values a are such

that the original networks exhibited intermediate levels of

synchrony, and the reorganized networks were able to

entrain the population to a higher level of synchrony.

As expected, initially there is little correlation present

between the topology of the network and the dynamical prop-

erty of oscillator frequency, as illustrated by the lack of organi-

zation in the plots in the first column of Fig. 4. However, from

observation of the second column, it is evident that when the

co-evolutionary mechanism can enhance synchronization, it

simultaneously leads to the emergence of very specific correla-

tions between the network connectivity and the intrinsic fre-

quencies of the oscillators. We first note the appearance of the

marked v-shaped curves characterizing the plots of ki vs. ~xi

[panels (b) and (h)], which signify that the node degree

becomes positively correlated with the absolute value of the

oscillator frequency offset. In other words, nodes with natural

frequencies further from the mean natural frequency of the

population gather proportionately more edges.

A second finding is that when increased global syn-

chrony arises from a restructuring of the network, the final

arrangement exhibits distinct relationships between the fre-

quency offsets of a given oscillator and the frequency offsets

of that central oscillator’s direct neighbors on the network.

The patterns in panels (e) and (k) showing h~xiN i
vs. ~xi point

to the fact that oscillators with positive natural frequency off-

sets tend to become connected to other oscillators with, on

average, negative natural frequency offsets. Since the mean

frequency hxi � 0 for the distributions we consider, this

implies that oscillators with positive frequencies tend to

become neighbored by oscillators with negative intrinsic fre-

quencies and vice-versa. In Appendix A, we also define an

additional measure of frequency-neighbor frequency organi-

zation as the correlation C~x;
P

~x between natural frequency

offsets and the sum of neighbor frequency offsets. Fig. 11

shows the examples of this quantity for the same networks as

those in Fig. 4.

To quantify these relationships and study how they

evolve with the number of rewiring steps, we considered two

summary statistics, following Refs. 60, 61, 110, 111. The first

of these measures is a simple (Pearson) correlation coefficient,

Cj~xj;k, to quantify the strength of the relationship between the

node degree and the magnitude of the frequency offset. This

measure increases steadily throughout co-evolution of the net-

work and dynamics [Figs. 4(c) and 4(i)]. In addition, for each

node i, we calculated the fraction of its neighbors fi that had

natural frequency offsets of the opposite sign as compared to

the central oscillator i0s frequency offset, and then computed

an average f ¼
P

i fi=N over all nodes in the network. This

metric also increases as the network is rewired, as observed in

Figs. 4(f) and 4(l). (See Fig. 11 for an example of the evolu-

tion of the additional measure, C~x;
P

~x .)

We have thus far shown examples of emerging struc-

tural patterns that arise when a co-evolved network is clearly

able to entrain the oscillators to a state of higher synchrony.

However, the ability of this behavior to occur is also depen-

dent on the coupling a. In order to better understand the

appearance of the topological and dynamical correlations

and their dependence on the overall coupling, we computed

the same measures (Cj~xj;k and f) as a function of a (see Figs.

5 and 6, respectively). In each case, the measures were com-

puted on the final networks G? that exist at the end of the

adaptation period.

For each combination of natural frequency distribution,

average degree, and rewiring interval, we observe robust

trends. In particular, Cj~xj;k remains near zero at low coupling

values and then proceeds to quickly increase as a function of

a until it saturates to a relatively steady value close to 1. In

other words, as the overall coupling increases, the correlation

between the node degrees and the magnitude of the frequency

offsets becomes more apparent. The frequency-neighbor fre-

quency relationship follows a similar evolution. Specifically,

the mean fraction f (averaged over all nodes in the network)

of an oscillator’s neighbors that have frequency offsets of

opposite sign relative to that of the central oscillator also

grows with a, plateauing near a high value of f� 0.9. This

points to a heightened mixing of oscillators with different
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intrinsic properties that arises with increased coupling. We

also refer the reader to Fig. 12 for the analysis of the supple-

mentary quantity, C~x;
P

~x , which supports and further aids in

the understanding of these findings.

There are three main features in these trends worth point-

ing out explicitly. First, for the rewiring intervals considered

here, the general form of the curves appears to be relatively

independent of the time T between a structural perturbation to

the network. Second, the two quantities considered, Cj~xj;k
and f, both exhibit a clear change in behavior (signified by

the onset of a rapid increase in value) at approximately the

same coupling. Thus, in the proposed co-evolutionary scheme,

the emergence of these relationships between the network

topology and intrinsic properties of the dynamics seem to

arise in tandem to one another, in that the appearance of one

feature implies the development of the other. A final impor-

tant observation is that the coupling at which these patterns

begin to take shape is near the coupling at which the global

order parameter begins to rise (compare to Fig. 3). (Figure 12

shows that consistent behavior is found for C~x;
P

~x as well.)

Thus, as found by Refs. 60, 61, 110, and 111 in their work on

optimization of synchronization of non-identical oscillators,

enhanced collective behavior co-occurs with the materializa-

tion of specific relationships between the network connectivity

FIG. 4. Relationships between the network structure and the intrinsic frequencies of the oscillators. The top two rows show examples for a network with

hki ¼ 12:5, and the bottom two rows show examples for a network with hki ¼ 25; in both cases, the frequencies were drawn from the uniform distribution

{xU}. For each network density, the first column corresponds to an ER random graph that exhibits only intermediate levels of synchrony at the displayed cou-

pling a (as measured by hRi), and the second column corresponds to the adapted network, which exhibits a higher level of synchrony. These plots highlight

key relationships that emerge from the co-evolutionary network update rule. (a, b); (g, h) Node degree ki vs. frequency offset ~xi. (d, e); (j, k) Average neighbor

frequency offset h~xiN i
vs. frequency offset ~x i. (c); (i) The correlation Cj~x j;k between node degree ki and the magnitude of the frequency offset j~x ij vs. the

number of rewiring steps m, and (f); (l) the mean fraction f (i.e., averaged over all nodes in the network) of an oscillator’s neighbors that have frequency offsets

of opposite sign compared to that of the central oscillator vs. the number of rewiring steps m.
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and the intrinsic frequencies. Here, we have shown that

the organized structure in the form of these correlations can

emerge in networks from a simple, adaptive mechanism based

on a combination of local state information and stochastic

rewiring. We also again note that allowing the co-evolution to

run longer may give heightened results, especially at low to

intermediate couplings.

C. Analysis of the time-dependence of the adaptive
mechanism

Our analysis thus far has considered the global order

parameter and the correlations between the intrinsic frequen-

cies and the network topology that arise in the adaptively

rewired networks, and we have mainly focused on how these

properties manifest after several rewirings of the network and

how their strength depends on the overall coupling. While

Figs. 2 and 4 do briefly examine the time-dependence of these

properties as well, in order to gain a further understanding

of the adaptation mechanism, we carry out a more in-depth

exploration of how the co-evolutionary process unfolds over

time at different couplings, and also how individual oscillators

with different intrinsic dynamical properties (i.e., intrinsic fre-

quencies) are affected by the rewiring mechanism.

1. Evolution of the instantaneous frequencies

To investigate the temporal evolution of the system—and

how the adaptive scheme works from a more local stand-

point—we first examine the instantaneous frequencies _hiðtÞ as

a function of time. Recall that the condition for a frequency-

synchronized state corresponds to the instantaneous frequen-

cies of all oscillators locking to the mean natural frequency of

the population, hxi. Thus, to better understand the mechanism

of the co-evolution process, we specifically consider how

oscillators of different intrinsic frequencies (in terms of how

close or far xi is to the average natural frequency hxi) evolve

as a function of time, and how they may be differentially

affected by the time-dependent rewiring of the network.

Figure 7 shows examples of _hiðtÞ vs. t for several values of

the coupling a around the point in which the dynamics transi-

tion to a synchronized state. The top set of panels (a) corre-

spond to a network with hki ¼ 12:5, and the bottom set of

panels (b) correspond to a network with hki ¼ 25; the

FIG. 5. These plots depict the correlation Cj~x j;k between the node degree ki and the magnitude of the frequency offset j~x ij, as a function of the coupling. In

each panel, the gray data points correspond to the initial, uncorrelated ER random graphs Go, and the blue and yellow points correspond to the adapted net-

works G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from the uniform distribution {xU}, and the

mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. The dip observed in (b) at a� 0.5 is due to the localization of edges on a cluster of oscillators

with natural frequencies near the mean; this is examined further in Sec. IV C. All curves depict averages over 25 instantiations, and the lines between data

points serve as guides for the eye.

FIG. 6. These plots depict the mean fraction f (averaged over all nodes in the network) of an oscillator’s neighbors that have frequency offsets of opposite sign

compared to that of the central oscillator, as a function of the coupling. In each panel, the gray data points correspond to the initial, uncorrelated ER random

graphs Go, and the blue and yellow points correspond to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The

frequencies were drawn from the uniform distribution {xU}, and the mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict aver-

ages over 25 instantiations, and the lines between data points serve as guides for the eye.
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FIG. 7. Examples of the instantaneous frequencies _h iðtÞ vs. time t, for various representative couplings a. The mean degree of the networks are (a) hki ¼ 12:5

and (b) hki ¼ 25, and the natural frequencies {xU} were drawn from the uniform distribution. In all panels, each row corresponds to one oscillator, and the

rows from top to bottom are in displayed in ascending order of the quantity ~x i ¼ xi � hxi (i.e., the offset from the mean intrinsic frequency of the population).

For each coupling, the dynamics were first run atop an initially ER random graph, after which co-evolution of the network and dynamics took place between

the two black lines. During the adaptation period, the network was continually rewired once every T¼ 0.2 time units.
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frequencies are uniformly distributed and the same in both

cases (Appendix B 3 contains additional figures for examples

with normally distributed frequencies). Each row corresponds

to one oscillator, and the rows from top to bottom are dis-

played in ascending order of the quantity ~xi ¼ xi � hxi (i.e.,

the offset from the mean natural frequency of the population).

Adaptation of the network sets in at the time denoted by the

first black line and ends at the second black line.

At very low coupling, adaptively rewiring the network

appears to have negligible effect on the instantaneous frequen-

cies. But as the coupling increases to an intermediate value

near the transition to synchronization (see Fig. 3), we observe

a change in the dynamics: oscillators with intrinsic frequen-

cies near the center of the distribution start evolving with a

frequency near the mean earliest, and then later in time, more

outlying oscillators become incorporated into the coherent

group. For the denser networks in particular, there are a few

sampled coupling values for which the co-evolution results in

partial synchronization of those oscillators around the center

of the natural frequency distribution, but that coherent core

does not extend to the most disparate oscillators. Thus, there

does seem to be a dependence on the natural frequencies

in terms of how the co-evolution develops and affects differ-

ent oscillators over time. However, at even larger coupling,

the transition in the dynamics becomes much faster, and the

dependence on the intrinsic frequencies is less noticeable. The

findings are similar for the case of normally distributed fre-

quencies (Appendix B 3, Fig. 19)

Before continuing, we note that the figures shown here

(and throughout the rest of Sec. IV C) are for single realiza-

tions of the initial network topology and the intrinsic frequen-

cies. For these particular instantiations, we have sampled

coupling values that highlight different regimes—in regard to

the behavior over time and the overall outcome—of the adap-

tive rewiring. However, it is important to state that over dif-

ferent realizations, we observe some variability in terms of

how the co-evolution affects the dynamics and the network

over time, and whether or not it is able to cause significant

changes in the dynamics and the network structure at a given

coupling. This is especially apparent for the sparser networks

and low values of a. Though it is beyond the scope of the cur-

rent work, it may be interesting in future work to investigate

the degree of this variability and its dependence on the fre-

quency distribution and properties of the network such as

density.

2. Evolution of the correlations between topology
and natural frequencies

We know from Sec. IV B that increases in the order

parameter due to the adaptive mechanism are accompanied

by the emergence of correlations between the network topol-

ogy and the oscillator frequencies. Therefore, we now further

examine how the network organization restructures over

time as the system co-evolves. We focus, in particular, on

the evolution of the degree of individual nodes across time

and also consider how the degree–natural frequency relation-

ship proceeds as the network rearranges itself at different

values of the global coupling.

For the same initial networks, natural frequencies, and

coupling values, Fig. 8 shows the node degree ki vs. the

rewiring step m, and Fig. 9 shows the correlation Cj~xj;k
between the absolute value of the frequency offset j~xij and

the node degree ki vs. the rewiring step m. In each case, panel

(a) corresponds to a network with hki ¼ 12:5, and panel (b)
corresponds to a network with hki ¼ 25. The natural fre-

quencies were uniformly distributed in both cases. Below,

we discuss the observations for each of the densities in turn.

For hki ¼ 12:5 and at low coupling (e.g., a¼ 0.04), the

rewiring does not noticeably affect how edges are distributed

on particular oscillators, and Cj~xj;k fluctuates around zero. As

the coupling increases, though, the co-evolution begins to cause

significant changes in the network (see panels for a¼ 0.114

and a¼ 0.0115). In particular, there is a short period of time in

which edges become concentrated on oscillators with natural

frequencies near the mean, whereas oscillators with intrinsic

frequencies on the ends of the distribution remain with rela-

tively low degrees. This is followed by the gradual spreading

out of edges onto the more outlying oscillators with subsequent

rewiring. We can quantify this behavior by considering the

value of the correlation Cj~xj;k. For a¼ 0.114 and a¼ 0.115 in

this example, we see that a slight negative degree-frequency

correlation develops briefly in the initial stages of the rewiring,

followed by an increase in this quantity to a high, positive

value.

For the case of hki ¼ 25, we again see that at very low

coupling, the rewiring does not drive persistent changes in

the system. Interestingly, though, for slightly larger coupling

(e.g., a¼ 0.04 and a¼ 0.05 in this example), there is a regime

during which edges consistently build up on oscillators with

natural frequencies near the center of the distribution. This

results in Cj~xj;k becoming significantly negative due to the

co-evolution of the network and dynamics, and unlike the sit-

uation in the sparser networks, this behavior can persist

across the entire rewiring period (see, for example, a¼ 0.04).

The concentration of edges on oscillators near the center of

the distribution explains the dips in Fig. 5(b), which shows

Cj~xj;k vs. a for the case of hki ¼ 25. We also note that near

the value of the coupling where this dip occurs, the order

parameter for the rewired networks begins to deviate in a pos-

itive direction from that of the ER networks [Fig. 3(b)],

which is likely due to the formation of a locally synchronized

cluster of oscillators with natural frequencies near the popula-

tion average. We do not observe this type of organization for

the sparser networks, suggesting an intricate dependence on

the network density; this may be an interesting parameter to

explore further in the future work. As the coupling increases

further to intermediate values (for example, a¼ 0.06 and

a¼ 0.065), we find that there is first an increase in degree

for oscillators with frequencies more closely surrounding

the mean, which gives rise to a slightly negative degree-

frequency correlation. But as the network continues to co-

evolve, edges begin to localize on more outlying oscillators,

and the degree-frequency correlation crosses zero and then

starts to become positive. However, the most disparate oscil-

lators may still not be able to gather enough edges, resulting

in a positive correlation that is less than 1 (i.e., there is some

scatter in the relationship).
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FIG. 8. Examples of the evolution of the node degree ki vs. the rewiring step m, for various representative couplings a. The mean degree of the networks are

(a) hki ¼ 12:5 and (b) hki ¼ 25, and the natural frequencies {xU} were drawn from the uniform distribution. In all panels, each row corresponds to one oscilla-

tor, and the rows from top to bottom are in displayed in ascending order of the quantity ~xi ¼ xi � hxi (i.e., the offset from the mean intrinsic frequency of the

population). The network was continually rewired once every T¼ 0.2 time units.
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FIG. 9. Examples of the evolution of the correlation Cj~x j;k between the oscillator frequency offset ~x i and the node degree ki, vs. the rewiring step m, for various

representative couplings a. The mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25, and the natural frequencies {xU} were drawn from the uni-

form distribution. The network was continually rewired once every T¼ 0.2 time units.
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As the coupling increases further, there is another shift in

terms of how the adaptive mechanism affects the networks.

For the example with hki ¼ 12:5, we observe some fluctua-

tion in Cj~xj;k when the rewiring begins, but eventually the

period of marked negative degree-frequency correlation dis-

appears and the edges rapidly become redistributed onto

oscillators with the most disparate intrinsic frequencies. We

also find that for the examples with hki ¼ 25; Cj~xj;k almost

immediately begins to rise—rather than decreasing first—at

high coupling. In addition, the correlation in each case

quickly saturates at a value close to 1, signifying a very

strong degree-frequency relationship that extends to even the

oscillators on the far edges of the natural frequency distribu-

tion. Thus, at large couplings, the time evolution is similar

for hki ¼ 12:5 and hki ¼ 25. If network co-evolution were

allowed to increase for an even longer time, we may observe

a plateau in Cj~xj;k for more intermediate values of a, though

not necessarily at a level corresponding to a near-perfect posi-

tive relationship. We repeat this analysis for the case of nor-

mally distributed frequencies {xG} in Sec. B III of the

Appendix and find qualitatively similar results.

Although a rigorous mathematical treatment of the co-

evolution is beyond the scope of this study, it is useful to pos-

tulate mechanisms that might be able to explain and comple-

ment at least some of the empirically based descriptions

discussed above. For example, one interesting observation is

that, at low coupling and in the initial stages of rewiring,

oscillators with more outlying natural frequencies tend to

have lower degree than some oscillators with natural frequen-

cies closer to the mean of the distribution. This seems to

occur, at least to some extent, for both values of the network

density and for both frequency distributions. In order to think

about these phenomena, we first remark that changes in the

structure of the network (and thus the dynamics) must be due

to which edges are broken over time, since the location of a

new edge is chosen at random. Second, oscillators with more

disparate intrinsic frequencies will naturally want to rotate

more rapidly than oscillators with more moderate intrinsic fre-

quencies. Following this reasoning, we can then posit that the

most outlying oscillators will have a greater chance of being

most in phase with a focal node—which is selected at ran-

dom—than oscillators with moderate intrinsic frequencies

whose phases will tend to change less quickly and thus reduce

the chance of being nearby the focal node. Therefore, this

thought process suggests that when the selected focal node

assesses its phase difference with its neighbors, the oscillators

with natural frequencies most different from the mean will

have a greater probability of becoming disconnected, and this

would account for the observed lower degree of these nodes

at low coupling and at the start of the adaptation period.

Preliminary results show that making T smaller can some-

times slightly enhance or extend the region of couplings over

which Cj~xj;k goes negative, which is consistent with the pro-

posed logic. Another observation, though, is that the degree-

frequency correlation can change sign over time (go from

slightly negative to positive), which does not seem directly

obvious to explain from the previously outlined arguments. In

order to make wholly concrete statements and to understand

in more detail how the adaptation process gives rise to various

results—such as the intricacies of the time-evolution of the

network and also the dependence of that time-evolution on

parameters like the global coupling, network density, and

frequency distribution—will require a much more in-depth

investigation. While outside the main contributions of this

paper, it would be useful to formulate and carry out a more

formal theoretical analysis in future work.

D. Spectral analysis

As an additional connection to recent literature on opti-

mizing synchronization in heterogeneous oscillator popula-

tions, we also carry out a spectral analysis, following the

work of Ref. 65. In a series of papers,65–67 the authors

derived conditions that describe the deviation from full phase

locking and also uncovered conditions for promoting syn-

chronization. By considering a linearized form of the dynam-

ics valid in the high-synchrony regime, one of the main

analytical results is that the global order parameter, R, can in

general be optimized by aligning the vector of intrinsic fre-

quencies ~x with the dominant eigenvector vN of the

Laplacian matrix L (where the elements of the Laplacian are

defined as Lij ¼ dijki � Aij). Given the enhanced synchroni-

zation found here, it is interesting to ask whether the local

rewiring rule that we study generates networks with similar

spectral properties:

To address this question, we examine the quantity

jh ~x
jj~xjj ;

vN

jjvN jjij, where ~x
jj~xjj is the (normalized) vector of natural

frequency offsets, and vN

jjvN jj is the (normalized) dominant

Laplacian eigenvector. In order to understand the depen-

dence of this frequency-eigenvector alignment on the cou-

pling strength, at each value of a we compute jh ~x
jj~xjj ;

vN

jjvN jjij on

the final, co-evolved networks G?, as well as on the original

ER networks Go, for comparison. Figures 10(a) and 10(b)

depict the results of this analysis for the two different values

of the mean degree (see Fig. 22 for the corresponding analy-

sis with normally distributed frequencies). At low coupling,

jh ~x
jj~xjj ;

vN

jjvN jjij for the rewired networks remains low, near its

initial value. Note that in this regime the order parameter is

low as well (Fig. 3). As a increases, however, the frequency-

eigenvector overlap begins to grow and rapidly increases

until a leveling out with a further increase in the coupling;

the plateau occurs close to the maximal value of one for both

values of the mean degree. As with the relationships between

natural frequency and node degree and between natural fre-

quency and neighbor natural frequency considered in Sec.

IV B, the increasing projection of the intrinsic frequencies

onto the dominant Laplacian eigenvector is accompanied by

an increase in R. Thus, the adaptive reconfiguration can

cause persistent changes to the organization of the network

that are consistent with the conditions predicted by Ref. 65

for optimizing synchronization, and the result becomes more

prominent at higher coupling. The investigation for the case

of normally distributed frequencies yields similar conclu-

sions (see Appendix B 4, Fig. 22). This analysis provides a

more analytical understanding of how the adaptive process is

able to enhance the synchronization in the system.
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V. DISCUSSION AND CONCLUSIONS

In this study, we examined co-evolution of network

topology and Kuramoto phase-oscillator dynamics as a

means to evolve initially unstructured networks towards

organized architectures, and to simultaneously enhance syn-

chronization in the system. In terms of the interplay between

network topology and synchronization, it has been found

that the presence of specific correlations between the

structural layout of the network and the oscillator frequen-

cies (which is a property of the dynamics) can greatly aug-

ment global synchronization. But these relationships usually

arise through optimization strategies that utilize global

information about the network or of node states

time.60,61,65–67,106–112 On the other hand, a different set of

work has shown that adaptive strategies that suppress phase

differences between Kuramoto oscillators99,100 can lead to

heightened synchronization. But in the latter case, the inter-

actions between the topology of the adaptive networks and

the node frequencies have not been explored or examined in

depth. An interesting line of investigation is to therefore

understand whether an adaptive rule for updating the struc-

ture of the network—based on local dynamical informa-

tion—can shape the topological patterns and correlations

with dynamical properties whose emergence simultaneously

enhances synchronization. To this end, we studied a type of

disassortative mechanism in which the edge between a ran-

domly selected node and its most instantaneously synchro-

nized neighbor is stochastically rewired, while all other

edges are maintained. Co-evolution of the dynamics and

network connectivity occurs through the repetition of this

feedback process, whereby an initially random network con-

tinually reconfigures in response to the states of locally con-

nected oscillators.

Through numerical simulation, we examined the time-

evolution of this process and the dependence on the global

coupling. We found that for a significant coupling range, the

rewiring strategy was able to bring the system to a state of

heightened collective behavior, as measured by the global

order parameter. It is interesting to note that this eventual

state of enhanced global coherency depended on the adaptive

prevention of local synchronization, suggesting a trade-off

between local and global dynamics. Other work on adaptive

Kuramoto networks has shown that the opposite type of rule,

i.e., a competitive strategy which strengthens connections

between more in-phase oscillators at the expense of weakening

connections elsewhere, can lead to modular organization and

hence enhanced local rather than global synchrony.84,85,101

Perhaps most importantly, the enhancement of synchronization

indeed co-occurred with the emergence of correlations in the

network that have been shown to arise through the optimiza-

tion of the global order parameter. In particular, when the

oscillators exhibited more coherent dynamics, the evolved net-

works tended to exhibit (1) positive correlations between node

degrees and the magnitude of oscillators’ difference in their

natural frequency from the mean of the population (i.e., magni-

tude of their frequency offset), and (2) the preference of con-

nections between oscillators that have natural frequency

offsets of opposite sign. We found that the emergence of

these relationships and how the adaptive scheme reorganized

the network topology over time depended on the global cou-

pling parameter and the intrinsic frequencies, and—to some

extent—the density of the network. We note that in addition to

enhancing synchronization,60,61,110,111 the purposeful place-

ment of these types of correlations has also been associated

with first order, or explosive, synchronization transitions.62–64

Far fewer studies, however, have considered how these struc-

tural patterns and relationships might arise in a network from

local rearrangements or adaptation (though see Ref. 103 for

one example).

It is important to state that the results found in this study

are in line with the previous work that has examined adaptive

schemes in which weights grow or shrink as a function of

phase differences, which also find that rules that actively sup-

press differences in state are able to improve synchronization.

However, there are some important distinctions between the

strategies studied in Ref. 99 and the one studied here. In

regard to the former, the network starts as completely discon-

nected, with no edges between any oscillators. The edge

weights between all pairs of nodes are then allowed to

increase, up to some bound. In this way, the total density of

the network is allowed to change, connections can theoreti-

cally occur between all pairs of oscillators at a given time,

FIG. 10. Evolution of the overlap jh ~x
jj~x jj ;

vN

jjvN jjij between the intrinsic frequencies ~x and the dominant Laplacian eigenvector vN as a function of the coupling a.

In each panel, the gray data points correspond to the original, uncorrelated ER random graphs Go, and the blue and yellow curves correspond to the adapted

networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The natural frequencies were drawn from the uniform distribution {xU},

and the mean degree hki of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations, and the lines between data

points serve as guides for the eye.
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and the individual edge weights can fluctuate. Other work has

considered a situation in which the topology of the network is

pre-defined and constant, while the weights can change.100

On the other hand, we wished to consider a situation in which

the effect of topological organization alone could be isolated

from other confounding features. We thus studied a case

where the network begins connected, but in a random, disor-

ganized arrangement, and then allowed the system to self-

organize under the constraint of fixed total density and also

binary and undirected connectivity. Together, these condi-

tions mean that only a fraction of the nodes can be directly

connected at a given time, and the goal is to understand

if simple rearrangements in those connections, based on a

local rule for determining the rewiring, can enhance synchro-

nization. Thus, the path to a more coherent state is different

here than in previous studies on co-evolutionary Kuramoto

systems.

Of course, there are still some methodological consider-

ations to make note of, as well as possibilities for future work.

For example, we studied an adaptive mechanism that utilized

only local information of a given node, and that preserved

binary connectivity and the total number of edges, so as to iso-

late the effects of rearrangements in network topology from

other factors. However, incorporating these constraints

required that there be a random component to the rewiring

process, and there was not a natural or self-employed stopping

condition for network reconfiguration. One could thus further

explore how results are affected by the length of time the sys-

tem is allowed to co-evolve, and also how this relates to

changes in other parameters, such as the size of the network,

the mean degree, and the spread in the intrinsic frequencies.

In addition, since some stochasticity or noise is likely a realis-

tic feature of natural systems, it would be interesting to incor-

porate that into a related adaptation model that allows for

weighted rather than just binary connectivity between network

units. Another parameter that may be important to examine

more in depth is the time-scale of the adaptation in the net-

work. It is also important to note that, while meaningful

insights can be gained from the empirical and observational

type of analysis carried out in this study, in forthcoming work

it will be useful to try and understand the origins of various

results from a more fundamental and theoretical standpoint.

Finally, we point out that continued investigation into the role

of network topology and adaptation in shaping dynamics and

structure may lead to a better understanding of the develop-

ment and function of real-world networks, such as neuronal

assemblies or large-scale brain structure and activity patterns.

Indeed, there are many computational models of these systems

in which this can be studied.6–9,11,79,98,114–117 In addition,

for neural systems in particular, it is interesting to note that

while synchronization is often a desired property, hyper-

synchronization can also be detrimental, as is the case with

epileptic seizures.118 Therefore, further examination of the

trade-off and transition between local and global synchrony in

biologically motivated models119,120—and understanding how

this might occur adaptively over time and influence the struc-

ture and function of a network—continues to be an exciting

line of study.

In conclusion, understanding the concurrent influence of

network architecture on the emergence of collective dynam-

ics2–4,20,21 and, in turn, the effect of a dynamical process on

reshaping or inducing network structure,70–72 is currently an

active area of research across a broad set of disciplines,

including the physical, social, and biological sciences. Along

these lines, we have studied a dynamical rewiring scheme

for networks of Kuramoto oscillators. The adaptive rule for

the network was specifically inspired by previous work

on optimizing networks for synchronization of heteroge-

neous oscillators,60,61,65–67,106–112 from which we wished to

uncover how similar dynamics and organization could occur

through a co-evolution process. We found that a restructur-

ing of the network, in which the effect of incoherence is sup-

pressed by maintaining edges between disparate oscillators,

while randomly rewiring edges between the most locally and

instantaneously in-phase oscillators, led to the emergence of

distinct topological patterns and correlations that concur-

rently enhance the system’s ability to synchronize. This

study thus sheds light on a mechanism for how enhanced

synchronization and network structure might arise in a sys-

tem that evolves and reconfigures according to local infor-

mation alone, without knowledge of global connectivity or

node states.

SUPPLEMENTARY MATERIAL

See supplementary material for an analysis of the time-

evolution of locally synchronized clusters and also for an

examination of the robustness of some of the main results to

simple variations in the network size, the initial network

topology, and the frequency distribution.
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APPENDIX A: AN ADDITIONAL MEASURE TO
QUANTIFY RELATIONSHIPS BETWEEN NETWORK
TOPOLOGY AND OSCILLATOR FREQUENCIES

In Sec. IV B, we used two measures to quantify emerging

relationships between the intrinsic frequencies of the oscilla-

tors and the network topology: the correlation Cj~xj;k between

the magnitude of the oscillator frequency offset j~xij and the

node degree ki, and the mean fraction f of an oscillator’s

neighbors that have natural frequency offsets of opposite sign

compared to the frequency offset of the central oscillator
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(averaged across all nodes in the system).60,61 Here we define

a related measure to further understand the organization that

arises in the adaptively rewired networks. In particular, for

each oscillator i, we assess the association between the fre-

quency offset ~xi and the sum of oscillator i0s neighbors’ fre-

quency offsets
P

j2N i
~xj. We quantify this relationship in the

system by considering the correlation C~x;
P

~x between ~xi

and
P

j2N i
~xj across all nodes in the network.

Figure 11 gives examples of this relationship for the

same networks as those in Fig. 4 in the main text. The top

and bottom rows correspond to networks with hki ¼ 12:5

and hki ¼ 25, respectively. Panels (a) and (d) show that in

the ER networks, there is no clear relationship between fre-

quency offset and the sum of neighbor frequency offsets, as

expected. In the adaptively rewired networks—panels (b)

and (e)—the order parameter has increased from its original

value and there is a strong negative correlation between

~xi and
P

j2N i
~xj. Not only do connections tend to form

between oscillators that have frequency offsets of opposite

sign (as measured by f), but in addition, edges become dis-

tributed in the network such that the sum of each oscillator’s

neighbor frequency offsets proportionately cancel out each

FIG. 11. The relationship between the oscillator frequency offset ~xi and the sum of neighbor frequency offsets
P

j2N i
~x j can be used to further quantify the

interplay between the network structure and the intrinsic frequencies of the oscillators that arises due to the co-evolutionary process. The top row shows an

example of this relationship for a network with hki ¼ 12:5, and the bottom row shows examples for a network with hki ¼ 25; in both cases, the frequencies

were drawn from the uniform distribution {xU}. For each network density, the first column corresponds to an ER random graph that exhibits only intermediate

levels of synchrony at the displayed coupling a (as measured by hRi), and the second column corresponds to the adapted network, which exhibits a higher level

of synchrony. (a, b); (d, e) The total neighbor frequency offset
P

j2N i
~x j vs. frequency offset ~x i. (c); (f) The correlation C~x ;

P
~x between the oscillator fre-

quency offset ~x i and the sum of neighbor frequency offsets
P

j2N i
~x j vs. the number of rewiring steps m.

FIG. 12. These plots depict the correlation C~x ;
P

~x between the oscillator frequency offset ~x i and the sum of neighbor frequency offsets
P

j2N i
~x j as a func-

tion of the coupling. In each panel, the gray data points correspond to the initial, uncorrelated ER random graphs Go, and the blue and yellow points correspond

to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from the uniform distribution

{xU}, and the mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations, and the lines between data

points serve as guides for the eye.
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oscillator’s own difference from the mean frequency of the

population. Figures 11(c) and 11(f) show how the strength of

this relationship—quantified by the correlation C~x;
P

~x—

evolves as the network is rewired.

Figure 12 shows C~x;
P

~x as a function of the coupling a.

As a increases, C~x;
P

~x decreases to a strong negative value

and then remains approximately constant for larger values of

the coupling. (Compare to Figs. 5 and 6, which show Cj~xj;k
vs. a and f vs. a, respectively). Finally, note that the strong

decreases in C~x;
P

~x occur in conjunction with increases in

the order parameter (Fig. 3).

APPENDIX B: ANALYSIS WITH NORMALLY
DISTRIBUTED FREQUENCIES

The analysis in the main text was carried out using natu-

ral frequencies {xU} drawn at random from the uniform dis-

tribution in the range [–2, 2]. To demonstrate that the main

results are not specific to a single choice of the frequency

distribution, in this Appendix, we also consider the case of

frequencies {xG} drawn from a normal distribution with

zero mean and unit standard deviation. The findings shown

here are largely consistent with those reported in the main

text.

1. Dependence of the order parameter on time
and global coupling

Figure 13 shows examples of the order parameter R(t)
vs. time t at different values of the coupling and for the two

different mean degrees hki ¼ 12:5 and hki ¼ 25. For these

trials and values of the coupling, we observe that the order

parameter increases due to the rewiring of the network,

which takes place between the two red lines. (Figure 2 from

the main text shows the examples for the case of uniformly

distributed natural frequencies.)

FIG. 13. Examples of the global order

parameter R(t) vs. time t, for various

representative couplings a. In each

case, the dynamics were first run atop

an initially ER random graph with

average degree hki, after which co-

evolution of the network and dynamics

took place between the two red lines.

The natural frequencies were drawn

from a normal distribution {xG},

and the mean degree hki and the cou-

pling a used for each panel were (a)

hki ¼ 25; a ¼ 0:05, (b) hki ¼ 25; a
¼ 0:075, (c) hki ¼ 12:5; a ¼ 0:1, and

(d) hki ¼ 12:5; a ¼ 0:2. During the

adaptation period, the network was

continually rewired once every T¼ 0.2

time units. The co-evolving networks

exhibit enhanced collective dynamics,

as observed by increases in the global

order parameter.

FIG. 14. The time-averaged order parameter hRi vs. coupling a. In each panel, the gray data points correspond to static ER random graphs Go, and the blue and

yellow points correspond to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from

the normal distribution {xG}, and the mean degree of the networks were (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations,

and the lines between data points serve as guides for the eye.
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FIG. 15. Relationships between the network structure and the intrinsic frequencies of the oscillators. The top three rows show examples for a network with

hki ¼ 12:5, and the bottom three rows show examples for a network with hki ¼ 25; in both cases, the frequencies were drawn from the normal distribution

{xG}. For each network density, the first column corresponds to an ER random graph that exhibits only intermediate levels of synchrony at the displayed cou-

pling a (as measured by hRi), and the second column corresponds to the adapted network, which exhibits a higher level of synchrony. These plots highlight
key relationships that emerge from the co-evolutionary network update rule. (a, b); (j, k) Node degree ki vs. frequency offset ~x i. (d, e); (m, n) Average neighbor

frequency offset h~xiN i
vs. frequency offset ~x i. (g, h); (p, q) Total neighbor frequency offset

P
j2N i

~xj vs. frequency offset ~x i. (c); (l) The correlation Cj~x j;k
between the node degree ki and the magnitude of the frequency offset j~x ij vs. the number of rewiring steps m. (f); (o) The mean fraction f (i.e., averaged over

all nodes in the network) of an oscillator’s neighbors that have frequency offsets of opposite sign compared to that of the central oscillator vs. the number of

rewiring steps m. (i); (r) The correlation C~x ;
P

~x between the oscillator frequency offset ~x i and the sum of neighbor frequency offsets
P

j2N i
~x j vs. the number

of rewiring steps m.
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FIG. 16. These plots depict the correlation Cj~x j;k between the node degree ki and the magnitude of the frequency offset j~x ij, as a function of the coupling. In

each panel, the gray data points correspond to the initial, uncorrelated ER random graphs Go, and the blue and yellow points correspond to the adapted net-

works G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from the normal distribution {xG}, and the mean

degree of the networks are (a) hki ¼ 12:5, and (b) hki ¼ 25. The dip observed in (b) at a� 0.4 is due to the localization of edges on a cluster of oscillators with

natural frequencies near the mean of the distribution; this is examined further in Appendix B 3. All curves depict averages over 25 instantiations, and the lines

between data points serve as guides for the eye.

FIG. 17. These plots depict the mean fraction f (i.e., averaged over all nodes in the network) of an oscillator’s neighbors that have natural frequency offsets of

opposite sign compared to that of the central oscillator, as a function of the coupling. In each panel, the gray data points correspond to the initial, uncorrelated

ER random graphs Go, and the blue and yellow points correspond to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respec-

tively. The frequencies were drawn from the normal distribution {xG}, and the mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves

depict averages over 25 instantiations, and the lines between data points serve as guides for the eye.

FIG. 18. These plots depict the correlation C~x ;
P

~x between the oscillator frequency offset ~x i and the sum of neighbor frequency offsets
P

j2N i
~x j, as a func-

tion of the coupling. In each panel, the gray data points correspond to the initial, uncorrelated ER random graphs Go, and the orange and yellow points corre-

spond to the adapted networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The frequencies were drawn from the normal

distribution {xG}, and the mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations, and the lines

between data points serve as guides for the eye.
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FIG. 19. Examples of the instantaneous frequencies _h iðtÞ vs. time t, for various representative couplings a. The mean degree of the networks are (a) hki ¼ 12:5
and (b) hki ¼ 25, and the natural frequencies {xG} were drawn from the normal distribution. In all panels, each row corresponds to one oscillator, and the

rows from top to bottom are in displayed in ascending order of the quantity ~x i ¼ xi � hxi (i.e., the offset from the mean intrinsic frequency of the population).

For each coupling, the dynamics were first run atop an initially ER random graph, after which co-evolution of the network and dynamics took place between

the two black lines. During the adaptation period, the network was continually rewired once every T¼ 0.2 time units.
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FIG. 20. Examples of the evolution of the node degree ki vs. the rewiring step m, for various representative couplings a. The mean degree of the networks are
(a) hki ¼ 12:5 and (b) hki ¼ 25, and the natural frequencies {xG} were drawn from the normal distribution. In all panels, each row corresponds to one oscilla-
tor, and the rows from top to bottom are in displayed in ascending order of the quantity ~xi ¼ xi � hxi (i.e., the offset from the mean intrinsic frequency of the
population). The network was continually rewired once every T¼ 0.2 time units.

073115-22 Papadopoulos et al. Chaos 27, 073115 (2017)



FIG. 21. Examples of the evolution of the correlation Cj~x j;k between the magnitude of the oscillator frequency offset j~x ij and the node degree ki vs. the rewir-
ing step m, for various representative couplings a. The mean degree of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25, and the natural frequencies {xG}
were drawn from the normal distribution. The network was continually rewired once every T¼ 0.2 time units.

073115-23 Papadopoulos et al. Chaos 27, 073115 (2017)



Figure 14 shows examples of the time-averaged order

parameter hRi vs. the coupling a. As with the case of uni-

formly distributed frequencies (Sec. IV A, Fig. 3), we find

that the adapted networks exhibit heightened synchronization

over a large coupling range.

2. Correlations between network topology and the
intrinsic frequencies

Figure 15 shows examples of node degree ki vs. intrinsic

frequency offset ~xi, average neighbor frequency offset

h~xiN i
vs. node frequency offset ~xi, and total neighbor fre-

quency offset
P

j2N i
~xj vs. frequency offset ~xi for ER net-

works and the corresponding co-evolved networks (see Sec.

IV B and Appendix A for the definitions of these quantities).

The top three and bottom three panels correspond to net-

works with hki ¼ 12:5 and hki ¼ 25, respectively, and the

frequencies {xG} were normally distributed. At the values

of coupling used for these examples, we see that as the sys-

tem reconfigures, the network begins to exhibit distinct pat-

terns in terms of the organization of oscillators with different

intrinsic frequencies. Each of the three metrics considered—

Cj~xj;k, f, and C~x;
P

~x—exhibit a progression that allows for

the eventual heightened degree of synchrony in the rewired

network. These findings are similar to those discussed for the

uniform frequency distribution (see Figs. 4 and 11 and the

corresponding text in Sec. IV B).

We next show the evolution of the relationships between

the network topology and the intrinsic frequencies as a func-

tion of the coupling a. Figures 16, 17, and 18 show Cj~xj;k vs.

a, f vs. a, and C~x;
P

~x vs. a, respectively. The conclusions

drawn for the case of normally distributed frequencies shown

here are the same as those for the uniformly distributed fre-

quencies examined in the main text. (See Figs. 5, 6, and 12

and the corresponding discussions in Sec. IV B and Appendix

A.) Briefly, each of the three measures exhibit transitions at

similar values of the coupling, and the emergence of strong

relationships between the network structure and oscillator fre-

quencies arises near the coupling when the order parameter

transitions from low to higher values.

3. Time-dependence of the instantaneous frequencies
and the network structure

Figure 19 shows the examples of _hiðtÞ vs. t for several

values of the coupling a around the point in which the

dynamics transition from an incoherent state to a synchro-

nized state. The top set of panels (a) are for a network with

hki ¼ 12:5, and the bottom set of panels (b) are for a network

with hki ¼ 25; the frequencies {xG} were normally distrib-

uted and the same for both cases. Each row corresponds to

one oscillator, and the rows from top to bottom are displayed

in ascending order of the quantity ~xi ¼ xi � hxi (i.e., the

offset from the mean intrinsic frequency of the population).

Adaptation of the network takes place between the two black

lines. The results are qualitatively consistent with those

described in the main text for the uniformly distributed fre-

quencies (see the discussion in Sec. IV C and Fig. 7 for

comparison).

Figure 20 shows the node degree ki vs. the rewiring step

m and Fig. 21 shows the correlation Cj~xj;k between the abso-

lute value of the frequency offset j~xij and the node degree ki

vs. the rewiring step m for the same set of networks, natural

frequencies, and coupling values as in Fig. 20. In both fig-

ures, panel (a) corresponds to a network with hki ¼ 12:5,

and panel (b) corresponds to a network with hki ¼ 25; the

natural frequencies {xG} are normally distributed and are

the same in both cases. We observe similar types of behavior

and regimes in terms of the evolution of these quantities as

we did for the situation of uniformly distributed frequencies

in the main text (see the discussion in Sec. IV C and Figs.

8 and 9 for comparison). Also, note that the concentration of

edges on oscillators near the center of the distribution

explains the dips in Fig. 16(b). One interesting result to point

out for the examples using normally distributed frequencies

shown here is that the correlation Cj~xj;k plateaus at a value

near 0.5 (for hki ¼ 12:5) for several of the intermediate cou-

pling values, before increasing further at higher coupling. As

seen in Fig. 20, this is due to the oscillators with the most

outlying natural frequencies (which can sometimes be more

extreme for the normal distribution than for the uniform dis-

tribution) remaining with low degree. Though the results are

FIG. 22. Evolution of the overlap jh ~x
jj~x jj ;

vN

jjvN jjij between the intrinsic frequencies ~x and the dominant Laplacian eigenvector vN as a function of the coupling a.

In each panel, the gray data points correspond to the original, uncorrelated ER random graphs Go, and the blue and yellow curves correspond to the adapted

networks G? evolved under rewiring time scales of T¼ 0.2 and T¼ 2, respectively. The natural frequencies were drawn from the normal distribution {xG},

and the mean degree hki of the networks are (a) hki ¼ 12:5 and (b) hki ¼ 25. All curves depict averages over 25 instantiations, and the lines between data

points serve as guides for the eye.

073115-24 Papadopoulos et al. Chaos 27, 073115 (2017)



qualitatively similar between the two frequency distribu-

tions, further work is needed to quantify and understand

what may be subtle and intricate differences.

4. Spectral analysis

In Sec. IV D, we carried out a spectral-based analysis of

the co-evolved networks inspired by Ref. 65. Figure 22

shows the results of this analysis for the case of normally dis-

tributed frequencies {xG}, which are consistent with those

previously discussed in Sec. IV D using uniformly distrib-

uted frequencies (compare to Fig. 10). In short, for both

values of the mean degree (hki ¼ 12:5 and hki ¼ 25), the

overlap jh ~x
jj~xjj ;

vN

jjvN jjij between the normalized natural fre-

quency offsets and the normalized dominant Laplacian

eigenvector of the rewired networks increases and then pla-

teaus at a high value as the coupling increases [Figs. 22(a)

and 22(b)]. We refer the reader to Sec. IV D for a more

detailed discussion of these findings.
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