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Challenges for drift-diffusion simulations of semiconductors:
A comparative study of different discretization philosophies

Patricio Farrell, Dirk Peschka

Abstract

We analyze and benchmark the error and the convergence order of finite difference, finite-
element as well as Voronoï finite-volume discretization schemes for the drift-diffusion equations
describing charge transport in bulk semiconductor devices. Three common challenges, that
can corrupt the precision of numerical solutions, will be discussed: boundary layers at Ohmic
contacts, discontinuties in the doping profile, and corner singularities in L-shaped domains. The
influence on the order of convergence is assessed for each computational challenge and the
different discretization schemes. Additionally, we provide an analysis of the inner boundary layer
asymptotics near Ohmic contacts to support our observations.

1 Introduction

Over the past decades many different methods have been proposed to solve the semiconductor device
equations numerically. Today, most commonly variants of the finite volume method (FV) are used.
However, also discretization schemes based on finite element methods or finite difference methods
(FD) have been developed in the past or are presently used. The finite volume method became very
popular after Scharfetter and Gummel published their seminal paper [26] in 1969. For Boltzmann
statistics, their scheme can easily deal with the convection-dominated nature of these equations. Even
though Scharfetter and Gummel solved the van Roosbroeck system only in one spatial dimension and
interpreted their method as a finite difference scheme, others quickly realized that in several space
dimensions it is beneficial to translate their scheme into a finite volume setting [4, 3, 27].

Only recently thermodynamically consistent schemes have been proposed to handle non-Boltzmann
statistics as well [7, 21, 14, 15, 23]. A key indicator to measure how well the semiconductor can
be described by Boltzmann statistics is the diffusion enhancement [22, 24]. The more the diffusion
enhancement differs from unity, the less accurate it is to assume Boltzmann statistics. For crystalline
semiconductors assuming Boltzmann statistics becomes inaccurate for large densities, e.g., due
to high doping or low temperatures [17]. For organic semiconductors this effect becomes already
dominant for low or moderate densities [22]. For this reason we limit ourselves in the present work to a
diffusion-enhanced flux discretization scheme [7, 21].

The finite element method is probably the most prominent approach to compute solutions of partial
differential equations that arise in the natural sciences [10, 12, 8, 28]. It works on general meshes,
allows for a systematic error analysis and a systematic control over the approximation degree, by
choosing the polynomial degree of elements when the regularity of the solution admits. It is also popular
for convection-dominated problems [20]. For this reason variants of the finite element method have
been applied to the van Roosbroeck system as well [2, 4, 6, 9, 31]. Most of the authors use the electron
and hole densities in the weak formulation. Auf der Maur proposed to use the quasi-Fermi potentials as
primary variables instead [1].
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P. Farrell, D. Peschka 2

Despite their popularity, to the best of our knowledge neither for finite volume nor for finite element
discretizations of the basic semiconductor device equations comparative convergence studies have
been undertaken, which would be particularly important in situations with nontrivial distribution functions.
The present paper aims at bridging this gap and provides a study of different discretization philosophies
and also allows to compare how these approaches cope with different challenges. We focus on the
more difficult case of non-Boltzmann statistics and use quasi-Fermi potentials as independent variables.
Ohmic contacts will be treated by assuming pointwise electroneutrality and equality of the quasi-Fermi
potentials at the contact, i.e., Dirichlet conditions. This approach is very common in the literature, e.g.,
[27, 17], even though it introduces logarithmic boundary layers at these contacts which we will derive.

We study three major challenges for any discretization scheme, that influence the error and convergence
rate of the numerical solutions: i) boundary layers, ii) discontinuous doping and iii) corner singularities.
For any generic numerical method steep boundary layers usually introduce numerical problems leading
to poor or even missing convergence. Often, this issue is addressed by resolving the length scale of
the boundary layer in the mesh using boundary adapted meshes [25, 29]. To understand the feasibility
of resolving the length scale, we analyze the boundary layer near the Ohmic contacts using an inner
leading-order expansion of a matched asymptotic expansion for the quasi-Fermi potentials. Realistic
semiconductor devices are heterostructures, where the doping is usually modeled as a piecewise
constant function. This discontinuity in the data, however, can lead to slower convergence which we
examine as well. Finally, we study how an L-shaped domain impacts the convergence order of the
solutions due to the occurrence of corner singularities.

In the following section, we introduce the basic semiconductor device equations, the van Roosbroeck
system, nondimensionalize it as well as state and solve the leading order inner problem for boundary
layers in the quasi-Fermi potentials near Ohmic contacts. In Section 3 we provide specific details for
the spatial discretization of the van Roosbroeck system, i.e., using finite differences, finite elements,
and Scharfetter-Gummel type finite volume methods. The influence of the boundary layers at Ohmic
contacts as well as the impact of the smoothness of the doping is examined with the help of a 1D
problem in Section 4. In Section 5 we then compare how the different discretization schemes handle
a 2D L-shaped domain and study the influence of boundary layers and corner singularities on the
convergence order in more detail. The simulation data presented in this work is also published [16] and
can be used for comparative benchmark studies.

2 The van Roosbroeck system

2.1 The model

The van Roosbroeck system is a drift-diffusion model, which describes the recombination and transport
of charge carriers driven by diffusion and by electric fields within a semiconductor device. It consists
of three nonlinear, coupled partial differential equations for the electrostatic potential ψ : Ω → R
as well as the non-negative electron and hole densities n : Ω → R+ and p : Ω → R+, namely
a Poisson equation and two continuity equations. We consider a homogeneous material and some
domain Ω ⊆ Rd for d ∈ {1, 2, 3} in an isothermal setting. Then the stationary van Roosbroeck system
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Challenges for drift-diffusion simulations of semiconductors 3

is given by the system of elliptic partial differential equations

−∇ · (ε0εr∇ψ) = q (C + p− n) , (1a)

∇ · jn = +qR, (1b)

∇ · jp = −qR, (1c)

where q denotes the elementary charge, ε0 is the vacuum permittivity and εr is the relative permittivity
of the material, see Tab. 6. The recombination rate R and the charge-carrier currents jn, jp depend on
the solution n, p, ψ and vanish in thermal equilibrium. The doping concentration C : Ω → R varies
spatially and can have discontinuities. The equations of state are given by

n(ηn) = NcF
(
ηn
)
, ηn(ψ, ϕn) =

q(ψ − ϕn)− Ec
kBT

, (2a)

p(ηp) = NvF
(
ηp
)
, ηp(ψ, ϕp) =

q(ϕp − ψ) + Ev
kBT

, (2b)

where the statistical distribution function F relates the electron and hole densities n, p to the corre-
sponding electrochemical potentials ϕn, ϕp, which are also known as quasi-Fermi potentials.

There are computational and modeling advantages to using the quasi-Fermi potentials. For instance,
their variation in magnitude is considerably smaller than that of the corresponding densities and the
equation of state automatically implies non-negativity of the density. At least across certain heterojunc-
tions the quasi-Fermi potentials are continuous, whereas the densities will usually be discontinuous.
Furthermore, since the quasi-Fermi potentials are the thermodynamic quantities, whose gradients and
differences are driving the charge transport and recombination rates, a formulation based on these is
easier to model from a thermodynamic point-of-view. This is why we focus on quasi-Fermi potentials
and electrostatic potential as the set of unknowns in this paper. Furthermore, we set the recombination
rate to zero as it plays a minor role for most of our considerations.

The effective density of states for electrons in the conduction band Nc and holes in the valence band
Nv as well as the corresponding band-edge energies Ec, Ev and the band gap Eg = Ec − Ev
are material parameters and assumed to be spatially constant in this paper. Temperature and the
Boltzmann constant are denoted with T and kB . The three most important reference cases for the
statistical distribution functions are the Boltzmann, Blakemore and Fermi-Dirac function, denoted by

F(η) = exp(η), (3a)

F(η) = (exp(−η) + γ)−1, (3b)

F(η) = Fα(η). (3c)

For example, the behavior of three-dimensional bulk semiconductors is described most accurately
using the Fermi-Dirac-Integral Fα with index α = 1/2. For large negative arguments the F1/2 can be
approximated by either of the other two functions since they all share an exponential Boltzmann tail. By
choosing the parameter γ = 0.27, the Blakemore function (3b) approximates F1/2 fairly accurately
up to η ≤ 1.5. For each distribution function, the corresponding current densities in (1b) and (1c) are
defined by

jn = −qµnn∇ϕn = −qµnn∇ψ + qDn∇n, (4a)

jp = −qµpp∇ϕp = −qµpp∇ψ − qDp∇p. (4b)

Using the thermal voltage UT = kBT
q

, the diffusion coefficients Dn, Dp are linked to the carrier
mobilities µn, µp via a generalized Einstein relation

Dn

µn
= UT g

(
ηn
)
,

Dp

µp
= UT g

(
ηp
)
, (5a)
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P. Farrell, D. Peschka 4

the diffusion enhancement g is defined by

g(η) =
F(η)

F ′(η)
(5b)

as motivated in [30]. For the Boltzmann function (3a), we immediately see that g ≡ 1, which gives the
classical Einstein relationDn = µnUT . For the Blakemore function (3b), we have g(η) = 1+γ exp(η).

The system (1) is supplied with mixed Dirichlet-Neumann boundary conditions. We will briefly discuss
the case where the boundary of the domain Ω can be decomposed into Ohmic contacts (Γα) and an
insulating interface (Γ), i.e.,

∂Ω = Γ ∪
No⋃
α=1

Γα.

Ideal semiconductor-metal interfaces, such as Ohmic contacts, are modeled by Dirichlet boundary
conditions, where we require a local charge neutrality C + p−n = 0 and a local equilibrium ϕn = ϕp,
where outside thermodynamic equilibrium the value of the quasi-Fermi potential might be different on
each Γα. For any Ohmic contact Γα with α = 1, . . . , No, we set

ψ(x) = ψbi(x) + Uα, (6a)

ϕn(x) = Uα, for all x ∈ Γα (6b)

ϕp(x) = Uα, (6c)

where Uα denotes the corresponding externally applied contact voltage and Uα ≡ 0 in equilibrium.
These Dirichlet conditions for the potentials correspond to Dirichlet conditions for the densities, which
we denote by n(x) = nα and p(x) = pα for all x ∈ Γα. The built-in potential ψbi at the boundary is
defined by the pointwise charge neutrality

0 = NvF
(Ev − qψbi(x)

kBT

)
−NcF

(qψbi(x)− Ec
kBT

)
+ C(x).

While for the Boltzmann function monotonicity ensures that such a ψbi always exists, for the Blakemore
function charge neutrality can only be attained at points x ∈ Ω where the doping satisfies −Nv <
γC(x) < Nc. We just remark, that in general, this equation yields no closed-form solution, and
therefore needs to be computed numerically. The boundary conditions for the more advanced nonlinear
semiconductor-metal interfaces such as Schottky contacts or gate contacts can be found in [27, 17].
On the remaining non-charged, insulating interfaces we impose (natural) homogeneous Neumann
boundary conditions

∇ψ(x) · ν = jn(x) · ν = jp(x) · ν = 0 for all x ∈ Γ, (6d)

where ν denotes the outward-pointing normal vector to the interface. Finally, we present an argument
why the Boltzmann distribution function for the minority charge carriers is accurate near Ohmic contacts
even if in the interior a non-Boltzmann distribution function is used. First note that most distribution
functions, and in particular those in (3), satisfy F(η) ≤ exp(η). Then, for a doping concentration
C < 0, we use charge neutrality and the shift ψbi = q−1Ec − UTw to estimate

0 = NvF(− Eg
kBT

+ w)−NcF(−w) + C ≤ Nv exp(− Eg
kBT

+ w) + C, (7)

which implies w ≥ log (−C/Nv) + Eg/(kBT ). Assuming Eg � kBT and |C| ∼ Nv we finally get
w � 1. A similar argument for C > 0 shows that the Boltzmann distribution is a good approximation
F(w) ∼ exp(w) for the equation of state of the minority charge density near Ohmic contacts when
|C| ∼ Nc and Eg � kBT .
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2.2 Non-dimensionalization

Now we present the non-dimensionalization of the van Roosbroeck system (1), which will also motivate
the following boundary layer analysis. First we introduce the scalings,

x→ ` x̃, ψ → UT ψ̃, ϕn,p → UT ϕ̃n,p, (n, p, C)→ (ρ ñ, ρ p̃, ρ C̃),

so that we obtain the scaled van Roosbroeck system

−∇̃2ψ̃ =
`2

λ2
(C̃ + p̃− ñ), ∇̃ · j̃n = +

q`

J
R, ∇̃ · j̃p = −q`

J
R, (8)

with the non-dimensional currents j̃n = −µ̄nñ∇̃ϕ̃n and j̃p = −µ̄pp̃∇̃ϕ̃p, where we introduced the
reduced mobilities µ̄n = µn/µ and µ̄p = µp/µ. Additionally, we also introduce the length scale λ and
the current density J

λ2 =
ε0εrUT
qρ

, J =
qµρUT
`

. (9)

We will make specific choices for the characteristic density ρ in the next section. Note that, λ is
interpreted as a screening length, whereas in the context of electrolytes J is related to the classical
diffusion-limited current density of Nernst, e.g., [5].

When J is set to a typical current value for a given bias Vext, then (9) defines two length scales λ and `,
which compete with the device length scale in the van Roosbroeck system (8). We denote the device
length scale with L. We have 0 < λ� L for large densities ρ, whereas 0 < `� L holds for small
densities ρ or for large currents J .

Before we can bring forward an argument about the ordering of the length scales, we need to determine
the characteristic density scale ρ. First, the Debye length λD is the characteristic length scale, on which
deviations from electroneutrality are observed, and typical values for λD are in the range of 1 nm to
100 nm. As the screening of charges is dictated by the doping, it makes sense to define

Cm = max
x∈Ω
|C(x)|, (10)

and then to specify ρ = Cm for λ in (9), so that the Debye screening length is

λ2
D =

ε0εrUT
qCm

. (11)

Second, at Ohmic contacts Γα where (7) holds for the minority charge density, the corresponding
boundary condition is determined from the Ohmic contacts for Boltzmann statistics, which are

nα =
1

2

(
+ C +

(
C2 + 4N2

i

)1
2

)
or pα =

1

2

(
− C +

(
C2 + 4N2

i

)1
2

)
, (12)

whereN2
i = NcNv exp(−Eg/(kBT )). For simplicity we will assume C = ±Cm at the boundary. The

previous assumptions leading to (7) also imply Ni � Cm, so that to leading order we can expand

nα =

{
N2
i /Cm C < 0

Cm C > 0
, pα =

{
Cm C < 0

N2
i /Cm C > 0

. (13)
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We are going to discuss the case C < 0, where δ = Ni/Cm � 1 and nα = N2
i /Cm = Cmδ

2, i.e.,
electrons are the minority carriers. If we use ρ = nα in the scaling for J in (9) then we can define the
boundary layer thickness `J via

`J =
qµnαUT

J
=
qµCmUT

J
δ2. (14)

If we are interested in situations with `J � λD, this requires J � Jlim, with the intrinsic limiting current
Jlim defined as

Jlim =
qµnαUT
λD

=
q2µN2

i

ε0εr
λD. (15)

We get surprisingly low intrinsic limiting currents for typical semiconductors and typical Debye lengths,
see Table 1.

material Ni µn εr limiting current density Jlim

Si 1010cm−3 1400 cm2/Vs 11.7 3.5 · 10−13 kA/cm2 · λD[nm]
Ge 1013cm−3 3900 cm2/Vs 16.2 7.0 · 10−7 kA/cm2 · λD[nm]
GaAs 106cm−3 8500 cm2/Vs 12.9 1.9 · 10−20 kA/cm2 · λD[nm]

Table 1: Typical values of Jlim for semiconductors at T = 300K.

2.3 Boundary layer expansion

We are going to present a concise argument for the existence of boundary layers for the quasi-Fermi
potential corresponding to the minority carrier density at Ohmic contacts Γα. We have already discussed
that near Ohmic contacts the Boltzmann approximation is valid for the minority charge carriers. In order
to show and solve the leading order inner expansion for the matched asymptotic expansion of the van
Roosbroeck system, assume that the length scales are ordered as follows

0 < `J � λD � L, (16)

showing that an asymptotic expansion would require multiple layers to succeed. We will show that once
the current density at an Ohmic contact becomes larger than the intrinsic limiting current, logarithmic
boundary layers will appear in the quasi-Fermi potential of the corresponding minority carriers. To show
this, we examine the leading order asymptotic problem as δ = Ni/Cm → 0, when the scales for the
doping Cm, current J , and Debye length λD are fixed. After dropping the tilde symbols in the rescaled
van Roosbroeck equations (8) and using (14), the problem reads

−∇2ψ = δ4

(
qµCmUT
JλD

)2

(C + p− n), (17a)

−∇ · µ̄nn∇ϕn = δ2

(
q2µCmUT

J2

)
R, (17b)

with the rescaled Ohmic contact n = nα = 1. We expand the solutions using

ψ = ψ0 + δψ1 + . . . , ϕn = ϕ0
n + δϕ1

n + . . . ,
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and obtain the leading order problem

−∇2ψ0 = 0, (18a)

−∇ · µ̄nn0∇ϕ0
n = 0, (18b)

where n0 = N̄c exp(η0
n), η0

n = ψ0−ϕ0
n−Ec/(kBT ), and N̄c = Nc/ρ. Assuming the Ohmic contact

Γα is located at x = 0, the explicit solution is given by

ψ0(x) = ψα + ξx. (19)

where the constant ξ � 1 remains to be determined by matching to an outer solution at the length
scale λD. For the quasi-Fermi potential we solve an equivalent problem in densities, which can be
reduced to the 1D problem

∂x jn = µ̄n∂x
(
∂xn

0 − n0∂xψ
0
)

= 0, (20)

and has the exact solution

n0(x) = nα exp(ξx) +
jn
ξµ̄n

(exp(ξx)− 1) (21)

with rescaled n0(0) = nα = 1 and integration constant jn. Using the equation of state n0 =
N̄c exp(ψ0 − ϕ0

n − Ec
kBT

), the electron quasi-Fermi potential is

ϕ0
n(x) = ψ0(x)− log

(
n0(x)

N̄c

)
− Ec
kBT

≈ ψ0(x)− log

(
nα
N̄c

(1 + ξx) +
jnx

µ̄nN̄c

)
− Ec
kBT

≈ ψ0(x)− log

(
ε+ x

ε

)
− log

(
nα
N̄c

)
− Ec
kBT

where ε = µ̄nnα/jn and we approximated using ξ � 1 several times. When we define the inner
length scale `J via the dimensional electron current J = jn, then we have ε = 1. In the original
dimensional outer coordinates, when all quantities are represented in their original scales, we obtain
the following leading order the expansion

ϕ0
n(x) = UT ϕ̃

0
n(`−1

J x)

= ψ0(x)− UT log

(
`J + x

`J

)
+ UT log

(
nα
Nc

)
− Ec

q
. (22)

This shows that once the current density at an Ohmic contact J exceeds the intrinsic limiting current
Jlim, then the quasi-Fermi potential of the minority carriers develops a logarithmic boundary layer of
size `J , where

0 < `J =
Jlim

J
λD � λD, (23)

and the electrostatic potential ψ can be approximated by an affine function in this region. The boundary
layer analysis of ϕp is entirely analogous.
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3 Standard discretizations using potentials

In the following we are going to explain standard discretization methods to solve the van Roosbroeck
system. In one spatial dimension we use a second-order finite difference (FD) method, whereas in two
spatial dimensions we use a P1 finite element (FE) method. We will compare these discretizations
with a Voronoï finite volume (FV) method. All three methods formulated in terms of the quasi-Fermi
potentials as primary variables, which transforms the convection-dominated drift-diffusion problem into
a nearly degenerate elliptic system. The advantage of this approach is that quasi-Fermi potentials, also
known as electro-chemical potentials, are the natural variables from a thermodynamic point of view.
Additionally, it is easier to control the behavior of solutions at heterointerfaces using these variables. For
all the discretization schemes the final nonlinear system of equations is solved using Newton’s method.

In the following we collect the three different components of the solution in the vector-valued function
u = (ψ, ϕn, ϕp) : Ω → R3. Evaluating this function at a specific point x ∈ Ω gives the vector
u(x) =

(
ψ(x), ϕn(x), ϕp(x)

)
∈ R3. Analogously, we denote the discrete solution with uh =

(ψh, ϕhn, ϕ
h
p) ∈ RN×3, where N is the number of degrees of freedom for each component. The three

columns of the matrix uh correspond to the three components of the solution, while the kth row of uh

approximates the solution at a point xk ∈ Ω and is denoted by uhk = (ψhk , ϕ
h
n;k, ϕ

h
p;k) ∈ R3. If we

want to distinguish the different numerical solutions from each other, we drop the superscript h and
replace it with the acronym of the corresponding discretization method (FD, FE or FV) to make it clear
which one is meant.

3.1 Finite difference method

In one spatial dimension we consider the interval Ω = [0, 3L] for some L < 0 and want to approximate
the solution at discrete points 0 = x1 < . . . < xN = 3L. In particular we seek to approximate
ψ(xk) ≈ ψhk , ϕn(xk) ≈ ϕhn;k, and ϕp(xk) ≈ ϕhp;k. The standard 3-point finite difference stencil for

the elliptic operator [Au](x) = −
(
a(x)u′(x)

)′
is

(Auh)k = − 1

hk

[
ak+1/2

uhk+1 − uhk
hk+1/2

− ak−1/2

uhk − uhk−1

hk−1/2

]
, (24)

where hk±1/2 = |xk±1 − xk| and hk = 1
2
|xk+1 − xk−1|. The discretization of the Poisson equation

(1a) uses a spatially constant a = ε0εr, whereas in the discretization of the transport equation for the
electron current we use ak+1/2 = 1

2
qµn(nhk + nhk+1), where nhk = n

(
ηn(uhk)

)
is the electron density

computed from the discrete potentials uhk using the equation of state (2). With vanishing recombination
the total current I = L2(In + Ip) is computed from averages of the constant local current density

via In = − 1
3L

∫ 3L

0
qµnnϕ

′
ndx and Ip = − 1

3L

∫ 3L

0
qµppϕ

′
pdx. Using a trapezoidal rule its discrete

approximation is

Ihn = − 1

3L

N−1∑
k=1

qµn(xk+1 − xk)
(nhk + nhk+1)

2

ϕhn;k+1 − ϕhn;k

xk+1 − xk
, (25a)

Ihp = − 1

3L

N−1∑
k=1

qµp(xi+1 − xi)
(phk + phk+1)

2

ϕhp;k+1 − ϕhp;k
xk+1 − xk

, (25b)

which we will later see can be beneficial for its convergence order. The purpose of the factor L2 is that
we end up with actual currents in Ampere and current densities in Ampere per area, so that one can
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Challenges for drift-diffusion simulations of semiconductors 9

compare 1D and 2D simulations appropriately. A similar strategy will be used to evaluate the currents
for the finite element method.

3.2 Finite element method

Assume Ω ⊂ R2 is a polygonal domain and let Th be an admissible decomposition of Ω into Ntria

triangles and Nvert vertices, such that Ω =
⋃Ntria

t=1 τt for τt ∈ Th as for example shown in Figure 1.
Similar as in [2], we solve the stationary van Roosbroeck system (1) using a standard P1 finite element
method. We seek the electrostatic potential and the quasi-Fermi potentials uh = (ψh, ϕhn, ϕ

h
p) ∈ V h,

such that the van Roosbroeck system can be written in the weak form as

0 =

∫
Ω

ε0εr∇ψh · ∇vi − q
(
C + ph − nh

)
vi dx, (26a)

0 =

∫
Ω

qµnn
h∇ϕhn · ∇vj − qR(nh, ph)vj dx, (26b)

0 =

∫
Ω

qµpp
h∇ϕhp · ∇vk + qR(nh, ph)vk dx, (26c)

for all suitable test functions vh = (vi, vj, vk) ∈ V h, where V h ∼= RNvert×3 is the 3Nvert dimensional
space of vectorial continuous functions which are piecewise linear on each triangle τt. The carrier
densities nh = n

(
ηn(ψh, ϕhn)

)
, ph = p

(
ηp(ψ

h, ϕhp)
)

depend explicitly on uh via the equation of state
(2). The basis functions for the function space V h are uniquely defined by vj(xk) = δjk, where j, k run
over all Nvert indices corresponding to vertices xj,xk of the triangulation. This allows us to represent a
solution of (26) as

ψh(x) =
Nvert∑
k=1

ψhkvk(x), ϕhn(x) =
Nvert∑
k=1

ϕhn;kvk(x), ϕhp(x) =
Nvert∑
k=1

ϕhp;kvk(x), (27)

which explains the equivalence of functions ψh(x) ∈ V h and matrices ψh ∈ RNvert×3. Some integrals
in (26) can be evaluated exactly, the remaining integrals are computed using a standard 7-point Gauss
quadrature for triangles [11]. At Ohmic contacts ΓD we impose inhomogeneous Dirichlet boundary
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Figure 1: Domain and mesh with h ∼ 2−3 (left) uniform and (right) boundary adapted.

conditions uD as defined in (6a). We realize them by setting u = ũ + uD with ũ = 0 on ΓD so that
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xk xl

ωk

ϕhn;k
ϕhp;k
ψhk

ωl

ϕhn;l
ϕhp;l
ψhl

j
νkl

Figure 2: Two adjacent control volumes ωk and ωl with corresponding notation.

all essential boundary conditions are automatically satisfied. This reduces the dimension of the discrete
problem to Nvert only representing vertices not lying on any Γα. For a given Ohmic contact α, in order
to compute currents, we use an auxiliary function w with w(x) = δαβ for x ∈ Γβ and rewrite the
current according to

Iαn =

∫
Γα

jn · ν da =

∫
∂Ω

w jn · ν da =

∫
Ω

∇ · (wjn) dx

=

∫
Ω

∇w · jn + w∇ · jn dx = −
∫

Ω

(
qµnn∇w · ∇ϕn − qwR

)
dx, (28a)

and analogously

Iαp = −
∫

Ω

(
qµpp∇w · ∇ϕp + qwR

)
dx. (28b)

Then the total current I = L(Iαn + Iαp ) can be easily evaluated using the operators from the existing
weak form of the van Roosbroeck system (26). Again, the prefactor L ensures that we end up with
currents in Ampere. The auxiliary function w is chosen by solving ∆w = 0 with Dirichlet data for w
mentioned before and with homogeneous Neumann boundary conditions on Γ, e.g. see [18].

3.3 Finite volume method

In this section, we present a Voronoï finite volume technique [19, 18, 17, 27]. Similar as for finite
elements, we start by partitioning the domain Ω into non-intersecting, convex polyhedral control
volumes ωk such that Ω =

⋃Nvert

k=1 ωk. Unlike for finite elements, these control volumes need not to be
triangular but fulfill the following orthogonality condition: We associate with each control volume ωk
a node xk ∈ ωk. For every boundary intersecting control volume, we demand that this node lies on
the boundary xk ∈ ∂Ω ∩ ωk. Assuming that the partition is admissible in the sense of [13], that is the
edge xkxl of length hkl is orthogonal to ∂ωk ∩ ∂ωl, the normal vectors to ∂ωk can be calculated by
νkl = (xl − xk)/‖xl − xk‖. The notation is explained visually in Figure 2.

For each control volume ωk, the finite volume discretization is given by the three equations:∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jψ;k,l = q|ωk|
(
Ck + phk − nhk

)
, (29a)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jn;k,l = +q|ωk|Rk, (29b)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jp;k,l = −q|ωk|Rk. (29c)

We denote withN (ωk) the set of all control volumes neighboring ωk. In 2D, the measure |∂ωk ∩ ∂ωl|
corresponds to the length of the boundary line segment and in 3D to the area of the intersection of the
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boundary surfaces. Furthermore, in 2D the measure |ωk| is given by the area and in 3D by the volume
of the control volume ωk. The unknowns ψhk , ϕhn;k correspond to the electrostatic potential as well as
the quasi Fermi potentials for electrons and holes evaluated at node xk. Accordingly, nhk , phk , Rk and
Ck are defined as

nhk = NcF
(
ηn(ψhk , ϕ

h
n;k)
)
, Ck = C(xk), (30a)

phk = NvF
(
ηp(ψ

h
k , ϕ

h
p;k)
)
, Rk = R

(
nhk, p

h
k

)
. (30b)

Note that the doping profile C and the recombination rate R are known a priori. The numerical
fluxes jψ;k,l, jn;k,l and jp;k,l approximate respectively −ε0εr∇ψ · νkl, jn · νkl and jp · νkl on the
interfaces between two adjacent control volumes ωk and ωl. These fluxes can be expressed as functions
depending nonlinearly on the values ψhk , ϕ

h
n;k, ϕ

h
p;k and ψhl , ϕ

h
n;l, ϕ

h
p;l. The flux corresponding to the

electrostatic displacement is approximated by

jψ;k,l = −ε0εr
ψhl − ψhk
‖xl − xk‖

.

The numerical flux approximations for the continuity fluxes we discuss next.

3.3.1 Flux discretizations for Boltzmann statistics

Choosing the numerical fluxes jn;k,l and jp;k,l correctly is a rather delicate issue as the wrong choice
may lead to either instabilities or the violation of thermodynamic principles. Scharfetter and Gummel
presented in [26] a suitable choice for Boltzmann statistics. It is possible to derive it from the local
one-dimensional homogeneous boundary value problem

∂x (Dn∂xn− vn) = 0 with n(xk) = nk and n(xl) = nl

with the linear diffusion constant Dn = µnUT and the velocity v = µn
ψhl −ψ

h
k

xl−xk
, assuming that the

electrostatic potential can be resolved with a linear function. We point out once more that the choice for
the diffusion constant implies that we are in the Boltzmann regime. The above differential equation is
structurally the same as the leading-order equation (20). Since it is homogeneous, it can be interpreted
as demanding that the electron flux is constant. The solution to this boundary value problem is readily
verified to be

n(x) = nl
1− e

v
Dn

(x−xk)

1− e
v
Dn

(xl−xk)
+ nk

e
v
Dn

(x−xk) − e
v
Dn

(xl−xk)

1− e
v
Dn

(xl−xk)
.

Thus the constant Scharfetter-Gummel flux is given by

jn;k,l = −qµnNcUT
xl − xk

(
exp

(
ηhn;k

)
B

(
−ψ

h
l − ψhk
UT

)
− exp

(
ηhn;l

)
B

(
ψhl − ψhk
UT

))
(31)

with ηhn;k = ηn(ψhk , ϕ
h
n;k) and ηhn;l = ηn(ψhl , ϕ

h
n;l). A similar expression can be derived for the hole

flux. We point out that only in the Boltzmann regime this flux is thermodynamically consistent in the
sense that constant quasi Fermi potentials imply that the flux vanishes.

Finally, we wish to reinterpret the width of the boundary layer from Section 2 in terms of numerical
quantities. Making use of the Boltzmann assumption, we invert (2) for the quasi Fermi potential to obtain

ϕn(x) = ψ(x)− UT log

(
n(x)

Nc

)
− Ec

q
. (32)
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Now we use the expansions

n(x) ≈ nhl − nhk
xl − xk

(x− xk) + nhk, ψ(x) ≈ ψhl − ψhk
xl − xk

(x− xk) + ψhk , (33)

where nhl , n
h
k and ψhl , ψ

h
k denote the numerical solution of the electron density and the electrostatic

potential at nodes xl and xk. Assuming that the Ohmic contact is located at xk, we can derive a
considerably simpler approximation for the quasi Fermi potential by expanding (32) around x ≈ xk

ϕn(x) ≈ ψ(x)− UT log

(
x− xk + `hJ

`hJ

)
− UT log

(
nhk
Nc

)
− Ec

q
, (34)

very similar to (22) and where

`hJ = nhk

(
xl − xk
nhl − nhk

)
≈ n

n′

∣∣∣∣
x=xk

≈ qµnnkUT
J

= `J

denotes the approximative boundary layer width, an approximation of the previously derived boundary
layer width (14). In particular, `hJ → `J for h = |xl − xk| → 0. The approximations follow from the
observation that in our setting

n′ =
q

kBT
n(ψ′ − ϕ′n) ≈ − q

kBT
nϕ′n =

J

µnkBT
.

We can also approximate the derivative of ϕn by differentiating (34) and obtain

ϕ′n(x) ≈ ψhl − ψhk
xl − xk

− UT
1

x+ `hJ
. (35)

3.3.2 Flux discretization for general statistics

For general statistics functions F , ideas from Bessemoulin-Chatard [7] are useful to derive a finite
volume scheme for convection-diffusion problems in a thermodynamically consistent way by averaging
the nonlinear diffusion term appropriately. In [21], the nonlinear diffusion was expressed via a logarithmic
average of the nonlinear diffusion enhancement

gkl =
ηhn;l − ηhn;k

logF
(
ηhn;l

)
− logF

(
ηhn;k

) (36)

along the discretization edge. Using the generalized Einstein relation (5a), one immediately observes
that the diffusion enhancement g can be seen as a modification factor for the thermal voltage UT .
Replacing UT in the original expression (31) by U∗T = UTgkl, we deduce the following modified
Scharfetter-Gummel scheme

jn;k,l = −qµnNcUT
xl − xk

gkl

(
F
(
ηhn;k

)
B

(
−ψ

h
l − ψhk
UTgkl

)
−F

(
ηhn;l

)
B

(
ψhl − ψhk
UTgkl

))
, (37)

approximating the (electron) current along the edge. Again a similar expression can be derived for the
hole flux. A problematic aspect of this scheme is that even though the diffusion enhancement factor
gkl is bounded from below by one, it is not straightforward to compute it on a computer when ηhn;k

approaches ηhn;l. In this case one needs to use a suitable regularization strategy.
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4 Numerical comparisons in 1D

In this section, we are going to present numerical solutions of the van Roosbroeck system via FE/FD
and the Scharfetter-Gummel FV discretization. In one dimension we focus on two challenges, which
have an impact on the convergence rate of solutions: the size of a boundary layer and the regularity of
the doping. Since in this section we are mostly concerned with numerical solutions, we will drop the
superindex h. If necessary, we replace it with the acronym of the corresponding discretization method.
Also we remind the reader that we solve the van Roosbroeck system without recombination, i.e.,R ≡ 0.
Throughout this section, we use the Blakemore distribution function.

As discussed before the solutions develop a boundary layer of thickness `J , which is minuscule
compared to the size of the computational domain O(L) – it is even several orders of magnitude
smaller than the Debye length λD. The physical parameter used here (see Section 6) suggest we have

λD = 13.6 nm, Jlim = 1.2 · 10−18 kA/cm2

so that `J = (Jlim/J)λD is much smaller than the Debye length for typical currents J . Thus, it is both
physically questionable and numerically hopeless to resolve this length scale explicitly when J � Jlim.
As we have seen in Table 1 for typical semiconductor materials the limiting currents are surprisingly low.
Hence, it is likely that boundary layers appear.

Moreover, we are going to highlight the impact of the regularity of the doping on the convergence order
of the solutions by comparing smooth and quasi-discontinuous doping profiles. For this purpose, we
consider the doping C : Ω→ R on the domain Ω = [0, 3L] with L = 10−7m given by

C(x) =
C0

2

[
1 + tanh

(
κ(0.1− x[µm])

)
−
{

1 + tanh
(
κ(x[µm]− 0.2)

)}]
(38)

with Ohmic contacts at x = 0 and x = 3L. Two cases κ = 500 and κ = 5 · 105 will be studied. Only
the first case leads to a doping in which the jumps are resolved by our sequence of meshes

h = 3L · 2−M for M = 1, . . . , 14. (39)

The prefactor is set to C0 = 1023m−3 and constitutes also the largest doping value Cm = C0. The
bias is in the range Vext ∈ [0, 3V ]. Hence, as long as h > L/κ one will observe an apparent jump
discontinuity in the doping C with a direct impact on the convergence rates.

4.1 Resolution of boundary layer

In Figure 3 the electron and hole densities n, p and the doping C are shown for the two cases
κ = 5 · 102 and κ = 5 · 105 at Vext = 3V . Note that in both cases, the hole density p has a boundary
layer at x = 0 and the electron density n has a boundary layer at x = 0.3µm. This boundary layer,
however, is on the length scale of λD and therefore nicely resolved by the mesh. On the level of the
plot, the difference between the two alternative doping profiles is not visible.

In the left panel of Figure 4 we show the equilibrium electrostatic potential ψ, whereas in the right panel
the potentials (ϕn, ϕp, ψ) for Vext = 3V are shown. While the electrostatic potential in both cases
is a rather smooth function (see right panel of Figure 4), the quasi-Fermi potentials have a boundary
layer of size `J that can not be resolved on any of the meshes (39). This logarithmic boundary layer is
predicted by our analysis in Section 2.
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Figure 3: Electron and hole densities n, p and doping C at bias Vext = 3V shown (left) with κ = 500
and (right) with κ = 5 · 105, the former yielding a smooth doping profile and the latter practically a
discontinuous one.
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Figure 4: Quasi-Fermi potentials of electrons and holes ϕn, ϕp and electrostatic potential ψ shown
(left) in thermal equilibrium Vext = 0 with ϕn = ϕp = 0 and (right) with bias Vext = 3V .

As one can see in Figure 5, the solution effectively jumps within the last interval before the Ohmic
contact. An important first observation is that already for moderate mesh sizes the FV quasi-Fermi
potentials agree on coarse meshes relatively well with quasi-Fermi potentials on the finest mesh.
This implies that, already on meshes which massively undersample the boundary layer width `J ,
the FV solution quite accurately agrees with the asymptotic logarithmic solution, see (22). The FD
convergence is considerably slower near the Ohmic contact. In particular, on the last few intervals the
FD approximation considerably deviates from the asymptotic solution.

In order to analyze the behavior near Ohmic contacts, in the left panel of Figure 6 we compare the
electron quasi-Fermi potential ϕn from the FV and FD solution on the finest mesh with the asymptotic
solution from (22) on a semi-logarithmic scale. The figure depicts three different regions shown by the
shaded areas. The rightmost shaded area (red) is the outer region where x ∼ λD, which we are able
resolve using our discrete meshes (39). Then there is a wide transient zone 0 < `J � x� λD � L
(green), where the quasi-Fermi potential has a logarithmic singularity. We can see that the FD scheme
deviates from the predicted boundary layer asymptotic on the last few grid points, as we already
observed in the discussion of Figure 5.
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Figure 5: Boundary layers in the electron quasi-Fermi potential ϕn near x = 0.3µm for different mesh
resolutions h (left) for finite difference and (right) Scharfetter-Gummel type finite volume discretization
for κ = 500.

This singularity is only resolved when x ∼ `J , where ϕn attains the value set by the Dirichlet boundary
condition of the Ohmic contact. Note, that for Vext = 3V the width of the boundary layer is `J ∼ 10−30m,
which is beyond any meaningful physical scale for this problem. However, note that the FV and the FD
solution nicely agree and follow the intermediate logarithmic singularity set by the asymptotic analysis.

In order to show `J as a function of the bias, we plot in the right panel of Figure 6 the ratio J/Jlim, from
which using (14) and (15) we can deduce `J(Vext) = (Jlim/J(Vext))λD. We observe that the current J
follows the standard diode characteristic for the current density J(Vext) = J0(exp(Vext/UT )− 1) with
a fitted value of J0 ≈ 0.3Jlim. This gives us the following expression for the boundary layer thickness:

`J ≈
λD

0.3(exp(Vext/UT )− 1)
. (40)

For instance, for Vext = 0.2V we have a moderately small layer width `J ≈ 2 · 10−3λD, but for
Vext = 1V an unphysically small layer width `J ≈ 5 · 10−16λD.

Vext
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Figure 6: (left) Electron quasi-Fermi potential ϕn from FD and FV solution compared to the boundary
layer asymptotics for Vext = 3V with boundary layer width `J ∼ 10−30m and (right) ratio of electron
current J = jn and threshold current Jlim gives `J(Vext) = (Jlim/J(Vext))λD as a function of the bias.
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4.2 Regularity of the doping

Next, we discuss the influence of the smoothness of the doping on the convergence order for the
different discretization methods. Whenever we compare a coarse discrete solution to a finer one, we
restrict the finer solution to the coarser mesh. In the left panel of Figure 7 we show the current as a
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Figure 7: For different mesh sizes h (left) total current J for FD and FV discretization for κ = 500 and
(right) corresponding convergence rates for κ = 5 · 102 and κ = 5 · 105

function of the bias Vext for the FV and FD methods on different meshes for the levels M = 2, 5, 8.
This already indicates the tendency of the FV method to deliver more accurate solutions on coarser
meshes, which is due to the more advanced flux discretization. This becomes even more obvious when
comparing the convergence orders for |Ih − I2h| in the right panel of Figure 7. For the smooth doping
with κ = 5 · 102 the FV method has a quadratic convergence |Ih− I2h| ∼ h2. This order is influenced
by the convergence order of the electrostatic potential and the flux. If the Boltzmann approximation
is valid and the electrostatic potential linear, then the flux would be nodally exact. Provided that the
doping is sufficiently smooth and the carrier densities converge sufficiently fast, then both FD and FV
discretization of the Poisson equation are second order schemes, see the convergence for n, p, ψ in
the right panel of Figure 8 and the left panel of Figure 9. For the FD method this argument fails, since
the quasi-Fermi potentials only converge with order 1/2 but the densities converge linearly. However,
due to the averaging involved in the computation of the current in (28), the convergence order of the FD
method in the right panel of Figure 7 is at least linear.

When the doping is discontinuous (κ = 5 · 105), the bottom row in Figure 8 shows that also the
convergence order of the FV electrostatic potential becomes linear, which is expected by standard FE
error estimates. The dashed lines in the right panel of Figure 7 show that the error for the FD method is
still dominated by the error of the quasi-Fermi potentials and densities, whereas the linear convergence
of the FV electrostatic potential now also seems to lead to a linear convergence of the FV current.

Interestingly, Figure 9 shows the FV method also allows to evaluate the convergence in the L∞ norm for
κ = 500. Even though the L2 error of the solution converges quadratically, one can observe that first
the L∞ error of ϕn and later of ϕp converge linearly. This is due to the flux approximation scheme being
first order consistent in the quasi-Fermi potentials near an Ohmic contact with logarithmic singularity.
Note, if we had chosen to compute the L∞ error interpolating the coarser solution to the finer one, we
would see no convergence with respect to the grid size defined as in (39).

Even though it appears that the FD scheme cannot compete with the FV method, it is easy to improve
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Figure 8: L2 convergence rates for solution (left) of the FD discretization and (right) of the FV discretiza-
tion with κ = 500 in the top row and for κ = 5 · 105 in the bottom row.

it by using boundary-adapted grids as demonstrated in Figure 10. This leads us naturally to our next
section, where we study the impact of boundary layers and corner singularities in two spatial dimensions.
As boundary layers pose a serious problem for the FD/FE already in one dimension, we are going to
compare solutions computed on uniform meshes with those from boundary adapted meshes. However,
we will not employ any local refinement strategy near the corner singularity.

5 Numerical comparisons in 2D

5.1 Corner singularities and boundary adapted meshes

Semiconductor devices may often be angular-shaped. However, in particular L-shaped domains pose
numerical difficulties which we would like to study for the FE and FV methods.

We consider a two-dimensional L-shaped domain

Ω = [0, 2L]2 \ [0, L]2 ⊂ R2 (41)

as shown in Figure 1 and impose Ohmic contacts at the boundaries (x, 0) and (0, y) for L ≤ x, y ≤
2L. All other boundaries are supplied with homogeneous Neumann boundary conditions. The p-i-n
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Figure 9: (left) L2 convergence of ψ in thermal equilibrium (similar for FV and FD) and (right) L∞
convergence of FV solution at Vext = 3V for κ = 500.
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Figure 10: L2 convergence rates for FD discretization on a non-uniform grid with κ = 500.

doping concentration C : Ω→ R is given by

C(x) =



+C0 0 ≤ x ≤ L/2,

−C0 0 ≤ y ≤ L/2,

+2C0(L− x)/L L/2 < x ≤ L,

−2C0(L− y)/L L/2 < y ≤ L,

0 otherwise

(42)

with x = (x, y) and as before L = 10−7m = 0.1µm and C0 = Cm = 1023 m−3, see left panel of
Figure 11. With this choice we ensure that the convergence order does not suffer from the regularity
of the doping. However, constructing a non-convex domain with a corner angle ϑ = θπ and θ = 3/2
imposes a corner singularity of the form ψ(x) ∼ r1/θ as r → 0 for r =

√
(x− x0)2 + (y − y0)2 at

x0 = y0 = 0.1µm. Standard finite element error analysis gives u ∈ Hσ with σ = 1 + 1/θ − ε < 2
for arbitrary small ε > 0, so that

‖u− uh‖L2 ≤ C
(
hl+σ−1 + h2k

)
‖u‖Hl+1 , l = min{k, σ − 1}, (43)

where k the polynomial degree of the FE basis functions [28] used to expand uh. For linear finite
elements we obtain the estimate ‖u − uh‖L2 ≤ Ch4/3−2ε‖u‖H5/3−ε , so that the potentials should
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converge asymptotically not better than h4/3 in the L2 norm. It remains to be seen how the boundary
layer behaves for the FE and FV discretization schemes in two spatial dimensions. In addition to the
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0.1
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1
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0
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-1

C
[C

m
]

Figure 11: (left) Continuous doping concentration of L-shaped p-i-n diode and (right) electrostatic
potential ψ in thermal equilibrium Vext = 0.

series of uniformly refined structured meshes, we are also going to investigate the convergence on
meshes adapted to the boundary layers. For a general overview of different strategies for singularly
perturbed problems, in particular for boundary adapted meshes, we refer to [25]. The boundary layer is
constructed using an exponentially graded mesh, where one direction is kept uniform and towards the
Ohmic contact we refine until the shortest triangle edge is approximately ∼ 10−5L, see right panel in
Figure 1.

The electron and hole densities are shown in the upper panels of Figure 12. Similar as in 1D, one
can observe boundary layers in n and p, which are well resolved by the mesh and of the order of the
Debye length λD. However, the lower panels of Figure 12 show the electron and hole quasi-Fermi
potentials, which are not resolved and appear to jump on the last row of triangles before one of the
Ohmic contacts.

Additionally, in Figure 13 the electrostatic potential and the total current density j = jn + jp are shown.
A careful inspection of the electrostatic potential and the current density already indicates the presence
of the corner singularity. Note, the corner singularity in the total current density |j| is slightly obscured
by the logarithmic scale. The electrostatic potential in thermal equilibrium Vext = 0 is shown in the right
panel of Figure 11. A convergence study for this potential should reveal the influence of the corner
singularity more clearly, as the transport equations do not interfere here.

For simplicity we will focus here on the discussion of the convergence order for the electrostatic potential
ψ and the electron quasi-Fermi potential ϕn. The previous analysis in one dimension should then
indicate how the other potential and densities should converge. We focus on the discussion of FE and
FV discretizations instead, and also systematically compare uniform and adapted meshes.

The upper left panel of Figure 14 shows the convergence of the electron quasi-Fermi potentials at
Vext = 3V , where the FE and FV are compared on a sequence of uniform and a sequence of boundary
adapted meshes. As in 1D, the FV method has a quadratic convergence. Furthermore, for the FV
discretization the error seems not to be influenced very much by the boundary adapted meshes. In
contrast, the FE method again has a lower convergence order and local adaptivity improves the L2

error of the solution by about one order of magnitude. The upper right panel of Figure 14 shows the
convergence of the electrostatic potential at Vext = 3V , for which now the convergence rates are about
the same (O(h)) for both schemes and both mesh types. The errors of the FV and FE methods are
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Figure 12: (top, left) Electron density n and (top, right) hole density p and corresponding (bottom, left)
electron quasi-Fermi potential ϕn and (bottom, right) hole quasi-Fermi potential ϕp at bias Vext = 3V.

similar for adaptive and uniformly refined meshes, only the FE with uniform refinement converges
slower. It is likely that the more slowly convergent charge density dominates the convergence in this
case.

The lower panels of Figure 14 shows the solutions at Vext = 0.2V , where the boundary layer is
moderate and solutions are closer to thermal equilibrium. Hence, the lower left panel shows the general
tendency to have lower errors. However, the convergence is slower with an order betweenO(h) and
O(h4/3), indicating a stronger influence of the corner singularity. This effect is even more pronounced
in the lower right panel, in which for all the used methods the convergence of the electrostatic potential
nicely follows theO(h4/3) order predicted by the error analysis of the corner singularity. The existence
of the corner singularity for both bias values becomes obvious by a closer examination of the local error
err(x) = |uh(x)− u2h(x)| shown in in Figure 15 on a logarithmic scale. At the Ohmic contacts the
error vanishes since the boundary conditions are solved exact. A clearly symmetric and dominant corner
singularity is visible in the left panel of Figure 15 for the electrostatic potential at thermal equilibrium.
This matches also our previous observation, that theO(h4/3) convergence order is most prominent in
the electrostatic potential for low voltages in Figure 14. In a similar manner, we can see that the local
error in the middle and right panel of Figure 15 has corner singularities. However, while the local error
of the electron quasi-Fermi potential of the FV in the middle panel shows no specific problem near the
Ohmic contact, the FE solution also has additional difficulties at the Ohmic contact y = 0, where the
boundary layer is located, compare with Figure 12.

In Figure 16 the total current for the different methods and the convergence of the total current is
shown. Except for the FE method on uniformly refined meshes, all discretization schemes deliver
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Figure 13: (left) Electrostatic potential ψ at bias Vext = 3V and (right) total current density j = jn + jp
in arbitrary units.

comparable results, namely a convergence order betweenO(h) andO(h2). Note that the FE method
yields already on the coarsest adaptive mesh (h ∼ 2−1) with 273 vertices more accurate numerical
currents than on the considerably finer uniform mesh (h ∼ 2−6) with 12 545 vertices. However, the FV
method does not require boundary adapted meshes, as there is practically no improvement noticeable
compared to uniform meshes in the right panel of Figure 16.

Summarizing, in 2D both FE and FV discretizations deliver reasonable results. While the finite volume
scheme often shows better convergence rates, the finite element method can be drastically improved by
using meshes which are finer near Ohmic contacts. We clearly observe that depending on the potential
and the selected bias, the error is dominated by the boundary layer or the corner singularity. While the
FV method generally handles the boundary layer well, the FE method in 2D introduces extra oscillations
in the boundary layer, see Figure 15.

6 Conclusion

We performed an extensive analysis and comparison of numerical methods for the van Roosbroeck
system in one and two spatial dimensions. We compared Scharfetter-Gummel type finite volume
discretizations for non-Boltzmann statistics with standard finite element and finite difference methods,
where the electrostatic and quasi-Fermi potentials are used as primary variables. This choice of
variables transforms the convection-dominated problem into a nearly degenerate elliptic system, making
it susceptible for these alternative numerical discretization philosophies. A careful asymptotic analysis
showed that the quasi-Fermi potentials corresponding to minority carriers have logarithmic boundary
layers at Ohmic contacts. The typical size `J of these layers depends on the applied voltage via the
current density J , i.e., `J = λD (Jlim/J), which due to the smallness of Jlim generates layers much
thinner than the Debye length for a bias Vext slightly above the thermal voltage UT . We showed that for
`J � x� λD the quasi-Fermi potential has a logarithmic singularity.

Nevertheless, all studied methods are able to give reliable predictions for the total electrical current and
show the expected convergence behavior in the L2 norm under mesh refinement. The finite volume
approach even converges with respect to the L∞ norm and generally has the best convergence order
among all compared methods.

Already in one dimension, the advantageous convergence order of the finite volume convergence order
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Figure 14: Convergence of solutions on different meshes as a function of relative triangle size h = 2−`

for (a) electron quasi-Fermi potential ϕn at Vext = 3V , (b) electrostatic potential ψ at Vext = 3V , (c)
electron quasi-Fermi potential ϕn at Vext = 0.2V , (d) electrostatic potential ψ at Vext = 0.2V .

is distorted when discontinuous doping profiles are used. However, when used on uniform meshes, the
finite volume method usually outperforms the finite element and finite difference approaches significantly.
The finite element method can be significantly improved by refining the computational mesh near Ohmic
contacts.

In higher dimensions corner singularities can be the ultimate restriction for the convergence order. In
practice, their impact is most noticeable at low applied biases. In particular in two dimensions, we have
multiple error sources, so that the observed convergence order in the studied range of mesh sizes is
not yet in the predicted asymptotic regime dominated by the corner-singularity.

Appendix: material data

Table 6 lists the used material parameters.
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Figure 15: Local errors for (left) electrostatic potential ψ in thermal equilibrium and at Vext = 3V for
(middle) FV and for (right) FE electron quasi-Fermi potential.

bias Vext [V]
0 0.5 1 1.5 2 2.5 3

cu
rr
en
t
[A

]

×10
-4

0

5

10

15

20

uniform FE h ∼ 2−6

uniform FV h ∼ 2−6

adapted FE h ∼ 2−1

adapted FV h ∼ 2−1

finest FV h ∼ 2−8

mesh size h [µm]
10

-3
10

-2
10

-1

|I
h
−

I
2h
|
[A

]

10
-8

10
-6

10
-4

10
-2

FE adapted
FV adapted
FE uniform
FV uniform
O(h)
O(h2)

Figure 16: For different mesh sizes h (left) total current I for FE and FV discretizations (right) corre-
sponding convergence rates.

parameter value parameter value

kB 1.3806503 · 1023 J/K εr 12.9
q 1.602176565 · 10−19 C µn 0.85 m2/Vs
µp 0.047 m2/Vs ε0 8.854187817 · 10−12As/Vm
T 300 K Nc 4.351959895 · 1023 m−3

Nv 9.139615903 · 1024 m−3 L 10−7m
Cm 1023m−3 Ec 1.424 eV
Ev 0 eV

Table 2: Material parameters used for the simulations, see also [21].
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