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In this paper, we address density properties of
intersections of convex sets in several function spaces.
Using the concept of Γ -convergence, it is shown
in a general framework, how these density issues
naturally arise from the regularization, discretization
or dualization of constrained optimization problems
and from perturbed variational inequalities. A variety
of density results (and counterexamples) for pointwise
constraints in Sobolev spaces are presented and the
corresponding regularity requirements on the upper
bound are identified. The results are further discussed
in the context of finite-element discretizations of
sets associated with convex constraints. Finally,
two applications are provided, which include
elasto-plasticity and image restoration problems.

1. Introduction
Convex constraint sets K as subsets of an infinite-
dimensional Banach space X are common to many fields
in mathematics such as calculus of variations, variational
inequalities and control theory. Such constraints are
induced by physical limitations of control and/or state
variables, but also emerge through Fenchel dualization
of convex problems; e.g. [1–3] for fundamental concepts
in variational analysis. In this vein, given a set of
functions satisfying an arbitrary convex constraint,
density properties of more regular functions satisfying
the same restriction are of utmost importance. In abstract
terms, given some dense subspace Y of X, the central
point of interest is whether the closure property

K(Y)
X =K, (1.1)
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with K(Y)= {u ∈Y : u ∈K} =K ∩ Y, is fulfilled, and how this problem is intimately linked to the
solution of constrained optimization and variational inequality problems.

In the literature, problems of dense intersections appear in connection with the discretization
of variational inequality problems in Sobolev spaces and the convergence analysis for finite-
element methods under minimal regularity (e.g. [4–6]). Moreover, the limiting behaviour of
singular perturbations of elliptic variational inequalities can be traced back to the density issue
(see [7] and references therein). This also pertains to the deduction of a vanishing viscosity limit
for hyperbolic variational inequalities with an obstacle constraint [8]. In the context of plasticity
problems, certain density properties represent an important step towards the determination
of appropriate relaxed formulations (cf. [9,10]). However, to the best of our knowledge, the
investigation of problem (1.1) is restricted to special cases and the literature still lacks a general
and systematic treatment of the density issue.

To motivate the study of the abstract problem (1.1), §2 provides a novel unifying framework
for various perturbation approaches to non-smooth constrained optimization and variational
inequality problems. The general setting includes regularization, Galerkin approximation and
singular perturbations, and, most remarkably, it allows to reduce the study of the corresponding
limit problems for a wide range of practically relevant perturbations to the study of the density
property (1.1). In particular, we prove that the dense intersection (1.1) is a necessary and sufficient
stability condition for the retrieval of the original problem in the (joint) limit of vanishing
regularization and/or discretization parameters.

Starting from §3 we focus on the setting where X=X(Ω) is a (Rd-valued) vector space of
functions over a bounded domain Ω of RN and K=K(X) denotes the subset of elements in X(Ω)
bounded pointwise by a prescribed measurable function α :Ω→R ∪ {+∞}, i.e.

K(X(Ω))= {w ∈X(Ω) : |w(x)| ≤ α(x) a.e. (almost everywhere) in Ω},

with | · | denoting an Rd-norm. Particularly in this part, X(Ω) refers to a Lebesgue or Sobolev
space and Y=Y(Ω) refers to the space of continuous or infinitely differentiable functions up to the
boundary. We also use the notation K(X(Ω); | · |) whenever it is necessary to make the dependence
on the norm | · | explicit. Despite the fact that a small number of specific density results for very
regular bounds α are available [4,9,11], a systematic investigation of density properties in terms
of the regularity of α seems not available in the literature.

In order to close this gap, we prove new density results for continuous obstacles (§4), and
we also consider different classes of discontinuous obstacles. In fact, in §4a, the density issue is
studied in the context of the regularity of the obstacle as a Sobolev function. More precisely, we
prove that results of the type (1.1) cannot be expected if the obstacle is just a Sobolev function
by providing a counterexample. The density results are then proved to be valid even for certain
classes of lower semicontinuous obstacles; see §4b,c. Subsequently, in §4d, a different approach is
considered for obstacles that originate from the solution of a partial differential equation (PDE).

In §5, we focus on the Mosco convergence of finite-element discretized convex sets, which, in
general, is a delicate matter, and only a limited number of results for more regular obstacles are
known (e.g. [4,5]). In this respect, the construction of a recovery sequence essentially reduces
to the verification of density properties of the type (1.1). Making use of the density results
provided by the preceding sections, we prove several new Mosco convergence results in the
Hilbert spaces L2, H1 and H(div) for different types of finite-element discretizations of K, even for
discontinuous obstacles α. The results are extended to a more general constraint setting involving
pointwise restrictions on partial derivatives. We conclude the paper by presenting two important
applications that further highlight the paramount significance of dense intersections. First, we
consider the regularization of an elasto-plastic contact problem, where the closure property turns
out to be fundamental for the efficient solution by a semismooth Newton method. Secondly, we
discuss an example from total variation-based image restoration with a distributed non-smooth
regularization parameter. Here, the density property arises as an essential condition for the
equivalent reformulation of the problem in the Hilbert space H(div) by means of Fenchel duality.
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2. Motivation

(a) Optimization with convex constraints
In many variational problems, one seeks the solution in a given convex, closed and non-empty
subset K of an infinite-dimensional Banach space (X, ‖.‖). To illustrate the problem, let us consider
the following abstract class of optimization problems:

inf F(u), over u ∈X,

s.t. u ∈K.

}
(2.1)

We assume that F : X→R is continuous, coercive and sequentially weakly lower semicontinuous,
but not necessarily convex. Thus, problem (2.1) admits a solution provided X is reflexive. The
problem class (2.1) is ubiquitous, encompassing numerous fields, such as the variational form of
PDEs, variational inequality problems of potential type, optimal control of PDEs with constraints
on the state and/or control, and many other. The analysis of (2.1) and the design of suitable
solution algorithms often involve the general concepts of perturbation or dualization methods
comprising regularization, penalization or discretization approaches or possibly a combination
of the latter (e.g. [1–5] and references therein). The central result of this section is that the stability
of (2.1) with respect to a large class of perturbations can be characterized by the closure property
(1.1), i.e.

K(Y)
X =K,

where Y is some dense subspace of X (in the norm topology of X), and K(Y) is given by

K(Y)= {u ∈Y : u ∈K} =K ∩ Y.

In what follows, we will identify a very general class of perturbations for which the stability
analysis effectively reduces to the study of the density property (1.1).

(i) A class of quasi-monotone perturbations

To subsume as many of the above-mentioned methods as possible, we consider the sequence of
perturbed problems

inf F(u)+ Rn(u), over u ∈X, (2.2)

defined by a given sequence of functions

Rn : X→R ∪ {+∞}, n ∈N,

that are perturbations of the indicator function iK : X→R ∪ {+∞} in the following sense: there
exist functions Rn : X→R ∪ {+∞} and Rn : X→R ∪ {+∞} such that

0≤Rn ≤Rn ≤Rn ∀n ∈N,

having the additional properties

Rn ≤Rn+1 ∀n ∈N, lim
n→+∞Rn(u)= iK(u) ∀u ∈X

and Rn is sequentially weakly lower semicontinuous ∀n ∈N

⎫⎬
⎭ (2.3)

and
Rn ≥Rn+1, ∀n ∈N, lim

n→+∞Rn(u)= iK∩Y(u) ∀u ∈X. (2.4)

We call mappings (Rn) that share the above features quasi-monotone perturbations of the indicator
function iK with respect to the (dense) subspace Y. Note that no additional assumptions are made on
(Rn) itself.

The first main result of this section states that the dense intersection property implies the
stability of any quasi-monotone perturbation scheme. The proof is deferred to appendix A.
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Theorem 2.1 (Sufficient condition). Let the Banach space X be reflexive or assume that the dual space
X∗ is separable. For a closed, convex and non-empty set K⊂X, let (Rn) be a sequence of quasi-monotone
perturbations of iK with respect to the dense subspace Y according to (2.2). If the density property (1.1)
holds true, then F+ iK is the Γ -limit of (F+ Rn) in both, the weak and strong topology.

Under the assumptions of theorem 2.1, one may infer that, provided each problem (2.2) admits
a global minimizer un, each weak cluster point of the sequence of minimizers (un) is a global
minimizer of (2.1); see [12] for an introduction to Γ -convergence. At the end of this section, it is
further clarified that theorem 2.1 is sharp in the sense that the stability result in general fails if (1.1)
does not hold. We also remark that in case the (sequential) weak and strong Γ -limits coincide, one
usually uses the notion Mosco convergence.

In the following, we present a selection of approximation methods that fit into the general class
of perturbations defined by (2.2), which bear high practical relevance. In favour of generality, we
do not leave the abstract setting.

Example 2.2 (Tikhonov regularization). Let (Y, ‖ . . . ‖Y) be a Banach space which is densely
and continuously embedded into X. For a sequence of positive non-decreasing parameters (γn)
with γn→+∞ and fixed α > 0, consider in (2.2) the Tikhonov regularization

Rn(u)= iK(u)+ 1
2γn
‖u‖αY, (2.5)

where it is understood that Rn(u)=+∞ if u /∈Y. In fact, set Rn := iK for all n ∈N and Rn :=Rn.
Obviously, (2.3) and (2.4) are satisfied such that (Rn) fits into the context of quasi-monotone
perturbations according to (2.2).

Example 2.3 (Conforming discretization). Let X be a separable Banach space. Suppose (2.1) is
approximated by a Galerkin approach using nested and conforming finite-dimensional subspaces
Xn, i.e. Xn ⊂X and Xn ⊂Xn+1 for all n ∈N, such that the Galerkin approximation property

⋃
n∈N

Xn
X
=X

is fulfilled. The resulting discrete counterpart of problem (2.1) is given by (2.2) with Rn(u)= iK∩Xn .
Setting Rn = iK, (2.3) is clearly fulfilled. Define Y=⋃n∈N Xn, then (2.4) is fulfilled with Rn =Rn.

Example 2.4 (Combined Moreau–Yosida/Tikhonov regularization). Let X be a Hilbert space
and (Y, ‖ . . . ‖Y) be a Banach space that is densely and continuously embedded into X. For two
sequences of positive non-decreasing parameters (γn), (γ ′n) with γn, γ ′n→+∞ and fixed α > 0,
consider the simultaneous Moreau–Yosida and Tikhonov regularization

Rn(u)= γn

2
inf
v∈K
‖u− v‖2 + 1

2γ ′n
‖u‖αY, (2.6)

with α > 0 fixed, where it is understood that Rn(u)=+∞ if u /∈Y. Setting Rn(u)=
(γn/2) infv∈K ‖u− v‖2, standard properties of the Moreau–Yosida regularization ensure that Rn
satisfies (2.3) (e.g. [2, Prop. 17.2.1]). Defining Rn(u)= iK(u)+ (1/2γ ′n)‖u‖αY, (2.4) is verified as in the
previous example.

Example 2.5 (Conforming discretization and Moreau–Yosida regularization). Let X be a
separable Hilbert space and (γn) a sequence of positive non-decreasing parameters converging
to +∞. The combination of regularization and discretization leads to the definition

Rn(u)= γn

2
inf
v∈K
‖u− v‖2 + iXn (u), (2.7)

where the sequence of spaces (Xn) is defined as in example 2.3. Setting Rn(u)= (γn/2) infv∈K ‖u−
v‖2 and Rn(u)= iK∩Xn (u), (2.3) and (2.4) are fulfilled with Y=⋃n∈N Xn and the framework of
(2.2) applies.
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Consequently, each of these perturbations is stable with respect to (2.1) provided the density
result (1.1) is satisfied. It should also be emphasized that these examples only represent an
assorted variety of perturbations that fit into the problem class (2.2).

Moreover, the density property (1.1) is also a necessary condition for the stability of
perturbation schemes in the following sense: first, the Γ -limit of the approximation schemes
defined in examples 2.2 and 2.3 can be calculated using similar arguments as in the proof of
theorem 2.1. In fact, under the same conditions on X, one obtains F+ iK∩Y as the weak and strong
Γ -limit in both cases. Secondly, in the combined approaches of examples 2.4 and 2.5, theorem 2.1
guarantees that F+ iK is obtained as the weak-strong Γ -limit for any coupling of regularization
parameter pairs [γn, γ ′n] and [Xn, γn], respectively. Let us put this statement into a perspective
by means of the combined Galerkin/Moreau–Yosida approach (example 2.5). In this case, it is
possible to prove the existence of a suitable combination of n and γn to recover F+ iK in the Γ -
limit without resorting to the density property (1.1), see [13, Prop. 2.4.6]. However, the proof is
non-constructive and thus not immediately useful for the design of a stable numerical algorithm.
On the other hand, if (1.1) is violated, the Γ -convergence to the original problem (2.1) cannot be
guaranteed independently from the choice of the regularization/discretization parameter pair. In
fact, the following result, which we prove in appendix A, holds true.

Proposition 2.6 (Necessary condition). Consider example 2.5 with the corresponding definitions of
Y and (Rn). Further suppose that K ∩ Y � K. Then for all x ∈K \ K ∩ Y there exists a strictly increasing
sequence (γn) with γn→∞ such that

F(yn)+ Rn(yn) � F(x),

for all (yn)⊂X with yn→ x, i.e. there exists no recovery sequence at x in the norm topology.

The analogous statement is valid in the case of combined Moreau–Yosida/Tikhonov
regularizations given a fixed sequence (γ ′n); cf. example 2.4. In conclusion, theorem 2.1 is sharp
with respect to condition (1.1) in the sense of proposition 2.6 and the preceding discussion.

(b) Elliptic variational inequalities
The density of convex intersections of the type (1.1) is also of fundamental importance for the
analysis of perturbations of variational inequalities. Assuming X to be a Hilbert space and K⊂X
non-empty, closed and convex, we consider the general variational inequality problem of the first
kind,

find u ∈X : 〈Au, v − u〉 + iK(v)− iK(u)≥ 〈l, v − u〉, ∀v ∈X; (2.8)

e.g. [7,14] for an introduction. Here, l ∈X∗ is a linear, bounded operator and A : X→X∗ denotes a,
in general, nonlinear operator on X. We further assume A to be Lipschitz continuous and strongly
monotone, i.e. there exists κ > 0 with

〈Av − Au, v − u〉 ≥ κ‖v − u‖2, ∀u, v ∈X.

In the following, we investigate three main classes of perturbations of (2.8) and their relation to
the density properties of convex intersections.

(i) Quasi-monotone perturbation

Consider the perturbed variational inequality problem,

find un ∈X : 〈Anun, v − un〉 + Rn(v)− Rn(un)≥ 〈ln, v − un〉, ∀v ∈X, (2.9)

where An and ln are appropriate perturbations of A and l, respectively, and (Rn) is a quasi-
monotone perturbation of iK with respect to a dense subspace Y of X. The stability of the
approximation scheme (2.9) hinges on the density property (1.1). In fact, if the latter condition
is fulfilled, then the sequence (Rn) Mosco converges to iK provided Rn is weakly lower
semicontinuous. Under mild assumptions on (An) and (ln) one may then invoke known stability
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results, cf. [7, p.99, 15], to conclude the consistency of the perturbation scheme with respect to the
limit problem (2.8).

(ii) Galerkin approximation of variational inequalities

In general, finite-dimensional approximations of K are neither conforming nor nested as it was the
case in examples 2.3 and 2.5, where K was ‘discretized’ by K ∩ Xn, which is numerically realizable
only in special cases. Instead, it is often more favourable to consider non-nested approximations
Kn ⊂Xn that may contain infeasible elements, such that Kn ⊂K does not hold true in general [4,5].
As a result, the finite-dimensional variational inequality problems,

find un ∈Xn : 〈Anun, v − un〉 + iKn (v)− iKn (un)≥ 〈ln, v − un〉, ∀v ∈Xn, (2.10)

do not fit into the framework of (2.9). Again, under mild assumptions on (An) and (ln), the
Mosco convergence of (Kn) to K ensures that the approximation (2.10) is stable with respect to the
limit problem (2.8). However, Mosco convergence requires the existence of a recovery sequence
(see definition 4.5) for any element u ∈K. To construct this sequence in the context of finite-
element methods, one may use an interpolation procedure which typically is only defined on
the (supposedly) dense subset K ∩ Y of K, where Y=Ck(Ω̄) for some k ∈N0 (cf. [4, II, Theorem
2.3] and §5). This leads again to problem (1.1).

(iii) Singular perturbations

The closure property (1.1) also plays a role in the limiting behaviour of singular perturbations.
In fact, let A1 : Y→Y∗ be a Lipschitz continuous and strongly monotone operator on a Hilbert
space (Y, ‖ . . . ‖Y) that embeds densely and continuously into X. For a sequence of regularization
parameters (γn) with γn→+∞ consider the perturbed problems,

find un ∈K ∩ Y :
〈(

A+ 1
γn

A1

)
un, v − un

〉
≥ 〈l, v − un〉, ∀v ∈K ∩ Y. (2.11)

Observe that problem (2.11) admits a unique solution un ∈K ∩ Y provided that K ∩ Y is closed in
Y. The appropriate limit problem is then given by

find u ∈K ∩ Y
X

: 〈Au, v − u〉 ≥ 〈l, v − u〉, ∀v ∈K ∩ Y
X

. (2.12)

Note that (2.12) corresponds to the initial variational inequality problem if the density property
(1.1) holds true. In this case, the sequence (un) converges strongly in X to the solution of (2.8).
Here, the assumptions on A1 may be alleviated. This type of application also plays a role in
the analysis and the design of algorithms for hyperbolic variational inequalities through the
vanishing viscosity approach. For details, [7, section 4.9, 8] may be consulted.

3. Density results for continuous obstacles
We first fix some notation. In this section,Ω ⊂RN denotes a bounded Lipschitz domain. The space
of functions that are restrictions toΩ of smooth functions with compact support on RN is denoted
by D(Ω̄),

D(Ω̄)= {ϕ|Ω : ϕ ∈C∞c (RN)}.

The standard Lebesgue and Sobolev spaces over Ω are denoted by Lp(Ω), W1,p(Ω) and W1,p
0 (Ω),

and we also employ the spaces

H(div;Ω)= {u ∈ L2(Ω ; RN) : divu ∈ L2(Ω)}

and

H0(div;Ω)=C∞c (Ω ; RN)
H(div;Ω) = {u ∈H(div;Ω) : u · ν = 0 on ∂Ω}.
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In the recent paper [11], it has been shown that for any α ∈C(Ω̄) with

ess inf
x∈Ω

α(x)> 0, (3.1)

the following density result for the spaces X(Ω) ∈ {Lp(Ω)d, W1,p
0 (Ω)d, H0(div;Ω)}, and 1≤ p<+∞,

holds true:
K(C∞c (Ω)d)

X(Ω) =K(X(Ω)), (3.2)

where the constraint set K(X(Ω)) with respect to a given subspace

X(Ω)⊂ L1(Ω)d

is defined by a pointwise constraint on an arbitrary norm | · | on Rd, i.e.

K(X(Ω)) := {w ∈X(Ω) : |w(x)| ≤ α(x) a.e. in Ω}. (3.3)

Here, α :Ω→R ∪ {+∞} is a given non-negative Lebesgue measurable function. It is further
understood that d=N in (3.2) if X(Ω)=H0(div;Ω).

When considering the case X=W1,p instead of W1,p
0 in (3.2), the choice of the approximating

sequence from [11, Theorem 1], which relies on the trivial extension of Sobolev functions, fails. As
a result, a different extension operator has to be employed.

Theorem 3.1. Let α ∈C(Ω̄) fulfil (3.1) and 1≤ p<+∞. Then it holds that

K(D(Ω̄)d)
W1,p(Ω)d

=K(W1,p(Ω)d), (3.4)

i.e. K(D(Ω̄)d) is dense in K(W1,p(Ω)d) with respect to the norm topology in W1,p(Ω)d.

Proof. Let w ∈K(W1,p(Ω)d). Since Ω is a bounded Lipschitz domain we may extend w to
a function in W1,p(RN)d using for each component the extension-by-reflection operator. The
resulting operator

E : W1,p(Ω)d→W1,p(RN)d (3.5)

has the properties Ew|Ω =w for all w ∈W1,p(Ω)d and E ∈L(W1,p(Ω)d, W1,p(RN)d); see, for instance,
[16]. Since E is obtained by a partition of unity argument using local reflection with respect to the
Lipschitz graphs into which ∂Ω can be decomposed, the property |w(x)| ≤ α(x) in Ω is preserved
by the extension in that

|(Ew)(x)| ≤ EC(Ω̄)α(x), a.e. x ∈RN , (3.6)

where EC(Ω̄) : C(Ω̄)→C(RN) denotes the application of the extension by reflection procedure to
bounded uniformly continuous functions, i.e. (EC(Ω̄)α)|Ω = α. Further inspecting the construction
of E, it may also be observed that the support of Ew is compactly contained in RN . Analogously,
we obtain EC(Ω̄)α ∈Cc(RN). For a sequence (ρn) of smooth mollifiers

ρn(x)= nNρ(nx), (3.7)

where
ρ ∈D(RN), ρ ≥ 0, ρ(x)= 0 if |x| ≥ 1,

∫
Ω

ρ dx= 1,

we define the approximating sequence Sn(w,Ω) to w by

Sn(w,Ω)(x) := (ρn ∗ Ew)(x)=
∫
RN

Ew(y)ρn(x− y) dy, x ∈RN . (3.8)

It is well known that
Sn(w,Ω)|Ω→w in W1,p(Ω)d as n→∞, (3.9)

and, since Ew has compact support in RN, it holds that Sn(w,Ω)|Ω ∈D(Ω̄)d. In order to achieve
feasibility, we use the scaling sequence

βn :=
(

1+
supx∈RN |αn(x)− EC(Ω̄)α(x)|

minx∈Ω̄ α(x)

)−1

,
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where αn(x) := ((EC(Ω̄)α) ∗ ρn)(x), x ∈RN . Since EC(Ω̄)α ∈Cc(RN), αn converges to EC(Ω̄)α

uniformly in RN and thus βn→ 1 as n→∞. In addition, (3.6) together with (3.8) yields
|Sn(w,Ω)| ≤ αn(x) for x ∈RN such that

β−1
n α(x)= α(x)+

supx∈RN |αn(x)− EC(Ω̄)α(x)|
minx∈Ω̄ α(x)

α(x)≥ αn(x)≥ |Sn(w,Ω)|, (3.10)

for all x ∈Ω . As a result, βnSn(w,Ω) ∈K(D(Ω̄)d) and, taking account of (3.9), the proof is
accomplished. �

Remark 3.2 (boundary conditions).

(i) In order to incorporate a homogeneous Dirichlet boundary condition in the context
of theorem 3.1, one may use an additional reparametrization to construct a suitable
approximating sequence; see [11].

(ii) If the set K(W1,p(Ω)d) is additionally restricted by an inhomogeneous Dirichlet boundary
condition given by a function g ∈W1−1/p,p(∂Ω)d with |g(x)| ≤ α(x) on ∂Ω , the proof of
theorem 3.1 fails. In fact, the sequence (3.8), which is based on the standard mollifier, does
not preserve a given trace condition. In any case, the regularity of g (and ∂Ω) determines
an a priori regularity limitation for the functions in Y in order to be compatible with a
closure property analogous to (3.4), e.g. if Y=C(Ω̄) and g /∈C(∂Ω), then K ∩ Y=∅. In this
case, a different mollification approach needs to be pursued; cf. also §7 for an outlook on
this matter.

4. Density results for discontinuous obstacles

(a) Obstacles in Sobolev spaces
Note that theorem 3.1 requires continuous obstacles. In some applications, such as in the
regularization and discretization of elasto-plastic contact problems or image restoration problems
(see §6), it may be useful to consider obstacles that are not continuous. Under such circumstances,
the following example shows that density properties of the type (3.2) or (3.4) cannot be expected
if the obstacle is just a Sobolev function: without loss of generality, assume that 0 ∈Ω ⊂RN with
N≥ 2 and denote by

Bε(x) := {y ∈RN : |x− y|2 ≤ ε},

the open ball with centre x ∈RN and radius ε > 0 with respect to the Euclidean norm | · |2 in RN .
Let {xk : k ∈N} be a countable dense subset, i.e.

{xk : k ∈N} = Ω̄ ,

and r> 0 such that Br(0)⊂Ω . Consider the function

ϕ(x) := ϕ̃(x) · ln(ln(c |x|−1
2 )), c≥ er fixed, (4.1)

where ϕ̃ ∈C∞c (Br(0)) is a smooth cut-off function with ϕ̃(x)≥ 0 for all x ∈ Br(0) and ϕ̃ ≡ 1 on Br/2(0).
We note that ϕ is non-negative with a singularity at the origin, and its zero extension belongs to
W1,N(RN); cf. [17, Example 4.43]. Further set

g(x) :=
∞∑

k=1

k−2ϕ(x− xk), x ∈Ω , (4.2)

and note that g ∈W1,N(Ω) with g being unbounded at each xk; see [18, p.247, Example 4]. Further
take a function φ ∈C1(R) with 0≤ φ(t)< 1, φ(t)→ 1 for t→+∞ and φ′ uniformly bounded in R.
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By the chain rule for Sobolev functions, the obstacle

α := 2− φ ◦ g (4.3)

belongs to W1,N(Ω); e.g. [14, Lemma A.3]. Notice also that α is bounded away from zero and that
it is basically equal to 1 on the dense set {xk : k ∈N}. Consequently, any continuous function w with
w≤ α a.e. in Ω fulfils w≤ 1 on Ω :

Assume that the latter implication is false. Then there exist k0 ∈N as well as μ> 0, δ > 0
such that

w(x)≥ 1+ μ ∀x ∈ Bδ(xk0 ). (4.4)

Let R> 0 be such that φ(t)≥ 1− μ/2 for all t≥R. By continuity, there also exists δ′ > 0 such that
ϕ(x− xk0 )≥Rk2

0 a.e. in Bδ′ (xk0 ) such that

g(x)≥ k−2
0 ϕ(x− xk0 )≥R, a.e. x ∈ Bδ′ (xk0 ),

which implies

w(x)≤ α(x)= 2− φ(g(x))≤ 1+ μ
2

, a.e. x ∈ Bδ′ (xk0 ),

contradicting (4.4). Hence, any sequence of continuous functions approximating α from below
is bounded above by 1. However, as α(x)> 1 for a.e. x ∈Ω by definition, and convergence in the
norm topology of Lp(Ω) implies convergence pointwise a.e. (along a subsequence), we obtain that

α ∈K(Lp(Ω)) \ K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

, (4.5)

for any 1≤ p≤+∞, and

α ∈K(W1,p(Ω)) \ K(C(Ω) ∩W1,p(Ω))
W1,p(Ω)

, (4.6)

for all p≤N, where α is defined by (4.3).

Remark 4.1 (Complements on the counterexample). An interesting point in the preceding
counterexample is the structure of the set of singularities S where g(x) is not well defined as a
real number by the infinite sum (4.2), if ϕ from (4.1) is understood as a function in C(Ω \ {0}).
Extending ϕ to Ω by setting ϕ(0) :=+∞, we obtain g(xk)=+∞ for all k ∈N and, understanding
g :Ω→R ∪ {+∞} as an extended real-valued function, we arrive at the following definition:

S := {x ∈Ω : g(x)=+∞with g(x) defined by (4.2) where ϕ(0)=+∞}.
Using the Baire category theorem, one may show that the set S is a non-meagre set with vanishing
Lebesgue measure [19].

The previous construction of the counterexample is the basis for the following result.

Theorem 4.2. Let Ω ⊂RN be a bounded Lipschitz domain. The following density results hold true:

(i) Let N≥ 2 and 1≤ p≤+∞. Then there exists an obstacle α ∈W1,N(Ω) ∩ L∞(Ω) satisfying (3.1)
such that

K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

� K(Lp(Ω)),

the inclusion being strict.
(ii) Let N≥ 2 and 1≤ p≤N. Then there exists an obstacle α ∈W1,N(Ω) ∩ L∞(Ω) satisfying (3.1)

such that

K(C(Ω) ∩W1,p(Ω))
W1,p(Ω)

� K(W1,p(Ω)),

the inclusion being strict.
(iii) Let N< p<+∞ or p=N= 1. For any measurable obstacle function α :Ω→R ∪ {+∞} which

satisfies (3.1), it holds that

K(D(Ω̄)d)
W1,p(Ω)d

=K(W1,p(Ω)d).
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Proof. We only prove assertion (iii) since (i) and (ii) follow immediately from (4.5) and (4.6). As
a consequence of the Sobolev imbedding theorem, any w ∈K(W1,p(Ω)d) is contained in C(Ω̄)d. Let
w ∈K(W1,p(Ω)d). Setting

α̂(x)=max
(
|w(x)|, ess inf

x∈Ω
α(x)

)
,

it follows that |w(x)| ≤ α̂(x) a.e. in Ω . Since α̂ ∈C(Ω̄) and (3.1) holds with α̂ instead of α, we
may invoke theorem 3.1 to infer that there exists a sequence (wn) with wn ∈D(Ω̄)d, wn→w in
W1,p(Ω)d and |wn(x)| ≤ α̂(x)≤ α(x) a.e. in Ω . This entails that wn ∈K(D(Ω̄)d) for all n ∈N, which
accomplishes the proof. �

We immediately infer the corresponding statements for Sobolev spaces incorporating
homogeneous Dirichlet boundary conditions.

Corollary 4.3. Let Ω ⊂RN be a bounded Lipschitz domain. The following density results hold true:

(i) Let N≥ 2 and p≤N. Then there exists an obstacle α ∈W1,N(Ω) ∩ L∞(Ω) satisfying (3.1) such
that

K(C(Ω) ∩W1,p
0 (Ω))

W1,p
0 (Ω)

� K(W1,p
0 (Ω)),

the inclusion being strict.
(ii) Let N< p<+∞ or p=N= 1. For any measurable obstacle function α :Ω→R ∪ {+∞} which

satisfies (3.1) it holds that

K(C∞c (Ω)d)
W1,p

0 (Ω)d

=K(W1,p
0 (Ω)d).

Proof.

(i) Define the upper bound α by (4.3). Let ϕ̂ ∈C∞c (Ω) be a smooth cut-off function with 0≤
ϕ̂ ≤ 1 a.e. on Ω and ϕ̂ ≡ 1 except on a sufficiently small neighbourhood of ∂Ω . Then it

holds that α · ϕ̂ ∈K(W1,p
0 (Ω)) and the assertion now follows directly from the discussion

preceding remark 4.1.
(ii) Taking account of (3.2), statement (ii) can be proven as theorem 4.2 (iii). �

(b) Lower semicontinuous obstacles and Lebesgue spaces
The preceding counterexample provides a regularity limit in terms of the upper bound α for
which the density property (3.2) in the space X(Ω)= Lp(Ω)d can be expected to hold. In this
regard, however, uniform continuity is far from being a necessary condition. In order to enlarge
the space of obstacles compatible with (3.2), we first consider upper bounds that allow for a
lower semicontinuous representative, i.e. there exists a lower semicontinuous function in the
equivalence class of functions that are Lebesgue-almost everywhere equal to α.

Theorem 4.4. LetΩ ⊂RN be a bounded Lipschitz domain and 1≤ p<+∞. If α :Ω→R ∪ {+∞} has
a lower semicontinuous representative that fulfils (3.1), then it holds that

K(C∞c (Ω)d)
Lp(Ω)d

=K(Lp(Ω)d).

Proof. Let w ∈K(Lp(Ω)d). Consider a lower semicontinuous function α :Ω→R ∪ {+∞} that
fulfils (3.1). Without loss of generality, we may assume that infx∈Ω α(x)> 0. Denote by α̃ the
extension of α given by α̃(x) := α(x), x ∈Ω , α̃(x) := infx∈Ω α(x) on RN \Ω , and note that α̃ is lower
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semicontinuous (l.s.c.) on RN . The Lipschitz regularization of α̃,

αn(x)= inf
y∈RN
{α̃(y)+ n‖x− y‖},

yields a sequence (αn) with αn ∈C(Ω̄), infx∈Ω α(x)≤ αn(x)≤ α(x) for all x ∈Ω , n ∈N and αn(x)→
α(x) a.e. in Ω ; see, e.g. [2, Theorem 9.2.1]. Now consider the functions

wn(x) :=min{|w(x)|,αn(x)} w(x)
|w(x)| ,

where it is understood that wn(x) := 0 if w(x)= 0. It follows from Lebesgue’s theorem on
dominated convergence that wn→w in Lp(Ω)d. Further observe that wn ∈Kn(Lp(Ω)d) where

Kn(X(Ω)) := {w ∈X(Ω) : |w(x)| ≤ αn(x) a.e. on Ω}.
Let ε > 0. According to (3.2), for each n ∈N, wn can be approximated by a smooth function w̃n ∈
Kn(C∞c (Ω)d)⊂K(C∞c (Ω)d) such that

‖wn − w̃n‖Lp(Ω)d <
ε

2
.

For sufficiently large n, we conclude that

‖w− w̃n‖Lp(Ω)d ≤ ‖w− wn‖Lp(Ω)d + ‖wn − w̃n‖Lp(Ω)d <
ε

2
+ ε

2
= ε, (4.7)

which concludes the proof. �

We proceed by considering the important special case of a piecewise continuous upper bound;
suppose there exists a partition ofΩ into open subsetsΩl ⊂Ω with Lipschitz boundary such that
Ω̄ =∪L

l=1Ω̄l, Ωi ∩Ωj =∅ for i �= j and

α|Ωl ∈C(Ω̄l), inf
x∈Ωl

α|Ωl (x)> 0, l= 1, . . . , L. (4.8)

Theorem 4.4 ensures that for obstacles of this class the density result in the norm topology of the
Lp-spaces holds true.

(c) Lower semicontinuous obstacles and Sobolev spaces
Conditions on the obstacle α so that the density results for Sobolev spaces hold can be relaxed
from assuming that α ∈C(Ω̄) to lower regularity requirements with the aid of Mosco convergence
of closed and convex sets. The following definition goes back to [15].

Definition 4.5 (Mosco convergence). Let X be a reflexive Banach space and (Kn) a sequence

of closed convex subsets with Kn ⊂X for all n ∈N. Then Kn
M−→K as n→+∞, i.e. (Kn) is said to

Mosco converge to the set K⊂X, if and only if

K⊃ {v ∈X : ( ∃ (vk)⊂X : vk ∈Knk∀k ∈N, vk ⇀v)} (M1)

and K⊂ {v ∈X : ( ∃ (vn)⊂X, ∃N ∈N : vn ∈Kn ∀n≥N, vn→ v)}. (M2)

Here, (Knk ) denotes an arbitrary subsequence of (Kn) and the subset notation (vk)⊂X has to be
understood in the sense that {vk} ⊂X. The following class of obstacles encompasses functions in
W1,q(Ω) that fulfil a generalized lower semicontinuity condition.

Definition 4.6. We denote by Wq(Ω) for q≥ 1 the set of functions α ∈W1,q(Ω) for which there
exists a sequence of functions (αn) with αn satisfying (3.1), αn ≤ α a.e. in Ω and αn ∈C(Ω) ∩
W1,q(Ω) for all n ∈N such that αn ⇀α in W1,q(Ω).

Note that the class Wq(Ω) is strictly contained in W1,q(Ω). Additionally, any obstacle α ∈Wq(Ω)
has a lower semicontinuous representative, which follows easily from definition 4.6 and by
extraction of a pointwise almost everywhere converging subsequence. However, the functions
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in Wq are not necessarily continuous: it suffices to consider the example from (4.1) for Ω = Br(0),
N> 1 and

α(x)= ln(ln(c|x|−1)), c≥ er fixed. (4.9)

It follows that α ∈W1,q(Ω) for all q≤N (see [17, Example 4.43]), α /∈C(Ω), and the sequence (αn)
defined as αn(x)=min(α(x), n) for n ∈N satisfies the requirements of the definition of Wq(Ω).

Theorem 4.7. Let Ω ⊂RN be a bounded Lipschitz domain. Let 1≤ p<∞ and α ∈Wp(Ω). Then the
following density results hold true:

K(D(Ω)d; | · |∞)
W1,p

0 (Ω)d

=K(W1,p
0 (Ω)d; | · |∞)

and K(D(Ω̄)d; | · |∞)
W1,p(Ω)d

=K(W1,p(Ω)d; | · |∞),

where K(X(Ω); | · |∞)= {w ∈X(Ω) : |w(x)|∞ ≤ α(x) a.e. x ∈Ω}.
Proof. Without loss of generality, consider the one-dimensional case d= 1. Let w ∈K(W1,p

0 (Ω);
| · |∞) and (αn)⊂W1,p(Ω) according to definition 4.6. By Mazur’s lemma, we may as well assume
that (αn) converges strongly to α in W1,p(Ω) since convex combinations preserve order and
continuity. Hence, one obtains the Mosco convergence result

K±n (W1,p
0 (Ω))

M−→K±(W1,p
0 (Ω))

for the unilateral constraint sets

K−n (X(Ω)) := {w ∈X(Ω) : w(x)≥−αn a.e. in Ω},
K+n (X(Ω)) := {w ∈X(Ω) : w(x)≤ αn a.e. in Ω},
K−(X(Ω)) := {w ∈X(Ω) : w(x)≥−α a.e. in Ω}

and K+(X(Ω)) := {w ∈X(Ω) : w(x)≤ α a.e. in Ω}.
Consequently, there exist two recovery sequences,

w±n ∈K±n (W1,p
0 (Ω)), (4.10)

with w±n →w in W1,p
0 (Ω). Using the continuity of

max(. . . , 0), min(. . . , 0) : W1,p
0 (Ω)→W1,p

0 (Ω),

it follows that the sequence
wn =max(w+n , 0)+min(w−n , 0),

converges to w in W1,p
0 (Ω). Moreover, it holds that |wn| ≤ αn for all n ∈N. For each n ∈N, the

assumptions on αn allow to use (3.2) to infer the existence of a smooth function w̃n ∈C∞c (Ω)

with |w̃n| ≤ αn ≤ α a.e. in Ω that approximates wn arbitrarily well. Using wn→w in W1,p
0 (Ω)d, the

assertion follows by an ε/2-argument as in (4.7). The proof for the case X(Ω)=W1,p(Ω)d follows
analogously by invoking theorem 3.1. �

(d) Supersolutions of elliptic partial differential equations
By now, density properties for pointwise constraints in Sobolev spaces of the type

K(C∞c (Ω)d)
W1,p

0 (Ω)d

=K(W1,p
0 (Ω)d), or K(D(Ω̄)d)

W1,p(Ω)d

=K(W1,p(Ω)d),

have been obtained on the basis of mollification and a subsequent procedure to enforce feasibility.
An alternative approach is the approximation of a function via the solution of an appropriate
sequence of elliptic PDEs. Using standard regularity theory, one may prove higher regularity
of the approximating sequence and one is left to prove feasibility. In this section, we focus
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on obstacles which are solutions of an elliptic PDE. Therefore, consider a general second-order
differential operator A in divergence form;

A=
N∑

i,j=1

− ∂

∂xi
aij(x)

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x), (4.11)

where aij, bi, c ∈ L∞(Ω) for 1≤ i, j≤N. Here, the matrix [aij(x)] is symmetric a.e. and uniformly
elliptic, i.e. there exists a κa > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ κa|ξ |2, ∀ξ ∈RN ,

for a.e. x ∈Ω . It is further assumed that aij, bi, c are such that A : H1
0(Ω)→H−1(Ω) is strongly

monotone, i.e. there exists κ > 0 such that

〈Au, u〉 ≥ κ‖u‖2H1
0(Ω), ∀u ∈H1

0(Ω),

where 〈. . . , . . .〉 denotes the duality pairing in H−1(Ω). For example, this is the case if bi ≡ 0 for
1≤ i≤N and c(x)≥ 0 a.e. in Ω . We call a function α ∈H1(Ω) weak supersolution with respect to
the elliptic operator A, if Aα ≥ 0 in the H−1(Ω)-sense, that is

〈Aα, v〉 ≥ 0, ∀v ∈H1
0(Ω), v ≥ 0 a.e. in Ω . (4.12)

The subsequent theorem covers density properties for obstacles that are weak supersolutions of
an elliptic PDE of type (4.11).

Theorem 4.8. Let Ω be a bounded domain. Let α ∈H1(Ω) be a weak supersolution for some A as in
(4.11) in the sense of (4.12), with α ≥ 0 on ∂Ω . For X(Ω) ∈ {L2(Ω)d, H1

0(Ω)d}, it holds that

K(Y(Ω), | · |∞)
X(Ω) =K(X(Ω), | · |∞),

in the following cases:

(i) aij ∈C0,1(Ω̄) or aij ∈C1(Ω): Y(Ω)= (H2
loc(Ω) ∩H1

0(Ω))d,
(ii) ∂Ω ∈C1,1 or Ω convex, aij ∈C0,1(Ω̄): Y(Ω)= (H2(Ω) ∩H1

0(Ω))d,
(iii) aij, bi, c ∈Cm+1(Ω), m ∈N0: Y(Ω)= (Hm+2

loc (Ω) ∩H1
0(Ω))d and

(iv) ∂Ω ∈Cm+2, aij, bi, c ∈Cm+1(Ω̄), m ∈N0: Y(Ω)= (Hm+2(Ω) ∩H1
0(Ω))d.

Proof. Without loss of generality, assume d= 1. First observe that the maximum principle
implies α(x)≥ 0 a.e. in Ω . Let w ∈K(X(Ω)) be arbitrary. Consider the sequence (wn), where wn

is defined as the unique solution to the problem,

find y ∈H1
0(Ω) :

1
n

Ay+ y=w in H−1(Ω). (4.13)

We denote by Tn the solution mapping to (4.13), i.e. wn = Tn(w).
Step 1: Tn-invariance of K(H1

0(Ω)): We now prove that for any n ∈N, we have that −α ≤wn ≤ α
a.e., i.e.

Tn : K(L2(Ω))→K(H1
0(Ω)), (4.14)

given that Aα ≥ 0 in the H−1(Ω). Proceeding as in [20], we consider (wn − α)+ as a test function
on (4.13) and add to both sides −〈(1/n)Aα + α, (wn − α)+〉. Then,

κ

n
‖(wn − α)+‖2H1

0(Ω) + ‖(wn − α)+‖2L2(Ω) ≤
〈(

1
n

A+ I
)

(wn − α), (wn − α)+
〉

≤
〈
w− α − 1

n
Aα, (wn − α)+

〉

≤− 1
n
〈Aα, (wn − α)+〉 ≤ 0,
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where we have used that w− α ≤ 0 a.e. in Ω . Therefore, wn ≤ α a.e. in Ω . Analogously, we obtain
that wn ≥−α a.e. by considering (−α − wn)+ as a test function and by adding to both sides
−〈(1/n)Aα + α, (−α − wn)+〉. This proves (4.14), i.e. wn ∈K(H1

0(Ω)).
Step 2: Some convergence results for singular perturbations.
The desired convergence modes of the approximating sequences rely on standard arguments

for singular perturbations, cf. [7, Theorems 9.1 and 9.4] for the case of singularly perturbed
variational inequalities. First, for y ∈ L2(Ω) it holds

lim
n→∞ yn = y in L2(Ω) �⇒ ŷn := Tn(yn)→ y in L2(Ω). (4.15)

Second, for y ∈H1
0(Ω), we prove that

lim
n→∞ yn = y in H1

0(Ω) �⇒ lim
n→∞ ŷn = y in H1

0(Ω). (4.16)

In fact, since yn ∈H1
0(Ω) and A is strongly monotone, we observe that

κ

n
‖ŷn − yn‖2H1

0(Ω) + ‖ŷn − yn‖2L2(Ω) ≤
〈(

1
n

A+ I
)

(ŷn − yn), ŷn − yn

〉

= 1
n
〈Ayn, yn − ŷn〉

≤ 1
n
‖Ayn‖H−1(Ω)‖yn − ŷn‖H1

0(Ω),

where we have used that ŷn solves (4.13) with yn as right-hand side. Hence (ŷn) is bounded
in H1

0(Ω). Employing (4.15) one obtains that ŷn ⇀ y in H1
0(Ω) along a subsequence, and by

uniqueness, it holds ŷn ⇀ y for the entire sequence (ŷn). Finally, from the inequalities above, we
have

κ lim sup
n→∞

|ŷn − yn|2H1
0(Ω) ≤ lim sup

n→∞
〈Ayn, yn − ŷn〉 = 0,

so that ŷn = Tn(yn)→ y in H1
0(Ω) and thus (4.16) is proven.

Thirdly, in addition to wn = Tn(w), we define wq
n = Tq

n(w) where Tq
n(w) := Tn(Tq−1

n (w)) for q ∈
N, q≥ 2, T1

n(w) := Tn(w)=wn and w0
n :=w. It can be deduced from (4.15) and (4.16) by induction

that

lim
n→∞wq

n =w in L2(Ω), ∀q ∈N ∪ {0}, (4.17)

for w ∈ L2(Ω), and

lim
n→∞wq

n =w in H1
0(Ω), ∀q ∈N ∪ {0}, (4.18)

for w ∈H1
0(Ω), respectively.

Step 3: Regularity and convergence of the approximating sequences
The extra regularity of the H1

0(Ω)-solution Tn(w) to (4.13) is different with respect to the
statement cases: if aij ∈C0,1(Ω̄) or aij ∈C1(Ω) for 1≤ i, j≤N, the solution Tn(w) belongs to H1

0(Ω) ∩
H2

loc(Ω) (see [21] for the first case and [18] for the second one). The solution Tn(w) belongs to
H1

0(Ω) ∩H2(Ω) if ∂Ω is C1,1-smooth [21] or when Ω is convex [22].
In case w ∈K(L2(Ω)), (4.15) with yn ≡w ensures that wn→w in L2(Ω). In conjunction with the

regularity and the feasibility of wn = Tn(w) described above, we have then established (i) and (ii)
for X(Ω)= L2(Ω). Secondly, note that if w ∈K(H1

0(Ω)), then wn→w in H1
0(Ω) by (4.16) with yn ≡w,

and as seen above, wn ∈K(H1
0(Ω)). This, together with the regularity of wn = Tn(w) established

above, proves in turn (i) and (ii) for X(Ω)=H1
0(Ω).
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It is left to argue for (iii) and (iv) as follows. If aij, bi, c ∈Cm+1(Ω) for 1≤ i, j≤N, then for each
n ∈N, the operator Tn has the following increasing regularity properties [18],

w ∈Hk
loc(Ω)�⇒ Tn(w) ∈Hk+2

loc (Ω) ∩H1
0(Ω), 0≤ k≤m;

and if aij, bi, c ∈Cm+1(Ω̄) for 1≤ i, j≤N and ∂Ω is of class Cm+2, for each n ∈N,

w ∈Hk(Ω)�⇒ Tn(w) ∈Hk+2(Ω) ∩H1
0(Ω), 0≤ k≤m.

Finally, this proves (iii) given that wq
n ∈Hm+2

loc (Ω) ∩H1
0(Ω) for 2q≥m+ 2, wq

n ∈K(H1
0(Ω)), and

wq
n→w as n→∞ in L2(Ω) or H1

0(Ω) depending on the regularity of w, cf. (4.17) and (4.18). The
analogous reasoning applies to (iv). �

Let us briefly comment on the relation to the density results from theorem 4.4 and theorem 4.7.
First, note that we do not require the obstacle to be bounded away from zero as we did in the
preceding paragraphs. Secondly, the maximal regularity of the feasible approximation hinges on
the coefficients of the elliptic operator associated with the obstacle and the smoothness of the
boundary. Concerning the semicontinuity requirements of the upper bound, a classical result from
Trudinger [23, Cor. 5.3] for the case without lower order terms (bi ≡ 0, c≡ 0) states that any weak
supersolution in the sense of (4.12) is upper semicontinuous. By contrast, the consideration of
upper bounds that are weak subsolutions of an elliptic PDE is not useful as these functions may
easily fail to be non-negative on Ω . For example, this is the case if a weak subsolution satisfies a
Dirichlet boundary condition.

5. Application to finite elements

(a) Finite-element discretized convex sets
In the following, we investigate the issue of the Mosco convergence (definition 4.5) of finite-
dimensional approximations Kn of a convex constraint set K(X(Ω)) of the type (3.3); see §2b(ii) for
a general motivation in the context of variational inequality problems. In this section, it is assumed
that the sets (Kn) result from a suitable finite-element discretization such that the parameter n is
associated with a sequence of mesh widths (hn) tending to zero. The convergence of (Kn) in the
sense of definition 4.5 ensures that the solutions of the discrete problems converge to the solution
of the original infinite-dimensional problem irrespectively of the regularity of the data or the
obstacle defining K(X(Ω)); see [7, ch. 4, Theorem 4.1]. Mosco convergence results of this type
are rarely found in the literature and are typically confined to simpler constraint sets and higher
regularity assumptions on the obstacle; see, for instance, [4] for the case of an H1(Ω) ∩ C(Ω̄)-
bound in the context of the obstacle problem. The density results from the preceding sections
provide the basis for new Mosco convergence results under minimal regularity (of the solution)
and under weaker assumptions on the regularity of the obstacle α. We further provide novel
Mosco convergence results for discretized constraints on partial derivatives, including Raviart–
Thomas finite-element approaches for problems in H(div). As a general rule, density results of
the type (1.1) represent a powerful means to verify the convergence of finite-element methods for
convex constrained problems under minimal regularity. Applications involving constraint sets of
the type (3.3) with low regularity of α are manifold and comprise, for instance, the discretization of
variational problems in mechanics, such as in elasto-plasticity with hardening [24], and in image
restoration, with regard to the predual problem of TV-regularization [25]. Moreover, the issue
occurs in fixed point-based approaches to the solution of quasi-variational inequalities through
the implicit definition of obstacles.
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Remark 5.1. In some textbooks on finite-dimensional approximations of variational
inequalities, cf. e.g. [4,6], condition (M2) is replaced by the following criterion:

there exists a dense subset K̃⊂K and an operator rn : K̃→X

such that for all v ∈ K̃ it holds rnv→ v in X and there exists n0 ∈N

such that rnv ∈Kn for all n≥ n0.

⎫⎪⎪⎬
⎪⎪⎭ (M2′)

It is easy to show that (M2′) implies (M2). In fact, let v ∈K and denote by πKnv its (not necessarily
uniquely determined) projection onto Kn. By density, for ε > 0, there exists vε ∈ K̃ such that ‖vε −
v‖ ≤ ε. Thus, it holds

‖v − πKnv‖ = inf
vn∈Kn

‖v − vn‖ ≤ ‖v − rnv
ε‖ ≤ ε + ‖vε − rnv

ε‖,

for sufficiently large n such that limn→∞ ‖v − πKnv‖ ≤ ε, where ε was arbitrary.

The condition (M2′) turns out to be convenient especially in the context of finite-dimensional
approximations, where (rn) is given by suitable interpolation operators, which typically are only
well defined on a dense subset Y(Ω) of X(Ω) giving rise to sets K̃ of the type K(Y(Ω)). This is
precisely the point where the density results of §3 are needed.

Note that Mosco convergence is a powerful tool whenever the discrete spaces are fixed a priori,
i.e. regardless of the data of the specific problem. The resulting sequence of finite-dimensional
problems can be understood as an approximation of any problem in a given problem class.

By contrast, adaptive finite-element methods intend to design the sets Kn in order to
approximate the solution of a specific problem. However, rigorous convergence proofs with regard to
adaptive discretizations of variational inequalities are restricted to special cases and usually rely
on rather strong assumptions. For instance, in the case of the obstacle problem with a piecewise
affine obstacle, we mention the article [26]. Moreover, density results may still be useful in the
convergence analysis of adaptive schemes which require interpolation operators (cf. [27]).

(b) Finite-element spaces and interpolation operators
In this section, we assume that Ω ⊂RN is polyhedral. Together with Ω , a sequence of
geometrically conforming affine simplicial meshes (Th)h>0 of Ω with mesh size

h :=max
T∈Th

diamT

is assumed to be given. For details, we refer to [28]. In analogy to the case N= 2, we refer to each
Th as a triangulation. The (N-dimensional) Lebesgue measure of an element T ∈ Th is denoted by
λ(T). We also admit the standard assumption that the sequence (Th) is shape-regular, i.e.

∃ c> 0 :
diam(T)
ρT

≤ c ∀h∀T ∈ Th, (5.1)

where diam(T)=maxx,y∈T |x− y| denotes the diameter of T and ρT designates the diameter of
the largest ball that is contained in T. We further write xT for the (barycentric) midpoint of an
element T, and Mh = {xT : T ∈ Th}, Nh and Eh for the set of element midpoints, triangulation nodes
and edges with respect to Th, respectively. By abuse of notation, we write |Mh| and |Nh| for the
cardinality of the respective set. Let χT :Ω→R designate the characteristic function of T with
respect to Ω , that is

χT(x)= 0, ∀x /∈ T, χT(x)= 1, ∀x ∈ T.

We further make use of the standard H1(Ω)-conforming finite-element space of globally
continuous, piecewise affine functions denoted by

P1,h(Ω) := {u ∈C(Ω̄) : u|T ∈ P1 ∀T ∈ Th}.
Here, P1 denotes the space of polynomials of degree less than or equal to one. Together with the
finite-dimensional subspace P1,h(Ω) and its standard nodal basis {ϕx : x ∈Nh}, we consider the
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global interpolation operator

Ih : C(Ω̄)→ P1,h(Ω) and Ihu :=
∑

x∈Nh

u(x)ϕx. (5.2)

Note that Ih is only defined on a dense subspace of H1(Ω). For the discretization of variational
problems in H(div;Ω), it is customary to use the conforming space of Raviart–Thomas finite
elements of lowest order

RTh(Ω) := {w ∈ L2(Ω)N : w|T ∈RT ∀T ∈ Th, [w · ν]|E∩Ω = 0 ∀E ∈ Eh}, (5.3)

where RT := {w ∈ Pd
1 : ∃ a ∈Rd, b ∈R : w(x)= a+ bx} and ν denotes the unit outer normal to

T. To incorporate homogeneous Neumann boundary conditions, one uses the H0(div;Ω)-
conforming subspace

RT0,h(Ω) :=RTh(Ω) ∩H0(div;Ω).

The construction of suitable edge-based basis functions {ϕE : E ∈ Eh} can be found in the literature,
cf., for instance, [29], such that the boundary condition in the definition of RT0,h(Ω) can be easily
accounted for. The global Raviart–Thomas interpolation operator is given by

IRT
h : W1,1(Ω)N→RTh(Ω), IRT

h w :=
∑
E∈Eh

(∫
E

w · ν dHN−1
)
ϕE. (5.4)

(c) Mosco convergence results under minimal regularity
We emphasize that the subsequent results may be extended to finite elements of higher order,
which are typically useful when the solution to the variational problem, e.g. (2.8), displays a
higher regularity. In this regard, higher regularity assumptions on the data and the obstacle
are required and the concept of Mosco convergence is not binding to prove the convergence of
the finite-element method, and a priori error estimates with a rate can be derived (cf. e.g. [30]).
However, we do not want to deviate from minimal regularity assumptions on the data. Further,
even for simple variational problems such as the classical elasto-plastic torsion problem, there is
a regularity limitation for the solution regardless of the smoothness of the data (cf. [4]).

Note also that the subsequently covered problems comprise situations where the discrete
feasible sets Kh are not necessarily nested and non-conforming in the sense that they are in general
not contained in the feasible set K(X). In the following, c denotes a positive constant, which may
take different values on different occasions.

Lemma 5.2. Let Ω ⊂RN be a polyhedral domain and α ∈C(Ω̄) with α(x)≥ 0 in Ω . Further let (wh)
be a sequence that fulfils for all h, wh ∈ P1,h(Ω)d and |wh(xT)| ≤ α(xT) for all T ∈ Th. If wh ⇀w for h→ 0
in L2(Ω)d, then it holds that |w| ≤ α a.e. in Ω .

Proof. It suffices to show that iK(w)= 0, where

K := {w ∈ L2(Ω)d : |w| ≤ α a.e.}.
Moreover, it holds that iK = j∗, where j∗ denotes the Fenchel conjugate

j∗(v∗) := sup
v∈L2(Ω)d

{(v∗, v)− j(v)},

of the mapping j : L2(Ω)d→R, j(v) := ∫
Ω α|v|∗ dx. Here,

|v∗|∗ = sup
v∈Rd\{0}

v∗ · v/|v|

denotes the dual norm of | · |. From the definition of j∗, we obtain that iK(w)= 0 is equivalent to

(w, v)≤
∫
Ω

α|v|∗ ∀v ∈ L2(Ω)d. (5.5)
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By a density argument, it suffices to prove this result for all v ∈Cc(Ω)d. Denote by

αh :=
∑

T∈Th

α(xT)χT and vh :=
∑

T∈Th

v(xT)χT, (5.6)

the piecewise constant interpolants of α and v, respectively. By definition of (ah) and (vh) as well as
the uniform continuity of α and v it follows that αh→ α and vh→ v, both in L∞(Ω). By the weak
convergence of (wh), the strong convergence of (αh) and (vh) as well as the midpoint quadrature
rule, we obtain

∫
Ω

w · v dx←
∫
Ω

wh · vh dx=
∑

T∈Th

∫
T

wh · vh dx

=
∑

T∈Th

λ(T) wh(xT) · vh|T dx

≤
∑

T∈Th

λ(T)α(xT)|vh|T|∗ dx

=
∫
Ω

αh|vh|∗ dx→
∫
Ω

α|v|∗ dx, (5.7)

which proves (5.5). �

Lemma 5.3. Let Ω ⊂RN be a polyhedral domain and α ∈C(Ω̄) with α(x)≥ 0 in Ω . Let (wh) be a
sequence that fulfils for all h, wh ∈ P1,h(Ω)d and |wh(x)| ≤ α(x) for all x ∈Nh. If wh ⇀w for h→ 0 in
L2(Ω)d then it holds that |w| ≤ α a.e. in Ω .

Proof. The assertion follows by a slight modification of the proof of lemma 5.2. Instead of the
piecewise constant interpolant we define αh as the piecewise affine interpolant of α, i.e. αh = Ihα,
which fulfils α(x)= (Ihα)(x) for all x ∈Nh and αh→ α strongly in L∞(Ω)d. By (5.7), we obtain

∫
Ω

w · v dx←
∫
Ω

wh · vh dx=
∑

T∈Th

λ(T)
N + 1

∑
x∈Nh∩T

wh(x) · vh|T dx

≤
∑

T∈Th

λ(T)
N + 1

∑
x∈Nh∩T

|wh(x)||vh|T|∗

≤
∑

T∈Th

λ(T)
N + 1

∑
x∈Nh∩T

α(x)|vh|T|∗

=
∫
Ω

αh|vh|∗ dx→
∫
Ω

α|v|∗ dx. �

Theorem 5.4. Let Ω ⊂RN be a polyhedral domain and α ∈C(Ω̄) such that (3.1) holds true. Then
the sets

Kh = {w ∈ P1,h(Ω)d : |w(xT)| ≤ α(xT) for all T ∈ Th} (5.8)

Mosco converge for h→ 0 to the set K(H1(Ω)d) in H1(Ω)d.

Proof. Since weak convergence in H1(Ω) implies weak convergence in L2(Ω), the preceding
lemma 5.2 shows that (M1) is fulfilled. We now show (M2′). To prove the assertion, we may use
a strategy that is similar to the one in [4, ch. II] and requires (3.4). Note that theorem 3.1 implies
that the set

K̃ := {ϕ ∈C∞(Ω̄)d : |ϕ(x)|<α(x) for all x ∈ Ω̄} (5.9)

is also dense in K(H1(Ω)d) with respect to the H1(Ω)d-norm. For the global interpolation operator
Ih defined in (5.2), we have the classical estimate,

‖u− Ihu‖L∞(Ω) ≤ ch2‖u‖W2,∞(Ω) ∀u ∈W2,∞(Ω). (5.10)
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Here, c denotes a constant independent of h on account of the shape-regularity of the triangulation
(5.1) (cf. [28, p.61]). We further define rh : K̃→ P1,h(Ω)d by

rhw := [Ihw1, . . . , Ihwd],

and it follows that rhw→w as h→ 0 in H1(Ω)d for all w ∈ K̃; see [28, Corollary 1.109]. Applying
estimate (5.10) to the components of w ∈ K̃ and using the equivalence of norms on Rd, one
obtains that

‖ |w− rhw| ‖L∞(Ω) ≤ ch2‖w‖W2,∞(Ω)d , (5.11)

for a suitable modification of c. This implies

|rhw(x)| ≤ |w(x)| + ch2‖w‖W2,∞(Ω)d ∀x ∈Ω . (5.12)

Since any w ∈ K̃ is uniformly bounded away from α, there exists h0 = h0(w) such that rhw ∈Kh∀h≤
h0, which implies (M2′). �

Corollary 5.5. Under the conditions of theorem 5.4, the sequence (Kh) defined in (5.8) Mosco converges
for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. Again, lemma 5.2 implies that (M1) with X= L2(Ω)d holds true. For K̃ defined in (5.9)
it holds that K̃ is also dense in K(L2(Ω)d) with respect to the L2(Ω)d-norm (cf. (3.2)). Thus, (M2′)
follows analogously to the proof of theorem 5.4. �

Corollary 5.6. Under the conditions of theorem 5.4, the node-based discrete sets

Kh := {w ∈ P1,h(Ω)d : |w(x)| ≤ α(x)∀x ∈Nh}, (5.13)

Mosco converge for h→ 0 to K(H1(Ω)d) in H1(Ω)d.

Proof. The proof is analogous to the proof of theorem 5.4, noting that (5.12) also implies rhw ∈
Kh∀h≤ h0 with Kh according to the node-based definition (5.13). �

Remark 5.7. With the help of the density property (3.2) for uniformly continuous upper
bounds, the above results on the Mosco convergence of discretized convex sets carry over to
spaces involving homogeneous Dirichlet boundary conditions. In this context, the set P1,h(Ω) in
the definitions of the discretized sets Kh in (5.8) and (5.13) has to be replaced by the space

P∂Ω1,h := {u ∈C(Ω̄) : u|T ∈ P1∀T ∈ Th, u(x)= 0∀x ∈Nh ∩ ∂Ω}.

The resulting discrete sets Kh incorporate the zero boundary condition and the corresponding
results on Mosco convergence for h→ 0 remain valid replacing H1(Ω)d by H1

0(Ω)d.

With the help of the density result (3.2), one obtains the following result for the discrete
approximation of pointwise constraint sets in H(div;Ω) by the Raviart–Thomas finite-element
space RTh(Ω) (cf. (5.3)).

Theorem 5.8. Let Ω ⊂RN be a polyhedral domain. Let α ∈C(Ω̄) such that (3.1) is satisfied. Then
the sets

Kh := {w ∈RT0,h(Ω) : |w(xT)| ≤ α(xT) ∀T ∈ Th}.

Mosco converge to K(H0(div;Ω)) in H(div;Ω) and to K(L2(Ω)N) in L2(Ω)N.

Proof. Let wh ∈Kh for all h. First observe that if (wh) weakly converges to w in H(div;Ω), then it
also weakly converges to w in L2(Ω)N. Analogously to the proof of lemma 5.2 one concludes that
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|w| ≤ α a.e. in Ω . The continuity of the normal trace mapping

H(div;Ω) �w �→ 〈wν, v〉H−1/2(∂Ω),H1/2(∂Ω) ∈R

for fixed v ∈H1(Ω) implies wν = 0 in H−1/2(∂Ω). We conclude that w ∈K(H0(div;Ω)) whence it
follows that (M1) is satisfied. Secondly, note that

K(C∞c (Ω)N)
H(div;Ω) =K(H0(div;Ω));

cf. (3.2). For the global Raviart–Thomas interpolation operator defined in (5.4), the following
interpolation error estimate holds true [28, Corollary 1.115]:

‖u− IRT
h u‖L∞(Ω)N + ‖div u− div IRT

h u‖L∞(Ω) ≤ ch‖u‖W1,∞(Ω)N , (5.14)

for all u ∈W2,∞(Ω)N . Setting rhw := IRT
h w for any w ∈ K̃, where

K̃ := {w ∈C∞c (Ω)N : |w(x)|<α(x), ∀x ∈Ω},
and taking account of the fact that IRT

h w→w in H(div) for all w ∈ K̃, we may proceed analogously
to the proof of theorem 5.4 to verify (M2′). �

The previous approach can also be applied to derive approximation results for constraint
sets involving pointwise bounds on partial derivatives. To begin with, we consider the gradient-
constraint sets

K∇ (X(Ω))= {w ∈X(Ω) : |∇w| ≤ α a.e. in Ω},
for X(Ω)⊂H1(Ω)d and an arbitrary norm | · | on RN×d.

Theorem 5.9. Let Ω ⊂RN be a polyhedral domain. Let α ∈C(Ω̄) such that (3.1) is satisfied. Define

Kh := {w ∈ P∂Ω1,h (Ω)d : |∇w|T| ≤ α(xT) ∀T ∈ Th}. (5.15)

Then the sets Kh Mosco converge to K∇ (H1
0(Ω)d) in H1

0(Ω)d.

Proof. To prove (M1), it suffices to notice that if wh ⇀w in H1(Ω)d then ∇wh ⇀∇w in L2(Ω)N×d.
Similar to the proof of lemma 5.2, one obtains for v ∈Cc(Ω)N×d that∫

Ω

∇w : v dx←
∫
Ω

∇wh : v dx≤
∫
Ω

|∇wh||v|∗ dx≤
∫
Ω

αh|v|∗ dx→
∫
Ω

α|v|∗ dx,

using αh from (5.6). Therefore, (5.5) holds with ∇w in place of w, and (M1) is verified.
To prove (M2′), we consider again the global interpolation operator Ih from (5.2). The standard

estimate
‖∇u−∇Ihu‖L∞(Ω)N ≤ ch‖u‖W2,∞(Ω), ∀u ∈W2,∞(Ω),

holds true (e.g. [28]). Note also that K∇ (C∞c (Ω)d) is dense in K∇ (H1
0(Ω)d) for the H1(Ω)d-norm

[11, Theorem 4]. Thus, the set

K̃ := {w ∈C∞c (Ω)d : |∇w(x)|<α(x) ∀x ∈Ω}
is also dense in K∇ (H1(Ω)d). Therefore, one may argue as in the proof of theorem 5.4 to deduce
(M2′). �

Next we consider pointwise constraints on the divergence. For X(Ω)⊂H(div;Ω) let

Kdiv(X(Ω)) := {w ∈X(Ω) : |div w| ≤ α a.e. in Ω}. (5.16)

Using Raviart–Thomas finite elements, a discrete realization of the inequality constraint in (5.16)
can be achieved by imposing the inequality on the midpoints of the triangulation. The following
statement ensures that the resulting approach is stable as the mesh width goes to zero.

Theorem 5.10. Let Ω ⊂RN be a polyhedral domain. Let α ∈C(Ω̄) fulfil (3.1). Then the sets

Kh := {w ∈RT0,h(Ω) : |div w|T| ≤ α(xT),∀T ∈ Th}
Mosco converge in H(div;Ω) to the set Kdiv(H0(div;Ω)) as defined in (5.16).
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Proof. Taking account of the fact that wh ⇀w in H(div;Ω), wh ∈Kh, implies div wh ⇀ div w in
L2(Ω), (M1) follows analogously to the corresponding part of the proof of corollary 5.9. Since
Kdiv(C∞c (Ω)N) is dense in Kdiv(H0(div;Ω)) [11, Theorem 4], the set

K̃ := {w ∈C∞c (Ω)d : |divw(x)|<α(x),∀x ∈Ω}
is also dense in Kdiv(H0(div;Ω)). Setting rh = IRT

h , the estimate (5.14) implies rhw→w in H(div;Ω)
and

‖div w− div rhw‖L∞(Ω) ≤ ch‖w‖W2,∞(Ω)N ,

for all w in K̃. In particular, one may argue as in the proof of theorem 5.4 to verify (M2′). �

For a general Lp-function as upper bound, a point-based discretization is obviously not
possible. As a remedy, the construction of the discrete sets Kh typically involves some kind of
averaging process. For this purpose, we define the integral mean

∫
T
α dx :=

∫
T α dx
λ(T)

over some given subset T⊂Ω (with positive measure).
Now we have to take into account that the density results of the type (3.2) and (3.4), which

represent the main ingredient to prove the consistency of the finite-element approximation, may
fail to hold true (e.g. theorem 4.2). On the other hand, the results from §4 indicate that the density
property is still guaranteed for a large class of discontinuous obstacles. To maintain the greatest
level of generality, we assume that the non-negative measurable function α :Ω→R ∪ {+∞}
allows for the density property

K(C(Ω̄))
L2(Ω)d

=K(L2(Ω)d). (5.17)

Here, we concentrate on the consistency in the L2-topology but an extension to the other cases is
possible by appropriately modifying assumption (5.17). We stress the fact that assumption (5.17)
is fulfilled in relevant situations (cf. e.g. theorem 4.4).

Lemma 5.11. Let Ω ⊂RN be a polyhedral domain and α ∈ L2(Ω) with α(x)≥ 0 a.e. in Ω . Let (wh) be
a sequence that fulfils for all h, wh ∈ P1,h(Ω)d and |wh(xT)| ≤ ∫

T α dx for all T ∈ Th. If wh ⇀w for h→ 0
in L2(Ω)d then it holds that |w| ≤ α a.e. in Ω .

Proof. The assertion follows analogously to the proof of lemma 5.2 by a slight modification
of the definition of αh. Instead of the piecewise constant interpolant we consider the piecewise
constant quasi-interpolant αh :=∑T∈Th

χT
∫

T α dx. Observe that αh converges strongly to α in
L2(Ω)d, which is sufficient for the above argument. �

Theorem 5.12. Let Ω ⊂RN be a polyhedral domain. Let α ∈ L2(Ω) with (3.1) such that (5.17) holds
true. Then the sets

Kh :=
{

w ∈ P1,h(Ω)d : |w(xT)| ≤
∫

T
α dx,∀T ∈ Th

}
.

Mosco converge for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. We only need to prove (M2′) since corollary 5.11 implies (M1). First note that (3.1) and
(5.17) imply that the set

K̃ := {w ∈C∞c (Ω)d : ∃ δ = δ(w)> 0 such that |w(x)| ≤ α(x)− δ a.e. in Ω},
is also dense in K(L2(Ω)d). Furthermore, we set

rhw := [Ihw1, . . . , Ihwd],

for w ∈ K̃ and Ih as in (5.2). Integrating estimate (5.12) yields∣∣∣∣
∫

T
rhw dx

∣∣∣∣≤
∫

T
|w|dx+ ch2‖w‖W2,∞(Ω)d , ∀T ∈ Th.
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Let w ∈ K̃ be fixed. Since rhw is affine on each T ∈ Th, an application of the midpoint rule shows

|rhw(xT)| ≤
∫

T
|w|dx+ ch2‖w‖W2,∞(Ω)d , ∀T ∈ Th,

which implies

|rhw(xT)| ≤
∫

T
α dx− δ(w)+ ch2‖w‖W2,∞(Ω)d , ∀T ∈ Th. (5.18)

This implies rhw ∈Kh for all w ∈ K̃ and h≤ h0(w). By (5.10), it holds that rhw→w in L2(Ω)d for
h→ 0, which proves (M2′). �

6. Further applications

(a) Regularization of elasto-plastic contact problems
In the context of the one time-step problem of quasi-static elasto-plasticity with an associative
flow law, the deformation of a material represented by a bounded Lipschitz domain Ω subject
to given applied forces is modelled by the evolution of the displacement, the material stress and
strain as well as certain internal variables (cf. [6]). An elasto-plastic contact problem arises if the
movement of the material is additionally restricted by the presence of a rigid obstacle. From a
mathematical point of view, the problem can be equivalently reformulated in terms of the normal
stress z∗ at the (sufficiently smooth) contact boundary Γc ⊂ ∂Ω , and a variable q that is related to
the deviatoric part of the material stress; for details we refer to [24, p.154]:

min G([z∗, q])− 〈z∗,ψ〉 over [z∗, q] ∈H1/2(Γc)∗ × L2(Ω)d

s.t. z∗ ∈H1/2
+ (Γc)∗,

|q|2 ≤ β a.e. in Ω .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)

Here, d :=N(N + 1)/2− 1 and G is a strongly convex, continuous and coercive functional that
models the elasto-plastic material behaviour subject to given external loads. Furthermore, a
contact constraint on the normal component of the displacement is imposed by a function ψ ,
which lies in the trace space H1/2(Γc). The upper bound β ∈ L2(Ω) is determined by the hardening
law, and it is bounded away from zero by the positive yield stress σy, i.e. β(x)≥ σy a.e. in Ω . The
normal stress z∗ is constrained to lie in the polar cone

H1/2
+ (Γc)∗ := {z∗ ∈H1/2(Γc)∗ : 〈z∗, z〉 ≤ 0 ∀z ∈H1/2

+ (Γc)}
to the cone of non-negative functions

H1/2
+ (Γc)= {z ∈H1/2(Γc) : z≥ 0 a.e. on Γc},

where H1/2(Γc)∗ designates the topological dual space of H1/2(Γc). From an algorithmic point
of view, it is favourable to replace (6.1) by a combined Moreau–Yosida/Tikhonov regularization
given by

min G([z, q])− (z,ψ)L2(Γc) +
γn

2
‖z+‖2L2(Γc)

+ γn

2
‖[(|q|2 − β)]+‖2L2(Ω) +

1
2γ ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

over [z, q] ∈H1(Γc)×H1(Ω)d,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.1γ )

where (γn) and (γ ′n) are sequences with γn, γ ′n→+∞ as n→+∞. In contrast to (6.1), (6.1γ ) can
be solved efficiently by the semismooth Newton method in the infinite-dimensional setting. As a
consequence, the Newton iterates are superlinearly convergent, and the convergence rate is mesh-
independent upon discretization. For details, see [24, section 5]. In order to prove the stability of
(6.1γ ) with regard to the limit problem (6.1) in the sense of theorem 2.1, we show that the problems
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(6.1γ ) define a quasi-monotone perturbation of iK with respect to the dense subspace H1(Γc)×
H1(Ω)d ⊂H1/2(Γc)∗ × L2(Ω)d (cf. definition (2.2)). Here, we write for X ⊂H1/2(Γc)∗ × L2(Ω)d,

K(X ) := {[z∗, q] ∈X : z∗ ∈H1/2
+ (Γc)∗, |q|2 ≤ β a.e. in Ω},

and K :=K(H1/2(Γc)∗ × L2(Ω)d). In fact, setting

Rn([z, q]) := γn

2
‖z+‖2L2(Γc) +

γn

2
‖[(|q|2 − β)]+‖2L2(Ω) +

1
2γ ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

where it is understood that Rn([z∗, q])=+∞, unless [z∗, q] ∈H1(Γc)×H1(Ω)d, it is easily seen that

Rn([z, q]) := iK([z, q])+ 1
2γ ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

fulfils (2.4). Moreover, we set

Rn([z∗, q]) := γn

2
r(z∗)+ γn

2
‖[(|q|2 − β)]+‖2L2(Ω),

where

r(z∗) :=

⎛
⎜⎜⎜⎝max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
z∈H1/2

+ (Γc),
‖z‖H1/2(Γc )=1

〈z∗, z〉, 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

2

.

The validity of (2.3) is an immediate consequence of the following lemma.

Lemma 6.1. The functional r : H1/2(Γc)∗ →R is weakly l.s.c. and it fulfils

(i) r(z∗)= 0 for all z∗ ∈H1/2
+ (Γc)∗,

(ii) r(z∗)> 0 for all z∗ ∈H1/2(Γc)∗ \H1/2
+ (Γc)∗,

(iii) r(z)≤ ‖z+‖2L2(Γc) for all z ∈ L2(Γc).

Proof. As a composition of a convex, continuous and monotone function with a supremum
of l.s.c. and convex functions, r : H1/2(Γc)∗ →R is weakly l.s.c. Assertions (i) and (ii) are direct
consequences of the definition of H1/2

+ (Γc)∗. For z ∈ L2−(Γc)= {z ∈ L2(Γc) : z≤ 0 a.e. in Ω}, it holds
r(z)= 0 and (iii) is always satisfied. Now let z ∈ L2(Γc) \ L2−(Γc). By the density of H1/2

+ (Γc) in L2+(Γc)
it holds that

r(z)1/2 = sup
z̃∈H1/2

+ (Γc)
‖z̃‖H1/2(Γc )=1

〈z, z̃〉> 0.

Moreover, one obtains

‖z+‖L2(Γc) = sup
z̃∈L2(Γc)

z̃�=0

1
‖z̃‖L2(Γc)

(z+, z̃)

≥ sup
z̃∈L2(Γc)

z̃�=0,z̃≥0 a.e.

1
‖z̃‖L2(Γc)

(z, z̃)≥ sup
z̃∈H1/2

+ (Γc)
z̃�=0

1
‖z̃‖H1/2(Γc)

(z, z̃)= r(z)1/2,

which implies (iii). �

From the discussion in the introduction and theorem 2.1, it is known that the consistency of the
regularization scheme (6.1γ ) with respect to (6.1) hinges on the density of K(H1(Ω)d) in K(L2(Ω)d),
where

K(X(Ω)) := {q ∈X(Ω) : |q|2 ≤ β a.e. in Ω},
in accordance with the notation from the preceding sections. Owing to the results of §§3 and 4,
this is always fulfilled for kinematic hardening, as β is a positive constant in this case. In the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 J

un
e 

20
22

 



24

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160919

...................................................

same way, it is also fulfilled for large classes of discontinuous obstacles β in the case of combined
isotropic-kinematic hardening. Once the density property is ensured, one may use monotonicity
properties of G to derive strong convergence properties of regularized (normal) stresses, strains
and displacement; cf. [24] for details.

(b) Fenchel duality in image restoration
Optimization problems with total variation regularization have been successfully considered in
the image restoration context. In the denoizing setting, an original image utrue that belongs to the
space of functions of bounded variation BV(Ω), Ω ⊂R2, is sought to be recovered from a noise
perturbed measurement f = utrue + η with η ∈ L2(Ω),

∫
η= 0 and

∫ |η|2 = σ 2. This motivates the
optimization problem

min
1
2

∫
Ω

|u− f |2 dx+ α
∫
Ω

|Du|1 over u ∈ BV(Ω),

for α ∈R in the seminal work by Rudin et al. [31]. Here, Du, the distributional gradient of u ∈
BV(Ω), is a Borel measure and |Du|1 is its total variation measure with total mass

∫
Ω |Du|1, which

is characterized via duality as
∫
Ω

|Du|1 = sup
{∫
Ω

udivv dx : v ∈C1
c (Ω ; R2), |v(x)|∞ ≤ 1,∀x ∈Ω

}
.

The drawback of the above reconstruction scheme is that the choice of the regularization
parameter α is global: A good reconstruction locally requires high values of α in some regions
of Ω (e.g. flat regions of utrue) and low values in other regions (e.g. locations of details of utrue). A
recent approach in [32,33] proposes the following alternative: For a function α :Ω→R such that
(3.1) holds true, consider the optimization problem

min
1
2

∫
Ω

|u− f |2 dx+
∫
Ω

α(x)|Du|1 over u ∈ BV(Ω), (6.2)

where
∫
Ω α(x)|Du|1 stands for the integral of α on Ω with respect to the measure |Du|1. Hence, α

needs to be a |Du|1-integrable function in order for
∫
Ω α|Du|1 to be correctly defined. A sufficient

condition for this is given by α ∈C(Ω), the space of continuous functions on Ω .
As usual in convex optimization, it is convenient to consider the problem in (6.2) from the

point of view of Fenchel duality. In fact, (6.2) can be characterized as the Fenchel dual problem of
the following constrained optimization problem:

min 1
2‖div p+ f‖2L2(Ω) over p ∈H0(div;Ω)

s.t. p ∈K(H0(div;Ω), | · |∞),

⎫⎬
⎭ (6.3)

if the following density result holds true:

K(C1
c (Ω)2), | · |∞)

H0(div;Ω) =K(H0(div;Ω), | · |∞),

where, according to the above notational convention,

K(H0(div;Ω), | · |∞)= {q ∈H0(div;Ω) : |q(x)|∞ ≤ α(x) a.e. in Ω}.

7. Conclusion
We investigate the stability of a large number of perturbation and dualization approaches to
variational inequality and constrained optimization problems in the context of density properties
of a convex constraint set. If the intersection with certain dense subspaces is dense in the feasible
set, one may prove the unconditional consistency of various perturbation schemes including
Galerkin approximations. In this regard, the class of quasi-monotone perturbations provides a
unified framework.
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The abstract motivation leads to the study of density properties of constraint sets in Sobolev
spaces with respect to spaces of smooth functions. We focus specifically on sets that are defined
by a pointwise constraint on the norm of the function value. In this case, the density property is
determined by the regularity of the upper bound. Whereas the case of a uniformly continuous
obstacle gives rise to positive density results in various Sobolev spaces, the result fails to be valid
in general, if the obstacle is just a Sobolev function. However, a large variety of discontinuous
upper bounds still remains compatible with the density property. This includes functions that
fulfil a generalized lower semicontinuity condition as well as supersolutions of elliptic PDEs.

Density results further allow to deduce the Mosco convergence of various finite-element
discretized constraint sets in Sobolev spaces. Finally, the previous results are applied in the context
of the regularization of quasi-static elasto-plastic contact problems and the dualization of total
variation-based image restoration problems.

Our future research is concerned with the refined characterization of the class of upper bounds
that comply with the density property. Another interesting direction of future research, which we
plan to pursue, is related to constraint qualifications (CQs) in the context of Fenchel–Legendre
dualization in convex and possibly non-smooth optimization. Here it appears that the density of
convex intersections may provide a suitable constraint qualification implying duality without a
duality gap. Such a density CQ appears to neither imply nor be contained in currently known
constraint qualifications like those used in the work by Hedy Attouch and co-authors (e.g. [34]).
Another current research aspect concerns the ramification of remark 3.2(ii). In the presence of
an inhomogeneous Dirichlet boundary condition, the construction of suitable trace-preserving
mollification operators with variable support appears promising. Those operators are also of
utmost interest in the context of non-smooth variational problems in image restoration.
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Appendix A. Properties of quasi-monotone perturbations
Proof of theorem 2.1. Denote by

Γ - lim sup
n→+∞

Gn(u) := sup
U∈N (u)

lim sup
n→+∞

inf
u∈U

Gn(u),

the Γ -upper limit at u of a sequence of functions Gn : X→R ∪ {+∞} in the norm topology. Here,
N (u) denotes the set of all open neighbourhoods of u in the norm of X. By analogy, define
Γw- lim supn→+∞ Gn, the Γ -upper limit of Gn in the weak topology of X, as well as the lower
limit counterpart Γw- lim infn→+∞ Gn. We write

Γw- lim
n→+∞Gn = Γw- lim sup

n→+∞
Gn = Γw- lim inf

n→+∞ Gn,

for the weak Γ -limit of (Gn) provided the latter equality is satisfied. For the corresponding
definitions we refer to the monograph [12]. Further denote by sc−G the lower semicontinuous
envelope of G : X→R ∪ {+∞}. Exploiting the relations between Γ - and pointwise convergence
[12, ch. 5], one obtains with (2.4) and the continuity of F,

Γw- lim sup
n→+∞

(F+ Rn)≤ Γ - lim sup
n→+∞

(F+ Rn)

≤ Γ - lim sup
n→+∞

(F+ Rn)= sc−(F+ iK∩Y)= F+ iK∩Y,
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where we use [12, Prop. 6.3, Prop. 6.7, Prop. 5.7, Prop. 3.7]. Similarly, (2.3) together with [12, Prop.
6.7, Prop. 5.4] implies

Γw- lim inf
n→+∞(F+ Rn)≥ Γw- lim inf

n→+∞(F+ Rn)= lim
n→+∞ sc−w(F+ Rn), (A 1)

where sc−w(F+ Rn) denotes the lower semicontinuous envelope of F+ Rn in the weak topology of
X. Further note that the coercivity and the sequential weak lower semicontinuity of F+ Rn imply
that the level sets {u ∈X : F(u)+ Rn(u)≤ t}, t ∈R, are bounded and sequentially weakly closed. If
X is reflexive or if the dual space X∗ is separable, then the sequential weak closure of bounded
subsets of X coincides with the weak closure, see [12, Prop. 8.7, Prop. 8.14], such that F+ Rn is
weakly lower semicontinuous, which entails

Γw- lim inf
n→+∞(F+ Rn)≥ lim

n→+∞(F+ Rn)= F+ iK,

by (A 1). Eventually, it holds that

F+ iK ≤ Γw- lim inf
n→+∞(F+ Rn)

≤ Γw- lim sup
n→+∞

(F+ Rn)≤ Γ - lim sup
n→+∞

(F+ Rn)≤ F+ iK∩Y,

such that Γ - limn→+∞(F+ Rn)= Γw- limn→+∞(F+ Rnu)= F+ iK, if (1.1) holds true. �

Proof of proposition 2.6. Let x ∈K \ K ∩ Y and ρ > 0 such that Bρ (x) ∩ K ∩ Y=∅, where Bρ (x) :=
{y ∈X : ‖x− y‖<ρ}.

(a) We first prove the following result:

∀n ∈N ∃ γn > 0 :
[

y ∈X ∧ dist(y, K ∩ Bρ (x))2 <
1
γn
�⇒ y /∈Xn

]
. (A 2)

Assume that the opposite holds, i.e.

∃n0 ∈N :
[
∀n ∈N ∃ xn ∈Xn0 , vn ∈K ∩ Bρ (x) : ‖xn − vn‖2 ≤ 1

n

]
.

Since vn ∈ Bρ (x) ∩ K for all n ∈N and Bρ (x) ∩ K is convex, bounded and closed, there exists a
subsequence (vnk ) of (vn) with vnk ⇀v and v ∈ Bρ (x) ∩ K. As xn − vn→ 0, one also obtains xnk ⇀v

and thus v ∈Xn0 . Hence, v ∈Xn0 ∩ K ∩ Bρ (x)=∅, which is a contradiction.
(b) Non-existence of a strong recovery sequence:
Choose (γn) according to (A 2) and assume that there exists a recovery sequence (yn) to x, which

means that yn→ x and F(yn)+ (γn/2)dist(yn, K)2 + iXn (yn)→ F(x). The continuity of F implies that
yn ∈Xn for sufficiently large n and that (γn/2)dist(yn, K)2→ 0. Consequently, using yn→ x and
x ∈K, there exists n1 ∈N such that

dist(yn, K)2 = dist(yn, K ∩ Bρ (x))2 ≤ 1
γn

,

for all n≥ n1. With the help of part (a), we conclude that yn /∈Xn for all n≥ n1, which is a
contradiction. �
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