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Abstract. A long term experiment was conducted in a pri- mary forest site the radiative balance was dominated by the
mary forest area in Amazonia, with continuous in-situ mea-cloud cover, particularly in the wet season. Due to the high
surements of aerosol optical properties between Februargloud fractions, the aerosol forcing efficiency absolute values
2008 and April 2011, comprising, to our knowledge, the were below—3.5W 2 in 70 % of the wet season days and
longest database ever in the Amazon Basin. Two majoiin 46 % of the dry season days. Besides the seasonal varia-
classes of aerosol particles, with significantly different opti- tion, the influence of out-of-Basin aerosol sources was ob-
cal properties were identified: coarse mode predominant bioserved occasionally. Periods of influence of the Manaus ur-
genic aerosols in the wet season (January—June), naturallyan plume were detected, characterized by a consistent in-
released by the forest metabolism, and fine mode dominatedrease on particle scattering (factor 2.5) and absorption coef-
biomass burning aerosols in the dry season (July—Decemberlicients (factor 5). Episodes of biomass burning and mineral
transported from regional fires. Dry particle median scatter-dust particles advected from Africa were observed between
ing coefficients at the wavelength of 550 nm increased fromJanuary and April, characterized by enhanced concentrations
6.3Mm ! to 22Mn 1, whereas absorption at 637 nm in- of crustal elements (Al, Si, Ti, Fe) and potassium in the fine
creased from 0.5 Mmt to 2.8 MnT ! from wet to dry sea- mode. During these episodes, median particle absorption co-
son. Most of the scattering in the dry season was attributecfficients increased by a factor of 2, whereas median SSA
to the predominance of fine mode (R)Mparticles (40-80%  values decreased by 7 %, in comparison to wet season condi-
of PM1p mass), while the enhanced absorption coefficientstions.

are attributed to the presence of light absorbing aerosols from
biomass burning. As both scattering and absorption increased

in the dry season, the single scattering albedo (SSA) did not

show a significant seasonal variability, in average @808 1 Introduction

at 637 nm for dry aerosols. Measured particle optical proper-

ties were used to estimate the aerosol forcing efficiency afl "e Amazon Basin constitutes a unique place for study-

the top of the atmosphere. Results indicate that in this priing the impact of anthropogenic activities over natu-
ral atmospheric conditions. Under pristine circumstances,
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Amazonian aerosol particles come mostly from biogenicalbedo (SSA). Therefore, it is important to characterize accu-
sources, with mass concentrations in the order of 10§y m rately the optical properties of representative types of ambi-
and number concentrations ranging between 300 anentaerosol particles to assess its impact on the Earth’s energy
500 cn1 3 (Martin et al., 2010a). This concentration range is budget and climate change.
among the lowest found on any continental site, and is simi- The aim of this paper is to present a systematic analy-
lar to observations over remote oceans (Andreae, 2009). Fasis of aerosol particle optical properties in a primary for-
example, observations in a remote continental site in Pallasgst site, its annual variability, seasonality and relationships
Finland, found aerosol concentrations of 410¢nn aver-  with aerosol particle mass, number concentration and parti-
age (Komppula et al., 2005); observations taken over the In€le number size distribution. As will be discussed along the
dian Ocean report 361 cm in average (Hudson and Yum, paper, in spite of the fact that the measurement site is located
2002). Since the mid 20th century, the Amazon Basin hadn a primary forest area, it is occasionally influenced by ex-
been going through changes due to the expansion of agriternal aerosol sources like regional biomass burning, urban
culture, logging and urban areas (Davidson et al., 2012). Aplumes and African mineral dust advection. The impact of
a consequence of these changes, a large amount of aerosdfese out-of-Basin sources over the optical properties of nat-
and trace gases have been added to the natural biogenic emig-al aerosol population will be investigated, as well as the
sions, with impacts on the radiative budget in regional andconsequences over the aerosol forcing efficiency.
global scale (Koren et al., 2004; Procopio et al., 2004; Sena
etal., 2013).

In the last 20yr, Amazonian aerosol particles have bee
the subject of a number of intensive studies, aiming for its
characterization at primary forest sites (Martin et al., 2010b;

Zhou et al., 2002; Artaxo and Hansson, 1995) and at diS\jeasurement of aerosol particle properties were taken from
turbed areas (Kaufman et al., 1998; Artaxo et al., 2002; An-gepary 2008 to February 2011 at the Cuieiras forest reser-

dreae et al., 2004). In-situ long-term observations in AMazo- ation in Central Amazonia (Fig. 1), which encloses 386km

nia have been conducted only for aerosol particle mass and opjcal forest. The reserve is located 60 km NNW of Man-
its elemental composition (Artaxo etal., 1994). aus, a developing city with a population of 1.8 million people
To fill the gap of continuous aerosol monitoring in Ama- (BGE, 2011). The site is relatively undisturbed, in the sense
zonia and its interactions with climate, a forest reserve northy, o+ no biomass burning occurs in the reservation. Most of the
of Manaus city, in Brazil, was chosen as one of the four EU-jime ‘the prevailing trade winds blow over vast expanses of
CAARI (European Integrated Project on Aerosol Cloud Cli- jyiact tropical forest before reaching the measurement tower
mate and Air Quality interactions, Kulmala et al., 2011) mea- (TT34) (235.6570 S, 6012.5570 W, 110m a.s.l.). How-

surement sites in developing countries. Under the frameworléver’ as will be further discussed, the site was affected by

of the EUCAARI project, measurements of aerosol physi-eqiona| transport of pollutants, either from biomass burning
cal and chemical properties were conducted between 2008, ", -han plumes.

and 2009. Afterwards, it became a permanent measurement A measurements were taken under dry conditions (RH

station in Amazonia, being mairltaineq since 20.10'under theyg_40 %), assured by an automatic diffusion dryer (Tuch et
scope of the AEROCLIMA project (Direct and indirect ef- 5 ' 5009). An inlet with 50 % aerodynamic cutoffs of 4 nm
fects of aerosols on climate in Amazia and Pantanal). The - 54 7 um for our flow conditions was used for laminar-flow
establishment of this permanent monitoring site provided, t0,6650| sampling. Inlet lines ran from the measurement level
our knowledge, the longest time series of in situ aerosol ob39 a.g.l., about 10m above the canopy height) to an air
servations in Amazonia, using state of art equipment. Thiscqnitioned container at ground level. Housing for the re-
paper focuses on aerosol optical properties observed betweeR 5 chers and a diesel generator that provided power supply
2008 and 2011. _ _ o were located respectively 0.33 km and 0.72 km to the west of
The relevance of optical properties resides in the fact thagy, sampling site (downwind). A detailed description of the

aerosol particles interact with solar radiation with impacts jyeasurement site and surrounding can be found in Martin et
on the regional radiation budget, climate and cloud proper-y; (2010a).

ties (Hansen et al., 1997; Fan et al., 2008; Shindell and Falu-

vegi, 2009). The fourth IPCC assessment report (Forster €2 2 |nstrumentation

al., 2007) attributes a wide range of uncertainty to the aerosol

forcing on climate, with implications to climate model pro- Aerosol particle scattering coefficients were measured us-
jections related to uncertainties in model parameters (Haerteing a three wavelength integrating nephelometer (TSI Model
etal., 2009). Loeb and Su (2010) stated that the direct aeros@563) operating at 450, 550 and 700 nm (Anderson et al.,
radiative forcing uncertainty due to perturbations on aerosoll996). Each six months the instrument was calibrated us-
particles’ physical parameters is 0.5-1.0 Wanwith most  ing filtered air and C@. Sampling time varied between 1
of the uncertainty associated with aerosol single scatteringand 5 min. The backscatter shutter engine worked only a part

¢ Experimental

2.1 Measurement site
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Fig. 1. The yellow circle marks the location of the TT34 measurement tower in the Sate of Amazonas, Brazil. The big red circles mark
the position of some of the major cities in the Brazilian North and Northeast regions (more than 1.4 million inhabitants each). The small
red circles mark the position of municipalities neighbor to the forest reserve (Rio Preto da Eva, Presidente Figueiredo dspvandir
municipalities eastern to the forest reserve in the State of Amazonas (Barreirinha, Itapiranga, Nh&atintins, 8o Sebaséio do Uaturg,

Silves and Uruca).

Table 1. Uncertainties {os) estimated for 30 min averaging periods for scattering coefficier)srénging between 1 and 100 M, for
sub micrometer and super micrometer aerosol particles. Relative errors are shown in brackets.

Sub micrometer particles Super micrometer particles

osMm~1 805 (450)Mm™1  s05 (550)Mm™1 505 (700)Mm™1 S0 (450)MmL  Sos (550) MM S0 (700) MmL

1 0.27 (27 %) 0.20 (20 %) 0.14 (14 %) 0.39 (39 %) 0.34 (34 %) 0.31 (31 %)
10 0.80 (8 %) 0.77 (8%) 0.78 (8 %) 2.90 (29 %) 2.90 (29 %) 2.90 (29 %)
100 7.6 (8%) 7.5 (7%) 7.7 (8%) 28.9 (29 %) 28.9 (29 %) 28.9 (29 %)

of the time, between November 2009 and September 201Qion (7 %); uncertainty associated to the truncation error cor-
Data were corrected for truncation errors according to An-rection (2.2 % for sub micrometer and 28 % for super mi-
derson and Ogren (1998), using the tabulated factors for toerometer aerosols); uncertainty of adjusting scattering coef-
tal scatter as a linear function éhgsttt")m exponent with no  ficients to standard temperature and pressure (0.42 %). Simi-
cutoff at the inlet. The average correction factor for trunca-lar calculations were performed to estimate the uncertainty of
tion errors, calculated as the ratio between corrected and raWwackscattering measurements. Tables 1 and 2 show the total
data, was 1.13 0.08 for scattering coefficients at 550 nm. uncertainties on scatterinfofs) and backscattering measure-
As will be discussed on Sect. 4.5, this truncation correctionments §ops).

factor fits well to Mie calculated correction factors, taken as  Aerosol particle absorption was measured using a MAAP
the ratio between the simulated integral scattering coefficienphotometer (MultiAngle Absorption Photometry — Thermo
(0-180) and the simulated Nephelometer signal consider-Inc., Model 5012) (Petzold et al., 2005), operating in se-
ing its angular truncation (7—17Pand illumination func-  ries with the Nephelometer. The MAAP reports black car-
tion. A constant correction factor of 0.982 was applied to bon (BC) concentrations at 637 nm, which were converted
backscatter measurements at 550 nm, also according to Arte absorption coefficients assuming a mass absorption co-
derson and Ogren (1998). Due to the low aerosol loadings obefficient of 6.6 nf g1, used in the firmware of the instru-
served in Amazonia, aerosol particle optical data were averment. Particle absorption coefficients were measured every
aged over 30 min intervals to improve statistics. Consideringminute, and a 5% correction was applied to the data to ac-
this averaging time, the detection limit of the Nephelometercount for an adjustment of wavelength iiNer et al., 2011).

at 550 nm is 0.14 Mm! (Anderson et al., 1996). Uncertain- 30 min averages were taken to improve statistics, with a re-
ties for nephelometer measurements as a function of averagulting detection limit of 0.13 Mm! (Petzold et al., 2005).

ing time and loading were calculated according to SheridarPressure and temperature measured inside the Nephelometer
et al. (2002) and references therein. Total uncertainty associwere used for adjusting scattering and absorption coefficients
ated with scattering measurements was calculated for 30 mito 1013.25 mbar and . Between September and Decem-
averaging times as the root-sum-square of five error sourcedier 2008, integrating nephelometer measurements were dis-
instrument noise (5% fors(550)=1MnT1 and 0.13% for  continued due to the need of maintenance, and the MAAP
05(550) = 100 MnT1); drift (~3%); uncertainty in calibra- ran by itself under the diffusion dryer inlet. In this case, the
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Table 2. Uncertaintiesopg) estimated for 30 min averaging periods for backscattering coefficiggdsrénging between 0.1 and 10 M,
for sub micrometer and super micrometer aerosol particles. Relative errors are shown in brackets.

Sub micrometer particles Super micrometer particles

opsMM™L  Sops (450) MM Sops (B50) MM™L  Sops (7TO0) MM L Sopps (450) MM™L S0 (550) MM o, (700) ML

0.1 0.23 (230 %) 0.10 (100 %) 0.17 (170 %) 0.23 (230 %) 0.10 (100 %) 0.17 (170 %)
1 0.24 (24 %) 0.13 (13 %) 0.18 (18 %) 0.24 (24 %) 0.13 (13 %) 0.19 (19 %)
10 0.76 (8 %) 0.7 (7 %) 0.8 (8%) 0.89 (9 %) 0.9 (9 %) 0.9 (9%)

temperature of the aerosol sample measured at the diffusioB.3 Meteorological parameters
dryer outlet and ambient pressure were used for STP correc-
tions. A recent intercomparison of absorption photometersMeteorological parameters were measured at the K34 tower
report MAAP noise levels up to 0.22 MnJI for 1 min aver- (20365450 S, 6012.5580W, 130 m a.s.I.), located 1.6 km
aging time, unit to unit variability of 3% and 1 % of the scat- to the south of the aerosol sampling site, and maintained by
tering seen as apparent absorption, depending on the aerodde National Institute for Research in the Amazon (INPA).
loading and single scattering albedoiflér et al., 2011). As- Meteorological and radiation parameters were logged on a
suming that the instrument noise decreases with the squafeampbell CR-10 data logger with a sampling interval of 30 s
root of averaging time, total uncertainties on aerosol absorpand stored as 10 to 30 min averages.
tion measurements, averaged each 30 min and under typical Along the aerosol measurement period, daytime quartiles
Amazonian conditions, was of 10 %. of temperature, RH and wind velocity were respectively 24.5
In this work, scattering and backscattering coefficients will to 29.5°C, 65 to 90%, and 1.38 to 2.78m’s The cor-
be preferably reported at 550 nm, to ease the association witfesponding nocturnal quartiles were, respectively, 23.1 to
satellite based aerosol measurements like MODIS. Absorp25.6°C, 82 to 95%, and 1.24 to 2.31m’s The quartiles
tion and other aerosol properties that rely on absorption coOf pressure were 993.5 to 996.7 mbar. A detailed descrip-
efficients will be preferably presented at 637 nm, to avoidtion of climatological conditions can be found in Asa et
additional errors related to the unknown absorption spectrafl- (2002). Here, only the meteorological parameters rele-
dependency. In these cases, scattering coefficients will be invant for the interpretation of aerosol measurements will be
terpo|ated to 637 nm using power law fits (Cf Eq 2) discussed. Figure 2 shows the monthly accumulated precip-
Measurements of aerosol particle number size distributionitation between January 2008 and June 2011. Based on this
number concentration, mass and elemental composition wergure, wet season is hereby defined as the period between
also taken, adding to the analysis and discussion of aerosglanuary and June, and dry season between July and Decem-
optical properties. Two fine mode mobility particle size spec-ber. This definition may not be strictly correct from the cli-
trometers (10-500nm) were interchangeably used: a TSmatological point of view, but for the purpose of the current
3936 SMPS (Scanning Mobility Particle Sizer) and a custom-aerosol dataset interpretation this is a reasonable choice.
made SMPS designed at Lund University according to EU- Figure 3a shows the wind rose between January 2008
SAAR (European Supersites for Atmospheric Aerosol Re-and June 2011. Easterly trade winds dominate at low levels,
search) standards (Wiedensohler et al., 2012). Coarse mod¥owing over larger areas of undisturbed rain forest during
particle number size distributions were measured using afthe wet season. Nevertheless, during the dry season, biomass
OPC-Grimm Model 1.109 (300 nm—20 pm) (Optical Particle burning emissions from the Raftate {1200 km from the
Counter), whenever the instrument was available. Operatinga@mpling site) are transported through easterlies. In 13 % of
after the inlet, the actual cutoff of the OPC is at the optical di- time, wind blew from the direction where the diesel gener-
ameter of 6 um, assuming the aerosol density of 1.38tfcm ator was located (248330). Episodes of diesel generator
(Rissler et al., 2006). Particle number concentrations were inmissions influencing the aerosol measurements were care-
terchangeably measured with condensation particle counteriéllly inspected and removed from the data set, as will be fur-
(TSI CPC models 3010, 3785, 3772). Stacked Filter Unitsther discussed in Sect. 3.3. Figure 1 on supplementary ma-
(SFU) were used to collect fine mod®y < 2.0 pm) and terial shows the wind rose for the months of June and July
coarse modelfy, > 2.0 um) aerosols, with integrating peri- between 2008 and 2011. The wind was southeastern 20 % of
ods ranging from 2 to 5 days. Nuclepore filters were analyzedhe time, making the sampling site particularly susceptible to
for particulate mass, following the measurement protocol ofthe urban plume of Manaus during these months.
the US Environmental Protection Agency for weighing fil-
ters, and elemental composition, using particle-induced X-
ray emission and X-ray fluorescence analysis.

Atmos. Chem. Phys., 13, 23912413 2013 www.atmos-chem-phys.net/13/2391/2013/
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Fig. 2. Monthly accumulated precipitation measured at INPA's K34 tower from January 2008 to June 2011. The line represents the percent
data coverage for each month.
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Fig. 3. (&) Wind rose plots for the period between January 2008 and June g@)1ledian aerosol particle number concentration as a

function of wind direction for the wet season (January—June) and for the dry season (July—December). The Manaus city is located 60 km
away in the southeast direction.

3 Methods properties of the aerosols. In this study, four aerosol particle
intensive properties will be investigated: tAegsttom ex-
ponent for scatteringdj, the hemispheric backscatter ratio

) . . . (b), the single scattering albeded) and the aerosol forcing
The first optical property that can be derived from scatte”ngefﬁciency (AF/AOD).

and absorption measurements is the aerosol particle extinc- 1 particle scattering coefficient decreases monotoni-
tion coefficient 6¢):

3.1 Calculation of aerosol optical properties

cally with wavelength. In the literature it is usual to approxi-
Ge(L) = as(A) + ga (), (1 mate thjs wavelength dependency by a power-law expression
(Angstidm, 1929):

whereog(A) andoa()) are respectively the particle scatter-

ing and absorption coefficients measured at waveleagth og5(1) = B-A‘E‘, (2)

In this work, particle extinction coefficients will be reported

at 637 nm, applying a power law interpolation over scatter-wherea is known as the scatterinéngstrbm exponent and

ing coefficients to the wavelength in which absorption coef- B is a constant known as the turbidity coefficient. Power

ficients @3) were measured. laws were fitted to each 30 min averaged spectrum, and the
Aerosol particle intensive properties are those that do nohegative of the slope was taken as ﬂmgstrbm exponent.

depend on the particle amount, and are related to intrinsio&ngstrt')m exponents are indicative of the average size of the

www.atmos-chem-phys.net/13/2391/2013/ Atmos. Chem. Phys., 13, 23013 2013
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particle population. For monomodal particle number size dis-assumed to be optically thi, is independent of the zenith
tributions, Angstiom exponents greater than 2 indicate the angle, andly is assumed to follow Beer's Law. The surface
predominance of particles around 0.1 um associated with urreflectance at the tower site was based on IGBP (International
ban pollution and biomass burning, and values smaller than IGeosphere Biosphere Programme) broadband albedo from
indicate large particles typically associated with sea salt andCERES (Clouds and the Earth’s Radiant Energy System),

mineral dust (Schuster et al., 2006). Rs=0.13 (300-5000 nm). The daily time series of cloud frac-
The hemispheric backscatter ratig (s defined as: tion at the tower site was taken from MODIS measurements
N on Terra and Aqua satellites (globatx1° daily level-3
b(n) = 9bs( ), (3) cloud fraction, day only)os(A) and b(A) were calculated
os(%) trough extrapolation of the spectral dependence in the range

whereoys is the particle backscatter coefficient, i.e., the vol- 450-700nm to the broadband range (300-5000 rerg(h)
ume scattering function integrated betweert @dd 180,  Was calculated assuming a power law dependency, oiith
while the total scattering coefficientd) is integrated be- an absorptiongstom exponent of 1.3 (Rizzo et al., 2011).
tween @ and 180. The backscatter ratio provides an indi- Spectrally weighted andg were calculated based on global
cation of the angular distribution of the light scattered by spectral irradianced(2) for a sun-facing 37tilted surface
aerosol particles, a key property to determine the aerosol diand air mass coefficient of 1.5 (Hulstrom et al., 1985):
rect radiati.ve forcing (A_ndreyvs et al., 2006). Sqme sFudies [ bGP [ wo()D()dA
report an inverse relationship betweerand particle size pf=———"—— and —————— (6)
(e.g., Collaud Coen et al., 2007). Other studies argue that J DMydx S Dydx
changes in the backscattering ratio can also be driven by patt is important to emphasize that the results presented here
ticle shape, especially for data taken under dry conditionsyefer to dry aerosols (Rkt 40 %). Aerosol particle optical
when particle sphericity is not certain (Doherty et al., 2005). properties may change significantly under ambient humidity
Moreover, a recent study by Ma et al. (2012) indicated a sig-conditions. Rissler et al. (2006) and Zhou et al. (2002) state
nificant dependency of the backscatter ratio on the aerosahat Amazonian aerosols are only moderately hygroscopic,
mixing state. with growth factors ranging between 1.0-1.3 for 100 nm par-
The single scattering albedo (SSA) is a measure of thaicles at 90 % RH. The impact of hygroscopic growth on the
aerosol particle scattering strength relative to extinction. Theparticle scattering coefficients in Amazonia has been investi-
scattering coefficients at the integrating nephelometer wavegated by Kotchenruther and Hobbs (1998), reporting an av-
lengths (450, 550, 700 nm) were interpolated logarithmi- erage increase of 16 % on scattering and a decrease of 10 to
cally to the wavelength in which absorption coefficiertg) (20 % on backscatter ratio when RH rises from 30 to 80 %.
were measured to obtain the single-scattering albedpdt ~ The dependence of particle absorption coefficients as a func-

637 nm: tion of RH is not currently known. On one hand, the water
_ 0Os 4 uptake by aerosol increases the particle diameter, enhanc-
@wo = os+0a ) ing the focusing effect (Bohren and Huffman, 2008), causing

) . . an increase of particle absorption coefficients. On the other

For purely scattering aerosol particles (e.g., ammonium suly g the refractive index of water is smaller than that of the
fate) wo gpproaches 1.0. In. situ observations of dry aeroso'non-absorbing particle components, which may cause a de-
SSA typically show values in the range 0.80-0.98 for urban;ease on particle absorption coefficients depending on parti-
aerosols (Anderson etal., 2003), 0.72-0.88 for fresh biomasgye gjze (Nessler et al., 2005). Modeling studies for a highly
burning smoke (Magi et al., 2003) and 0.88-0.99 for coars&, | jted area in China report absorption humidification fac-
mode dom|_nated mineral dust (Anderson et_al., 2003). tors ranging between 0.9 and 1.2 at 80% RH (Cheng et al.,

The particle SSA and the backscatter ratio can be used t9008). The impact of RH on scattering and absorption re-
ca!culate the tOP of the atmosphere aerosol forcing)(per . flect on the particle SSA and forcing efficiency. Anderson et
un_|t _aerosol optical depth (AOD), also calleo_l aerosol forcing al. (1999) reports increase of 2-5% on particle SSA and a
eff|C|e.ncy (e.g. Kaufman et al., 2005; Sheridan and Ogrenyecrease of 10-15% on aerosol forcing efficiency along the
1999): shift from low to high RH conditions.

F 2Rs\[1
20D =~ DSoTa(l— Agwp {(1— Rg)>— (f) [; - 1] } . (5 3.2 Optical closure study
where D is the day length (set to 0.5 in the tropics); An optical closure study was done for aerosol particle prop-
So=1370Wn12 is the solar constantfy is the atmo-  erties measured between 1 July—14 August 2009 period at
spheric transmissivity (set to 0.76)¢ is the fractional cloud  which particle number size distribution measurements of the
amount;Rs is the surface reflectance;andg are the spec- fine and coarse aerosol were available. A Mie code based
trally weighted particle SSA and backscatter fraction, respecon Bohren and Huffman (1998) was used to calculate the
tively (Haywood and Shine, 1995). Here, the aerosol layer isoptical particle properties for the entire aerosol population,

Atmos. Chem. Phys., 13, 23912413 2013 www.atmos-chem-phys.net/13/2391/2013/
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assuming homogeneous spherical particles. Using particl@.3 Classification of aerosol external sources
number size distribution, refractive index and wavelength of
incident light as inputs, the code calculates aerosol partidn spite of the fact that the measurement tower is located
cle scattering, backscattering and absorption coefficients, anioh an area of undisturbed primary forest, it sporadically re-
also simulates the measured particle scattering signal considteived the influence of external aerosol sources: (1) local
ering the 7 to 17Dintegrating angle range of the TSI 3563 pollution (diesel generator and occasional vehicles transport-
nephelometer and its non Lambertian illumination function ing researchers and equipment); (2) Manaus urban plume;
(Anderson et al., 1996). (3) regional transport of biomass burning emissions; (4) soil
Sub micrometer particle aerosol number size distributionsdust and biomass burning transport from northern and equa-
were measured using a custom-made SMPS (10-500 nmjorial Africa. The local pollution source and the Manaus ur-
For the accumulation and part of the coarse mode, an OPCbhan plume were most significant during the wet season, occa-
Grimm (300 nm-6 um under operation conditions) was usedsionally affecting pristine conditions of low aerosol particle
Optical particle size spectrometers measure optical particlenass concentration. Figure 3b shows median aerosol parti-
diameters, based on the assumption that the scattered light ile number concentration as a function of wind direction, in
tensity is a monotonic function of particle size (Hinds, 1999). which the signal of the Manaus urban plume (120-2) @¢hd
The calibration of these instruments is typically performed of the diesel generator (270-330s clear during the wet
with monodisperse polystyrene latex particles, which haveseason. The same figure shows that during the dry season the
a refractive index of 1.59-0i. The refractive index of ambi- transport of regional biomass burning emissions overcame all
ent aerosols is usually lower than that, resulting in undereseother external sources.
timation of particles sizes (Heim et al., 2008). Particularly, Local pollution episodes were characterized by abrupt
the OPC-Grimm measures scattering at 655nm, with colchanges in particle number concentrations (increase
lecting angles between 29.5 and 150.Response correc- rate>500cnm3h~1) and absorption coefficients (increase
tion functions for the measured optical particle number sizerate> 0.2 Mm~1h~1), typically lasting from 30 min to 3h.
distributions were calculated using the same Mie code asPeriods of western and northwestern wind direction (270 to
suming a range of refractive indexes, and a look-up table34C°), where the diesel generator was located, were scru-
was produced. The correction affects the bin boundaries ofinized, and the aerosol particle data associated with local
the OCP-derived optical diameter, resulting in a shift of geo-pollution was excluded from the analysis, corresponding to
metric mean diameters and adjustment of normalized numbe2 % of the measurement period.
concentrations, according to bin width change. Calculations The Manaus urban plume reached the sampling site spo-
have shown that 1 um particles can be up to 30 % underestiradically, with effects lasting from 4h to a whole day.
mated, depending on its refractive index. The correction fac-The greater time extent of the Manaus plume compared
tors increase with the imaginary part of the refractive index,to that of the generator is due to their respective horizon-
particularly for super micrometer particles. tal scales. Episodes were characterized by a consistent in-
Particle number size distributions of the mobility and op- crease on aerosol particle number concentrations, scattering
tical particle size spectrometers were 60 min averaged, andnd absorption coefficients, as will be further discussed on
used as input to the Mie code. A range of refractive in- Sect. 4.6.1. Periods with local wind directions coming from
dexes (1.34 to 1.80 and 0 to 0.03i, with steps of 0.005 andVianaus city (120-190) were carefully inspected, and HYS-
0.0005 respectively) was tested for each combined particldLIT back-trajectories (Draxler and Rolph, 2012; Rolph,
number size distribution, with the corresponding OPC re-2012) were calculated to verify the origin or air masses
sponse adjustment taken from the mentioned look up tableeaching the site. Back-trajectories were based on meteoro-
of correction factors. Corrected particle number size distri-logical REANALY SIS dataset, with 24 h total run time, start-
butions were truncated at the optical diameter of 6 um. Theng at 50 m height. Confirmed Manaus urban plume transport
refractive index representative of each size distribution wasevents corresponded to 1.5 % of the measurement period, and
iteratively determined by means of matching the Mie codewere not removed from the data analysis.
simulation for the Nephelometer signal, which takes into ac- Transport of biomass burning emissions from Eastern
count its truncation error and illumination function, and the Amazonia occurred all through the dry season period, be-
measured scattering and absorption coefficients within 10 %ing the strongest non-biogenic aerosol source reaching the
This confidence range is similar to the usual expected dataneasurement site. In the dry season, pollution from biomass
quality of particle size spectrometers (Wiedensohler et al. smoke typically accounts for 90 % of the fine particles and
2012). Similar iterative methods for aerosol refractive index~50% of the coarse particle mass (Martin et al., 2010b).
retrieval have been reported before, e.g., Guyon et al., 2003fable 3 shows the fire spots detected for the dry sea-
Hand and Kreidenweis, 2002; Mack et al., 2010. sons of 2008, 2009 and 2010 (July—December) in Amazo-
nia by the polar satellites NOAA 15-19 and AQUA, and
by the geostationary satellite GOES-12, operationally pro-
cessed by the Brazilian National Institute of Spatial Research
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Table 3.Fire spots detected during the dry season (Jul-Dec) in the Amazonas StatSt&ar Legal Amazonia area, forest reserve neighbor
municipalities (Manaus, Rio Preto da Eva, Presidente Figueiredo, No&o)A&nd municipalities eastern to the forest reserve in the State of
Amazonas (Barreirinha, Itapiranga, Manaus, NhanaiR@rintins, 8o Sebasdio do Uatura, Silves and Uruca). Source: CPTEC/INPE.

Amazonas State PaState Legal Amazonia Neighbor districts ~ Eastern districts

Dry 2008 11038 103833 346983 112 269
Dry 2009 14576 103265 246513 813 2244
Dry 2010 20613 164618 686670 367 1023

Table 4.Periods of influence of African particle advection from Feb from Africa. Based on the spectral dependency of LIDAR

to May 2008, reported by Baars et al. (2011). ratios, the authors state that the influence of marine aerosol
particles and local pollution was not significant during those
Period of influence Aerosol type events.
25 Feb—01 Mar 2008  Smoke Dust
15-16 Mar 2008 Smoke Dust ) )
08 Apr 2008 Smoke- Dust 4 Results and Discussion
08-11 May 2008 Mostly Dust

4.1 Variability of aerosol optical properties

The complete time series of aerosol particle scattering and

(CPTECI/INPE). A spot indicates the occurrence of fire in oneabsorption coefficients is illustrated in Fig. 4. Year to year
pixel, i.e., 1-20krA depending on the satellite resolution. variability on aerosol particle optical properties occurred
The fire counts shown here are overestimated, since the sammostly due to deviations on the amount of precipitation and
burning event can occasionally be detected by two satellitebiomass burning sources strength. Particle scattering coeffi-
in different positions (a couple of km difference), in a way cients increased substantially under the influence of biomass
that a single fire spot may be counted twice. Fire counts inburning particles. This is a consequence of enhanced con-
the Amazonas State, where the ZF2 forest reserve is locatedentration of fine mode particles in the dry season, which
are 90 % smaller than the fire counts in its eastern neighboare more efficient to scatter light in comparison to the coarse
Paia State. Fire counts in the legal Amazonia area signifi-mode dominated biogenic particles in the wet season. Lower
cantly increased in 2010, probably due to the severe droughtemoval by precipitation (from wet to dry season the average
that occurred in that year (Lewis et al., 2011). In 2009, fire precipitation rates decreased from 10 to 4 mmdaymay
spots at districts neighbor and Eastern to the ZF2 forest realso play a role on particle scattering increase in the dry sea-
serve showed a noteworthy increase, echoing on aerosol oson.
tical properties, as will be further discussed. Table 5 shows that the 2009 dry season had median val-

There is evidence that the research site was affected ates of aerosol particle scattering and absorption respectively
times by soil dust transport from northern Africa and biomass110 % and 23 % greater than the values observed during the
burning from equatorial Africa. This is supported by satellite dry season of 2010. This may be an outcome of the increased
observations (Kaufman et al., 2005), LIDAR measurementsoccurrence of fire spots at neighbor municipalities and at dis-
(Ansmann et al., 2009; Baars et al., 2011); back-trajectoriedricts located to the East of the forest reserve during the dry
analysis and surface measurements (Ben-Ami et al., 201Gseason of 2009 in comparison to 2010 (Table 3). The same
Prenni et al., 2009). At the research site, African mineraltable shows that in 2010 there was profusion of fires, but in
dust advection can be traced by increased concentrations afie Amazon region as a whole. The fact that median scatter-
crustal elements Al, Si, Ti and Fe on fine mode aerosol filtering coefficients were much more enhanced than absorption
samples. African mineral dust transport events are typical tacoefficients in 2009 can be surprising at first. However, dur-
the months of March and April, while advection of African ingthe dry season, the air masses reaching the measurements
biomass burning aerosols occurs also in the dry season (Masite constitute a blend of smoke plumes from different fire
tin etal., 2010b). The periods of influence of African aerosolsstages and ages. Reid et al. (2005) states that deforestation
advection in the wet season of 2008 are well documented byires can smolder for days, producing particles at high emis-
Baars et al. (2011), and will be used in this study to calculatesion factor rates with small black carbon content, thereby de-
statistics for aerosol properties under this condition (Table 4) creasing the aerosol absorption and increasing aerosol scat-
According to the same study, the episodes of African aerosotering of the original plume. Evidences show a tendency of
advection that occurred in the wet season of 2008 showegbarticle scattering increase with plume age, due to physical
dust fractions ranging from 20 to 100 %. The non-dust frac-and chemical atmospheric processes acting towards particle
tion was mostly related to aged biomass burning aerosolsize increase, mass increase and gas-to-particle exchanges
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Table 5. Year to year and seasonal variability on aerosol particle scattering and absorption. The percent data coverage is also shown.

Aerosol Scattering 550 nm [Mm] Aerosol Absorption 637 nm [Mm?1]
median 1stquartile 3rd quartile coverage median 1stquartile 3rd quartile coverage

Dry 2008 15 11 21 36.4% 1.86 1.13 2.92 51.1%
Dry 2009 35 19 61 98.9% 3.69 2.06 6.07 95.1%
Dry 2010 16 9.2 32 84.8% 3.00 1.15 5.62 98.4%
Wet 2008 5.5 2.8 9.3 59.9% 0.34 0.16 0.80 59.3%
Wet 2009 8.1 4.6 14 58.6 % 0.41 0.22 0.88 85.6 %
Wet 2010 7.5 4.7 12 82.3% 0.95 0.34 2.22 84.0%
Wet 2011 3.9 2.1 6.6 51.1% 0.37 0.17 0.79 67.0%
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Fig. 4. Daily medians of aerosol particle scattering coefficients at 55Qajrand of aerosol particle absorption coefficients at 637bm
from February 2008 to May 2011. Error bars represent first and third quartiles. Shaded areas represent the dry season period.

(Reid et al., 2005 and references therein). Conversely, in sit@erosol filter integration times (2-5 days), as well as fine
observations of biomass burning plumes indicate that blacknode crustal elements concentration (Al, Si, Ti, Fe) and fine
carbon concentrations typically decrease by only 10-50 %mode potassium concentration. Potassium in the fine mode
from fresh smoke to regional haze (Capes et al., 2008; Reidias been associated both to biomass burning and to biogenic
et al., 1998), through dilution with cleaner background air. sources in the Amazon (Artaxo et al., 1994). For simplic-
Therefore, this is reasonable that particle scattering and ahity, in Fig. 5 only the data between Jan and May of each
sorption coefficients vary by different factors, depending onyear is shown, since this is the period when most African ad-
the plume characteristics and atmospheric conditions. vection events occur. The February 2008 African advection
Another feature shown in Table 5 is that the median valueevent (refer to Table 4) is clearly depicted, with increased
of the particle absorption in the wet season of 2010 was apeoncentrations of fine mode crustal elements and potassium,
proximately 2.6 times greater than the values observed duras well as increased particle absorption. The April 2008 ad-
ing the other years of measurements. Between January angection event had a clear effect over the aerosol filter sam-
February 2010, eight periods of elevated absorption coeffiples, but not over the particle absorption coefficients. The
cients & 2 Mm~1) were observed, lasting continuously from reason for that is unknown, but could be related to the fact
2 to 6 days. No influence of the Manaus urban plume orthat occasionally mineral dust particles are internally mixed
fire spots in nearby districts was detected in this period. Thiswith organic material, possibly affecting the aerosol opti-
time scale is typical of African aerosol advection events, andcal properties (Bschl et al., 2010). Between January and
this is a possible explanation for the observed increase ofebruary 2010, Figure 5 shows enhancements of potassium
absorption coefficients in the wet season of 2010. Figure 5Sn the fine mode associated with particle absorption. This
shows particle absorption coefficients averaged according teould be explained by African advection of aged biomass
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Fig. 6. Daily averages of aerosol optical depth (AOD) observations from MODIS (TERRA-AQUA), AERONET (Manaus) and in situ ex-
tinction measurements above the canopy. AOD observations from MODIS were integrated inside an area with 40 km radius around the in
situ measurement site. AOD observations from AERONET are level 2.0 in 2008 Jul-Oct and level 1.5 in January—April 2011, and were
interpolated to 550 nm using AOD(500) and thegstbm exponent between 440 and 675 nm. Shaded areas represent the dry season period.

burning particles, but the possibility of biogenic aerosols af- prove aerosol data analysis in these cases, but unfortunately
fecting the absorption coefficients cannot be ruled out. In acwere not available for this site.
cordance with that, Guyon et al. (2004) estimated that 35% In spite of the year to year variability, the dataset shows
of light absorption could be attributed to biogenic particles in a clear seasonal pattern, with higher aerosol particle concen-
another Amazonian forest site. In March 2010 the absorptiortrations during the dry season (July—December) in compari-
data coverage was very poor (14 %). son to the wet season (January—June). From wet to dry sea-
Figure 6 puts together the time series of in-situ aerosol parson, median aerosol particle scattering (550 nm) and absorp-
ticle extinction, calculated from scattering and absorption co-tion (637 nm) coefficients increased from 6.3 to 22 Mm
efficients measured above the canopy, and the time series @ind from 0.5 to 2.8 Mm?!, respectively (Table 6). Figure 7
aerosol optical depth (AOD) from MODIS (TERRA-AQUA) show box plots for particle scattering and absorption coef-
and from AERONET sun photometer in Manaus. It is clear ficients, calculated for each 10 Julian days between Febru-
that the aerosol particle extinction measured right above thary 2008 and May 2011. Besides the seasonal variation re-
canopy echoes in the remotely sensed AOD in the entire atlated to dry and wet seasons, there is a clear influence of
mospheric column. It is worth noticing that sometimes the mineral dust and aged biomass burning aerosol advection
remotely sensed AOD increased without a corresponding enfrom Africa over the particle absorption coefficients between
hancement on in situ aerosol extinction. This is an indica-January and March, while the particle scattering coefficients
tion that not all advected aerosol plumes, originated either atvere not significantly affected. This leads to decreased SSA,
Africa or inside the Amazon Basin, reached the measurememnteaching values as low as 0.55 in March (Fig. 7). That ex-
site just above the canopy top. Measurements of micrometeoplains, in part, the reason why the median SSA value is 0.88
rological parameters like vertical wind speed, equivalent po-both for wet and dry season (Table 6). This median value is
tential temperature or atmospheric stability would help to im-in accordance with LIDAR derived SSA values in the main
aerosol layer below 2.5 km height at the same forest reserve
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Table 6.Average, standard deviation, 1st quartile, median, 3rd quartile, and number of observations for aerosol particle scattering coefficients
(0s) and backscatter ratiog)at 450, 550 and 700 nm, absorption coefficienty &t 637 nm Angstidm exponent for scatterind4so_700)
and single scattering albedo at 637 nm), based on 30 min averages.

Avg+stdev 1stquart Median 3rdquart N
o5 (450)Mm1  Wet season 119 4.7 8.3 14 19155
Dry season 5664 17 31 59 17581
All data 29+ 49 7.3 15 31 36736
os (550) Mm~1  Wet season 8172 3.4 6.3 11 19155
Dry season 3648 12 22 42 17581
All data 21+ 36 5.4 11 23 36736
os (700)Mm~1  Wet season 545.1 23 4.2 7.0 19155
Dry season 1823 7.0 11 20 17581
All data 11+17 3.4 6.5 12 36736
b (450) Wet season  0.130.05 0.11 0.13 0.15 6571
Dry season  0.130.02 0.12 0.13 0.14 4751
All data 0.13+0.04 0.11 0.13 0.14 11322
b (550) Wet season  0.150.05 0.13 0.15 0.17 6571
Dry season  0.1%0.03 0.14 0.15 0.17 4751
All data 0.15+:0.04 0.13 0.15 0.17 11322
b (700) Wet season  0.200.07 0.16 0.19 0.22 6571
Dry season  0.268-0.04 0.18 0.20 0.22 4751
All data 0.20+0.06 0.17 0.20 0.22 11322
02 (637)Mm~1  Wet season 1614 0.2 0.5 11 24158
Dry season 3.9236 1.4 2.8 5.2 19567
All data 2.3+3.0 0.4 11 3.0 43725
3450-700 Wet season  1.481.12 1.02 1.40 1.80 19155
Dry season 1.780.41 1.43 1.73 1.98 17581
All data 1.59+0.86 1.22 1.58 1.92 36736
wo(637) Wet season  0.850.09 0.81 0.88 0.93 15283
Dry season  0.8%0.06 0.84 0.88 0.91 15766
All data 0.86+0.08 0.83 0.88 0.91 31049
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110 & Arcof deforestation Northern Amazonia greater dispersion in the wet season, when the aerosol par-
' ticle concentration was low and the instrurgents were oper-
E 0.98 ating close to its detection limit. The averafagstm ex-
B 0.96 ponent was 15 % greater in the dry season (Table 6), which
§ 0.94 | | could be an echo of increased concentration of fine mode
% 5,53 )} lals | | in biomass burning particles from regional fires. The backscat-
£ [ ter ratio at 550 nm had a median value of 0.15, without signif-
£ T B e 'm 'm . icant differences between the wet and dry seasons (Table 6).
208 —ag—a—o MW o B The relationship betweeAngstiom exponent particle size
oz 1l —H B H H B W will be further discussed on Sect. 4.3.
% 084 | M e Particle scattering and absorption coefficients showed an
8 1 enhancement of approximately 50% between 09:00 and
3 0.82 - —il — - X X :
< 12:00 local time in the wet season (Fig. 9). In the wet
080 + ‘ ' ‘ ‘ ' S season, sub micrometer aerosol particle number size distri-
Jun Jul Aug Sep Oct Nov Dec

bution measurements (not shown) indicated an increase of
Fig. 8. Monthly averages of AERONET retrieved single scattering 20 % in the count mean diameter at the same period of the
albedo between 1993 and 2011 at seven different locations in Amaday, while the integrated particle number concentrations kept
zonia: Ji Para@, Alta Floresta, Rio Branco (arc of deforestation), rather constant. The daytime shift of sub micrometer particle
Balbina, Belterra, Santam, Manaus (northern Amazonia). All data diameters towards larger sizes has also been observed in an-
is level 2, with exception to 9 Manaus data points in 2008, which other site in Amazonia (Rissler et al., 2006), and may be at-
are level 1.5. Particle SSA values observed in the AERONET wave+ributed to the photochemica' formation of Secondary Organic
Iength; were interpolated to 637 nm. Error bars indicate standardyargsols (Chen et al., 2009) in the residual layer, mixing
deviations. down to the ground as the boundary layer height increases
in the morning hours. A Mie modeling exercise indicated
that a 20% increase on sub micrometer particle diameters
(0.82—-0.96) (Baars et al., 2012). The particle SSA measuredhay cause an increase of 50—70 % on scattering coefficients
in situ is also consistent with AERONET observations in the and of 10—40 % on absorption coefficients. While the particle
atmospheric column (Fig. 8), considering that under ambi-growth may be enough to explain the diurnal particle scatter-
ent RH conditions the in situ dry aerosol particle SSA valuesing enhancement during the wet season, there may be other
would increase by 2-5% (Anderson et al., 1999). Figure 8factors, still unknown, contributing to the observed particle
shows monthly statistics for AERONET aerosol particle SSA absorption diurnal increase. Day time emission of light ab-
between 1993 and 2011 at 7 different locations in Amazoniasorbing biogenic particles could be a possibility. In the dry
3 of them situated at the region of the so-called arc of defor-season, the regional transport of biomass burning particles
estation (Ji Paran Alta Floresta and Rio Branco), and 4 of seems to overwhelm the ecosystem natural aerosol dynam-
them at Northern Amazonia, far from direct impact of for- ics, in a way that the diurnal variation of particle scattering
est fires (Balbina, Belterra, Sardéan and Manaus). There and absorption is dominated by the boundary layer dynamics
are few observations in the wet season because the invefnot shown).
sion algorithm for particle SSA retrieval requires a minimum
aerosol optical thickness of 0.4 (Holben et al., 2006), which4.2 Particle mass scattering and absorption coefficients
is much greater than the average value of 0.15 observed in the
wet season (Schafer et al., 2008). Also, in the wet season thEine and coarse mode aerosol particle mass concentrations
steady cloud cover in Amazonia prevents the measurementsere obtained from the gravimetric analysis of 199 samples.
of sky radiances. For the same reasons, AERONET SSAThe PMy particle mass concentrations ranged between 5
data is scarce at relatively undisturbed forest sites (northermnd 25 ug m3 amid February 2008 and April 2011, which
Amazonia). Considering 129 data points in northern Ama-is in accordance with previously reported values in a close
zonia, the average AERONET SSA at 637 nm, interpolatecby measurement site (8-30 ug®) (Martin et al., 2010b).
through a power law relationship between 441 and 673 nmStrong seasonal variations were observed in the ratio be-
is 0.914+ 0.03, whereas in the arc of deforestation 1815 datatween PM and PMg particle mass concentrations, as a
points result in an average value of 0-2P.03. Within the  consequence of regional fires: in the wet season R}
uncertainties, there is no particle SSA variability for regions counted for 20-30 % of PM, whereas in the dry season
in the arc of deforestation compared to relatively undisturbedthe proportion increased to 40-80% (Fig. 10). Therefore,
regions. from wet to dry season, the aerosol population changed to
Contrary to particle scattering and absorption coefficients,a particle number size distribution pattern that is more op-
the ,&ngstrbm exponent and the backscatter ratio did nottically active, dominated by the fine mode. This effect can
show a clear seasonal pattern. Both parameters showdte seen on mass scattering coefficients, calculated as the
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Fig. 10.Time series of particle mass scattering coefficient at 550 nm, particle mass absorption coefficient at 637 nm, and ratio between PM
and PM g particle mass, observed from gravimetric analysis of 199 stacked filter units samples. Shaded areas represent the dry season perioc

ratio between scattering coefficients at 550 nmand@dr-  carbon constitutes 5-10% of the Rdparticle mass con-
ticle mass concentration (Fig. 10). Average mass scatteringentration in the dry season and 1-2 % in the wet season.
coefficients increased from 0490.5n? g1 in the wet sea-
son 0 2.6:1.8n7 g 1 in the dry season. These v:_:llues are 4.3 Relationships between scatterinéngstrbm
in the range of previously reported mass scattering coeffi- : .
cients for dry season Amazonian aerosols (2.8-3.9Th) exponent and particle size
(Chand et al., 2006; Hobbs et al., 1997). To our knowl- .
edge, this is the first estimation of mass scattering coeffi-In the literature, the scatterinfgngstidom exponent has been
cients for the wet season Amazonian aerosols, dominatedsed as an indication of particle number size distribution.
by coarse mode biogenic particles. The mass absorption cdRarticles with diameters around 0.1 pm, usually associated
efficient also showed a similar pattern (Fig. 10), increasingwith urban pollution and biomass burning, have a steeper
from 0.09+0.07n? g1 to 0.27+0.24n? g1 from wet to spectral dependency for scattering (e.g., Schuster et al.,
dry season. Mass absorption coefficient for black carbon aR006). Therefore, this parameter is expected to decrease as
637 nm can be assumed 6.6g1?! as in the MAAP (Miller the aerosol particle diameter increases. Mie theory calcula-
et al., 2011; Petzold et al., 2005), which implies that blacktions performed by Collaud Coen et al. (2007) suggest that
the Angstibm exponent is more sensitive to particles with di-
ameters between 0.5 and 0.8 um.

www.atmos-chem-phys.net/13/2391/2013/ Atmos. Chem. Phys., 13, 23013 2013



2404 L. V. Rizzo et al.: Long term measurements of aerosol optical properties

al., 2011), and might be related to the fact that surface and
q RV R TR T volume are more correlated to particle size than are number
r g L) concentrations. Schuster et al. (2006) argue that for bimodal
5o : aerosol particle number size distributions thegstom ex-
g2 e ponent can decrease with particle size, depending on the ra-
SMD X o s T . . . . .
51 et 1 tio of fine and coarse particle concentration. The addition of
E‘ 0 : ‘ ‘ coarse mode particles with spectrally flat extinctions reduces
J i the overall spectral variability, decreasing thegstiom ex-
; - CMD ponent and damping its sensitivity to the size of fine mode
BRI . . ‘ particles.
o 100 1000

Weighted Mean Diameter (nm)
. 4.4 Aerosol forcing efficiency
Fig. 11. Relationships between scatteriAggstom exponents and
three parameters calculated from sub micrometer aerosol part'Dany averages of particle scattering, backscattering and ab-
cle number size distributions (10-500nm): count mean diameter sorptlon data were used to calculate the aerosol forcing effi-
(CMD), surface area mean diameter (SMD) and volume mean di-
ameter (VMD). The plots comprise measurements taken betweeﬁ'ency atthe top of the atmosphere, referring to the period be-
July and August 2009. tween November 2009 and September 2010, when backscat-
tering data was available. Figure 12 shows the histograms
of aerosol forcing efficiency and cloud fraction for wet and
The relationships with particle size were investigateddry season. The cloud cover was above 0.9 in 72 % of the
through the comparison with the following weighted mean wet season days, and in 46 % of the dry season days. As a
diameters calculated from aerosol particle number size districonsequence, the absolute value of aerosol forcing efficiency
bution measurements (10 nm—7 um) taken between July andias below—3.5W 2 in 70 % of the wet season days and
August 2009: the count mean diameter (CMD), in 46 % of the dry season days. Therefore, in the wet sea-
son the radiative balance is dominated by the cloud cover,
or, in other words, the radiative aerosol direct effect may not

% Dp;N; N L .
CMD = TN (7 be significant. In the dry season the radiative aerosol direct
total effect gains relevance, and can be as important as the cloud
the surface area mean diameter (SMD), cover radiative effect, at least referring to aged biomass burn-
SDp;S; ing particles. That may not be true for fresh biomass burning
SMD= ——— (8) particles (e.g., Procopio et al., 2004).
Stotal It is not appropriate to present average values for variables
and the volume mean diameter (VMD), with this kind of distribution. However, we present statistics
SDp;V; for the aerosol forcing efficiency (Table 7) to have means of

CMD = 9) comparison with other studies. The average values shown in
Viotal Table 7 agree with the range of 24 h forcing efficiencies of
where Dp;, N;, S;, and V; represents respectively particle —8 to —20 W m2 reported by Sena et al. (2013) and refer-
diameter, number concentration, surface area and volume a#nces therein for the Amazon region. Note that the median
bini; Niotal, Stotal, @aNdViotal represents the corresponding pa- values, which are more representative when one considers
rameters integrated for the whole diameter range. Particleéhe distribution of forcing efficiencies, are about 10 times
size distributions in the range 0.3—6 um were measured basddwer than the values reported in the literature, which are
on a physical assumption that tends to underestimate particlbased on remote sensing data. That is because the aerosol
sizes (refer to Sect. 3.2). In this range, particle size spectrdorcing efficiencies calculated here included days with el-
were corrected by means of optical closure study, using avated cloud fractions, which is not feasible when dealing
Mie code to infer what size distribution would fit to the ob- with remote sensing data. Within the period considered here,
served particle scattering and absorption coefficients (refer tahere were only 10 days with cloud fraction less than 0.1.
Sect. 4.5). Considering only those low cloud fraction days, the average
Figure 11 shows that the correlations betwéergstrbm forcing efficiency was-51+ 10 W m2 for the dry season.
exponents and weighted mean diameters are rather poorhis value corresponds to 7 days in the dry season of 2010,
Nevertheless, it shows thdingstiom exponents decreased and is 4 times higher in magnitude than the ones reported by
with SMD and VMD, as expected. The dependency of theSena et al. (2013) averaged along 10 yr of remote sense ob-
Angstbm exponent with CMD contradicted the expecta- servations in Amazonia. Nevertheless, it is worth to mention
tions, increasing with particle size. This converse behaviorthat the methods used for calculating the aerosol forcing ef-
has been reported for aerosols in a Chinese megacity (Gaficiency from remote sense and in situ data are completely
land et al., 2008) and in a boreal forest site (Virkkula et different: the former takes the forcing efficiency as the slope
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Table 7. Statistics for aerosol forcing efficiency at the top of the atmosphere calculated based on daily averages of scattering, backscatter

ratio, absorption and cloud fraction (MODIS), enclosing the period between November 2009 and September 2010.

Aerosol Forcing EfficiencyA F/AOD [\Nm*Z]

Average Standard deviation Median 1stquartile 3rd quartile coverage

All data -9 15 -0.8 —13 0.0 65 %
Wet season —6 13 -0.3 —6 0.0 76 %
Dry season —13 19 -6 -23 -0.2 55%

Table 8. Statistics for aerosol particle scattering coefficients (550 nm), scatt@rigstiom exponent, absorption coefficient (637 nm), single

scattering albedo (637 nm) and particle number concentration during episodes of influence of the Manaus urban plume between February

2008 and June 2011.

Scattering [MnT1]  Angstbm  Absorption [MnT1] SSA  Concentration [cm?]

median 16.0 1.72 2.68 0.84 1502
1st quartile 12.2 1.41 1.51 0.78 1026
3rd quartile 22.3 2.00 4.96 0.89 2269
Number of hours of measurements 223 223 213 211 158

affected (2008-2011)

of the plot of radiative flux at the top of the atmosphere ver-tion factors above 30 % were obtained when the measured
sus AOD, usually at 550 nm, for a entire dry season data setscattering coefficient at 550 nm was below 15 Mm

the latter uses daily records of spectrally averaged backscat- The average refractive index and standard deviation re-
ter and single scattering albedo, without any mention to thesulting from the optical closure study was (1#4D0.07)-
AOD wavelength. Therefore, a forcing efficiency value cal- (0.008+ 0.005)i, corresponding to effective values for
culated from in situ observations corresponds to a single dataerosol particles in an Amazonian primary forest site in the
point in the curve radiative flux versus AOD, which in many dry season. The average particle refractive index obtained

cases shows a scattered linear correlation. here is compatible with other estimative reported for Amazo-
nia. Dubovik et al. (2002) report averages of 1.47-0.00093i

4.5 Optical closure study: iterative calculation of for the Amazon forest, retrieved from worldwide AERONET
refractive indexes network of ground-based radiometers. Guyon et al. (2003)

) . report averages of 1.42—-0.006i for background aerosols and
An optical closure study was done for aerosol particle prop-o 1 41-0.013i for biomass burning aerosol particles at a pas-

erties measured between 1 July-14 August 2009, period &re site in Amazonia, under ambient RH conditions, by us-
which number size distribution measurements were avallable;ng a similar procedure of closure between measured and cal-

for particles in the optical diameter range of 10-6000nM. ¢ |ated particle optical properties. Schkolnik et al. (2007) ob-
Particle refractive index was calculated for each 60 min aV-tained 1.87—0.22i for elemental carbon aerosols and 1.3 for

eraged number size distribution data, by means of matChbrganic aerosol, based on measurements of aerosol optical

ing calculated and measured particle scattering and absorq)‘roperties and chemical composition in an Amazonian pas-
tion coefficients within 10 %. Both real and imaginary refrac- {,re site during the dry season.

tive indexes converged in 91 % of the hourly averaged data, Tne closure between calculated and measured particle op-
whenever particle scattering, absorption and number size disjca properties was not found in 9 % of the data for a variety
tributions were available. of reasons: calculated scattering and absorption converged
~ The modeled truncation error was calculated as the rasor gifferent refractive indexes; particle volume concentra-
tio between as the simulated integral scattering coefficientjqn was not adequate to reach the measured scattering coef-
(0-180) and the simulated Nephelometer signal consider-ficient: or calculated absorption coefficient suffered a sudden

ing its angular truncation (7-17pand (i)llumination.func_tion. increase as a function of the imaginary refractive index with-
In average, the model predicted +3% % underestimation of ot convergence to measured values. This abrupt increase

550 nm particle scattering coefficients due to the nephelomeg, c5jcylated particle absorption occurred when measured
ter angular truncation. This value is compatible with the absorption coefficients were in order of 0.1 M Improv-
correction factor calculated based on Anderson and Ogrefyg the imaginary refractive index resolution from 0.0005 to

(1998) (refer to Sect. 2.2). The modeled truncation correc goo1 did not help to increase the percentage of achieved
tion factor varied between 8% and 35 % at 550nm. Correc-
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Fig. 12.Frequency histograms for the aerosol forcing efficiency and for the cloud fraction during wet and dry seasons, comprising the period
between November 2009 and September 2010.

closure between measured and modeled data. To verify thiwveen 10 and 500 nm accounted for 77 % of the scattering co-
accuracy of the calculated refractive index, a sensitivity testefficient calculated for the entire size range. According to the
was performed, using as input to the Mie code particle sizemodel results, super micrometer particles contributed 50 % to
distributions, scattering and absorption coefficients withinthe calculated absorption coefficients. This finding is associ-
the instrument error estimates mentioned in Sect. 2.2. Thated with the assumption of size independent refractive in-
sensitivity test indicated variations of 4 % on the real part of dexes, and contradicts the expectative of decreasing absorp-
the refractive index, and of 15% on its imaginary part, in tion efficiency for particles larger than about 300 nm in di-
average. ameter (Bond and Bergstrom, 2006). Nevertheless, the liter-
Adding to the measurements uncertainties, there are erature has shown evidences of the presence of light absorbing
rors related to the assumption of homogeneous internal mixparticles in the coarse mode. These particles are most likely
ture and sphericity throughout the whole measured size speaf biogenic origin, since typical aerosol organic fractions in
trum (10—7000 nm). The assumption of homogeneous sphelAmazonia range between 70 and 85 %, while soil dust parti-
ical aerosols is a crude simplification for the variety of shapescles comprise only 10-15 % of coarse particle mass concen-
and mixing states of atmospheric aerosol particles, especiallyration (Martin, et al., 2010b). Light absorbing carbonaceous
when coarse mode particles are included. Several studies reerosols of biogenic origin result from processes like oxida-
port the effects of non sphericity and different mixing statestion of biogenic materials and polymerization, and are often
on aerosol optical properties (e.g. Cheng et al., 2006; Wagdenominated “brown carbon” (Andreae and Gelé&nc3006;
ner et al., 2011; Ma et al., 2011), and this will be the focus Andreae and Crutzen, 1997). Occurrence of external and in-
of another paper. Therefore, we emphasize that the valueternal mixing instead of the assumed homogeneous spherical
obtained for the refractive index must be interpreted as araerosols might also have contributed to the increased impor-
effective refractive index for the whole aerosol population. tance of larger particles to the calculated absorption coeffi-
To examine the scattering and absorption efficiency as &ients. Internal mixtures in the form of an absorbing core sur-
function of particle size, Mie model runs were performed rounded by a less absorbing shell increasing the absorption
using as input the previously converged refractive indexesefficiency by a factor of 2—3 (Martins et al., 1998).
Each particle number size distribution starting at 10 nm was
truncated at different particle diameters, comprising 13 par4.6 Influence of external sources over aerosol optical
ticle size ranges (10-56; 10-115; 10-200; 10-300; 10-400; properties
10-500; 10-600; 10-750; 10-900; 10-1500; 10-2500; 10—
4000; 10-6000nm). The cumulative contribution of each4.6.1 Manaus urban plume influence
particle size range to the scattering and absorption coeffi-
cients calculated for the entire size range (10—6000 nm) id3etween 2008 and 2011, 43 periods of influence of the Man-
shown in Fig. 13. In average, particles with diameters be-aus urban plume over the measurement site were detected,
comprising 1.5 % of the dataset. Episodes occurred with local
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Table 9. Statistics for aerosol particle scattering coefficients (550 nm), scatrén'ggtrbm exponent, absorption coefficient (637 nm), single
scattering albedo (637 nm) and particle number concentration during episodes of African advection between Feb and May 2008.

Scattering [MnT1] Angstrt')m Absorption [MmT1]  SSA  Concentration [cm3]

median 6.2 1.29 0.95 0.82 352
1st quartile 3.3 0.88 0.38 0.77 300
3rd quartile 12.0 1.50 1.46 0.94 488
Number of hours of measurements 254 254 240 230 202

affected in 2008

1.00 f precipitation occurred on this day. Under the influence of
——Scattering the urban plume, particle scattering coefficients increased
by a factor of 1.7, absorption coefficients increased from 2
to 18 Mm 1, particle number concentrations increased from
} /' 400 to 3300 cm?®, and particle SSA values decreased from

0.9310 0.75. After 09:00 local time, northeast winds predom-
‘/ inated, bringing clean air and restoring the wet season typical

0.40 /{ N particle number and mass concentrations.
0.20 /M 4.6.2 Influence of African advection
% Recent works reported the transport of African aerosols to

0.00 Jo—% the research site in the wet season of 2008 (e.g., Baars et al.,
50 500 5000 2011; Ben-Ami et al., 2010). The phenomenon might have
Particle maximum diameter (nm) occurred also in 2009 and 2010, but here only the well doc-
umented episodes occurred in 2008 (Table 4) will be used
to calculate statistics for aerosol particle properties during
the periods of influence of African aerosol advection. Ta-
ble 9 shows that median particle absorption coefficients in-
creased by factor of 2 when compared to the overall wet sea-
son statistics (Table 6). As a matter of comparisoii]l&t et
winds ranging between 120 and ¥9@nd were character- gl (2009) report particle absorption coefficients ranging from
ized by a consistent increase on aerosol number concentrg 1 to 10 Mnt for Saharan mineral dust in southern Mo-
tions, scattering and absorption coefficients. HY SPLIT back-rocco. Particle scattering coefficients were not significantly
trajectories were calculated for each episode, to derive theffected by the advection of African aerosols, so that the SSA
plume age and the number of trajectory points over the Manmedian values decreased by 7% in comparison to the wet
aus area (a square between the coordinates 39515 S;  season values. The elevated number of hours of influence
59.85 W; 60.15 W). The plume age reaching the research on particle measurements-240h in 4 months) attests the
site ranged between 5 and 24 h, and the trajectories enclosegignificance of this external source over Amazonian aerosol

1to 15 points (OUt of 24) inside the Manaus area. There Wa%)artide properties, especia”y during the wet season.
not a clear relationship between aerosol properties and the

age of the urban plume.
Table 8 shows statistics for aerosol particle propertiess Conclusions
measured during episodes of Manaus urban plume influence.
Median particle scattering coefficients were 2.5 times greatefwo major classes of aerosol particles, with significantly dif-
than the ones measured at clean conditions during the weerent optical properties were identified in a primary for-
season. Median patrticle absorption coefficients increased bgst site in Amazonia: coarse mode predominant biogenic
a factor of 5 from samples taken under clean conditions toaerosols in the wet season (January—June), naturally released
samples taken under the influence of the urban plume. Acby the forest metabolism, and fine mode dominated biomass
cordingly, the particle SSA decreased by 5 %. burning aerosols in the dry season (July—-December), trans-
Figure 14 shows an example of the Manaus plume ef-ported from regional fires. From wet to dry season, median
fect over aerosol measurements at the forest reserve. Six a#rerosol particle scattering (550 nm) and absorption (637 nm)
trajectories passing over the Manaus area reached the sitmefficients increased from 6.3 Mrhto 22 Mm%, and from
between 04:00 and 09:00 local time of 25 April 2009. No 0.5 Mm™! to 2.8 MnT 1, respectively. The observation of

0.80 -~ —=—Absorption {| e /

Relative contribution
o
(@)}
o
i

Fig. 13. Cumulative contribution of 13 particle size ranges to scat-
tering (550 nm) and absorption (637 nm) coefficients calculated us
ing a Mie model. Error bars represent standard deviations.
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Fig. 14. Example of Manaus urban plume entrance in the research site on 25 April @)@olution of particle single scattering albedo
— SSA (637 nm), scattering coefficient (550 nm), absorption coefficient (637 nm) and number concerfbpEMBPLIT back-trajectories
reaching the measurement site at the time specified (local time). Each trajectory point represents one hour less from the start time.

relevant particle absorption coefficients during periods of Assuming a mass absorption coefficient for black carbon of
pristine atmospheric conditions in the wet season indicates.6 m? g~1 (Petzold et al., 2005), we estimate that black car-
that some of the Amazonian biogenic particles are light ab-bon constitutes 5-10 % of the Rilparticle mass concen-

sorbers, as was also stated by Guyon et al. (2004). tration in the dry season. The remaining absorption could

While particle scattering and absorption presented highbe attributed to either light absorbing carbonaceous particles
seasonality, the derived aerosol intrinsic properties, namelyfrom biomass burning fires, often denominated “brown car-
the Angstiom exponent for scattering, the backscatter ratiobon” (Andreae and Gelenes 2006), and to mineral dust,
and the single scattering albedo, did not show a clear seawhich typically constitutes a minor fraction of RiylAma-
sonal cycle. The median value for the dry particle SSA atzonian aerosol (8 %, as reported by Rizzo et al., 2010).

637 nm was 0.88 equally in the dry and in the wet season. By means of a closure study between optical parti-
The weak seasonal variation of SSA, in spite of the increasedle properties and number size distribution measurements,
concentrations of light absorbing biomass burning particlesan effective particle refractive index of (1.470.07)—

in the dry season, can be in part explained by the fact tha{0.008+ 0.005)i was retrieved, corresponding to aerosol par-
both particle scattering and absorption increased by similaticles in an Amazonian primary forest site in the dry season.
rates in the dry season. Although the scattering increase mayhe same closure study indicated that, in average, particles
be surprising at first, evidences show that biomass burningvith diameters between 10 and 500 nm accounted for 77 % of
smoke plumes can contain particles with a variety of ratiosthe scattering coefficient calculated for the entire size range
between scattering and absorption coefficients, depending ofL0 nm—7 um). In the closure study internally mixed homo-
fire stage (smoldering or flaming), on plume age, and on thegeneous spheres were assumed. Further information could be
atmospheric processes the plume has been trough (for examachieved by modeling the optical response of particles with
ple, in-cloud processing) (Reid et al., 2005). different degrees of mixture and chemical composition.

In the dry season, the particle scattering coefficients in- Optical particle properties measured above the canopy
creased both as a consequence of decreased precipitatiovere used to estimate the aerosol forcing efficiency at the top
rates (from 10 in the wet season to 4mmdhyn the dry  of the atmosphere. Results indicated that at this primary for-
season, in average), and of enhanced fine particle numbaegst site the radiative balance was dominated by cloud cover,
and mass concentrations in the dry season (fine mode paparticularly in the wet season. Due to the high cloud frac-
ticle mass corresponded to 40-80% of M Fine mode  tions, the absolute value of the aerosol forcing efficiency was
particles are more efficient to scatter light in comparison tobelow —3.5WnT12 in 70% of the wet season days and in
the coarse mode dominated biogenic particles in the wet sea6 % of the dry season days. These values are lower than the
son. Accordingly, mass scattering coefficients at 550 nm in-ones reported in the literature, which are based on remote
creased from 0.20.5 to 2.6+ 1.8gnT2 from wet to dry  sensing data. That is because the aerosol forcing efficiencies
season. The corresponding increase on mass absorption ccalculated here included days with elevated cloud fractions,
efficients at 637 nm was 0.890.07 to 0.270.24gnT?2. which is not feasible when dealing with remote sensing data.
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Besides the seasonal variation, the influence of externahndreae, M. O.: Correlation between cloud condensation nu-
aerosol sources was observed occasionally. Between 2008 clei concentration and aerosol optical thickness in remote
and 2011, 43 periods of influence of the Manaus urban plume and polluted regions, Atmos. Chem. Phys., 9, 543-556,
were identified, comprising 1.5 % of the dataset. The events d0i:10.5194/acp-9-543-2002009. . ,
were characterized by a consistent increase on particle scaﬁ”ggzﬁéx's?)h ?::s%r#ézsgiepinjxﬁni?sopshpehr?cnghA:r;c::?rL?:géioegnecc:e-
tering (factor 2.5) and on absorption coefficients (factor 5), - ; ’ '
lasting from 4 h to a whole day. Rdvection of biomass burn- 276, 1052(oi:10.1126/science.276.5315.108997.

. . : . Andreae, M. O. and Gelenes A.: Black carbon or brown car-
ing and mineral dust particles from Africa affected 240h of bon? The nature of light-absorbing carbonaceous aerosols, At-

measurements between February and May 2008 (8 % of the 1,05 chem. Phys., 6, 3131-3148j:10.5194/acp-6-3131-2006

corresponding dataset). The events lasted from 1 to 7 days, 200s6.
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