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Abstract

We derive a thin film model for viscoelastic liquids under strong slip which
obey the stress tensor dynamics of corotational Jeffreys fluids.

1 Introduction

Dewetting liquid polymer films on nonwetting substrates, such as silicone wafers
grafted with a monolayer of brushes, play a prominent role in many nanotechnolog-
ical applications. It is known that for these situations, polymer films on the scale of
a few hundred nanometers typically show large slippage [5|. Furthermore, for highly
entangled polymers, the assumption of a Newtonian fluid will seize to be valid. To
understand the interplay of viscous and viscoelastic properties of liquid polymers on
hydrophobically coated substrates, there is a need for refined theoretical methods
that are able to capture and evolve the emerging morphologies and their longtime
dynamics. Dimension-reduced thin film models have shown in the past to be ex-
tremly successful to enable quantitative predictions that are hardly being attained
simply via the underlying free-boundary problem.

In this paper we make an important step in that direction by developing a new thin
film model that combines large slippage with viscoelastic properties. In [4] a family of
thin film models ranging from weak to strong slip regimes could be derived depending
on the order of magnitude of the slip length (see also [3]). Modelling the viscoelastic
properties of such polymers generalized Maxwell and Jeffreys models have been
widely used. In [6] a weak slip model could be combined with the linearized Jeffreys
model to discuss effects of viscoelastic relaxation. More recently [2] we have shown
that the strong slip limit can also be recovered for the linear Jeffreys model. In this
Rapid Note we show that, for the strong slip regime, we are able to fully incorporate
the general corotational Jeffreys model into our thin film model.

2 Formulation

We begin by presenting the underlying free boundary problem for incompressible,
viscous flow with velocity u,
V-u=0 (1)
du
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where we assume that the traceless part of the symmetric stress tensor T obeys the
corotational Jeffreys model [1]
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Here, D/Dt denotes the Jaumann derivative which for arbitrary tensor fields A is
given by
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where 4 and w denote the rate of strain tensor and the vorticity tensor, given by
4 = Vu+ (Vu)', w = Vu— (Vu)', (5)
respectively; d/dt is the material derivative J; + u- V. We assume the viscosity pu

as well as the relaxation parameters \;, Ay to be constant material parameters.

As boundary conditions we assume that the substrate is impermeable u - &, =0 at
z = 0, and further the Navier-slip boundary condition
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with a unit-vector é] parallel to the substrate (i.e., in x or y-direction). At the liquid
surface the normal component of the stress is balanced by the Laplace pressure (with
surface tension coefficient ) and the disjoining pressure V(z), while the tangential
components of the stress tensor are zero. In the following we use the reduced pressure
pr=p+V(2).

To simplify the algebra we restrict the calculations to follow to the 2D case, where we
denote the velocity field components u = (u, w). We employ the strong-slip scaling,
as in [4]. In this limit, the friction between the liquid and the substrate is too weak
to maintain a non-zero xz-shear stress to lowest order, and lateral pressure gradients
are balanced by the zz-component of the stress tensor. For the stress tensor we use
the same scalings as in [6], which means we assume that corresponding components
of the strain rate and stress tensor are of the same order. Hence, the dimensional
stress tensor reads in terms of the non-dimensional stress tensor components
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where p denotes viscosity and T denotes the time scale, given by T' = U/L. U
denotes the characteristic velocity scale, such as the dewetting speed and L the
relative scale of the lateral extension of the dewetting rim. If H denotes the relative
height of the rim then we let ¢ = H/L < 1.



The dimensionless corotational Jeffreys model can then be written as

d T azu Tz
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= (1 + /\2%) (Qu + e20,w) + Aopt (@u — 5289510) du .

These equations are coupled to the nondimensional governing equations, which read
in the strong slip case as

du+dw =0, (11)
d
€2Re*d_2; — _€2axp+628x7_acac 4 aZT:vz’ (12)
and
d
52Re*d—1: =—0.p+ o1 + 077 (13)
The corresponding scaled boundary conditions at z = h(z,t) are given by
B N 828xh27_:v:v _ 28$th2 + 777 B a:mjh
PR 1+€2(6xh)2 - (1‘}‘52(8:5]7/)2)3/2
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and
7% (1= *(Qh)?) — 20,hT = 0. (15)

In the last equation we have introduced the first normal stress difference 7 (com-
monly denoted by N; [1])
T=7"— 7%, (16)

Finally, the kinematic condition reads
h
ath:—v-/ dz . (17)
0

Note that prg = p + V(h), where V(h) here denotes a disjoining pressure due to
dispersion forces across the film.

At the substrate, z = 0, we have as usual the impermeability condition w = 0 and
the slip condition v = b7®*. In the strong-slip regime we have b = 3,/¢%, (3, being
the slip length parameter of order O(£°), see [4] for details.
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3 Lubrication approximation
For the derivation of the lubrication approximation we assume that the dynamic
variables can be given in form of the asymptotic expansions

(u,w,h,p, TU) = (Uo,wo,h,po,Téj) (18)
—|—€2(U1, wq, h17p17 Tf]) + 0(54) .

To leading order in € we require from equations (8) and (9) that

A
Qug=0 or 77°= —2(9ZUO. (19)
A1
The governing equations are, to leading order,
axU() + @wo =0 s (20)
oty =0, (21)
dpo =015 + 015", (22)

and the leading order boundary conditions at z = hg are

757 =0, (23)
Pz

Pro — 2 ( ; - azhOT(:)EZ) + amho = Oa (24)

atho — Wy + Uo@zho =0. (25)

Leading order boundary conditions at the substrate are
wo=0 and 75°=0. (26)

We now integrate (21) with respect to z and use the boundary conditions (23) to
find
757 =0. (27)

With the constitutive equations (19) and the boundary conditions (26) we are led
to the plug flow condition d,ug = 0.

The next order equations for (8), (9) are then given by

d° d°

d° d°
(1 + )\1%) ng =2 (1 + )\2%) azw07 (29)

where d°/dt = 0, + ugd, +wod, . Also, from (22), we find with the solution (27) and
the boundary condition (24) for the pressure at the liquid surface z = hy

Po = T(']ZZ — 6mh0 — V(ho) . (30)
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The next order (O(£?)) u-momentum equation is

0
*d Ug

dt

Re = —Opo + T + AT

Using (30) and denoting ug = f(x,t) we obtain

Re™ (Ouf + fOf) = &To + Op(Ouho + V) + 0717 . (31)

Integrating this last equation from 0 to hy we find, using the slip boundary conditions
to the next order, 77% = f/[s,

ho
hoRe* (O f + fO.f) = O, / 4575 — Tol sty Bcho (32)
0
+ hoﬁx(ﬁmho + V) + Tlxz z=hg — ﬁi .

The next order tangential stress boundary condition at z = hy is

717 =T A ho (33)
Hence
ho
hoRe* (Of + fo.f) = & / de7
0

+ ol (@b + V)~ L (34)

From equations (28) and (29) we obtain an equation for the difference of the diagonal
terms of the stress tensor,

=4 (0 f + X000, f + X f (8 f)? — X2, fO.O,f) -

We now define a film-average S of 7y as

1 [ho

S=—
4hg Jo

dz 7o . (36)

We denote the RHS of (35) by G(z,t) and observe that the last term is zero. Inte-
grating (35) with respect to z then yields

4hoS + M0y (4hoS) + M fO:(4hoS) + A1 (4hoS) 0, f
— 70| 2=ho (Otho + fOho + hoOs f) = hoG(x, ). (37)

Using the kinematic condition to leading order
Otho + 0:(fho) =0 (38)
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and employing the definition of G(x,t) then finally leads to

The lubrication model can finally be written as

hoRe* (Ouf + fOf) = By(4hoS) + hods (Ghaho + V) — ﬂi

(40)

together with (38) and (39). Note that only the advective non-linearities, but not
the corotational non-linearities appear in (39). This implies, that using the upper or
lower advective derivative instead of the Jaumann derivative (leading to Oldroyd’s
model A or B) leads to the same one-dimensional thin film equation.

We are currently investigating the effect of viscoelastic relaxation in strongly slipping
films on the morphology of dewetting rims.

References

[1] R. B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of polymeric liquids,
volume 1. John Wiley & Sons, 1987.

[2] R. Blossey, A. Miinch, M. Rauscher, and B. Wagner. Slip vs viscoelasticity in
dewetting thin films. accepted: Furopean Physical Journal E, 2006.

[3] Sharma A. Kargupta K. and Khanna R. Instability, dynamics and morphology
of thin slipping films. Langmuir, 20:244, 2004.

[4] Wagner B. A. Miinch A. and Witelski T. P. Lubrication models with small to
large slip lengths. J.Eng. Math., 53:359, 2005.

[5] Fetzer R., Jacobs K., Miinch A., Wagner B. A., and Witelski T. P. New slip
regimes and the shape of dewetting thin films. Phys. Rev. Lett., 95:127801, 2005.

[6] M. Rauscher, Miinch A, B. Wagner, and R. Blossey. A thin-film equation for
viscoelastic liquids of Jeffreys type. European Physical Journal E - Soft Matter,
17:373, 2005.



