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Abstract. Sedimentary proxy records constitute a significant

portion of the recorded evidence that allows us to investi-

gate paleoclimatic conditions and variability. However, un-

certainties in the dating of proxy archives limit our ability

to fix the timing of past events and interpret proxy record

intercomparisons. While there are various age-modeling ap-

proaches to improve the estimation of the age–depth rela-

tions of archives, relatively little focus has been placed on

the propagation of the age (and radiocarbon calibration) un-

certainties into the final proxy record.

We present a generic Bayesian framework to estimate

proxy records along with their associated uncertainty, start-

ing with the radiometric age–depth and proxy–depth mea-

surements, and a radiometric calibration curve if required.

We provide analytical expressions for the posterior proxy

probability distributions at any given calendar age, from

which the expected proxy values and their uncertainty can

be estimated. We illustrate our method using two synthetic

data sets and then use it to construct the proxy records for

groundwater inflow and surface erosion from Lonar lake in

central India.

Our analysis reveals interrelations between the uncertainty

of the proxy record over time and the variance of proxies

along the depth of the archive. For the Lonar lake proxies,

we show that, rather than the age uncertainties, it is the proxy

variance combined with calibration uncertainty that accounts

for most of the final uncertainty. We represent the proxy

records as probability distributions on a precise, error-free

timescale that makes further time series analyses and inter-

comparisons of proxies relatively simple and clear. Our ap-

proach provides a coherent understanding of age uncertain-

ties within sedimentary proxy records that involve radiomet-

ric dating. It can be potentially used within existing age mod-

eling structures to bring forth a reliable and consistent frame-

work for proxy record estimation.

1 Introduction

Empirical evidence of past climatic conditions are funda-

mentally based on reliably constructed proxy records. Prox-

ies are measurable quantities, such as pollen, isotope frac-

tions, grain size, etc., that correlate with past physical vari-

ables that cannot be directly measured, such as temperature

and precipitation (Wefer et al., 1999), and these are obtained

from natural archives like lakes, stalagmites, and peats. In

this paper, we use the term “proxy record” to denote exclu-

sively the set of proxy values (or probabilities of proxy val-

ues) over time.

The interpretation of a proxy record is often not straight-

forward due to unknown factors (e.g., anthropogenic im-

pacts, internal dynamics, level of correlation with the cli-

matic variable – cf. Blaauw et al., 2007) that might have in-

fluenced the proxy. The situation is further complicated by
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the fact that every proxy record has, within it by construc-

tion, errors related to the dating of the archive from which it

was obtained. Clearly, proxies cannot be measured directly

along time. They are measured along the depth of an archive,

and the archive depths must then themselves be dated in a

separate set of observations. In this sense, the proxy record

as a function of time is a derived estimate, and it is one in

which the time axis is not error free, because the radiomet-

ric ages of the archive depths have non-negligible errors of

measurement. As a consequence of the latter, it is challeng-

ing to estimate the uncertainty of proxies as well as to carry

out proxy record intercomparisons.

Quantifying the uncertainty of the proxy at a given time in

the past is of paramount importance. Even though the proxy

record is a derived measurement, it is still, in its essence, a

measurement, and the representation of any measured quan-

tity without an uncertainty (error) of measurement can lead to

misleading conclusions. For instance, the assessment of cor-

relations between data sets can be dramatically influenced by

whether or not the uncertainty of the data is properly repre-

sented (see Rehfeld and Kurths, 2014; Heitzig, 2013, Intro.).

Recent studies have raised this issue along with the fact

that – although there are various approaches to estimating

age–depth relationships for a given archive and constraining

their uncertainties – relatively little focus has been directed

towards the propagation of the age uncertainties in the proxy

record from the age model (Blaauw et al., 2007). Notably, in

Fig. 2 of Blaauw et al. (2007), we find one of the first ever

representations of the uncertainty of a proxy record (shown

as a grayscale of possible proxy values), which quickly draws

attention to the parts of the record that are more reliable and

those parts that are not. This idea was further extended and

applied in later studies (Parnell et al., 2008; Charman et al.,

2009; Blaauw et al., 2010; Swindles et al., 2012). More re-

cently, Mudelsee et al. (2009, 2012) estimated the uncer-

tainty of the proxy record with regard to trend and period-

icity estimation of the proxy. Breitenbach et al. (2012) have

put forth COPRA – Constructing Proxy Records from Age –

models a heuristic numerical method that treats age model-

ing as an intermediate step in the construction of the proxy

record, and thereafter presents the final proxy records along

with their uncertainties of estimation. However, a general,

mathematical, and non-numerical framework (based on thor-

ough estimation-theoretic principles) that can guide the esti-

mation of the uncertainty of proxy record estimations is still

lacking.

The main objective of this paper is to provide mathemati-

cal expressions for the probabilities of possible proxy values

at a given point in time that can then be used to estimate the

proxy record and its uncertainties. We achieve this by using

a Bayesian analysis that tells us which depths are more likely

than others for every calendar age – and not, as is the case in

many studies, the other way round. Using conditional prob-

abilities, we represent the proxies on an error-free timescale

with the intent of allowing easier intercomparison of proxies.

We test our approach using synthetic examples and then ap-

ply it to reconstruct Holocene proxy records of groundwater

inflow and surface erosion from India.

Our approach is generic in the sense that it is valid for

all radiometric dating information. Furthermore, to make

it more widely applicable, we do not use any sedimenta-

tion model. In cases where a convincing and more spe-

cific sedimentation model is available, it can be included

in our Bayesian framework as prior distributions, as is typ-

ically done in several age-modeling approaches (Blaauw

et al., 2007; Bronk Ramsey, 2008; Parnell et al., 2011). In

this regard, the approach presented in this study also has

the potential to be incorporated into existing age modeling

frameworks such as COPRA (Breitenbach et al., 2012), Sta-

lAge (Scholz and Hoffmann, 2011), clam (Blaauw, 2010),

or OxCal (Bronk Ramsey, 2008). Moreover, it could also

be modified and extended to be applicable to other dating

methods such as dendrochronlogy, luminescence dating and

tephrochronology.

Lastly, we stress that the fundamental result of our analy-

sis is the probability distribution of proxy values at individual

time points in the past (we return to this point in more detail

in Sect. 4.4). As such, the two distributions derived for the

proxy values at two distinct time points tell us almost noth-

ing about the relationship between these two proxy values,

for which one would rather need to estimate the joint distri-

bution of the two – a task that is not attempted here, but that

could be dealt with with similar methods. A similar situation

occurs in the estimation of the radiocarbon calibration curve,

and is discussed in Blackwell and Buck (2008). Still, in visu-

alizing the distributions (and mean/median estimates derived

from them) obtained at numerous time points over a contigu-

ous time period, the observer might “see” trends and patterns

of variability, and may be tempted to interpret these as trends

and variations in the actual paleoclimatic conditions. In or-

der to quantify trends and variations in the proxies, the anal-

ysis presented in the following sections has to be modified

with the specific goal of arriving at, let us say for example,

the probability distributions of the amount of change in the

proxy values at individual time points in the past. Conclu-

sions about different aspects of the proxy record based on

the current analysis, on anything other than the probability

distribution of the proxy at an individual point in time, can

at best be qualitative, and is strictly limited by the level of

uncertainty involved. The greater the uncertainty, the less we

can infer.

2 Theory

2.1 Preliminary considerations

We distinguish between two types of radiometric dating

methods: (i) those that do not require calibration, e.g., U/Th

dating, and (ii) those that require radiometric calibration,
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OUTLINE OF THE DERIVATION FOR POSTERIOR PROXY PROBABILITIES

Fig. 1. Outline of posterior proxy probability derivation. The box presents a rough sketch of the derivation of the posterior proxy probability
densities. We denote the proxy, depth, time and radiometric age with the random variables X , Z, T , and R respectively. The essential quantity
of interest to be estimated is the posterior conditional density P (x|t) which is finally expressed in terms of the measured/given quantities
using the above steps. For a detailed explanation, please refer to Sections 2.3, and 2.4.

the second one, i.e., with a trivial diagonal calibration curve160

without uncertainty.
The information that is given is: (i) a set of radiometric

ages against the depth of an archive, viz., a dating table, (ii)
a much larger set of proxy values against the depth of the
archive, and (iii) for the case of radiocarbon dated archives,165

a 14C calibration curve, viz., IntCal13 (Reimer et al., 2013).
All three datasets have errors of measurement, although the
errors in proxy measurements are negligible in several cases.

Using the above data, we wish to answer the question:
What were the most likely climatic conditions at a given point170

in time in the past? We can rephrase this in terms of proxies
as: At a given time point in the past, which proxy values are
more likely to have occurred? The answer is obtained using a
probabilistic framework, i.e., we want to arrive at probability
distributions for the proxy value at all past time points.175

We use a Bayesian framework, since this allows us quite
naturally to transform partial knowledge about one type of
information (here: about the errors in measurement, dating,
and calibration) into partial knowledge about other types
of information (here: the age-depth and age-proxy relation-180

ship we are interested in). The relevance of a Bayesian ap-
proach is also exemplified by its use in most analytical inves-
tigations into radiocarbon dating and radiocarbon calibration
(e.g. Niklaus et al., 1994; Niu et al., 2013). Readers may also
refer to the introductory sections of Bronk Ramsey (2008)185

and Parnell et al. (2011) for further explanatory notes on the
use of Bayesian statistics in age modeling approaches.

The goal of this analysis is to arrive at the posterior dis-
tributions of the given proxy at all points in time. A gist of
the derivation of the posterior proxy probability distributions190

is presented in the box in Figure 1. A detailed explanation
follows in the subsequent sections and also in the Appendix.

2.2 Necessary assumptions

Before we proceed, it is important that we state and review
the assumptions inherent in our approach. We assume that:195

– The 14C ages, as well as the proxy measurements, are
sufficiently well-described by a normal distribution with
the mean at the measured value and a standard devi-
ation equal to measurement error. This is motivated by
the fact that, in most cases, observations (and associated200

errors) are adequately described by the mean (and stan-
dard deviation) of a Gaussian process. Still, in principle,
our method can be used for any probability distribution.

– The errors in depth measurements are negligible. The
precision of depth measurements motivate this second205

assumption and it is made for the sake of analytical sim-
plicity. We note that most of the existing age modeling
techniques involve this assumption, and also that our ap-
proach would have to be modified in cases where depth
uncertainties cannot be neglected.210

Figure 1. Outline of posterior proxy probability derivation. The box presents a rough sketch of the derivation of the posterior proxy proba-

bility densities. We denote the proxy, depth, time and radiometric age with the random variables X, Z, T , and R, respectively. The essential

quantity of interest to be estimated is the posterior conditional density P(x|t), which is finally expressed in terms of the measured/given

quantities using the above steps. For a detailed explanation, please refer to Sects. 2.3 and 2.4.

e.g., 14C dating. In the following subsections, we restrict our-

selves to the more complicated case of 14C dating, since the

first type can formally be considered to be a special case of

the second one, i.e., with a trivial diagonal calibration curve

without uncertainty.

The information that is given is (i) a set of radiometric

ages against the depth of an archive, viz., a dating table,

(ii) a much larger set of proxy values against the depth of the

archive, and, (iii) for the case of radiocarbon dated archives,

a 14C calibration curve, viz., IntCal13 (Reimer et al., 2013).

All three data sets have errors of measurement, although the

errors in proxy measurements are negligible in several cases.

Using the above data, we wish to answer the question what

were the most likely climatic conditions at a given point in

time in the past? We can rephrase this in terms of proxies

as at a given time point in the past, which proxy values are

more likely to have occurred? The answer is obtained using a

probabilistic framework; i.e., we want to arrive at probability

distributions for the proxy value at all past time points.

We use a Bayesian framework, since this allows us quite

naturally to transform partial knowledge about one type of

information (here, about the errors in measurement, dating,

and calibration) into partial knowledge about other types of

information (here, the age–depth and age–proxy relation-

ships we are interested in). The relevance of a Bayesian ap-

proach is also exemplified by its use in most analytical inves-

tigations into radiocarbon dating and radiocarbon calibration

(e.g., Niklaus et al., 1994; Niu et al., 2013). Readers may also

refer to the introductory sections of Bronk Ramsey (2008)

and Parnell et al. (2011) for further explanatory notes on the

use of Bayesian statistics in age-modeling approaches.

The goal of this analysis is to arrive at the posterior dis-

tributions of the given proxy at all points in time. A gist of

the derivation of the posterior proxy probability distributions

is presented in Fig. 1. A detailed explanation follows in the

subsequent sections and also in the Appendix.

2.2 Necessary assumptions

Before we proceed, it is important that we state and review

the assumptions inherent in our approach. We assume that

– The 14C ages, as well as the proxy measurements, are

sufficiently well described by a normal distribution,

with the mean at the measured value and a standard de-

viation equal to measurement error. This is motivated by

the fact that, in most cases, observations (and associated

errors) are adequately described by the mean (and stan-

dard deviation) of a Gaussian process. Still, in principle,

our method can be used for any probability distribution.

– The errors in depth measurements are negligible. The

precision of depth measurements motivate this second

assumption, and it is made for the sake of analyti-

cal simplicity. We note that most of the existing age-

modeling techniques involve this assumption, and also

that our approach would have to be modified in cases

where depth uncertainties cannot be neglected.

– All radiocarbon ages and depths are assumed to

be equally likely a priori. This prior belief is then
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updated within the analysis using the set of radiocarbon

age–depth measurements.

– The radiocarbon ages provided do not contain outlying

values (age reversals) caused, e.g., by contaminated ma-

terial. Dealing with outliers is beyond the scope of this

analysis.

– All obtainable growth-related information about the

archive is contained in the given radiocarbon dating

points. We note that, although at times, additional

sources of growth-related information are available,

we do not consider such situations in this preliminary

exposition.

– The radiocarbon age of a certain position in the archive

is an unknown, smooth, continuous function of its

depth, denoted here as the radiometric (RM) age model.

The presence of a hiatus is a crucial issue regarding this.

We advise that if a hiatus is known to have occurred at a

particular depth (from sources other than the radiomet-

ric ages), the RM age model can be split at the hiatus

depth into two smaller, independent RM age models –

an approach used in Breitenbach et al. (2012).

2.3 Depth-spanning weight functions

In his discussion on deposition models for chronological

records of paleo-archives, Bronk Ramsey (2008) has aptly ar-

ticulated the fundamental idea behind the construction of age

models as “What we are aiming to do mathematically is [. . . ]

to find a representative set of possible ages for each depth

point in a sedimentary sequence.” Mathematically speak-

ing, the fundamental idea behind our approach is similar, as

we too seek to establish a probabilistic relation between the

depth and age as a first step. However, our approach differs

from the idea above in that we obtain this relation in the op-

posite direction; i.e., we aim to find an ensemble of depths

for each calendar age.

Let Z, R, and T be three variables that denote depth, ra-

diocarbon age, and calendar age, respectively. Also, let the

unknown proxy variable be denoted by X. We begin the task

of finding such an ensemble of depths for each calendar age

by asking: what is the probability that a depth Z= z corre-

sponds to a given calendar age T = t? By the law of total

probability, this is proportional to the probability of finding a

radiocarbon age R= r at T = t multiplied by the probability

that the depth Z corresponds to r , integrated over all possible

values r of R. Formally,

P(z|t)∝

∫
drP (r|t)P (z|r). (1)

Now, using Bayes’ theorem, we see that the second term on

the right-hand side of Eq. (1) is a form of a posterior distri-

bution, and is thus proportional to the product of some prior

probability P(z) and the likelihood P(r|z) (for a more de-

tailed discussion, see Sect. A). Assuming a priori that all

depths are equally likely, we use the “flat” prior P(z)∝

const. Thus, if the proxy is measured at depths Z= zxj for

j = 1, 2, . . . , N , using the example of Eq. (1), we can define

a depth-spanning weight function (DWF) at all proxy mea-

surement depths zxj as

wt

(
zxj

)
=

∫
drP (r|t)P

(
r|zxj

)
. (2)

The term P(r|t) is simply the radiocarbon calibration infor-

mation that gives the probabilities of possible radiocarbon

ages r given a particular calendar age t . The second term in

Eq. (2), P(r|zxj ), is the RM age model that gives the proba-

bility of the radiocarbon age r given a particular depth zxj .

In combining these two terms under the integral, the DWF

wt (z
x
j ) constructed is thus proportional to the probability

that a depth zxj will correspond to a given calendar age t

in the archive. For each different value t of the calendar

age T , a new DWF has to be constructed over the depths zxj .

A schematic of two representative DWFs for a simulated

archive is shown in Fig. 2 along with the information used in

their construction. A couple of points to note from Fig. 2 are

(i) that the shape of the DWF can be quite different for differ-

ent calendar ages, and (ii) that the peak of the DWF denotes

the most probable value of Z for a given RM age model and

a given value of T . This approximately corresponds to the

value of Z at which the expected value of R will equal the

expected value of R for the given value of T . We illustrate

this point with the help of the arrowed dashed lines in Fig. 2.

Note: conventionally, the radiocarbon calibration involves

estimating the probabilities of all possible calendar ages for

a given radiocarbon age along with the uncertainty in estima-

tion. This is analogous to proceeding in an counterclockwise

direction in Fig. 2. In our analysis, we avoid “calibration” in

this sense by choosing to estimate a relationship between cal-

endar ages and corresponding depths in the other direction –

as shown by the clockwise sense of the arrows in Fig. 2.

At this stage, it becomes important that we elaborate on

the construction of the RM age model and its relevance.

The RM age model

The construction of the DWFs involves the term P(r|zxj ),

which has to be well defined at each depth where the proxy

is measured. However, RM age observations are limited to

significantly fewer numbers of depth points. Let us say that

the number of radiocarbon age measurements is M , where

M�N , and the corresponding depths are denoted by zr
k ,

k= 1, 2, . . . , M . Then, from this set of measurements, we

get M conditional probability distributions P(r|zr
k) for R,

k= 1, 2, . . . , M . Since M is much less than N , we need to

be able to use the set of RM age–depth observations to con-

struct a data set that gives us the N probability distributions

Nonlin. Processes Geophys., 21, 1093–1111, 2014 www.nonlin-processes-geophys.net/21/1093/2014/
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Fig. 2. Depth-spanning Weight Functions (DWFs). A. Radiocarbon calibration curve representing the mean (red) and±2 standard deviations
(blue) of the distribution P (r|t). Inset: Calibration curve around 5.1 kBP detailing non-monotonicities. B. (i) 14C measurements from a
simulated archive (circles with error bars representing the distribution P (r|zr

k)) and the RM age model obtained from them: mean (red) and
±2 standard deviations (blue) of the distribution P (r|zx

j ) that results from the used regression method. (ii) DWFs for the calendar ages 2.2
kBP (purple) and 9.5 kBP (orange). The corresponding colored dashed lines with arrows indicate how a given calendar age is related to a
distribution over probable depths via the DWF. All uncertainty bounds correspond to ≈ 95% confidence. (Color online.)

k = 1,2, . . . ,M . Since M is much less than N , we need to
be able to use the set of RM age-depth observations to con-
struct a dataset that gives us the N probability distributions
P (r|zx

j ), j = 1,2, . . . ,N . This is achieved by estimating an
RM age-depth relation, i.e., the RM age model.315

In principle, the role of the RM age model can be seen as:

P (r|zr
k)

RM age model−−−−−−−→ P (r|zx
j ), (3)

where k = 1, . . . ,M , and j = 1, . . . ,N,. This resonates
with the conventional framework of age modeling, except320

that we use radiocarbon ages instead of calendar ages.
In this study, we use a non-parametric Taylor-polynomial-

based regression method given by Heitzig (2013), a data-
driven approach that uses a combination of Bayesian updat-
ing and Taylor expansion about a point of interest to provide325

an estimate of the smooth curve from which the observa-
tions have been sampled. However, any regression method
that estimates a posterior probability distribution could be
used equally, as well as any Monte-Carlo-based method that
generates ensembles of interpolated RM age-depth relations330

from the set of observations to arrive at a mean/median esti-
mate along with a standard deviation.

Note: In the case of dating methods that do not require ra-
diometric calibration (U/Th dating being one such example),
the first term of the right- hand side in (2) is equal to 1 if r = t335

and 0 if r 6= t. In such cases, even though the fundamental
idea behind (3) remains intact, the age model involved in it
is no more the RM age model but is, in fact, the (calendar)
age model—or what is simply known as the age model of the
archive.340

2.4 Estimating the proxy and its uncertainty at an indi-
vidual time point

Once we have estimated the set ofwf functions, it is straight-
forward to estimate the proxy and its uncertainty. For this, we
need to consider the probability encoded in wf

t (zx
j ), for each345

depth zx
j , as a weight for the corresponding proxy measured

at that depth. Since X denotes the unknown proxy at a given
calendar age t, we thus estimate the probability P (x|t) as,

P (x|t) = Weighted mean of P (x|zx
j ), (4)

350

where the weights are derived from the corresponding
DWFs at T = t (see Appendix A4 for details).

We now have a probability distribution for the proxy val-
ues at any given time t and using this, we can estimate the
mean/median, as well as uncertainty bounds constructed us-355

ing percentiles or variance. In this study we restrict ourselves
to median proxy values and represent the associated uncer-
tainty of estimation with (i) a 95% confidence band con-
structed from the region lying between the 2.5th and 97.5th

percentiles, and (ii) a 50% confidence band constructed from360

the region lying between the 25th and 75th percentiles of the
distribution P (x|t). Appendix A4 provides a more thorough
treatment of the above. Also, in the following sections, the
mean/median curves are represented as dotted lines rather
than continuous curves to emphasize that they are derived365

from the probability distribution at individual time points and
do not have any relation to values at other time points.

Figure 2. Depth-spanning weight functions (DWFs). (a) Radiocarbon calibration curve representing the mean (red) and ±2 standard devia-

tions (blue) of the distribution P(r|t). Inset: calibration curve around 5.1 kBP detailing non-monotonicities. (b) (i) 14C measurements from

a simulated archive (circles with error bars representing the distribution P(r|zr
k
)) and the RM age model obtained from them: mean (red)

and ±2 standard deviations (blue) of the distribution P(r|zx
j
) that results from the used regression method. (ii) DWFs for the calendar ages

2.2 kBP (purple) and 9.5 kBP (orange). The corresponding colored dashed lines with arrows indicate how a given calendar age is related to a

distribution over probable depths via the DWF. All uncertainty bounds correspond to ≈ 95 % confidence. (Color online.)

P(r|zxj ), j = 1, 2, . . . , N . This is achieved by estimating an

RM age–depth relation, i.e., the RM age model.

In principle, the role of the RM age model can be seen as

P
(
r|zr

k

) RM age model
−−−−−−−−→ P

(
r|zxj

)
, (3)

where k= 1, . . . , M , and j = 1, . . . , N . This resonates with

the conventional framework of age modeling, except that we

use radiocarbon ages instead of calendar ages.

In this study, we use a non-parametric Taylor-polynomial-

based regression method given by Heitzig (2013), a data-

driven approach that uses a combination of Bayesian updat-

ing and Taylor expansion about a point of interest to provide

an estimate of the smooth curve from which the observations

have been sampled. However, any regression method that

estimates a posterior probability distribution could be used

equally, as well as any Monte Carlo based method that gener-

ates ensembles of interpolated RM age–depth relations from

the set of observations to arrive at a mean/median estimate

along with a standard deviation.

Note: in the case of dating methods that do not require ra-

diometric calibration (U/Th dating being one such example),

the first term of the right-hand side in Eq. (2) is equal to 1

if r = t , and 0 if r 6= t . In such cases, even though the fun-

damental idea behind Eq. (3) remains intact, the age model

involved in it is no longer the RM age model, but is, in fact,

the (calendar) age model – or what is simply known as the

age model of the archive.

2.4 Estimating the proxy and its uncertainty at an

individual time point

Once we have estimated the set of wf functions, it is straight-

forward to estimate the proxy and its uncertainty. For this, we

need to consider the probability encoded in wf
t (z

x
j ), for each

depth zxj , as a weight for the corresponding proxy measured

at that depth. Since X denotes the unknown proxy at a given

calendar age t , we thus estimate the probability P(x|t) as

P(x|t)=Weighted mean of P
(
x|zxj

)
, (4)

where the weights are derived from the corresponding DWFs

at T = t (see Appendix A4 for details).

We now have a probability distribution for the proxy val-

ues at any given time t and, using this, we can estimate the

mean/median, as well as uncertainty bounds constructed us-

ing percentiles or variance. In this study, we restrict our-

selves to median proxy values and represent the associated

uncertainty of estimation with (i) a 95 % confidence band

constructed from the region lying between the 2.5th and

97.5th percentiles, and (ii) a 50 % confidence band con-

structed from the region lying between the 25th and 75th per-

centiles of the distribution P(x|t). Appendix A4 provides a

more thorough treatment of the above. Also, in the follow-

ing sections, the mean/median curves are represented as dot-

ted lines rather than as continuous curves, to emphasize that

they are derived from the probability distribution at individ-

ual time points and do not have any relation to values at other

time points.

2.5 Incorporating monotonic growth

The DWFs constructed in Sect. 2.3 relates any given calendar

age probabilistically to different depths, based on how likely

they are to correspond to that age. This relation does not,

however, include one specific feature of sedimentary records:

the constraint of stratigraphically ordered growth. In other

words, a stratigraphically deeper layer cannot be younger
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than any layer above it. We thus need to incorporate this con-

straint into the initial DWFs derived in Eq. (2), henceforth

denoted as wi, and obtain a final set of DWFs (henceforth

wf) that takes it into account.

The DWFs are essentially a set of probability distribution

functions, and to impose an unambiguous monotonicity con-

straint on such a set is non-trivial. To overcome this, we con-

sider the cumulative probabilities of each DWF. A cumula-

tive depth-spanning weight function (CDWF) is the probabil-

ity that a given calendar age t corresponds to any depth less

than or equal to a depth dxj . Formally, after ordering depths

such that dx1 ≤ d
x
2 ≤ ·· · ≤ d

x
N , we put

W i
t

(
zxj

)
=

j∑
l=1

wi
t

(
z
p
l

)
. (5)

The CDWF, W i
t (z

x
j ), by definition, increases along the depth

axis zxj from 0 to 1. (Note: we denote the cumulative prob-

ability distribution with an uppercase letter “W” to distin-

guish it from the corresponding probability distribution “w”

denoted by the lowercase letter.) Our task now is to ensure

that it is monotonically decreasing along the age axis T . This

means that if we take a depth zxj and two ages t1 and t2 such

that t2 is greater (i.e., older) than t1, the total probability that

t2 will correspond to a depth≤ zxj cannot be more than the to-

tal probability that t1 will correspond to a depth≤ zxj – which

is the condition of monotonic growth. Formally: we would

like that Wt2(z
x
j )≤Wt1(z

x
j ).

The above condition for monotonic growth along the age

axis is violated slightly but noticeably on many occasions.

This is shown in Fig. 3a, where the wiggles in the white

grid lines parallel to the calendar age axis illustrate the non-

monotonicity. Since it would be quite difficult to enforce

the desired monotonicity already in the step where P(r|zxj )

is estimated from P(r|zr
k), we instead fix the slight non-

monotonicities after having derivedW i. This results in a final

CDWF W f that can then be transformed into the final DWF

wf via

wf
t

(
zxj

)
=W f

t

(
zxj

)
−W f

t

(
zxj−1

)
. (6)

To estimate the finalW f that adheres to monotonicity, we use

the principles of relaxation dynamics, and the details of this

estimation process are discussed in Sect. A3. In short, we

start with a suitably chosen set of CDWFs that are already

monotonic in T , and then iteratively drag (pull and push)

this function in order to minimize its distance from the initial

CDWF, W i, as far as it is possible to do so without violating

its monotonic nature. The final equilibrium set of CDWFs is

that which cannot be moved any closer to W i by any form of

dragging without compromising its monotonicity. We denote

this set as W f (shown in Fig. 3b).
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Fig. 3. The age-depth sea-cliff. A. The initial CDWF W i obtained
using Eq. 5, and B. the final CDWF W f obtained after imposing
monotonic growth, for the same example as used in Fig. 2. Values
of W = 0 are shown in blue and W = 1 are shown in green. In-
termediate values of W are shown with increasing darkness from
light brown to dark brown, as the value increases from 0 to 1. The
overlay of white lines over the CDWF surface highlight the differ-
ences between the pre-monotonicity and post-monotonicity scenar-
ios. The purple and orange lines are the CDWFs for the ages 2.2
kBP and 9.5 kBP as used in Fig. 2 respectively. The effects of im-
posing the condition of monotonic growth on the CDWFs is seen
more prominently in the white grid lines within the marked yellow
circles. (Color online.)

surements over depth and thus obtain a posterior proxy465

probability distribution.

6. We use the posterior proxy probability distribution at
each calendar age to estimate quantities of interest such
as the mean or median proxy values for that age. Fur-
thermore, we also estimate uncertainty estimates such470

as quantile ranges or variance.

3 Applications

We first consider two synthetic examples in which we know
the actual proxy record as well as the age model and test the
performance of our approach in estimating proxy records.475

Next, we estimate the groundwater inflow and surface ero-
sion proxies from the Lonar lake in central India and com-
pare our results with those obtained by using an age model

generated using OxCal. A discussion of the results follows in
the next section.480

3.1 Synthetic examples

To illustrate our method as well as to test its efficacy, we con-
sider two types of paleo-archives: (i) a stalagmite extending
over 0–28 kBP dated with U/Th, and (ii) a lake sediment core
extending over 0–11 kBP dated with 14C. From our perspec-485

tive, the crucial difference between the two is that for the
lake sediment, the radiocarbon ages have to be calibrated us-
ing IntCal13, whereas this is not needed for the U/Th ages.
To simulate sediment growth, we follow Blaauw (2010) such
that the sediment accumulates with an initial growth rate of490

20 yr/cm. At subsequent depths, a non-negative growth rate
is chosen from a normal distribution that has the growth rate
of the previous year as its mean and a fixed standard devia-
tion of 7 yr/cm. In both cases, the proxy values are simulated
as a sinusoidal signal consisting of two components with dif-495

ferent time periods. Also, the proxy datasets were generated
annually, i.e., with a proxy value for every year. We simu-
late a few noisy radiometric age measurements and a much
higher number of almost perfect proxy measurements (error
of 0.001). These ‘observations’ are then used to estimate the500

proxy record with our method.

3.1.1 U/Th dated archives

The results for the synthetic stalagmite are shown in Fig. 4.
In this case, the calibration curve (as shown earlier in Fig. 2)
is replaced by a straight line of slope one without any er-505

ror (Fig. 4A). This is possible because the U/Th radiometric
ages can be identified with the calendar ages. The observa-
tional noise for the U/Th age measurements increases with
the depth of the stalagmite to a maximum of 5% (Fig. 4B).
The proxy signal has two components with time periods 2000510

years and 400 years (Fig. 4D). Note that the proxy signal can
be distorted in the depth domain — depending on the nature
of the actual age-depth relation (Fig. 4 C and D).

3.1.2 14C dated archives

Figure 5 shows the results of our method as applied to the515

synthetic lake sediment core. In panel A, we see the irreg-
ularities of the radiocarbon calibration curve and its estima-
tion uncertainty. The error in radiocarbon age measurements
in Fig. 5B increases with depth as in the previous case. The
proxy signal used in this case has two time periods of 1000520

years and 200 years. Here too, one can see that the proxy
signal is distorted in panel C, when compared to the one in
panel D; however, the distortion in this case is mediated not
only by the irregular RM age-depth relation but by also the
calibration curve.525

Figure 3. The age–depth sea cliff. (a) The initial CDWF W i ob-

tained using Eq. (5), and (b) the final CDWF W f obtained af-

ter imposing monotonic growth, for the same example as used in

Fig. 2. Values of W = 0 are shown in blue and, for W = 1, they are

shown in green. Intermediate values of W are shown with increas-

ing darkness from light brown to dark brown, as the value increases

from 0 to 1. The overlay of white lines over the CDWF surface

highlights the differences between the pre-monotonicity and post-

monotonicity scenarios. The purple and orange lines are the CD-

WFs for the ages 2.2 and 9.5 kBP as used in Fig. 2, respectively.

The effects of imposing the condition of monotonic growth on the

CDWFs is seen more prominently in the white grid lines within the

marked yellow circles. (Color online.)

The age–depth sea cliff

The visualization of the CDWFs in Fig. 3 is likened to a sea

cliff whereW = 0 is shown as the blue sea, andW = 1 as the

green highland. All intermediate values of W are contained

in the sudden rise of the brown cliffs.

As stated earlier, the fundamental idea behind age model-

ing is to arrive at a relationship between the calendar ages

and the depths of a paleo-archive. A set of functions that per-

form this function can be thought of, in a broader sense, as an

“age model”. The CDWFs visualized in Fig. 3 are thus anal-

ogous to an age model in our analysis. However, we wish to

emphasize that the construction of the CDWF relations did

not involve assumptions about the growth and/or sediment

accumulation of the archive, and was entirely a data-driven

Nonlin. Processes Geophys., 21, 1093–1111, 2014 www.nonlin-processes-geophys.net/21/1093/2014/
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estimation, with the sole input of the principle of monotonic

growth of the core.

In this sense, the age–depth sea cliff is a formal age model

that, in future studies, could be developed further to incorpo-

rate specific growth conditions, leading to a better estimation

of the (calendar) age–depth relation of the archive.

2.6 A review of the steps involved in proxy estimation

Before we present the applications and results, it is useful

briefly to summarize the salient steps involved in estimating

the proxy records and their associated uncertainty using our

approach.

1. We construct the RM age model using an appropriate re-

gression method that provides the posterior distributions

of radiometric ages at the proxy measurement depths.

2. We estimate the DWF that relates any given calendar

age to the proxy measurement depths in terms of the

likelihood that they correspond to the chosen calendar

age.

3. Next, we construct cumulative weight functions (CD-

WFs) from the initial set of DWFs obtained in the previ-

ous step. The CDWFs are used to impose the constraint

of stratigraphically ordered growth of the archive.

4. We thus obtain a final set of CDWFs that are consistent

with such monotonic growth over time, and we derive a

final set of DWFs from them.

5. For each chosen calendar age, we use the corresponding

stratigraphically ordered DWF to weight the proxy mea-

surements over depth and thus obtain a posterior proxy

probability distribution.

6. We use the posterior proxy probability distribution at

each calendar age to estimate quantities of interest such

as the mean or median proxy values for that age. Fur-

thermore, we also estimate uncertainty estimates such

as quantile ranges or variance.

3 Applications

We first consider two synthetic examples in which we know

the actual proxy record as well as the age model, and test the

performance of our approach in estimating proxy records.

Next, we estimate the groundwater inflow and surface ero-

sion proxies from the Lonar lake in central India and com-

pare our results with those obtained by using an age model

generated using OxCal. A discussion of the results follows in

the next section.

3.1 Synthetic examples

To illustrate our method as well as to test its efficacy, we con-

sider two types of paleo-archives: (i) a stalagmite extending
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Z

Value

Fig. 4. U/Th dated synthetic stalagmite. Legend as in Fig. 2. A. The
straight line of slope one used in place of a calibration curve. In-
set: Unlike a real calibration curve, this line has no error. B. U/Th
measurements from a synthetic stalagmite (circles with error bars)
and the estimated radiometric age model obtained from them by re-
gression (red line with blue ≈ 95% confidence band), along with
actual age model (black dashes). C. The proxy curve along stalag-
mite depth obtained from noise-free proxy measurements. D. The
actual proxy record (black), shown alongside the estimated median
proxy record (red, dotted) along with associated uncertainty of es-
timation (sky blue denotes the interquartile range, i.e., 50% confi-
dence, whereas light blue denotes the region between the 97.5th and
the 2.5th percentiles, i.e., 95% confidence). The estimated record in
D is demarcated into three distinct regions in terms of the frequen-
cies it resolves: (a) when it resolves both frequencies of the true
sinusoidal proxy record (green), (b) when it resolves only the lower
frequency (orange), and (c) when it is unable to resolve either of the
two frequencies (purple). (Color online.)

Z

Value

Fig. 5. 14C dated synthetic lake sediment. Legend as in Fig. 4.
(Color online.)

3.2 Holocene proxies from central India

As an application to a real-world scenario, we consider the
set of age-depth 14C measurements from the Lonar lake in

central India (Anoop et al., 2013; Prasad et al., 2014). The
radiocarbon ages used for the analysis are tabulated in Ap-530

pendix B1 and labeled in Fig. 6B. This included two 14C ages
after 1950, L21 and L20a, for which we use the Northern
Hemisphere 3 (NH3) “post-bomb” calibration curve (Hua
et al., 2013); and 17 pre-1950 ages, L19-L1, for which we
use IntCal13 (Reimer et al., 2013).535

For the proxy records, we take the Ca-area proxy for
groundwater inflow and Al-area proxy for surface erosion
from the same archive at Lonar. The links of both the Ca to
groundwater inflow (evaporitic carbonate (CaCO3) formed
during periods of low lake level), and that of the Al to sur-540

face erosion (lithogenics brought in by rain events) have been
validated in Basavaiah et al. (2014).

These were obtained from a continuous down-core X-Ray
Fluorescence (XRF) (Avaatech XRF Core Scanner III) scan-
ning of the Lonar lake sediment core surface. The relative545

abundances of the elements (Ca, Al, Ti, Si, and K) were
recorded at every 5mm with the X-PIPS SXP5C-200-1500
detector from Canberra while the tube voltage was kept at
10 kV (Prasad et al., 2014). The Al counts were found to
be strongly correlated with the Ti, Si and K counts obtained550

from the XRF scanning (see Appendix B2). Due to this, and
combined with the findings of Basavaiah et al. (2014) where
they show the relation of the Al abundance to catchment ero-
sion as well as the lithogenic contents, we choose this as
a representative proxy for the Lonar lake surface erosion.555

We note that due to the difficulties of representing errors
of XRF measurements, we consider the proxy observations
along depth to be error-free. This, however, does not change
the fundamental objective of our analysis, which is to es-
timate the final proxy uncertainties in an analytical fashion560

and investigate how they are impacted by proxy-depth vari-
ability. If the proxy measurements were to have error, these
would simply be added to the final errors as is indicated by
Eq. A15.

The final proxy records estimated are shown in Fig. 6.565

We compare our results with proxy records obtained from
a typical mean age model of the archive. The age model in-
volved OxCal P-Sequence modeling with three sedimento-
logical boundaries imposed a priori. Fig. 7 (panels A and B)
compares the final proxy estimates obtained using the Ox-570

Cal P-sequence age model with those obtained using our ap-
proach — for both Ca-area and Al-area.

4 Discussion

4.1 Proof of concept

The synthetic examples shown in Sec. 3.1 illustrate the va-575

lidity of our approach. In panel D of Figs. 4 and 5, the first
finding to note is that the 95% confidence band consistently
contains well over 95% of the black curve, and the 50% band
consistently contains about half of the black curve. In addi-

Figure 4. U/Th-dated synthetic stalagmite. Legend as in Fig. 2.

(a) The straight line of slope 1 used in place of a calibration curve.

Inset: unlike a real calibration curve, this line has no error. (b) U/Th

measurements from a synthetic stalagmite (circles with error bars)

and the estimated radiometric age model obtained from them by re-

gression (red line with blue≈ 95 % confidence band), along with the

actual age model (black dashes). (c) The proxy curve along stalag-

mite depth obtained from noise-free proxy measurements. (d) The

actual proxy record (black), shown alongside the estimated median

proxy record (red, dotted), along with the associated uncertainty of

estimation (sky blue denotes the interquartile range, i.e., 50 % confi-

dence, whereas light blue denotes the region between the 97.5th and

2.5th percentiles, i.e., 95 % confidence). The estimated record in D

is demarcated into three distinct regions in terms of the frequen-

cies it resolves: (a) when it resolves both frequencies of the true

sinusoidal proxy record (green), (b) when it resolves only the lower

frequency (orange), and (c) when it is unable to resolve either of the

two frequencies (purple). (Color online.)

over 0–28 kBP dated with U/Th, and (ii) a lake sediment core

extending over 0–11 kBP dated with 14C. From our perspec-

tive, the crucial difference between the two is that for the lake

sediment, the radiocarbon ages have to be calibrated using

IntCal13, whereas this is not needed for the U/Th ages. To

simulate sediment growth, we follow Blaauw (2010), such

that the sediment accumulates with an initial growth rate

of 20 yr cm−1. At subsequent depths, a non-negative growth

rate is chosen from a normal distribution that has the growth

rate of the previous year as its mean and a fixed standard

deviation of 7 yr cm−1. In both cases, the proxy values are

simulated as a sinusoidal signal consisting of two compo-

nents with different time periods. Also, the proxy data sets

were generated annually, i.e., with a proxy value for every

year. We simulate a few noisy radiometric age measurements

and a much higher number of almost perfect proxy measure-

ments (error of 0.001). These “observations” are then used to

estimate the proxy record with our method.

3.1.1 U/Th-dated archives

The results for the synthetic stalagmite are shown in Fig. 4.

In this case, the calibration curve (as shown earlier in Fig. 2)
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Z

Value

Fig. 4. U/Th dated synthetic stalagmite. Legend as in Fig. 2. A. The
straight line of slope one used in place of a calibration curve. In-
set: Unlike a real calibration curve, this line has no error. B. U/Th
measurements from a synthetic stalagmite (circles with error bars)
and the estimated radiometric age model obtained from them by re-
gression (red line with blue ≈ 95% confidence band), along with
actual age model (black dashes). C. The proxy curve along stalag-
mite depth obtained from noise-free proxy measurements. D. The
actual proxy record (black), shown alongside the estimated median
proxy record (red, dotted) along with associated uncertainty of es-
timation (sky blue denotes the interquartile range, i.e., 50% confi-
dence, whereas light blue denotes the region between the 97.5th and
the 2.5th percentiles, i.e., 95% confidence). The estimated record in
D is demarcated into three distinct regions in terms of the frequen-
cies it resolves: (a) when it resolves both frequencies of the true
sinusoidal proxy record (green), (b) when it resolves only the lower
frequency (orange), and (c) when it is unable to resolve either of the
two frequencies (purple). (Color online.)

Z

Value

Fig. 5. 14C dated synthetic lake sediment. Legend as in Fig. 4.
(Color online.)

3.2 Holocene proxies from central India

As an application to a real-world scenario, we consider the
set of age-depth 14C measurements from the Lonar lake in

central India (Anoop et al., 2013; Prasad et al., 2014). The
radiocarbon ages used for the analysis are tabulated in Ap-530

pendix B1 and labeled in Fig. 6B. This included two 14C ages
after 1950, L21 and L20a, for which we use the Northern
Hemisphere 3 (NH3) “post-bomb” calibration curve (Hua
et al., 2013); and 17 pre-1950 ages, L19-L1, for which we
use IntCal13 (Reimer et al., 2013).535

For the proxy records, we take the Ca-area proxy for
groundwater inflow and Al-area proxy for surface erosion
from the same archive at Lonar. The links of both the Ca to
groundwater inflow (evaporitic carbonate (CaCO3) formed
during periods of low lake level), and that of the Al to sur-540

face erosion (lithogenics brought in by rain events) have been
validated in Basavaiah et al. (2014).

These were obtained from a continuous down-core X-Ray
Fluorescence (XRF) (Avaatech XRF Core Scanner III) scan-
ning of the Lonar lake sediment core surface. The relative545

abundances of the elements (Ca, Al, Ti, Si, and K) were
recorded at every 5mm with the X-PIPS SXP5C-200-1500
detector from Canberra while the tube voltage was kept at
10 kV (Prasad et al., 2014). The Al counts were found to
be strongly correlated with the Ti, Si and K counts obtained550

from the XRF scanning (see Appendix B2). Due to this, and
combined with the findings of Basavaiah et al. (2014) where
they show the relation of the Al abundance to catchment ero-
sion as well as the lithogenic contents, we choose this as
a representative proxy for the Lonar lake surface erosion.555

We note that due to the difficulties of representing errors
of XRF measurements, we consider the proxy observations
along depth to be error-free. This, however, does not change
the fundamental objective of our analysis, which is to es-
timate the final proxy uncertainties in an analytical fashion560

and investigate how they are impacted by proxy-depth vari-
ability. If the proxy measurements were to have error, these
would simply be added to the final errors as is indicated by
Eq. A15.

The final proxy records estimated are shown in Fig. 6.565

We compare our results with proxy records obtained from
a typical mean age model of the archive. The age model in-
volved OxCal P-Sequence modeling with three sedimento-
logical boundaries imposed a priori. Fig. 7 (panels A and B)
compares the final proxy estimates obtained using the Ox-570

Cal P-sequence age model with those obtained using our ap-
proach — for both Ca-area and Al-area.

4 Discussion

4.1 Proof of concept

The synthetic examples shown in Sec. 3.1 illustrate the va-575

lidity of our approach. In panel D of Figs. 4 and 5, the first
finding to note is that the 95% confidence band consistently
contains well over 95% of the black curve, and the 50% band
consistently contains about half of the black curve. In addi-

Figure 5. 14C-dated synthetic lake sediment. Legend as in Fig. 4.

(Color online.)

is replaced by a straight line of slope 1, without any er-

ror (Fig. 4a). This is possible because the U/Th radiometric

ages can be identified with the calendar ages. The observa-

tional noise for the U/Th age measurements increases with

the depth of the stalagmite to a maximum of 5 % (Fig. 4b).

The proxy signal has two components with time periods of

2000 and 400 years (Fig. 4d). Note that the proxy signal can

be distorted in the depth domain, depending on the nature of

the actual age–depth relation (Fig. 4c and d).

3.1.2 14C-dated archives

Figure 5 shows the results of our method as applied to the

synthetic lake sediment core. In Fig. 5a, we see the irreg-

ularities of the radiocarbon calibration curve and its esti-

mation uncertainty. The error in radiocarbon age measure-

ments in Fig. 5b increases with depth, as in the previous case.

The proxy signal used in this case has two time periods of

1000 and 200 years. Here too, one can see that the proxy

signal is distorted in Fig. 5c, when compared to the one in

Fig. 5d; however, the distortion in this case is mediated not

only by the irregular RM age–depth relation, but also by the

calibration curve.

3.2 Holocene proxies from central India

As an application to a real-world scenario, we consider the

set of age–depth 14C measurements from the Lonar lake in

central India (Anoop et al., 2013; Prasad et al., 2014). The

radiocarbon ages used for the analysis are tabulated in Ap-

pendix B1 and labeled in Fig. 6b. This included two 14C ages

after 1950, L21 and L20a, for which we use the Northern

Hemisphere 3 (NH3) “post-bomb” calibration curve (Hua

et al., 2013), and 17 pre-1950 ages, L19–L1, for which we

use IntCal13 (Reimer et al., 2013).

For the proxy records, we take the Ca-area proxy for

groundwater inflow and the Al-area proxy for surface erosion
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Fig. 6. Holocene proxy records from central India. A. The IntCal09
calibration curve. Inset: The post-bomb calibration curve that was
used. B. The RM age model for the Lonar lake sediment core. For
details of the radiocarbon age- depth measurements, c.f., B. C, E.
The groundwater inflow (Ca area) and surface erosion (Al area)
proxies as measured along the depth of the core. D, F. The cor-
responding proxy record estimates as obtained using the Bayesian
approach detailed in the text. Legend in these panels is the same as
that of Fig. 4 D; ‘kcps’ denotes ‘kilo counts per seconds’. (Color
online.)

tion to this general fit between the true record and the esti-580

mated confidence bands, one can compare the median esti-
mate (red dotted curve) with the true record (black curve),
and distinguish three broad regions: (a) the youngest portion
of the proxy records (green region), where the median esti-
mates follow the true proxy series closely, and reproduces585

even faster oscillations of 1/400 yr−1 (for the stalagmite)
and 1/200 yr−1 (for the lake sediment core) accurately; (b)
the intermediate portion of the proxy records (orange region)
where, for the most part, the median estimates show only
the slower sinusoidal component due to larger dating uncer-590

tainties but follow the lower frequencies of the true proxy
curves (1/2000 yr−1 for the stalagmite, and 1/1000 yr−1 for
the lake sediment core) closely, and (c) the oldest portion
of the records (purple region), where the median estimates
are almost flat curves due to the high uncertainties. The dif-595

ferences among these three regions are due to the associated
uncertainty of estimation of the proxy record which increases
(as seen from the confidence bands) progressively from the
youngest to the oldest portions of the record, becoming as
large as the range of values in the end. The proxy uncertainty600

depends strongly on the errors of the corresponding RM age
models (Figs. 4 and 5, panel B), which increases towards the

0 80 160 240 320

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

C
al

en
da

rA
ge

(k
B

P
)

Ca Area (kcps)

A

0.1 0.6 1.1 1.6 2.1
Al Area (kcps)

B

Fig. 7. Comparison of results with OxCal. The proxy records es-
timated by the present approach (red, dotted) compared to proxy
records obtained by using an OxCal P-sequence age model (dark
gray) for the groundwater inflow (Ca area, A) and surface erosion
(Al area, B) proxies from Lonar lake. Legend for the confidence
bounds to the Bayesian proxy estimate is same as in Fig. 6, panels
D and F. (Color online.)

oldest portion of the cores as well, and the errors of the RM
age models are themselves influenced by the errors of the
radiometric age measurements. We would like to emphasize605

that the objective of our method is not to estimate frequencies
or variability but to represent the available knowledge about
the proxy value itself at each given point in time in the best
possible way. The seeming inability of the proxy estimates
to reproduce oscillations is a necessary consequence of the610

posed research question when dating uncertainties are large.
Still, in regions where the errors of measurement are small,
the estimates capture the oscillations at both frequencies.

This discussion highlights two crucial factors: (i) proxy
estimation errors depend on contingent errors of age mea-615

surements (and, to a large extent, the errors of calibration
and proxy measurements); and (ii) the interrelation between
the estimated proxy uncertainty and the variations that are
resolved in the record. Both these issues are discussed in the
subsequent sections.620

4.2 Uncertainty of proxy estimations

From the proxy estimates shown in panel D of Figs. 4–6,
it is apparent that even though the proxies are measured to
high precision along the depth of the respective archives, the
uncertainty in the proxy value for any given time point is625

not negligible. This is in agreement with the results of ear-
lier studies, e.g., Blaauw et al. (2007) and Breitenbach et al.

Figure 6. Holocene proxy records from central India. (a) The Int-

Cal09 calibration curve. Inset: the post-bomb calibration curve that

was used. (b) The RM age model for the Lonar lake sediment core.

For details of the radiocarbon age–depth measurements, cf. Sect. B.

(c, e) The groundwater inflow (Ca-area) and surface erosion (Al-

area) proxies as measured along the depth of the core. (d, f) The cor-

responding proxy record estimates as obtained using the Bayesian

approach detailed in the text. The legend in these panels is the same

as that of Fig. 4d; “kcps” denotes “kilo counts per seconds”. (Color

online.)

from the same archive at Lonar. The links of both the Ca to

groundwater inflow (evaporitic carbonate (CaCO3) formed

during periods of low lake levels) and that of the Al to surface

erosion (lithogenics brought on by rain events) have been val-

idated in Basavaiah et al. (2014).

These were obtained from a continuous down-core X-

ray fluorescence (XRF) (Avaatech XRF Core Scanner III)

scanning of the Lonar lake sediment core surface. The rel-

ative abundances of the elements (Ca, Al, Ti, Si, and K)

were recorded every 5 mm with the X-PIPS SXP5C-200-

1500 detector from Canberra, while the tube voltage was

kept at 10 kV (Prasad et al., 2014). The Al counts were

found to be strongly correlated with the Ti, Si and K counts

obtained from the XRF scanning (see Appendix B2). Due

to this, and combined with the findings of Basavaiah et al.

(2014), where they show the relation of the Al abundance

to catchment erosion as well as the lithogenic contents, we

choose this as a representative proxy for the Lonar lake sur-

face erosion. We note that due to the difficulties in repre-

senting errors in XRF measurements, we consider the proxy

observations along depth to be error free. This, however,

does not change the fundamental objective of our analysis,

which is to estimate the final proxy uncertainties in an ana-

lytical fashion and to investigate how they are impacted by

Nonlin. Processes Geophys., 21, 1093–1111, 2014 www.nonlin-processes-geophys.net/21/1093/2014/
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proxy–depthvariability. If the proxy measurements were to

have errors, these would simply be added to the final errors,

as is indicated by Eq. (A15).

The final proxy records estimated are shown in Fig. 6.

We compare our results with proxy records obtained from

a typical mean age model of the archive. The age model in-

volved OxCal P-sequence modeling with three sedimento-

logical boundaries imposed a priori. Figure 7a and b com-

pares the final proxy estimates obtained using the OxCal P-

sequence age model with those obtained using our approach

– for both Ca area and Al area.

4 Discussion

4.1 Proof of concept

The synthetic examples shown in Sect. 3.1 illustrate the va-

lidity of our approach. In Figs. 4d and 5d, the first finding to

note is that the 95 % confidence band consistently contains

well over 95 % of the black curve, and the 50 % band consis-

tently contains about half of the black curve. In addition to

this general fit between the true record and the estimated con-

fidence bands, one can compare the median estimate (red dot-

ted curve) with the true record (black curve), and distinguish

three broad regions: (a) the youngest portion of the proxy

records (green region), where the median estimates follow

the true proxy series closely, and reproduce even faster oscil-

lations of 1/400 yr−1 (for the stalagmite) and 1/200 yr−1 (for

the lake sediment core) accurately; (b) the intermediate por-

tion of the proxy records (orange region), where, for the most

part, the median estimates show only the slower sinusoidal

component due to larger dating uncertainties, but follow the

lower frequencies of the true proxy curves (1/2000 yr−1 for

the stalagmite, and 1/1000 yr−1 for the lake sediment core)

closely; and (c) the oldest portion of the records (purple re-

gion), where the median estimates are almost flat curves, due

to the high uncertainties. The differences between these three

regions are due to the associated uncertainty in estimation of

the proxy record, which increases (as seen from the confi-

dence bands) progressively from the youngest to the oldest

portions of the record, becoming as large as the range of

values in the end. The proxy uncertainty depends strongly

on the errors of the corresponding RM age models (Figs. 4

and 5b), which increase towards the oldest portion of the

cores as well, and the errors of the RM age models are them-

selves influenced by the errors of the radiometric age mea-

surements. We would like to emphasize that the objective of

our method is not to estimate frequencies or variability, but

to represent the available knowledge about the proxy value

itself at each given point in time in the best possible way.

The seeming inability of the proxy estimates to reproduce

oscillations is a necessary consequence of the posed research

question when dating uncertainties are large. Still, in regions
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Fig. 6. Holocene proxy records from central India. A. The IntCal09
calibration curve. Inset: The post-bomb calibration curve that was
used. B. The RM age model for the Lonar lake sediment core. For
details of the radiocarbon age- depth measurements, c.f., B. C, E.
The groundwater inflow (Ca area) and surface erosion (Al area)
proxies as measured along the depth of the core. D, F. The cor-
responding proxy record estimates as obtained using the Bayesian
approach detailed in the text. Legend in these panels is the same as
that of Fig. 4 D; ‘kcps’ denotes ‘kilo counts per seconds’. (Color
online.)

tion to this general fit between the true record and the esti-580

mated confidence bands, one can compare the median esti-
mate (red dotted curve) with the true record (black curve),
and distinguish three broad regions: (a) the youngest portion
of the proxy records (green region), where the median esti-
mates follow the true proxy series closely, and reproduces585

even faster oscillations of 1/400 yr−1 (for the stalagmite)
and 1/200 yr−1 (for the lake sediment core) accurately; (b)
the intermediate portion of the proxy records (orange region)
where, for the most part, the median estimates show only
the slower sinusoidal component due to larger dating uncer-590

tainties but follow the lower frequencies of the true proxy
curves (1/2000 yr−1 for the stalagmite, and 1/1000 yr−1 for
the lake sediment core) closely, and (c) the oldest portion
of the records (purple region), where the median estimates
are almost flat curves due to the high uncertainties. The dif-595

ferences among these three regions are due to the associated
uncertainty of estimation of the proxy record which increases
(as seen from the confidence bands) progressively from the
youngest to the oldest portions of the record, becoming as
large as the range of values in the end. The proxy uncertainty600

depends strongly on the errors of the corresponding RM age
models (Figs. 4 and 5, panel B), which increases towards the
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Fig. 7. Comparison of results with OxCal. The proxy records es-
timated by the present approach (red, dotted) compared to proxy
records obtained by using an OxCal P-sequence age model (dark
gray) for the groundwater inflow (Ca area, A) and surface erosion
(Al area, B) proxies from Lonar lake. Legend for the confidence
bounds to the Bayesian proxy estimate is same as in Fig. 6, panels
D and F. (Color online.)

oldest portion of the cores as well, and the errors of the RM
age models are themselves influenced by the errors of the
radiometric age measurements. We would like to emphasize605

that the objective of our method is not to estimate frequencies
or variability but to represent the available knowledge about
the proxy value itself at each given point in time in the best
possible way. The seeming inability of the proxy estimates
to reproduce oscillations is a necessary consequence of the610

posed research question when dating uncertainties are large.
Still, in regions where the errors of measurement are small,
the estimates capture the oscillations at both frequencies.

This discussion highlights two crucial factors: (i) proxy
estimation errors depend on contingent errors of age mea-615

surements (and, to a large extent, the errors of calibration
and proxy measurements); and (ii) the interrelation between
the estimated proxy uncertainty and the variations that are
resolved in the record. Both these issues are discussed in the
subsequent sections.620

4.2 Uncertainty of proxy estimations

From the proxy estimates shown in panel D of Figs. 4–6,
it is apparent that even though the proxies are measured to
high precision along the depth of the respective archives, the
uncertainty in the proxy value for any given time point is625

not negligible. This is in agreement with the results of ear-
lier studies, e.g., Blaauw et al. (2007) and Breitenbach et al.

Figure 7. Comparison of results with OxCal. The proxy records es-

timated by the present approach (red, dotted) compared to proxy

records obtained by using an OxCal P -sequence age model (dark

gray) for the groundwater inflow (Ca-area, a) and surface erosion

(Al-area, b) proxies from the Lonar lake. The legend for the con-

fidence bounds to the Bayesian proxy estimate is the same as in

Fig. 6d and f. (Color online.)

where the errors in measurement are small, the estimates cap-

ture the oscillations at both frequencies.

This discussion highlights two crucial factors: (i) proxy

estimation errors depend on contingent errors of age mea-

surements (and, to a large extent, the errors of calibration

and proxy measurements), and (ii) the interrelation between

the estimated proxy uncertainty and the variations that are

resolved in the record. Both these issues are discussed in the

subsequent sections.

4.2 Uncertainty of proxy estimations

From the proxy estimates shown in Figs. 4d–6d, it is appar-

ent that even though the proxies are measured to high pre-

cision along the depth of the respective archives, the uncer-

tainty in the proxy value for any given time point is not neg-

ligible. This is in agreement with the results of earlier stud-

ies, e.g., Blaauw et al. (2007) and Breitenbach et al. (2012).

Also, the final uncertainty is not the same as the error of

the proxy–depth measurements. The confidence bands span

the whole range of values of the proxy for error levels of

≈ 5–10 % of the radiometric age measurements.

At a first glance at Figs. 4–6, it is obvious that the final

proxy uncertainty is influenced by the calibration uncertainty,

RM age model uncertainty, and the proxy measurement error

(if any). However, a closer inspection of Fig. 6d and f around

3–4.5 kBP reveals an additional factor. At around 3–4.5 kBP,

www.nonlin-processes-geophys.net/21/1093/2014/ Nonlin. Processes Geophys., 21, 1093–1111, 2014
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Fig. 8. Uncertainty of proxy estimations (schematic). The proxy curve has high variations in the region A (purple) and low variations in region
B (orange). Two time points t1 and t2 are chosen such that their corresponding DWFs cover most parts of regions A and B respectively.
The estimation uncertainty is far greater for the proxy estimate at t1 than for t2 because of the corresponding high variability of the proxy
in region A. Note: The final uncertainty of the proxy estimate is not equal to the corresponding variability in the depth domain but is only
proportional to it. Hence, we denote the impact of proxy variability over depth (marked with the dashed lines) on the final proxy uncertainty
with an open-arc. (Color online.)

(2012). Also, the final uncertainty is not the same as the er-
ror of the proxy-depth measurements. The confidence bands
span the whole range of values of the proxy for error levels630

of ≈ 5–10% of the radiometric age measurements.
At a first glance at Figs. 4–6, it is obvious that the final

proxy uncertainty is influenced by the calibration uncertainty,
RM age model uncertainty, and the proxy measurement er-
ror (if any). However, a closer inspection of Fig. 6 D and F635

around 3–4.5 kBP reveals an additional factor. At around 3–
4.5 kBP, we find that Al-area has much higher uncertainty
in comparison to Ca-area even though both have the same
calibration curve and age model. Moreover, even the proxy
measurement error for both were considered negligible in the640

analysis. Then why is the uncertainty much higher for Al-
area?

To answer this, we proceed clockwise in Fig. 6 from the
interval around 3–4.5 kBP to find that this range of calendar
ages would roughly correspond to the depth range of around645

500–800 cm using the given calibration curve and RM age
model. The critical difference between the two proxies in this
depth range is that the Al-area has a much larger variance in
comparison to the Ca-area. Thus, given the same DWF, the
Al-area proxy estimates would have a much larger spread650

relative to the Ca-area.
To understand this in more detail, consider the schematic

in Fig. 8. The proxy curve shown in the figure has distinc-
tively high fluctuations in the purple portion of the curve and
is then confined within a narrow band of values in the or-655

ange portion. On the left side of the figure, we consider two

points t1 and t2 on the calendar age axis, such that the DWF
wf

t1(dx
j ) of t1 covers mainly the high variability region A in

Fig. 8 and similarly the DWF of t2 covers the low variability
region B in Fig. 8. Thus, we get a smaller uncertainty for the660

proxy at t2 than at t1 when we weight the proxy values with
the height of the respective DWFs. Hence, the variability of
the proxy measured along the depth also contributes to the
final uncertainty of its estimation.

The final uncertainty thus depends on four contingent fac-665

tors:

– calibration uncertainty (if any),

– uncertainty of the RM age model,

– errors of measuring the proxy along depth, and

– variability of the proxy signal along the depth domain.670

4.3 Variability of the proxy record

From Section 4.2, it is evident that the uncertainty of proxy
estimation is influenced by its own variability in the depth
domain. However, the proxy uncertainty is also closely re-
lated to the variability of the median proxy estimate as well.675

This is seen in Figs. 4–6, where regions of high estimation
uncertainty are associated with low variability of the median
estimates along time, and less resolution of higher frequen-
cies, and vice versa. This does not mean that the proxy itself
does not have faster variations. It simply implies that, in re-680

gions with high proxy uncertainty, we cannot reliably com-

Figure 8. Uncertainty in proxy estimations (schematic). The proxy curve has high variations in region A (purple) and low variations in

region B (orange). Two time points t1 and t2 are chosen such that their corresponding DWFs cover most parts of regions A and B, respectively.

The estimation uncertainty is far greater for the proxy estimate at t1 than for t2 because of the corresponding high variability of the proxy

in region A. Note: the final uncertainty in the proxy estimate is not equal to the corresponding variability in the depth domain, but is only

proportional to it. Hence, we denote the impact of proxy variability over depth (marked with the dashed lines) on the final proxy uncertainty

with an open arc. (Color online.)

we find that Al area has much higher uncertainty in compar-

ison to Ca area, even though both have the same calibration

curve and age model. Moreover, even the proxy measurement

errors for both were considered negligible in the analysis.

Then why is the uncertainty much higher for Al area?

To answer this, we proceed clockwise in Fig. 6 from the

interval around 3–4.5 kBP to find that this range of calendar

ages would roughly correspond to the depth range of around

500–800 cm, using the given calibration curve and RM age

model. The critical difference between the two proxies in this

depth range is that the Al area has a much larger variance in

comparison to the Ca area. Thus, given the same DWF, the

Al-area proxy estimates would have a much larger spread

relative to the Ca area.

To understand this in more detail, consider the schematic

in Fig. 8. The proxy curve shown in the figure has distinc-

tively high fluctuations in the purple portion of the curve,

and is then confined within a narrow band of values in the or-

ange portion. On the left side of the figure, we consider two

points t1 and t2 on the calendar age axis, such that the DWF

wf
t1
(dxj ) of t1 covers mainly the high-variability region A in

Fig. 8 and, similarly, the DWF of t2 covers the low-variability

region B in Fig. 8. Thus, we get a smaller uncertainty for the

proxy at t2 than at t1 when we weight the proxy values with

the height of the respective DWFs. Hence, the variability of

the proxy measured along the depth also contributes to the

final uncertainty of its estimation.

The final uncertainty thus depends on four contingent

factors:

– calibration uncertainty (if any),

– uncertainty of the RM age model,

– errors in measuring the proxy along depth, and

– variability of the proxy signal along the depth domain.

4.3 Variability of the proxy record

From Sect. 4.2, it is evident that the uncertainty in proxy es-

timation is influenced by its own variability in the depth do-

main. However, the proxy uncertainty is also closely related

to the variability of the median proxy estimate as well. This

is seen in Figs. 4–6, where regions of high estimation uncer-

tainty are associated with low variability of the median esti-

mates along time and less resolution of higher frequencies,

and vice versa. This does not mean that the proxy itself does

not have faster variations. It simply implies that, in regions

with high proxy uncertainty, we cannot reliably comment on

the fast variations of the proxy. In order to quantify analyti-

cally the various fast/slow varying components of the proxy

and their uncertainties in a thorough fashion, we should, in

principle, as stated before, proceed with a separate analysis.

This is because the knowledge of the probability distributions

of the proxy at a given time are not sufficient to comment on

the variations, especially in the presence of non-negligible

uncertainty in estimation.

The best one could say about the variability of the proxy-

vs.-time in regions of high dating uncertainty would be

to estimate some aggregate measures of variability such

as the slope or curvature of the proxy curve or the mo-

mentary amplitude of a certain sinusoidal component (at

each calendar age). For example, a simple way of obtain-

ing a “central” estimate of the slope dx/dt would be to use

MoTaBaR to find the mean estimates R= r(t), D= d(r),

and X= x(d) that correspond to given values T = t , R= r ,

Nonlin. Processes Geophys., 21, 1093–1111, 2014 www.nonlin-processes-geophys.net/21/1093/2014/
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or D= d , and then to use the chain rule to calculate

dx/dt ≈ x′(d(r(t)))d ′(r(t)) r ′(t). Equivalently, in graphical

terms, follow the dashed lines from t via r and d to x and

multiply the corresponding slopes of the calibration curve

r(t), the RM age model d(r), and the proxy-vs.-depth curve

x(d) that you encounter on the way (the calibration curve

might have to be smoothened for this). In a similar fash-

ion, the second derivative can be estimated by applying

the product rule: d2x/dt2≈ x′′(d(r(t)))d ′(r(t))2 r ′(t)2 +

x′(d(r(t)))d ′′(r(t)) r ′(t)2 + x′(d(r(t)))d ′(r(t)) r ′′(t).

Finally, if the proxy-vs.-depth curve shows a sinusoidal

component of amplitude ξ and period length 1d around

depth D= d(r(t)) (as could be seen, e.g., from a wavelet

analysis), one can conclude that the true climate-vs.-time

curve contains a sinusoidal component around time T = t of

the same amplitude ξ and a period length that can be esti-

mated as 1t ≈1d/d ′(r(t)) r ′(t).

4.4 Interpreting the posterior probabilities: a note on

proxy variations

A critical point arising out of the previous subsections is that

the final proxy estimate – such as the mean/median – when

visualized over a period of time, may not reveal short-time

variations. For paleoclimatic studies focussed on transitions

taking place over short timescales, this can be a major hurdle.

Even in studies that wish to address climatic patterns operat-

ing in the higher-frequency region, a proxy estimate that does

not resolve such frequencies is of little practical utility.

We stress that it is misleading to conclude that the proxy

record does not contain high-frequency components based

on figures such as Figs. 4–6. As already stated in the previ-

ous subsection, the fast varying components of the proxy are

not ruled out by the probability distributions. Rather, only in

estimating the mean or median might we be unable to say

anything about them with confidence.

To understand how this is possible, note that the primary

and foremost result of our approach is a probability distribu-

tion of the proxy values at each value of calendar age (shown

in Fig. 9a, b as a color map). Such a visualization is in prin-

ciple similar to Fig. 2 of Blaauw et al. (2007) – only that we

obtain the visualization from mathematical expressions, and

not as a histogram of ensemble members.

We interpret the distributions as representing the proba-

bility densities of an ensemble of possible proxy records;

i.e., each member of this ensemble is a record of one of

many possible past climatic histories that fit the available set

of measurements and data. This is shown in Fig. 9c and d,

in which two such members of the ensemble are shown for

each of the two proxies from Lonar lake. They are con-

structed by drawing random numbers from each proxy prob-

ability distribution at every calendar age. It is immediately

clear that the individual members of the ensemble retain the

high-frequency components as well. However, since we have

no way of knowing which of the infinite possible ensemble

Goswami et el.: Estimation of sedimentary proxies 11

ment on the fast variations of the proxy. In order to analyti-
cally quantify the the various fast/slow varying components
of the proxy and their uncertainties in a thorough fashion we
should in principle, as stated before, proceed with a separate685

analysis. This is because the knowledge of the probability
distributions of the proxy at a given time are not sufficient
to comment on the variations, especially in the presence of
non-negligible uncertainty of estimation.

The best one could say about the variability of the proxy-690

vs-time in regions of high dating uncertainty would be
to estimate some aggregate measures of variability such
as the slope or curvature of the proxy curve or the mo-
mentary amplitude of a certain sinusoidal component (at
each calendar age). For example, a simple way to ob-695

tain a “central” estimate of the slope dx/dt would be to
use MoTaBaR to find the mean estimates R= r(t), D =
d(r), and X = x(d) that correspond to given values T = t,
R= r, or D = d, and then use the chain rule to calculate
dx/dt≈ x′(d(r(t)))d′(r(t))r′(t). Equivalently, in graphi-700

cal terms, follow the dashed lines from t via r and d to
x and multiply the corresponding slopes of the calibration
curve r(t), the RM age model d(r), and the proxy-vs-depth
curve x(d) that you encounter on the way (the calibration
curve might have to be smoothened for this). In a similar705

fashion, the second derivative can be estimated by applying
the product rule: d2x/dt2 ≈ x′′(d(r(t)))d′(r(t))2 r′(t)2 +
x′(d(r(t)))d′′(r(t))r′(t)2 +x′(d(r(t)))d′(r(t))r′′(t).

Finally, if the proxy-vs-depth curve shows a sinusoidal
component of amplitude ξ and period length ∆d around710

depth D = d(r(t)) (as could be seen, e.g., from a wavelet
analysis), one can conclude that the true climate-vs-time
curve contains a sinusoidal component around time T = t of
the same amplitude ξ and a period length that can be esti-
mated as ∆t≈∆d/d′(r(t))r′(t).715

4.4 Interpreting the posterior probabilities: A note on
proxy variations

A critical point arising out of the previous subsections is that
the final proxy estimate – such as the mean/median – when
visualized over a period of time, may not reveal short-time720

variations. For paleoclimatic studies focussed on transitions
taking place over short time scales this can be a major hurdle.
Even in studies that wish to address climatic patterns operat-
ing in the higher frequency region, a proxy estimate which
does not resolve such frequencies is of little practical utility.725

We stress that it is misleading to conclude that the proxy
record does not contain high frequency components based
on figures such as Figs. 4–6. As already stated in the previ-
ous subsection, the fast varying components of the proxy are
not ruled out by the probability distributions. Rather, only in730

estimating the mean or median, we might be unable to say
anything about them with confidence.

To understand how this is possible, note that the primary
and foremost result of our approach is a probability distribu-

Fig. 9. Posterior probability distribution and proxy ensemble mem-
bers. A, B. The posterior proxy distributions for Ca-area (in A) and
Al-area (in B) obtained by our approach. At every chosen value of
the calendar age on the vertical axis, our method provides a proba-
bility distribution for the proxy along the horizontal proxy axis. The
probabilities are indicated by the color-bar, with white representing
zero probability. C, D. Two randomly chosen ensemble members
(blue and green curves) for Ca-area (in C) and Al-area (in D) out
of all possible proxy records given the probability distributions in
A and B respectively. Such individual ensemble members retain the
high frequency components as well, indicating that the high fre-
quency information is still contained in the posterior probabilities.
(Color online.)

tion of the proxy values at each value of calendar age (shown735

in Fig. 9 A, B as a colormap). Such a visualization is in prin-
ciple similar to Figure 2 of Blaauw et al. (2007) — only that

Figure 9. Posterior probability distribution and proxy ensemble

members. (a, b) The posterior proxy distributions for Ca area (in

a) and Al area (in b) obtained by our approach. At every chosen

value of the calendar age on the vertical axis, our method provides

a probability distribution for the proxy along the horizontal proxy

axis. The probabilities are indicated by the color bar, with white

representing zero probability. (c, d) Two randomly chosen ensem-

ble members (blue and green curves) for Ca area (in c) and Al

area (in d) out of all possible proxy records given the probability

distributions in (a) and (b), respectively. Such individual ensemble

members retain the high-frequency components as well, indicating

that the high-frequency information is still contained in the poste-

rior probabilities. (Color online.)

members actually constituted the actual climatic history, we

estimate the mean/median climatic history and our confi-

dence in it. The uncertainty bounds shown in this study rep-

resent the impossibility (given a set of measurements) of

determining precisely the mean proxy value and hence, by

extension, the mean paleoclimatic condition that it would

represent.

In order to be able to have a very narrow uncertainty range,

efforts must be made to reduce the various sources of error
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that contribute to the final proxy error. We discuss the possi-

bilities and limitations of this in the next section.

4.5 Reduction of uncertainty

Let us take the example of the Lonar lake observations and

ask: how can we reduce the final proxy uncertainty? For this,

we have to look at the four factors that determine it. Among

these, the calibration uncertainty cannot be reduced until a

more tightly constrained calibration curve is released, the

proxy–depth variance is beyond our control, and the proxy

measurement error is already set to zero in our analysis.

Thus, we are left with the sole option of reducing the RM age

model error. This can be achieved with additional radiometric

dating of the archive, or by incorporating layer-counted seg-

ments of the record that have relatively less error. However,

since we do not consider layer-counted data in our approach

presently, we will consider below the effect of adding more

radiocarbon dating points.

We might plan to make a few more measurements, espe-

cially around those depths where the RM age model is not

very precise, e.g., at around 700 cm (Fig. 6b). Still, a signifi-

cant portion of the final uncertainty might also be due to the

intrinsic variance of the proxy along depth, and we thus need

to understand fully exactly how much of the final uncertainty

is contributed by the age measurement errors. The highly

non-trivial way in which the final uncertainty is related to the

RM age model uncertainty (via the DWFs) makes it almost

impossible to find a precise analytical answer to questions of

the type: if we make two 14C age measurements at depths d1

and d2 with a maximum error of ε, by what fraction z will

the uncertainty at calendar age t going to go down?

We can nevertheless get some insight into how much error

is contributed by the age uncertainty by considering a simple

thought experiment. Let us assume that we are able to reduce

the RM age model uncertainty to zero by taking N error-

free radiocarbon age measurements at the precise depths of

proxy measurements. The variance of the DWF will then de-

pend solely on the calibration uncertainty and, in conjunction

with the proxy’s intrinsic variance, this will determine the fi-

nal proxy uncertainty. We can compare the uncertainty levels

of the proxy before and after setting the age model error to

zero. This is shown in Fig. 10a and b for the Ca-area and

Al-area proxies (Fig. 10c and d). We can see from the fig-

ure that the final uncertainty of the proxy is not reduced by

a great amount (Fig. 10b and d) – even when the uncertainty

of the RM age model had been set to zero. Among the two

proxies, the reduction of uncertainty in the Ca-area record

is more than that of the Al-area record. This is because the

Al-area signal has relatively higher variability than the Ca-

area signal (cf. Fig. 6c and e), and so the relative contribu-

tion of the age uncertainties to the final proxy uncertainty is

less for the Al-area record than the Ca-area record. For both

records, a reduction in age uncertainty resolves more higher-

frequency variations than before, but not by a great amount.
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we obtain the visualization from mathematical expressions,
and not as a histogram of ensemble members.

We interpret the distributions as representing the probabil-740

ity densities of an ensemble of possible proxy records, i.e.,
each member of this ensemble is a record for one of many
possible past climatic histories that fit the available set of
measurements and data. This is shown in Fig. 9 C and D, in
which two such members of the ensemble are shown for each745

of the two proxies from Lonar lake. They are constructed by
drawing random numbers from each proxy probability dis-
tribution at every calendar age. It is immediately clear that
the individual members of the ensemble retain the high fre-
quency components as well. However, since we have no way750

of knowing which of the infinite possible ensemble mem-
bers actually constituted the actual climatic history, we esti-
mate the mean/median climatic history and our confidence in
it. The uncertainty bounds shown in this study represent the
impossibility (given a set of measurements) of determining755

precisely the mean proxy value and hence, by extension, the
mean paleoclimatic condition that it would represent.

In order to be able to have a very narrow uncertainty range,
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that contribute to the final proxy error. We discuss the possi-760

bilities and limitations of this in the next section.
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Let us take the example of the Lonar lake observations and
ask: how can we reduce the final proxy uncertainty? For this,
we have to look at the four factors that determine it. Among765

these, the calibration uncertainty cannot be reduced until a
more tightly constrained calibration curve is released, the
proxy-depth variance is beyond our control, and the proxy
measurement error is already set to zero in our analysis.
Thus, we are left with the sole option of reducing the RM age770

model error. This can be achieved with additional radiometric
dating of the archive, or by incorporating layer counted seg-
ments of the record that have relatively less error. However,
since we do not consider layer counted data in our approach
presently, we will consider below the effect of adding more775

radiocarbon dating points.
We might plan to make a few more measurements espe-

cially around those depths where the RM age model is not
very precise, e.g., at around 700 cm (Fig. 6B). Still, a signif-
icant portion of the final uncertainty might also be due to the780

intrinsic variance of the proxy along depth and we thus need
to fully understand exactly how much of the final uncertainty
is contributed by the age measurement errors. The highly
non-trivial way in which the final uncertainty is related to the
RM age model uncertainty (via the DWFs) makes it almost785

impossible to find a precise analytical answer to questions of
the type: if we make two 14C age measurements at depths d1

and d2 with a maximum error of ε, by what fraction z will
the uncertainty at calendar age t going to go down?
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Fig. 10. Contribution of age uncertainty to proxy estimation uncer-
tainty. A, C. The proxy records for Ca-area (in A) and Al-area (in C)
for the original set of observations (red curves for the median, light
blue area for 95% confidence bands) along with the proxy records
after setting the RM age model uncertainty identically to zero (dark
gray curves for the median, orange area for 95% confidence bands).
B, D. The uncertainties for each time point (95% confidence bands
shown in A and C) and for the two cases: original observations (light
blue); and after setting RM age model error to zero (orange). (Color
online.)

We can nevertheless get some insight into how much error790

is contributed by the age uncertainty by considering a simple
thought experiment. Let us assume that we are able to reduce
the RM age model uncertainty to zero by taking N error-free
radiocarbon age measurements at the precise depths of proxy
measurements. The variance of the DWF will then solely de-795

Figure 10. Contribution of age uncertainty to proxy estimation un-

certainty. (a, c) The proxy records for Ca area (in a) and Al area (in

c) for the original set of observations (red curves for the median,

light blue area for 95 % confidence bands) along with the proxy

records after making the RM age model uncertainty identical to

zero (dark gray curves for the median, orange area for 95 % con-

fidence bands). (b, d) The uncertainties for each time point (95 %

confidence bands shown in a and c) and for the two cases: original

observations (light blue), and after setting the RM age model error

to zero (orange). (Color online.)

Furthermore, even if age uncertainty is reduced to zero, the

proxy records still differ a great deal from the records con-

structed by using the OxCal P-sequence model as shown in

Fig. 7.

Coming back to the issue of improving the Lonar proxy

records with the help of additional measurements at around

700 cm, we first note that these depths would roughly cor-

respond to calendar ages of around 4–5 kBP (see Fig. 6B,

starting at around 700 cm, and going counterclockwise from

the depth axis to the RM age model curve, to the calibration
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curve and finally to the calendar age axis). From Fig. 6, we

find that the region around 4–5 kBP shows almost no im-

provement from setting the age uncertainty to zero! This in-

dicates that the Lonar lake radiocarbon age measurements

are not the primary source of the final proxy uncertainties.

Rather, it is more likely that the major part of the proxy un-

certainties in the Lonar records are due to the proxy fluctua-

tions in the depth domain and the calibration uncertainties.

The thought experiment illustrates several points:

– Even though the final uncertainty of proxy estimation is

linked to the age uncertainty in a complicated manner,

it is possible to understand the relative contributions of

the age errors by setting them to zero.

– The final proxy uncertainty can, in some cases, be deter-

mined more by its own variability in the depth domain,

rather than the age uncertainty.

– Given a set of observations and an RM age model, it is

possible to obtain a limit to the precision with which the

proxy can be estimated.

– The variability of a proxy signal is inherently linked to

the kind of paleoclimate variations that it will allow to

be investigated, and also to the level of precision with

which such studies can be carried out.

4.6 Precise, error-free timescale

One important consequence of having an age-uncertain

timescale for representing proxy records is that the intercom-

parison of records from different archives becomes difficult

and ambiguous. In the approach outlined in this study, we

overcome this difficulty because of the use of conditional

probabilities. The use of conditional probability implies that

every time we consider a particular calendar age and then es-

timate the DWF for it, we “fix” the calendar age precisely

and then obtain the likelihoods of the proxy depths for that

age. This means that the final proxy estimate we obtain is

represented on a timescale that is error free; i.e., it is without

any uncertainty. Such a notion of a precise timescale has al-

ready been introduced for speleothems in Breitenbach et al.

(2012), where it is termed an “absolute” timescale that cor-

responds effectively to the time of deposition of the proxy

material on the archive. They illustrate the utility of an error-

free timescale with the help of Monte Carlo age modeling

approaches. In the present paper, we generalize this idea for

all radiometrically dated archives, and also provide an ana-

lytical framework for it.

Typically, if we represent paleoclimate proxies on an

age-uncertain timescale, the interpretations of paleoclimate

events are constrained by not being able to know when ex-

actly an event took place in the past. This is overcome if the

uncertainty is transferred from the age axis to the proxy axis,

ensuring that the timescale of representation is always error

free. An analogy to visualize this process is to think of the

uncertainty as a bag of errors that can be carried either by

the time axis or by the proxy axis. In paleo-investigations till

now, this bag of errors had been left on the shoulders of the

time axis, but we choose to transfer it to the proxy axis in-

stead. This comes at a price, because in doing so, we are not

certain any longer about the high-frequency variability of the

proxy. Thus, it is not a question of whether this particular rep-

resentation of proxies is more correct than the conventional

age-uncertain one – the choice of representation is context

dependent and is determined by the goals of the paleocli-

matic investigation. One can conceive a study in which the

interest in the high-frequency variability is outweighed by

the problems of vagueness induced by an age-uncertain time

axis. In such a scenario, it is reasonable to use an existing

framework of age modeling that establishes a representative

set of ages for each depth level of the core, provided the ap-

proximations used for dealing with the irregularly calibrated

age distributions are reasonable.

A methodological advantage of having an error-free time

axis is that time series analysis methods are more readily

applicable to them. Although there has been recent work

that was able to extract the climate spectrum (Mudelsee

et al., 2009) as well as timescale-dependent trends with er-

rors (Mudelsee et al., 2012), interpretations of time series

analyses such as the construction of paleoclimate networks

(Rehfeld et al., 2012) have to be cautious of the time uncer-

tainties that were inherent in the original data and that were

left unresolved. Our approach provides a clear platform to

carry out such analyses and interpret the results.

4.7 General comments

We note here a few additional points relevant to our approach

that deserve attention.

1. The RM age model need not be monotonic if a non-

monotonic radiometric calibration curve is involved.

This is apparent in Fig. 6, but we note that the true

RM age model shown as a black curve in Fig. 5 is itself

not monotonic. This is due to the fact that the up–down

wiggles of the calibration curve carry over to the RM

age–depth curve. This however does not imply that the

true age model is non-monotonic.

2. In Fig. 7, the general trends of both curves are similar,

with the only difference that the proxy curve obtained

with the OxCal age model contains high-frequency vari-

ations. This indicates that the age–depth interrelations

underlying these curves are fairly similar. We highlight

this point as we do not expressly use an age model, nor

do we involve assumptions about the sedimentation pro-

cess. The MoTaBaR regression method used to get the

RM age model is a data-driven regression method that

is not specific to any kind of sedimentation process.

3. It is also important to note that our approach in

its present form however presents several limitations.
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Firstly, it cannot deal with discrete proxy variables and

with data sets in which the depth measurement errors

are not negligible. Moreover, it assumes a perfect sedi-

mentation record without hiatuses or age reversals, and

is not equipped to deal with data sets possessing these

features. It also does not consider the incorporation of

additional dating information such as layer counting

of well-laminated sections. It thus needs to be placed

within a larger framework of proxy record construction,

involving approaches such as COPRA, StalAge, clam,

or OxCal, that can deal with such issues as well.

5 Conclusions

We present a Bayesian approach for the estimation of sedi-

mentary proxy records as well as their associated uncertainty.

This is a novel approach that, for the first time, details ana-

lytical relations between the different uncertainties involved

in paleoclimatic proxy record estimation. We circumvent ap-

proximations typically required to deal with the irregulari-

ties of the age distributions of calibrated radiocarbon ages by

finding the likelihood of depths for each calendar age rather

than the other way round. We establish an RM age model to

obtain the relation between a time point and its related set

of depths, and avoid constructing an age model as is under-

stood conventionally. We provide analytical expressions for

posterior proxy probability distributions for any given calen-

dar age that can be used for further analyses.

We test our approach on two synthetic examples designed

to mimic U/Th and 14C dating methods, and demonstrate its

validity. We then reconstruct groundwater inflow and surface

erosion proxy records from the Lonar lake in central India.

Our analysis shows how the variability of the proxy in the

depth domain is an intrinsic factor determining proxy uncer-

tainty and how the final proxy uncertainty in turn reduces the

resultant variability of the median proxy estimate. We extri-

cate the contribution of the age uncertainty alone to the final

proxy uncertainty from the rest of the involved errors. We

show that for the Lonar lake set of observations, the age mea-

surements are already quite close to the limit of precision in

terms of the final proxy estimates. Such an exercise could be

used to test the efficacy of a set of age measurements or that

of the proxy itself for being a suitable record for the kinds

of questions that the investigator wishes to pursue. Lastly,

we successfully extend the notion of a precise timescale for

representing proxy records to radiocarbon-dated archives.

Keeping in mind that the uncertainty (error) of any mea-

surement is critical to the proper use of that measurement,

our analysis provides a way of deriving the uncertainty of

a proxy measurement at chosen points in time. This allows

for a more critical, and still more valuable, understanding

of how much, and how precisely, we know about the pale-

oclimate via proxy measurements. Even though our analysis

does not focus explicitly on estimating other characteristics

of the proxy such as its variability, power spectra, transitions,

etc., we have sketched how it can provide a general direction

in which such aspects can be estimated and the correspond-

ing uncertainties of estimation quantified.

This study is not without its limitations. It needs to be part

of a more expansive agenda of paleoclimate proxy record

construction to be of practical utility. Moreover, it has the

potential to be extended to estimate the proxy records for

archives dated with procedures such as dendrochronological

methods and luminescence techniques. In the case of den-

drochronology, it would be possible to consider the time axis

as the control variable (without error) and the depth assigned

to the time increments as the source of error, and in the

case of luminescence dating, a reasonable approximation of

the error distribution around the reported luminescence ages

would suffice to adapt the method suitably.

The RM age model involved in our approach is a critical

step where further information could possibly be included.

For instance, deposition models that are available for dif-

ferent types of paleo-archives, such as the P-, V-, and U-

sequence models of OxCal, could be combined with the ra-

diocarbon age–depth measurements to constrain the RM age

model uncertainties further. This can have a significant im-

pact in reducing the final proxy uncertainty, especially in

cases where the dating measurements are poor.
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Appendix A: Mathematical derivation of the posterior

proxy distributions

We outline here the mathematical details of the concepts dis-

cussed in the main text. We start with a summary of the given

information in mathematical terms and proceed to motivate

the definition of depth-spanning weight functions (DWFs),

apply relaxation dynamics to impose monotonic growth on

them, and thereafter provide expressions for the posterior

proxy distribution, their means and variances. As in the main

text, here too we limit our discussion to radiocarbon dating.

A1 Basic terminology

We consider Z, R and T to be the variables denoting depth,

radiocarbon age, and calendar age, respectively. The variable

X is used to denote the unknown proxy. The set of obser-

vations corresponds to the radiocarbon age–depth measure-

ments and the proxy–depth measurements; i.e., we have

– a time point of interest t that runs over a fine, regular

grid. The latter is, in fact, the precise calendar age inter-

val for which we wish to estimate the proxy probability

distribution.

– a known calibration curve rt defined for all these values

of t , where t denotes radiocarbon age, and the associ-

ated Gaussian error estimates σC
t (the superscript “C”

denotes “calibration”).

– a (typically small) number M of 14C dating points (zr
k ,

rk), along with estimates σZk of the standard deviation

of the individual Gaussian 14C dating errors.

– a (typically large) number N�M of proxy measure-

ment points (zxj , xj ) for another (typically different) set

of depths zxj , where xj denotes proxy values, along with

estimates σXj of the standard deviation of the individual

Gaussian proxy measurement errors.

Thus, we have the following Gaussian conditional proba-

bility distributions:

– the calibration curve specifies the conditional density of

r given t as P(r|t)∝ exp
[
−(r − rt )

2/2
(
σC
t

)2]
.

– the 14C age data specify the conditional density of r

given Z= zr
k as P(r|zr

k)∝ exp
[
−(r − rk)

2/2
(
σRk

)2]
.

– the proxy data specify the conditional density of x given

Z= zxj as P(x|zxj )∝ exp

[
−
(
x − xj

)2
/2
(
σXj

)2
]

.

We only state proportionalities (∝) here, taking care of

proper normalization only at the end.

A2 Estimating depth-spanning weight functions

To answer the question, which among the proxy measurement

depths are more likely than others to correspond to a given

true age, we apply the law of total probability and Bayes’

theorem to combine the calibration curve distribution P(r|t)

and the output of the RM age model (which gives P(r|zxj )

from the measured data P(r|zr
k)):

P
(
zxj |t

)
=

∫
drP

(
zxj |r

)
P(r|t)

=

∫
dr
P
(
zxj

)
P
(
r|zxj

)
P(r)

P (r|t). (A1)

Assuming all ages and depths are equally likely a priori, we

use the (flat) prior distributions P(r)∝P(zxj )∝ 1, and see

that P(zxj |t) is proportional to the weight

P
(
zxj |t

)
∝

∫
drP

(
r|zxj

)
(r|t)=: wt

(
zxj

)
, (A2)

where the weight wt (z
x
j ) is the depth-spanning weight func-

tion. Since the RM age model returns the means rj and

standard deviations σR
j of the radiocarbon age R for the

depths zxj , we can substitute the relevant Gaussian functions

in Eq. (A2) to get

wt

(
zxj

)
∝

∫
dr exp

−(r − rj )2
2
(
σR
j

)2

exp

(
−(r − rt )

2

2
(
σC
t

)2
)
. (A3)

The first term in Eq. (A3) is the output of the RM age model,

while the second term represents the calibration curve. Note:

for the RM age model, we use the MoTaBaR regression

method from Heitzig (2013) with order parameter p= 2 and

a data-driven choice of prior distributions.

A3 Imposing monotonic growth using force-based

relaxation dynamics

Since it is difficult to define unambiguously a monotonic con-

dition relation in T for the set of DWFs defined in Eq. (A3),

we choose to work with the cumulative distributions while

imposing the constraint of monotonic growth of the paleo-

archive. The first step is to convert the initially estimated

DWFs, wi
t (z

x
j ), into corresponding cumulative distributions,

W i
t

(
zxj

)
=

j∑
l=1

wi
t

(
zxl
)
. (A4)

The initial cumulative distributions W i
t (z

x
j ) are by construc-

tion weakly monotonic (non-decreasing) over the depths zxj .

Our goal is to find the a final set of CDWFs,W f
t (z

x
j ), that are

weakly monotonic (non-increasing) over t as well.

www.nonlin-processes-geophys.net/21/1093/2014/ Nonlin. Processes Geophys., 21, 1093–1111, 2014



1108 B. Goswami et el.: Estimation of sedimentary proxies

The final CDWFs are those that satisfy the above condition

of monotonicity and are at a minimal distance from the ini-

tially estimated W i
t (z

x
j ). Ideally, we can estimate W f

t (z
x
j ) by

minimizing the functional
∑
j

∑
t

[W f
t (z

x
j ) − W

i
t (z

x
j )]

2. How-

ever, this is not straightforward and is computationally ex-

pensive, and we thus use a force-based relaxation dynamics

under reasonable assumptions to estimate W f
t (z

x
j ).

We introduce an artificial “time” variable τ (not related

to the calendar age T ) such that the cumulative distribution

function that we wish to estimate is given by W f
t (z

x
j , τ →

∞). We choose the initial condition at the starting point of

the artificial time τ = 0 as

W f
t

(
zxj ,0

)
=

1

2

[
mint ′≤tW

i
t ′

(
zxj

)
+maxt ′≥tW

i
t ′

(
zxj

)]
. (A5)

Such an initial condition ensures thatW f
t (z

x
j , 0) is monotonic

from the start. The next step is to “drag” this function towards

the non-monotonic W i
t ′
(zxj ) as far as monotonicity permits.

For this, we first evaluate

δ(τ )=W i
t ′

(
zxj

)
−W f

t

(
zxj , τ

)
, (A6)

which is the distance of the monotonic function from

the original function after τ time steps. The evolution of

W f
t (z

x
j , τ ) over τ is formulated as

d

dτ

[
W f
t

(
zxj , τ

)]
=

 δ(τ )

{
δ(τ ) > 0&A< 0

δ(τ ) < 0&B > 0

0, otherwise,

where

A=W f
t

(
zxj ,τ

)
−min

(
W f
t

(
dxj+1,τ

)
,W f

t−1

(
zxj ,τ

))
, (A7)

B =W f
t

(
zxj ,τ

)
−max

(
W f
t

(
dxj−1,τ

)
,W f

t+1

(
zxj ,τ

))
. (A8)

Integrating over τ , we obtain the monotonic W f in the limit

τ→∞. This particular approach to estimating the mono-

tonicW f functions has the advantage that even when the pro-

cess is stopped before convergence due to an overly slow rate

of convergence, the result is still monotonic and at least as

close to W i
t ′
(zxj ) as the initial guess W f

t (z
p
j , 0). Preliminary

tests (results not shown) with example data sets suggest that

a step size of dτ = 10/s with s= 1000 steps might lead to

sufficient results.

A4 Estimating the posterior proxy distributions, their

means and associated uncertainties

After estimatingW f
t (z

x
j ), we obtain the correspondingwf

t (z
x
j )

by the first-order difference of W f
t (z

x
j ) along the zxj axis (the

reverse of Eq. A4); i.e.,

wf
t

(
zxj

)
=W f

t

(
zxj

)
−W f

t

(
zxj−1

)
, j = 2, . . ., N, (A9)

with the first value set as wf
t (z

x
1)=W

f
t (z

x
1).

We now use these as weights to estimate the posterior

proxy distributions P(x|t). For this, we again apply the law

of total probability and approximate the integral over depth

by a Riemann sum using the proxy measurement depths:

P(x|t)=

∫
dzP (x|z)P (z|t)

≈

N∑
j=1

bjP
(
x|zxj

)
P
(
zxj |t

)
, (A10)

where bj is the width of the depth interval represented by zxj :

bj =
1

2


zx2 − z

x
1 bj = 1

zxj+1− z
x
j−1 1< bj <N

zxN − z
x
N−1 bj =N.

(A11)

Finally, we plug in the final DWFs, wf
t (z

x
j ), taking care of

a correct normalization, and find that the proxy probability

density at t is simply a weighted mean of the densities corre-

sponding to the individual proxy measurements, i.e., a Gaus-

sian mixture:

P(x|t)≈

N∑
j=1

bjw
f
t

(
zxj

)
P
(
x|zxj

)
N∑
j=1

bjw
f
t

(
zxj

) , (A12)

where P(x|zxj ) is the Gaussian

P
(
x|zxj

)
=

exp

[
−
(
x− xj

)2
/2
(
σXj

)2
]

√
2πσXj

. (A13)

Once the probability distribution of the proxy at a given

t is known (as given by Eqs. A12 and A13), estimates of

the mean and median, and respective estimates of uncer-

tainty such as the variance and the interquartile range, can

be calculated; e.g., the mean x(t) of P(x|t) is estimated as
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x(t)=

∫
dxxP (x|t)≈

N∑
j=1

bjxjw
f
t

(
zxj

)
M∑
j=1

bjw
f
t

(
zxj

) , (A14)

using which, the variance σ 2(t) of P(x|t) can be computed

as

σ 2(t)=

∫
dx(x− x(t))2P(x|t)

≈

N∑
j=1

bjw
f
t

(
zxj

)[(
xj − x(t)

)2
+

(
σXj

)2
]

N∑
j=1

bjw
f
t

(
zxj

) . (A15)

Note, however, that because P(x|t) is not necessarily Gaus-

sian, σ 2(t) might not give reliable confidence bounds, which

is why we use the exact quantiles of P(x|t) instead to con-

struct confidence bounds for X.

Appendix B: Data from Lonar lake, central India

B1 Radiocarbon measurements

The 14C age depth measurements used in the analysis (as

shown in Fig. 6) are given in Table B1. The data reported in

Table B1 list only those measurement samples from Anoop

et al. (2013) that were finally used in their analysis.

B2 Note on Al area as a surface erosion proxy

Figure 6e reveals that the Al total counts are extremely low as

compared to those of Ca, for instance. It is advisable to treat

such data with caution, as XRF measurements give only a

qualitative overview of the elemental abundances. However,

as shown in the earlier study by Prasad et al. (2014), the Al

counts are strongly correlated with the Si, Ti and K counts

obtained from the same core (shown in Fig. B1). This deter-

mined our choice of taking Al as a representative proxy for

the whole core. Even though the actual magnitude of the Al

XRF estimates might be low, its variations mimic the varia-

tions of the Si, Ti and K counts, which have relatively higher

magnitudes of XRF estimates. We note that this fact, com-

bined with the study of Basavaiah et al. (2014), validates the

use of the Al counts as a proxy for the surface erosion in the

Lonar catchment area.

Table B1. 14C age–depth data from the Lonar lake, central India.

Sample Depth 14C Error

(cm) age (± yr BP)

(yr BP)

L211 0 40 –

L20a2 20 −2902 0.01

L19 163.5 564 30

L17 266 1105 30

L15o 266.5 1075 30

L14 267.5 1100 30

L13 383.5 1840 35

L12 482 2315 35

L11 511.5 2680 35

L10 612 3470 35

L9 778 4185 35

L8 820 4600 60

L7 870 7420 40

L6 870.5 7460 90

L5 872 7410 100

L4 882.5 8880 60

L3 899 8990 80

L2 902 9740 50

L1 904 9570 100

1 Point at surface fixed at AD 2007 (≈ 40 14C yr BP).
2 143.51± 0.0043 pMC.
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using which the variance σ2(t) of P (x|t) can be computed
as:

σ2(t) =
∫

dx(x− x̄(t))2P (x|t)

≈
∑N

j=1 bjw
f
t (zx

j )
[
(xj − x̄(t))2 + (σP

j )2
]

∑N
j=1 bjw

f
t (zx

j )
(A15)1170

Note however, that because P (x|t) is not necessarily
Gaussian, σ2(t) might not give reliable confidence bounds,
which is why we use the exact quantiles of P (x|t) instead to
construct confidence bounds for X .1175

Appendix B

Data from Lonar lake, central India

B1 Radiocarbon measurements

The 14C age depth measurements used in the analysis (as
shown in Fig. 6) are given in Table B1. The data reported in1180

Table B1 lists only those measurement samples from Anoop
et al. (2013) which were finally used in their analysis.

Table B1. 14C age-depth data from Lonar Lake, central India

Sample Depth (cm) 14C age (yBP) Error (± yBP)

L211 0 40 -
L20a2 20 -2902 0.01
L19 163.5 564 30
L17 266 1105 30
L15o 266.5 1075 30
L14 267.5 1100 30
L13 383.5 1840 35
L12 482 2315 35
L11 511.5 2680 35
L10 612 3470 35
L9 778 4185 35
L8 820 4600 60
L7 870 7420 40
L6 870.5 7460 90
L5 872 7410 100
L4 882.5 8880 60
L3 899 8990 80
L2 902 9740 50
L1 904 9570 100

1 Point at surface fixed at 2007 AD (≈ 40 14C yBP)
2 143.51 ± 0.0043 pMC

B2 Note on Al area as a surface erosion proxy

Panel E of Fig. 6 reveals that the Al total counts are exe-
tremely low as compared to those of Ca, for instance. It is1185
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Fig. B1. Al counts as a representative proxy for Lonar lake. Al
counts (top panel, in blue) are strongly correlated to the Ti (orange),
Si (green) and K (red) counts obtained from XRF scanning of the
Lonar lake sediment. This correlation with the other elements, com-
bined with the fact that the Al counts arise due to the catchment ero-
sion forms the basis of choosing it as a representative proxy for this
analysis. This choice also helps us to illustrate the impacts of proxy-
depth variability on the final proxy estimate uncertainties. (Color
online.)

advisable to treat such data with caution as XRF measure-
ments give only a qualitative overview of the elemental abun-
dances. However, as shown in the earlier study by Prasad
et al. (2014), the Al counts are strongly correlated to the Si, Ti
and K counts obtained from the same core (shown in Fig.B1).1190

This determined our choice of taking Al as a representative
proxy for the whole core. Even though the actual magnitude
of the Al XRF estimates might be low, its variations mimic
the variations of the Si, Ti and K counts, which have rela-
tively higher magnitudes of XRF estimates. We note that this1195

fact, combined with the study of Basavaiah et al. (2014) val-
idates the use of the Al counts as a proxy for the surface
erosion in the Lonar catchment area.
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