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Large deviations for the capacity in dynamic spatial relay
networks

Christian Hirsch, Benedikt Jahnel

Abstract

We derive a large deviation principle for the space-time evolution of users in a relay network
that are unable to connect due to capacity constraints. The users are distributed according to
a Poisson point process with increasing intensity in a bounded domain, whereas the relays are
positioned deterministically with given limiting density. The preceding work on capacity for relay
networks by the authors describes the highly simplified setting where users can only enter but
not leave the system. In the present manuscript we study the more realistic situation where users
leave the system after a random transmission time. For this we extend the point process tech-
niques developed in the preceding work thereby showing that they are not limited to settings with
strong monotonicity properties.

1 Introduction and main results

Loss networks are classical models in mathematical queueing theory designed for capacity-constrained
scenarios, where network participants can leave the system without being served, see for exam-
ple [10]. The underlying Markovian dynamics is challenging from a mathematical point of view and
a substantial amount of research was performed to establish classical limiting statements such as
propagation of chaos or central limit theorems, see [5,6].

In [7, 8], a large deviation analysis of loss networks was carried out in a mean-field setting where
connections are formed disregarding geometry. In the presence of geometry, the models for random
networks become substantially more complex to analyze, see for example [2]. A first step to investigate
spatial loss networks was taken in [9], in a situation where transmitters are distributed in a bounded do-
main via a Poisson point process with increasing intensity. Deterministic relays are additionally placed
in the domain and users try to connect to the relays based on their positions in space. Transmis-
sions are attempted at random times and once communication is established, the channel stays active
and is blocked for other users for the remaining time. As a consequence, the system exhibits strong
monotonicity properties which simplify the mathematical analysis.

In the present work, we show that the point-process techniques mentioned above are applicable in a
broader context, in the sense that they do not rely on these monotonicity assumptions. In particular, we
are able to derive large deviation results also in the case where transmissions are stopped at random
times. The introduction of finite transmission times leads to more dependencies, which have to be
controlled in our approximation approach. To illustrate this, consider the effect of a small perturbation
in the behavior of a single user with a large transmission time. If the user chooses a different relay
location, all other users that previously selected this relay could be affected. Next, let us provide a
precise description of the model.

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



C.Hirsch, B.Jahnel 2

First, we present a detailed description of the network model which is an extension of the one intro-
duced in [9]. Let W ⊂ Rd be a compact domain with boundaries of vanishing Lebesgue measure.
We denote by Y λ = (yi)i≤nλ a collection of nλ fixed relays for which the empirical distribution

lλ = λ−1
∑
i≤nλ

δyi

converges weakly to some probability measure µR on W as λ tends to infinity. Further, there will
be transmitters distributed according to a Poisson point process Xλ in W . Its intensity measure is
of the form λµs

T with λ > 0 and µs
T ∈ M(W ) a finite Borel measure on W . We assume that

µs
T ∈ M(W ) is absolutely continuous w.r.t. the Lebesgue measure. Each transmitter Xi starts

sending data at a random time Si ∈ [0, tf ]. In contrast to [9], it stops the transmission at another
random time Ti ∈ [0, tf ]. We assume that the bivariate random variables {(Si, Ti)}i≥1 are iid with a
distribution µT that is absolutely continuous w.r.t. the Lebesgue measure on [0, tf ]

2.

At time Si the transmitter Xi selects a relay Y sel
i ∈ Y λ randomly according to the preference kernel

κ(Y sel
i |Xi) =

κ(Xi, Y
sel
i )∑

yk∈Y λ κ(Xi, yk)
. (1)

If the chosen relay is available, then Xi holds the connection up to time Ti. This chosen relay Y sel
i

is then blocked in the time interval [Si, Ti] and not available for other transmitters. In the selection
process, transmitters are not aware of the status of relays. In particular, they might choose a relay
which is already occupied. We then call the transmitter frustrated.

In order to assess network quality, it is essential for a network operator to answer the following ques-
tions.

1 What is the probability that an atypically large proportion of transmitters is frustrated?

2 How do location or data-transmission time influence the frustration risk?

We answer these questions by investigating the random measure of frustrated transmitters

Γλ =
1

λ

∑
i≥1

1{Y sel
i (Si) = 1}δ(Si,Ti,Xi), (2)

where Y sel
i : [0, tf ]→ {0, 1} denotes the function taking the value 1 if and only if Y sel

i is occupied at
time t ≤ tf .

1.1 The non-spatial case

First, assume κ ≡ 1. That is, transmitters choose relays uniformly at random. Then, as in [9], the relay
choice is encoded in a uniform random variable on [0, 1]. More precisely, we attach an independent
and uniform random variables Ui ∈ [0, 1] to the transmitter located at Xi ∈ W and consider the
empirical measure for the transmitters given by

Lλ = λ−1
∑
i≥1

δ(Si,Ti,Xi,Ui).

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



Large deviations for the capacity in dynamic spatial relay networks 3

1 2 3

4 5 6

Figure 1: Collection of three transmitters (green and red) trying to communicate with one relay (black).
The transmitters start and stop sending data in time steps 1, . . . , 6. Only the first transmitter (green)
can establish a connection. Later transmitters (red) are unable to connect and become frustrated.

Note that Lλ is a finite measure on the space V = [0, tf ]
2 × W × [0, 1]. We claim that Lλ is

sufficiently rich to describe the random measure of frustrated transmitters. Loosely speaking that is
because of the following. If a transmitter arrives at time t ∈ [0, tf ] and at that time a ≥ 0 relays are
already occupied, then, with probability a/nλ, the transmitter selects an occupied relay and therefore
becomes frustrated. To make this precise, we introduce the evolution of the number of occupied relays
λB̃λ via the time-integral equation

B̃λ
t =

∫ t

0

Lλ(ds, [t, tf ],W, [0, 1− B̃λ
s−/rλ]) (3)

where rλ = λ−1nλ. We will see in Proposition 2.1 that, in distribution, the random measure of frus-
trated transmitters Γλ can be represented as

Γ̃λ(ds, dt, dx) = Lλ(ds, dt, dx, [1− B̃λ
s−/rλ, 1]). (4)

To understand the high-density limit λ ↑ ∞, we need to work with an analogue of equation (3) for
measures ν ∈M =M(V ) which are absolutely continuous w.r.t. the measure

µT = µt
T ⊗ µs

T ⊗U([0, 1]),

i.e., ν ∈Mac(µT) = {ν ′ ∈M : ν ′ � µT}. To that end, we investigate the integral equation

βt =

∫ t

0

ν(ds, [t, tf ],W, [0, 1− βs−/r]) (5)

where r > 0. If ν ∈Mac(µT) then, as shown in Proposition 2.4, we can construct a solution βt(ν, r)
for (5) and define

γ(ν, r)(ds, dt, dx) = ν(ds, dt, dx, [1− βs(ν, r), 1]). (6)

To state the main result of this section, we recall the definition of the relative entropy

h(ν|µ) =

∫
log

dν

dµ
dν − ν(V ) + µ(V )

if ν ∈ Mac(µ) and h(ν|µ) = ∞ otherwise. Further, recall the τ -topology onM where the associ-
ated convergence is tested on bounded and measurable functions, see [3, Section 6.2].
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C.Hirsch, B.Jahnel 4

Theorem 1.1. The family of random measures {Γλ}λ satisfies the large deviation principle in the
τ -topology with good rate function given by I(γ) = infν∈M: γ(ν,µR(W ))=γ h(ν|µT).

The main idea for the proof is to introduce approximating trajectories using a temporal discretization
which will allow us to apply the contraction principle.

1.2 The spatial case

The process of transmitter requests to a relay at location dy is a Poisson point process Zλ on V̂ =
[0, tf ]

2 ×W 2 with intensity measure λµ(lλ) where

µ(lλ)(ds, dt, dx, dy) = κlλ(dy|x)(µt
T ⊗ µs

T)(ds, dt, dx)

and

κlλ(dy|x) = κ(y|x)lλ(dy). (7)

As in [9] we assume that

1 κ∞ = supx,y∈W κ(x, y) <∞,

2 the preference kernel κ is jointly continuous µs
T ⊗ µR-almost everywhere, and

3 for all x ∈ W there exists y ∈ W such that κ(x, y) > 0, y ∈ supp(µR) and (x, y) is a
continuity point of κ.

As in the non-spatial case, the random measure of frustrated transmitters can be described as a
function of the empirical measure of the Poisson point process with intensity measure

µT(µR) = µ(µR)⊗U([0, 1])

on the extended state space V ′ = [0, tf ]
2×W 2× [0, 1]. In the large deviation regime as λ ↑ ∞, this

measure can be distorted into another measure n ∈ M′ = M(V ′) which is absolutely continuous
to µT(µR). We define ny to be the measure of transmitters choosing a relay at y, i.e.,

n(ds, dt, dx, dy, du) = ny(ds, dt, dx, du)µR(dy). (8)

Then, using n as a driving measure, equation (6) becomes

γ(n)(ds, dt, dx) =

∫
W

n(ds, dt, dx, dy, [1− βs(ny, 1), 1]), (9)

where the integration is performed w.r.t. dy. As in Theorem 1.1, the function n 7→ γ(n) plays the rôle
of the contraction mapping appearing in the rate function associated with the LDP for Γλ. We now
present our second main result.

Theorem 1.2. The family of random measures {Γλ}λ satisfies the LDP in the τ -topology with good
rate function given by I(γ) = infn∈M′: γ(n)=γ h(n|µT(µR)).
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1.3 Organization of the manuscript

In Section 2 (respectively Section 4) we present the proof of Theorem 1.1 (respectively Theorem 1.2)
via a series of propositions. The details of the proofs for these propositions is then presented in Sec-
tion 3 (respectively Section 5).

2 Outline of proof for Theorem 1.1

A first idea for a proof of Theorem 1.1 would be to represent the random measure of frustrated trans-
mitters Γλ as a continuous functional of the marked Poisson point process Lλ. The desired large
deviation principle could then be recovered from Sanov’s theorem with the help of the contraction prin-
ciple. However, Γλ is given as the solution of equation (5) using Lλ as the driving measure. As in [9],
it is unclear why this dependence should be continuous in Lλ.

In order to cope with this problem, we introduce an approximating system of scalar differential equa-
tions where transmitters release connections only at discrete time steps. For this system, continuous
dependence and unique existence of solutions can be established. Further, limiting trajectories of the
approximations give rise to solutions of the original equation. Finally, using the tool of exponentially
good approximations, we recover Theorem 1.1 from the LDP for the approximating measures.

Let us start by verifying that the random measure Γ̃λ as defined in (4) has the same distribution as
Γλ.

Proposition 2.1. The random measures Γλ and Γ̃λ have the same distribution.

In order to construct solutions of (5) for general absolutely continuous driving measures, we intro-
duce an approximating system of differential equations. This system corresponds to a scenario where
transmitters release connections only at discrete time steps of size δ > 0 such that the number of
time steps is given by tf/δ ∈ Z. Before providing the detailed description of the system, we discuss
the intuition behind the approximation. The system describes jointly the evolution of the normalized
masses of

1 guaranteed idle relays aidle,

2 guaranteed occupied relays aoc,k−1 which get released in the interval ∆δ(k − 1) = ((k −
1)δ, kδ], and

3 critical relays acrit.

At time zero all relays are idle, i.e. aidle0 = 1. After that, we describe the evolution of aδ,idlet iteratively
for t ∈ ∆δ(k − 1) as follows. In the first approximating equation, the number of idle relays is reduced
according to the mass the measure ν. That is,

aidlet = aidle(k−1)δ −
∫
((k−1)δ,t]

ν(ds, ((k − 1)δ, tf ],W, [0, a
idle
s− ]).

In particular, inside the interval ∆δ(k − 1) the idle relay mass aidlet is decreasing. At the interval
boundary kδ the idle relay mass increases by the mass of occupied relays aoc,k−1kδ− that leave in the
time interval ∆δ(k − 1). In other words,

aidlekδ = aidlekδ− + aoc,k−1kδ− .
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At time zero no relays are occupied, so that aoc,j0 = 0 for all j ≥ 0. Next, chosen relays are counted
as occupied if their exit times are not in the discretization window under consideration. This is captured
by the equation

aoc,jt = aoc,j(k−1)δ +

∫
((k−1)δ,t]

ν(ds,∆δ(j),W, [0, a
idle
s− ]),

where j ≥ k. Typically occupied relays with exit time in the interval ∆δ(k − 1) become idle by time
kδ. However, this is no longer true if they are chosen again by another transmitter appearing in that
interval. Hence, the mass of relays that can be released at time kδ has to be decreased accordingly

aoc,k−1t = aoc,k−1(k−1)δ −
∫
((k−1)δ,t]

ν(ds, ((k − 1)δ, tf ],W, [a
idle
s− , a

idle
s− + aoc,k−1s− ]).

In order to quantify the loss of information caused by the discretization, we identify critical relays
based on the discretization δ. If the transmitter’s exit time is in the considered discretization window
and hence entrance and exit times are in the same discretization, then the discretized picture provides
only incomplete information. Therefore, such transmitters are counted as critical. Additionally, we count
as critical the newly chosen relays which have been occupied prior to the time window with exit times
in the time window. These two aspects give rise to the following equation for the critical relays

acritt = acrit(k−1)δ +

∫
((k−1)δ,t]

ν(ds,∆δ(k − 1),W, [0, aidles− + aoc,k−1s− ])

+

∫
((k−1)δ,t]

ν(ds, (kδ, tf ],W, [a
idle
s− , a

idle
s− + aoc,k−1s− ]).

To summarize, we arrive at the following system of differential equations.

Definition 2.2. Let ν ∈ M and define the following coupled system of differential equations with
initial conditions aidle0 = 1, aoc,j0 = 0 and acrit0 = 0.

aidlet = aidle(k−1)δ −
∫
((k−1)δ,t]

ν(ds, ((k − 1)δ, tf ],W, [0, a
idle
s− ])

aidlekδ = aidlekδ− + aoc,k−1kδ−

aoc,k−1t = aoc,k−1(k−1)δ −
∫
((k−1)δ,t]

ν(ds, ((k − 1)δ, tf ],W, (a
idle
s− , a

idle
s− + aoc,k−1s− ])

aoc,k−1kδ = 0

aoc,jt = aoc,j(k−1)δ +

∫
((k−1)δ,t]

ν(ds,∆δ(j),W, [0, a
idle
s− ])

acritt = acrit(k−1)δ +

∫
((k−1)δ,t]

ν(ds,∆δ(k − 1),W, [0, aidles− + aoc,k−1s− ])

+

∫
((k−1)δ,t]

ν(ds, (kδ, tf ],W, (a
idle
s− , a

idle
s− + aoc,k−1s− ]).

(10)

where j ≥ k and t ∈ ∆δ(k − 1).

In a first step, we establish existence and uniqueness of solutions of the above system for ν ∈
Mac(µT) which we then denote by a(ν) = (aidle(ν), {aoc,j(ν)}j≥0, acrit(ν)). To stress the depen-
dence of the solution on the discretization parameter δ, we sometimes write
aδ(ν) = (aδ,idle(ν), {aδ,oc,j(ν)}j≥0, aδ,crit(ν)).

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017
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Proposition 2.3. Let ν ∈Mac(µT), then the system (10) admits a unique solution.

By sending δ ↓ 0, we arrive at a solution of the original equation (5). More precisely, define

βt(ν, r) = r − lim sup
δ↓0

raδ,idlet (r−1ν),

and
Memp(V ) =

⋃
ρ≥0

Mρ(V )

as the union of empirical measures

Mρ(V ) = {ρ
∑
Xi∈X

δXi : X ⊂ V, |X| <∞} (11)

with weights ρ ≥ 0. Then, we have the following existence result.

Proposition 2.4. Let ν ∈Mac(µT) ∪Memp(V ), then βt(ν, r) solves equation (5).

Having the scalar processes aδ,idle(r−1ν) and β(ν, r) at our disposal, we can now introduce the
measures

γδ(ν, r)(ds, dt, dx) = ν(ds, dt, dx, [aδ,idles− (r−1ν), 1])

and
γ(ν, r)(ds, dt, dx) = ν(ds, dt, dx, [r−1βs(ν, r), 1]).

In order to apply the exponential approximation machinery from [3, Theorem 4.2.23], three steps are
required. First, we establish continuity of the functionMac(µT)→M([0, tf ]

2 ×W ), ν 7→ γδ(ν, r)
as a function of ν. For this we work in the τ -topology both on the source and the target space. On
the source space, it is the coarsest topology such that all evaluation maps ν 7→ ν(A), A ∈ B(V ) =
{A ⊂ V : A is Borel measurable}, are continuous. On the target space, it is the coarsest topology
such that all evaluation maps γ 7→ γ(A), A ∈ B([0, tf ]

2 ×W ) are continuous.

Proposition 2.5. The map ν 7→ γδ(ν, r) is continuous in the τ -topology onMac(µT).

Second, we establish exponential approximation relations between Γλ and the approximating pro-
cesses. Let ‖ · ‖ denote the total variational norm on the Banach space of finite signed measures,
i.e.,

‖γ‖ = sup
A∈B(V )

|γ(A)|.

We start by considering the random measure of satisfied transmitters.

Proposition 2.6. The random measure γδ(Lλ, rλ) is an ‖ · ‖-exponentially good approximation of
Γλ.

The exponential approximation machinery is designed for random quantities that can be expressed as
a functional of the empirical measure. Hence, as an intermediate step, we also replace rλ by r.

Proposition 2.7. The random measure γδ(Lλ, rλ)−γδ(Lλ, r) is an ‖·‖-exponentially good approx-
imation of zero.

Third, the approximations γδ(ν, r) should be uniformly close to the true solution on sets of bounded
entropyMα(µT) = {ν ∈M : h(ν|µT) ≤ α}.
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Proposition 2.8. Let α, r > 0 be arbitrary. Then,

lim
δ↓0

sup
ν∈Mα(µ)

‖γδ(ν, r)− γ(ν, r)‖ = 0.

Using the above results, we can prove Theorem 1.1.

Proof of Theorem 1.1. Using Sanov’s theorem as proved in [9, Proposition 3.6] and the Propositions
2.5–2.8, the result is a consequence of [4, Theorem 1.13].

3 Proofs of Supporting results for Theorem 1.1

In this section, we provide the proofs for Propositions 2.1-2.8. First, in Section 3.1, we present auxiliary
results, that we will use multiple times throughout the manuscript. Second, in Section 3.2, we derive a
Markovian representation of the frustrated transmitters. Sections 3.3, 3.4 and 3.5 are devoted to exis-
tence, uniqueness and continuity properties of true and approximate solutions. Finally, in Sections 3.6
and 3.7, we show that the approximate solutions are indeed close to the true ones.

3.1 Auxiliary results

First, let us recall from [9, Lemma 3.1] some properties of absolutely continuous measures.

Lemma 3.1. 1 Let ν ∈Mac(µT) be arbitrary. Then,

lim
ε↓0

sup
A∈B(V ):µT(A)<ε

ν(A) = 0.

2 Let α > 0 be arbitrary. Then,

lim
ε↓0

sup
A∈B(V ):µT(A)<ε

ν∈Mα(µT)

ν(A) = 0.

3 Let δ > 0 be arbitrary and N ελ be a random variable that is Poisson distributed with parameter
ελ

lim
ε↓0

lim sup
λ↑∞

λ−1 logP(N ελ > λδ) = −∞.

Proof. Part (1) rephrases the definition of absolute continuity. Part (2) can be shown using Jensen’s
inequality. Part (3) is a consequence of the Poisson concentration inequality [1, Chapter 2.2]. We refer
the reader to [9, Lemma 3.1] for details.

Next, we derive a simple yet powerful result on monotonicity of solutions of two specific differential
equations.

Lemma 3.2. Let 0 < a < a′ and assume that ν ∈ Mac(µT) or ν ∈ Mρ(V ) with a− a′ ∈ ρZ. Let
A ∈ B([0, tf ]×W ), then the following holds.

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017
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1 If bat solves the equation

bt = a−
∫ t

0

ν(ds, A, [0, bs]),

then bat ≤ ba
′
t for all t ≤ tf .

2 If bat solves the equation

bt =

∫ t

0

ν(ds, A, [0, a− bs]),

then bat ≤ ba
′
t holds for all t ≤ tf .

Proof. For part (1), to derive a contradiction, assume that bat > ba
′
t . Moreover, let t0 < t denote the

last time before t where ba
′
t0

= bat0 . If ν is absolutely continuous, then the existence of t0 follows from
the continuity of the solutions bat and ba

′
t . If ν is an empirical measure, then bat and ba

′
t are no longer

continuous, but exhibit jumps of the same size ρ. In particular, the existence of t0 follows from the
assumption that a− a′ ∈ ρZ. Then,

ba
′

t = ba
′

t0
−
∫
[t0,t)

ν(ds, A, [0, ba
′

s ]) ≥ bat0 −
∫
[t0,t)

ν(ds, A, [0, bas ]) = bat ,

which gives the desired contradiction.

For part (2) we argue similarly. More precisely, assume that bat > ba
′
t . Moreover, let t0 < t denote the

last time before t where ba
′
t0

= bat0 . Then,

ba
′

t = ba
′

t0
+

∫
[t0,t)

ν(ds, A, [0, a′ − ba′s ]) ≥ bat0 +

∫
[t0,t)

ν(ds, A, [0, a− bas ]) = bat ,

which again yields the desired contradiction.

The following lemma allows us to bound the discretization errors coming from sets of critical relays.

Lemma 3.3. Let {Aδ∗(ν)}δ,ν be a family of subsets of V indexed by δ > 0 and ν ∈ M. For s ≤ tf
put

Aδs(ν) = {(t, x, u) : (s, t, x, u) ∈ Aδ∗(ν)}.

1 If ν ∈Mac(µT) and limδ↓0 sups≤tf |A
δ
s(ν)| = 0, then limδ↓0 ν(Aδ∗(ν)) = 0.

2 If limδ↓0 supν∈Mα(µT)
sups≤tf |A

δ
s(ν)| = 0, then limδ↓0 supν∈Mα(µT)

ν(Aδ∗(ν)) = 0.

3 Assume that the process of sets Aδs(r
−1
λ Lλ) is previsible. If sups≤tf |A

δ
s(r
−1
λ Lλ)| is an expo-

nentially good approximation of zero, then Lλ(Aδ∗(r
−1
λ Lλ)) is an exponentially good approxi-

mation of zero.

Proof. As for part (1) first note that by Lemma 3.1 part (1), ν(Aδ∗(ν)) is arbitrarily close to zero if
µT(Aδ∗(ν)) is sufficiently close to zero. Moreover, again by part (1) of Lemma 3.1 using the abso-
lute continuity of µT w.r.t. the Lebesgue measure, µT(Aδ∗(ν)) becomes arbitrarily small if |Aδ∗(ν)| is
sufficiently small. But |Aδ∗(ν)| ≤ tf sups≤tf |A

δ
s(ν)| and the result follows.

Similarly for part (2), by Lemma 3.1 part (1) and (2), supν∈Mα(µT)
ν(Aδ∗(ν)) is arbitrarily close to zero

if supν∈Mα(µT)
|Aδ∗(ν)| is sufficiently close to zero. But

sup
ν∈Mα(µT)

|Aδ∗(ν)| ≤ tf sup
ν∈Mα(µT)

sup
s≤tf
|Aδs(ν)|

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



C.Hirsch, B.Jahnel 10

and the result follows.

As for part (3) we want to prove that for all ε > 0

lim sup
δ↓0

lim sup
λ↑∞

λ−1 logP(Lλ(A
δ
∗(rλLλ)) > ε) = −∞.

First, we condition on the number of users to be n as well as on the ordered entrance times (Si)i≤n.
Then, denoting Mi = (Ti, Xi, Ui) and Zi = (Si,Mi),

P
(
Lλ(A

δ
∗(r
−1
λ Lλ)) > ε

∣∣(Si)i≤n)
= P

(
#{i ≤ n− 1 : Zi ∈ Aδ∗(r−1λ Lλ)}+ 1{Zn ∈ Aδ∗(r−1λ Lλ)} > λε

∣∣(Si)i≤n)
= E

[
E
(
P
(

#{i ≤ n− 1 : Zi ∈ Aδ∗(r−1λ Lλ)}+ 1{Zn ∈ Aδ∗(r−1λ Lλ)} > λε
∣∣∣(Si)i≤n)∣∣∣(Mi)i<n

)]
= E

[
E
(
P
(

#{i ≤ n− 1 : Zi ∈ Aδ∗(r−1λ Lλ)}+ 1{Mn ∈ AδSn(r−1λ Lλ)} > λε
∣∣∣(Si)i≤n)∣∣∣(Mi)i<n

)]
.

Now, let Bn be an independent uniform random variable on [0, µM(V ′)] with µM the normalized
part of µT acting on [0, tf ] ×W × [0, 1]. Using previsibility and that, by independence, the proba-
bility for Mn ∈ AδSn(r−1λ Lλ) is equal to the probability that Bn ≤ µM(AδSn(r−1λ Lλ)), we get that
P(Lλ(A

δ
∗(r
−1
λ Lλ)) > ε

∣∣(Si)i≤n) is bounded above by

P(#{i ≤ n− 1 : Zi ∈ Aδ∗(r−1λ Lλ)}+ 1{Bn ≤ µM(AδSn(r−1λ Lλ))} > λε
∣∣(Si)i≤n).

Hence, by induction,

P(Lλ(A
δ
∗(r
−1
λ Lλ)) > ε

∣∣(Si)i<n) = P(#{i ≤ n : Bi ≤ µM(AδSi(r
−1
λ Lλ))} > λε

∣∣(Si)i≤n)

≤ P(sup
i≤n

µM(AδSi(r
−1
λ Lλ)) > ε′

∣∣(Si)i≤n) + P(#{i ≤ n : Bi ≤ ε′} > λε
∣∣(Si)i≤n)

for all ε′ > 0. As for the second summand, applying the Poisson point process expectation w.r.t. the
conditioning we have P(#{i ≤ |Xλ| : Bi ≤ ε′} > λε) where by independent thinning, #{i ≤
|Xλ| : Bi ≤ ε′} is a Poisson random variable with intensity λµT(V )ε′. Using part (3) of Lemma 3.1,
as λ tends to infinity, this summand has arbitrarily fast exponential decay for ε′ tending to zero. As for
the first summand, we use our assumption and again part (3) of Lemma 3.1.

The proof of Lemma 3.3 reveals that part (3) remains true ifAδ∗ = Aδ,λ∗ is allowed to depend on λ. The
following result is the main application of Lemma 3.3. It shows that in the limit of small discretizations,
critical users are negligible.

Lemma 3.4. 1 If ν ∈Mac(µT) ∪Memp(V ), then limδ↓0 a
δ,crit
tf

(ν) = 0.

2 If α > 0 is arbitrary, then limδ↓0 supν∈Mα(µ) a
δ,crit
tf

(ν) = 0.

3 The random measures aδ,crittf
(r−1λ Lλ) form an exponentially good approximation of zero.

Proof. First note that
aδ,crittf

(ν) = ν(Aδ1(ν)) + ν(Aδ2(ν)),

where
Aδ1(ν) = [0, tf ]×∆δ(bs/δc)×W × [0, aδ,idles− (ν)],
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and
Aδ2(ν) = [0, tf ]× [(bs/δc+ 1)δ, tf ]×W × [aδ,idles− (ν), aδ,idles− (ν) + a

δ,oc,bs/δc
s− (ν)].

For part (1), note that if ν ∈Memp(V ), then for δ < mini≥1(Ti − Si) we have ν(Aδ1(ν)) = 0 since
ν({(s, t, x, u) : (s, t, x, u) ∈ [0, tf ]×∆δ(bs/δc)×W × [0, 1]}) = 0. Further, for sufficiently small
δ < mini,j≥1 |Si − Tj| such that all entrance and exit times are well separated, also ν(Aδ2(ν)) = 0.
If ν ∈ Mac(µT), we show that both Aδ1(ν) and Aδ2(ν) satisfy the conditions of Lemma 3.3 part (1).
For Aδ1(ν) this is clear, since |Aδ1,s(ν)| ≤ δ|W | holds for every s ≤ tf . For Aδ2(ν) we have that

|Aδ2,s(ν)| ≤ aδ,oc,bs/δcs (ν) ≤ ν([0, tf ]×∆δ(bs/δc)×W × [0, 1]).

Moreover,
lim
δ↓0

sup
k≤tf/δ−1

|[0, tf ]×∆δ(k)×W × [0, 1]| = 0,

so that the conditions of Lemma 3.3 are satisfied. This finishes the proof of part (1). The last expres-
sion, using Lemma 3.3 part (2), also implies that

lim
δ↓0

sup
k≤tf/δ−1

sup
ν∈Mα

ν([0, tf ]×∆δ(k)×W × [0, 1]) = 0,

which completes the proof of part (2). To conclude the proof of part (3) observe that

P(sup
s≤tf
|Aδ2,s(r−1λ Lλ)| > ε) ≤ P( sup

k≤tf/δ−1
Lλ([0, tf ]×∆δ(k)×W × [0, 1]) > εr−1λ )

≤
∑

k≤tf/δ−1

P(Lλ([0, tf ]×∆δ(k)×W × [0, 1]) > εr−1λ ),

and hence by Lemma 3.1 part (3), sups≤tf Lλ(A
δ
2,s(r

−1
λ Lλ)) indeed is an exponentially good approx-

imation of zero.

3.2 Markovian representations

For the proof of Proposition 2.1 it will be convenient to consider the random measure B of satisfied
users defined by

B(ds, dt, dx) = Lλ(ds, dt, dx, [0, 1])− Γλ(ds, dt, dx).

Proof of Proposition 2.1. The strategy of proof is to first condition on {(Si, Ti, Xi)}i≤Nλ and then to
show that the pair (

Γλ, {B([0, t]× [t, tf ]×W )}t≤tf
)

has the same distribution as the pair (
Γ̃, {B̃t}t≤tf

)
.

For this note that, after the conditioning, both pairs become time-inhomogeneous Markov chains with
jumps at times Si and Ti of height λ−1. Hence, it suffices to prove that the transition probabilities of
the Markov chains coincide.

Assume that there is an arrival (Si, Ti, Xi) at time Si. In that case, there is a probability of 1 −
r−1λ B([0, Si−]× [Si, tf ]×W ) of hitting an idle relay. If this happens, thenB([0, Si−]× [Si, tf ]×W )
increases by λ−1 and the random measure Γλ stays constant. OtherwiseB([0, Si−]× [Si, tf ]×W )
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stays constant and Γλ contains (Si, Ti, Xi) as an atom. Similarly, with probability 1 − r−1λ B̃Si− the
random variable Ui is at most 1− r−1λ B̃Si−. Then, B̃Si− increases by λ−1 and the random measure
Γ̃λ stays constant. Otherwise, B̃Si− stays constant and the random measure Γ̃λ contains (Si, Ti, Xi)
as an atom. At times Ti, in both cases, there is a deterministic decrease by λ−1 if and only if the
random measures contain (Si, Ti, Xi) as an atom.

3.3 Existence of a unique solution for the approximation

Clearly, the system (10) has a unique solution if the driving measure is an empirical measure. In the
large-deviation analysis of the high-density limit the empirical measures Lλ are replaced by measures
ν ∈ Mac(µT). Hence, we would expect that also the rare-event behavior of the derived quantity
aδ,idle(Lλ), which is one component of the solution of (10), can be expressed in terms of aδ,idle(ν). In
the next result, we show that aδ,idle(ν) is well-defined if ν ∈Mac(µT).

Proof of Proposition 2.3. First, existence and uniqueness only need to be verified for t 7→ aidlet and
t 7→ aoc,k−1t where we suppress the δ-dependence in the notation. Indeed, the remaining quantities
are computed from them by explicit integration. By induction on k, it suffices to prove existence and
uniqueness on each of the intervals ∆δ(k − 1), k ≥ 1.

To begin with, we consider aidle. In order to work with increasing functions, we put

bidlet = aidle(k−1)δ − aidlet ,

so that the differential equation becomes

bidlet =

∫ t

(k−1)δ
ν(ds, ((k − 1)δ, tf ],W, [0, a

idle
(k−1)δ − bidles− ]).

Moreover, introducing the measure

ν̃(ds, du) = ν(ds, ((k − 1)δ, tf ],W, a
idle
(k−1)δ · du),

this defining differential equation is transformed into

bidlet =

∫ t

(k−1)δ
ν̃(ds, [0, 1− bidles− /a

idle
(k−1)δ]).

In particular, the integral operator on the r.h.s. is decreasing in bidles , so that existence and uniqueness
of solutions are a consequence of [9, Proposition 2.2].

For aoc,k−1, we can proceed similarly. Indeed, after replacing ν by

ν̃(ds, du) = ν(ds, ((k − 1)δ, tf ],W, a
idle
s− + aoc,k−1(k−1)δ · du)

existence and uniqueness of aoc,k−1 is again covered by [9, Proposition 2.2].

3.4 Existence of solutions

In this subsection, we show that taking the limit δ ↓ 0 in the approximating solutions γδ(ν, r) gives
rise to a solution of the original system. First, we use Lemma 3.2 to show that the approximations
are monotone w.r.t. the discretization parameter δ. For this, we introduce the short hand notation
ν(∆δ(k)) = ν(∆δ(k)× [0, tf ]×W × [0, 1]).
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Lemma 3.5. Let δ > 0 and ν ∈ Mac(µT) ∪Memp(V ) be arbitrary and put δ′ = δ/2. Then, for
every t ≤ tf and k ≤ tf/δ − 1

1 aδ
′,idle
t (ν) ≥ aδ,idlet (ν) and

2 supn≥1 supt≤tf
(
a2
−nδ,idle
t (ν)− aδ,idlet (ν)

)
≤ aδ,crittf

(ν) + 2 supl ν(∆δ(l)).

Proof. To lighten notation, we suppress the ν-dependence as well as the W -dependence in the no-
tation in the proof. First, we show that the asserted inequality in (2) is a consequence of part (1)
and

(1a) aδ
′,oc,2j
kδ (ν) + aδ

′,oc,2j+1
kδ (ν) ≥ aδ,oc,jkδ (ν) for all j, k ≤ tf/δ − 1.

Indeed, using part (1) and the fact that 1− aδ,idlet = aδ,critt +
∑

j≥0 a
δ,oc,j
t , we have

a2
−nδ,idle
t (ν)− aδ,idlet (ν) = (aδ,critt − a2

−nδ,crit
t ) +

(∑
j≥0

aδ,oc,jt −
∑
j′≥0

a2
−nδ,oc,j′

t

)
.

Here, the first summand is bounded from above by aδ,critt ≤ aδ,crittf
. By part (1a), the second summand

is bounded from above by∑
j≥0

(aδ,oc,jt − aδ,oc,j(k−1)δ) +
∑
j′≥0

(a2
−nδ,oc,j′

(k−1)δ − a2
−nδ,oc,j′

t ). (12)

Note that by monotonicity inside the discretization, the second summand in (12) is bounded from
above by

a2
−nδ,oc,k−1

(k−1)δ − a2
−nδ,oc,k−1
t ≤ ν(∆δ(k − 1)).

Similarly, the first summand in (12) can be bounded from above by∑
j≥k

(aδ,oc,jt − aδ,oc,j(k−1)δ) ≤
∑
j≥k

ν(∆δ(k − 1)×∆δ(j)× [0, 1]) ≤ ν(∆δ(k − 1)).

Next, we prove (1) and (1a) by induction over k. That is, let us assume that part (1) holds for t ≤
(k − 1)δ and part (1a) holds for (k − 1)δ. First, part (1a) is trivial for j < k. If j ≥ k, then part (1a)
follows from the defining integral formula once part (1) is shown.

For part (1), we consider the cases t ∈ ((k − 1)δ, (k − 1/2)δ], t ∈ ((k − 1/2)δ, kδ) and t = kδ
separately. The case t ∈ ((k − 1)δ, (k − 1/2)δ] is a consequence of Lemma 3.2 part (1) with

a = aδ,idle(k−1)δ and a′ = aδ
′,idle

(k−1)δ. For t ∈ ((k − 1/2)δ, kδ) similar arguments apply. Finally, assume
that t = kδ, so that

aδ,idlekδ = aδ,idlekδ− + aδ,oc,k−1kδ− and aδ
′,idle
kδ = aδ

′,idle
kδ− + aδ

′,oc,2k−1
kδ− .

We show, more generally, that for every t ∈ ((k − 1)δ, kδ),

aδ
′,idle
t + aδ

′,oc,2k−2
t + aδ

′,oc,2k−1
t ≥ aδ,idlet + aδ,oc,k−1t . (13)

Indeed, if
aδ
′,idle

(k−1)δ + aδ
′,oc,2k−2

(k−1)δ ≥ aδ,idle(k−1)δ + aδ,oc,k−1(k−1)δ ,
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then, as in the case t ∈ ((k − 1)δ, (k − 1/2)δ] considered above, we use Lemma 3.2 part (1).
Otherwise, applying Lemma 3.2 part (1) inside the integral, for t ∈ ((k − 1)δ, (k − 1/2)δ],

(aδ
′,idle
t + aδ

′,oc,2k−2
t )− (aδ

′,idle
(k−1)δ + aδ

′,oc,2k−2
(k−1)δ ) = −

∫
((k−1)δ,t]

ν(ds, [0, tf ], [0, a
δ′,idle
s− + aδ

′,oc,2k−2
s− ])

≥ −
∫
((k−1)δ,t]

ν(ds, [0, tf ], [0, a
δ,idle
s− + aδ,oc,k−1s− ])

= (aδ,idlet + aδ,oc,k−1t )− (aδ,idle(k−1)δ + aδ,oc,k−1(k−1)δ ).

In particular, by induction hypothesis,

aδ
′,idle
t + aδ

′,oc,2k−2
t + aδ

′,oc,2k−1
t ≥ aδ

′,idle
(k−1)δ + aδ

′,oc,2k−2
(k−1)δ + aδ

′,oc,2k−1
t

+ (aδ,idlet + aδ,oc,k−1t )− (aδ,idle(k−1)δ + aδ,oc,k−1(k−1)δ ) ≥ aδ,idlet + aδ,oc,k−1t .

Therefore, for t ∈ ((k− 1/2)δ, kδ) the assertion is again a consequence of Lemma 3.2 part (1). This
completes the proof of (13) and thereby of the lemma.

Lemma 3.5 in particular implies that in the definition βt(ν, r) = r − lim supδ↓0 ra
δ,idle
t (r−1ν) the

limes superior is in fact a limit. We are now in the position to prove Proposition 2.4.

Proof of Proposition 2.4. First, note that∫ t

0

ν(ds, [t, tf ],W, [0, a
δ,idle
s− (r−1ν)]) = r

∑
j≥0

aδ,oc,jt (r−1ν) = r − raδ,idlet (r−1ν)− raδ,critt (r−1ν).

Hence, by monotone convergence,∫ t

0

ν(ds, [t, tf ],W, [0, 1− βs−(ν, r)/r]) = lim
δ↓0

∫ t

0

ν(ds, [t, tf ],W, [0, a
δ,idle
s− (r−1ν)])

= βt(ν, r)− r lim
δ↓0

aδ,critt (r−1ν).

Now, Lemma 3.4 part (1) implies that limδ↓0 a
δ,crit
t (r−1ν) = 0 which completes the proof.

3.5 Continuity for the approximation

To prepare the proof of continuous dependence of the unique solution of (10) w.r.t. the driving measure,
we present two auxiliary results showing continuous dependence in simpler settings.

Lemma 3.6. Let a·(·) : [0, tf ] ×Mac(µT) → [0, 1] be a function such that 1) ν 7→ as(ν) is τ -
continuous for every s ≤ tf and 2) s 7→ as(ν) ∈ [0, 1] is piecewise continuous and monotone for
every ν ∈Mac(µT). Then, also the map

Φ : ν 7→ ν(ds, dt, dx, (as(ν) + du) ∩ [0, 1])

is continuous on Mac(µT) where continuity is tested on sets of the form A × [a, b] with A ∈
B([0, tf ]

2 ×W ) and −1 ≤ a < b ≤ 1.

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



Large deviations for the capacity in dynamic spatial relay networks 15

Proof. To prove the claim, we show that∣∣∣ ∫
A

ν(ds, dt, dx, [a+ as(ν), b+ as(ν)])−
∫
A

ν ′(ds, dt, dx, [a+ as(ν
′), b+ as(ν

′)])
∣∣∣

becomes arbitrarily small for ν ′ sufficiently close to ν. To simplify notation, we omit the integration
symbols dt and dx in the rest of the proof. Introducing a mixed expression, it suffices to bound the
following two contributions∣∣∣ ∫

A

(ν − ν ′)(ds, [a+ as(ν), b+ as(ν)])
∣∣∣

+

∫
A

ν ′(ds, [a+ a−s (ν, ν ′), a+ a+s (ν, ν ′)] ∪ [b+ a−s (ν, ν ′), b+ a+s (ν, ν ′)])

(14)

where a−(ν, ν ′) = as(ν) ∧ as(ν ′) and a+(ν, ν ′) = as(ν) ∨ as(ν ′). Let D be a partition of [0, tf ]
into intervals ∆δ′(i) with mesh size δ′ > 0, which is compatible with the piecewise structure and write
Ii = ∆δ′(i)× [0, tf ]×W .

Then, the first summand in (14) can be bounded by∑
i∈D

∣∣(ν − ν ′)(A ∩ Ii, [a+ aiδ′(ν), b+ aiδ′(ν)])
∣∣

+
∑
i∈D

∫
A∩Ii

ν(ds, [a+ as(ν), a+ aiδ′(ν)] ∪ [b+ as(ν), b+ aiδ′(ν)])

+
∑
i∈D

∫
A∩Ii

ν ′(ds, [a+ as(ν), a+ aiδ′(ν)] ∪ [b+ as(ν), b+ aiδ′(ν)]).

(15)

Moreover, by continuity of as(ν) w.r.t. s, for sufficiently small δ′, we have supi∈D |as(ν)−aiδ′(ν)| < ε
. Thus, the last two lines in (15) can be bounded from above by

2
∑
i∈D

ν(A ∩ Ii, [a+ aiδ′(ν)− ε, a+ aiδ′(ν)] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν)])

+
∑
i∈D

∣∣(ν ′ − ν)
(
A ∩ Ii ×

(
[a+ aiδ′(ν)− ε, a+ aiδ′(ν)] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν)]

))∣∣.
Since ∑

i∈D

∣∣∣A ∩ Ii, [a+ aiδ′(ν)− ε, a+ aiδ′(ν)] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν)])
∣∣∣ ≤ 2ε,

by part (1) of Lemma 3.1, the first term vanishes as δ′ tends to zero. Also the second term becomes
arbitrarily close to zero for ν ′ sufficiently close to ν. This also applies to the first line in (15).

In order to estimate the second contribution in (14), we use similar arguments. Fix the same mesh
size δ′ as above, and let ν ′ be sufficiently close to ν, such that also supi≥0 |aiδ′(ν) − aiδ′(ν ′)| < ε.
Then by piecewise monotonicity we can bound from above by,∑

i∈D

ν ′(A ∩ Ii, [a+ a−iδ′(ν, ν
′), a+ a+(i+1)δ′(ν, ν

′)] ∪ [b+ a−iδ′(ν, ν
′), b+ a+(i+1)δ′(ν, ν

′)])

≤
∑
i∈D

ν ′(A ∩ Ii, [a+ aiδ′(ν)− ε, a+ aiδ′(ν) + 2ε] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν) + 2ε]).
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Again up to an arbitrarily small error, this is equal to∑
i∈D

ν(A ∩ Ii, [a+ aiδ′(ν)− ε, a+ aiδ′(ν) + 2ε] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν) + 2ε])

for ν ′ sufficiently close to ν and∑
i∈D

∣∣∣A ∩ Ii, [a+ aiδ′(ν)− ε, a+ aiδ′(ν) + 2ε] ∪ [b+ aiδ′(ν)− ε, b+ aiδ′(ν) + 2ε]
∣∣∣ ≤ 6|W |t2f ε.

Hence part (1) of Lemma 3.1 concludes the proof.

The following result allows us to deduce continuity of solutions of the approximating system of differ-
ential equations.

Lemma 3.7. Let δ > 0 be arbitrary and Φ : Mac(µT)→Mac(µT) and a : Mac(µT)→ [0, 1] be
continuous. Then, the solution b(ν) of the differential equation

bt =

∫ t

(k−1)δ
Φ(ν)(ds, A,W, [0, a(ν)− bs]) (16)

is continuous onMac(µT) for all A ∈ B([0, tf ]).

Proof. Let ν ′ ∈Mac(µT). Then, we introduce an intermediate solution bt(ν, ν ′) of

bt =

∫ t

(k−1)δ
Φ(ν ′)(ds, A,W, [0, a(ν)− bs]).

First, by [9, Proposition 2.5], |bt(ν, ν ′) − bt(ν)| becomes arbitrarily small if ν ′ is sufficiently close to
ν, so that it remains to consider the deviation |bt(ν, ν ′)− bt(ν ′)|. We claim that

|bt(ν ′)− bt(ν, ν ′)| ≤ |a(ν ′)− a(ν)|.

To prove this claim assume that a(ν) ≤ a(ν ′), noting similar arguments are valid if the inequality is
reversed. Then, part (2) of Lemma 3.2 shows that

bt(ν
′)− bt(ν, ν ′) ≥ 0.

Applying part (1) of Lemma 3.2 to the trajectories a(ν ′)− bt(ν ′) and a(ν)− bt(ν, ν ′) gives that

bt(ν
′)− bt(ν, ν ′) ≤ a(ν ′)− a(ν),

as required.

Relying on Lemmas 3.6 and 3.7, we now prove Proposition 2.5.

Proof of Proposition 2.5. We start by establishing continuity of the scalar quantity aδ,idlet (ν). Let k ≥ 1
be such that t ∈ ∆δ(k− 1) and assume that we have already established continuity of aδ,idlet′ (ν) and
{aδ,oc,jt′ (ν)}j≥0 for all t′ ≤ (k − 1)δ.

Let (k − 1)δ < t < kδ. To prove continuity of aδ,idlet (ν), note that Lemma 3.7, with a = aδ,idle(k−1)δ(ν)

and Φ the identity map, yield continuity of the solution bt(ν) of the equation (16). But aδ,idlet (ν) =
aδ,idle(k−1)δ(ν)− bt(ν) and thus is also continuous.

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



Large deviations for the capacity in dynamic spatial relay networks 17

This also proves continuity of {aδ,oc,jt (ν)}j≥k. Indeed, applying induction and Lemma 3.6 with a =

−1, b = 0 and as(ν) = aδ,idles (ν) shows that aδ,oc,jt (ν) is continuous in ν. In order to prove continuity
of aδ,oc,k−1t (ν), consider the integral equation

bt =

∫ t

(k−1)δ
ν(ds, A,W, [as(ν), as(ν) + a′(ν)− bs]) =

∫ t

(k−1)δ
Φ(ν)(ds, A,W, [0, a′(ν)− bs])

where a′(ν) = aδ,oc,k−1(k−1)δ (ν) is continuous by induction assumption and Φ is defined as in Lemma 3.6

with a(ν) = aδ,idle(ν) satisfying its assumptions. Thus, by Lemma 3.7, the solution bt(ν) is continu-
ous. But then aδ,oc,k−1t (ν) = aδ,oc,k−1(k−1)δ (ν)− bt(ν) is also continuous.

For t = kδ, first note that aδ,oc,k−1kδ (ν) = 0 is continuous and also the mappings {aδ,oc,jkδ (ν)}j≥k =

{aδ,oc,jkδ− (ν)}j≥k are continuous. Further since aδ,idlekδ (ν) = aδ,idlekδ− (ν) + aδ,oc,k−1kδ− (ν) is a sum of con-
tinuous mappings, it is also continuous which completes the induction step.

Finally, for the continuity for the measure valued process γδ(ν, r) note that

ν(ds, dt, dx, [aδ,idles− (ν), 1]) =

tf/δ∑
k=0

ν(ds, dt, dx, [aδ,idles− (ν), 1])1{(k − 1)δ ≤ s < kδ}.

Every summand is continuous by an application of Lemma 3.6 with a = 0, b = 1 and a(ν) =
aδ,idle(ν) which finishes the proof.

3.6 Proof of Propositions 2.6 and 2.8

In this subsection, we prove that the solutions of the approximating system (10) give rise to good ap-
proximations to the true process of frustrated transmitters – even when measured in a strong topology
such as total variation distance. More precisely, we show the exponentially good approximation prop-
erty for empirical measures (Proposition 2.6) and uniform approximation on sets of bounded entropy
(Proposition 2.8).

Proof of Propositions 2.6 and 2.8. First, let ν ∈Mac(µT)∪Memp(V ) be arbitrary. Now, monotonic-
ity in δ gives that

‖γ(ν, r)− γδ(ν, r)‖
= lim

δ′↓0
‖γδ′(ν, r)− γδ(ν, r)‖

= lim
δ′↓0

sup
A∈B([0,tf ]2×W )

∫
A×[0,1]

1{aδ,idles− (r−1ν) ≤ u ≤ aδ
′,idle
s− (r−1ν)}ν(d(s, t, x, u))

≤ ν(Aδ∗(ν)),

where
Aδ∗(ν) = {(s, t, x, u) ∈ V : u ∈ [aidles− (r−1ν), aδ,idles− (r−1ν)]}.

Note that by part (2) of Lemma 3.5,

sup
s≤tf

(aidles− (r−1ν)− aδ,idles− (r−1ν)) ≤ aδ,crittf
(r−1ν) + 2 sup

l
ν(∆δ(l))

so that the result follows from Lemma 3.3 part (2) and part (3).
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3.7 Proof of Proposition 2.7

Next, we need to show that we may replace r−1λ by r. More precisely, we claim that

γδ(Lλ, r)− γδ(Lλ, rλ)

is an exponentially good approximation of zero in total variation distance. To achieve this goal, we in-
troduce a refinement of the approximation defined by (10). This refinement takes into account not only
uncertainties in the time dimension, but also uncertainties with respect to the relay number. Loosely
speaking, the approximations are built on the idea that for r > rλ, idle relays are reduced with rate
r−1aidle, whereas occupied relays are generated only at rate r−1λ aidle. More precisely, we introduce
the following system of differential equations.

Definition 3.8. Let ρ > 1 and ν be an empirical measure. Then,

aidlet = aidle(k−1)δ −
∫
[(k−1)δ,t]

ν(ds, [0, tf ],W, [0, a
idle
s− ])

aidlekδ = aidlekδ− + aoc,k−1kδ−

aoc,k−1t = aoc,k−1(k−1)δ −
∫
[(k−1)δ,t]

ν(ds, [0, tf ],W, [a
idle
s− , a

idle
s− + aoc,k−1s− ])

aoc,k−1kδ = 0

aoc,jt =

∫
[0,t]

ν(ds,∆δ(j),W, [0, ρ
−1aidles− ])

acritt = acrit(k−1)δ +

∫
[(k−1)δ,t]

ν(ds,∆δ(k − 1),W, [0, aidles− + aoc,k−1s− ])

+

∫ t

0

ν(ds, [kδ, tf ],W, [a
idle
s− , a

idle
s− + aoc,k−1s− ])

acrit
′

t =

∫
[0,t]

ν(ds, [0, tf ],W, [ρ
−1aidles− , a

idle
s− ])

(17)

where j ≥ k and the initial condition is given by aidle0 = 1 and all other quantities equal to zero.

If ν is an empirical measure, then the system (17) has a unique solution that we denote by

{aδ,idle(ρ, ν), {aδ,oc,j(ρ, ν)}j≥0, aδ,crit(ρ, ν), aδ,crit
′
(ρ, ν)}.

As before, in the marked setting we then define

γδ(ρ, ν)(ds, dt, dx, du) = ν(ds, dt, dx, [aδ,idles− (ρ, ν), 1]). (18)

Our intuition is that aδ,idle(ρ, ν) should capture relays that can be guaranteed to be idle in the face
of uncertainties stemming from both time and normalization fluctuations. In particular, aδ,idle(ρ, ν)
should be smaller than both aδ,idle(ν) and ρaδ,idle(ρ−1ν) since in the latter approximations only time
fluctuations are taken into account. The next result provides a rigorous argument showing that this
intuition is correct.

For the proof of Proposition 2.7, we extend the strategy implemented for the derivation of Proposi-
tion 2.6. More precisely, in Lemma 3.9 we first make use of the concept of critical relays to provide a
rigorous upper bound for the error exhibited in Definition 17. After that, we rely on Lemma 3.3 to show
that the critical relays are an exponentially good approximation of zero.
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Lemma 3.9. Let ρ > 1 and ν be an empirical measure. Then,

1 for every t ≤ tf , we have aδ,idlet (ρ, ν) ≤ aδ,idlet (ν) ∧ ρaδ,idlet (ρ−1ν),

2 aδ,idlet (ν)− aδ,idlet (ρ, ν) ≤ aδ,critt (ρ, ν) + aδ,crit
′

t (ρ, ν), and

3 ρaδ,idlet (ρ−1ν)− aδ,idlet (ρ, ν) ≤ aδ,critt (ρ, ν) + aδ,crit
′

t (ρ, ν) + ρ− 1.

Proof. We suppress the δ-dependence in the proof and show that

(1) for every t ≤ tf , we have aidlet (ρ, ν) ≤ aidlet (ν) ∧ ρaidlet (ρ−1ν) and

(1a) for every j, k ≥ 0, we have aoc,jkδ (ρ, ν) ≤ aoc,jkδ (ν) ∧ ρaoc,jkδ (ρ−1ν)

using induction on k, where t ∈ ((k − 1)δ, kδ] be arbitrary.

First, assume that t 6= kδ. Then, the inequality aidlet (ρ, ν) ≤ aidlet (ν) follows from Lemma 3.2 applied
with a = aidle(k−1)δ(ρ, ν) and a′ = aidle(k−1)δ(ν). Similarly, the inequality ρ−1aidlet (ρ, ν) ≤ aidlet (ρ−1ν) fol-

lows from Lemma 3.2 applied with a = ρ−1aidle(k−1)δ(ρ, ν) and a′ = aidle(k−1)δ(ρ
−1ν). From Lemma 3.2,

we also conclude that

aidlet (ρ, ν) + aoc,k−1t (ρ, ν) ≤ (aidlet (ν) + aoc,k−1t (ν)) ∧ (aidlet (ρ−1ν) + aoc,k−1t (ρ−1ν)).

Hence, part (1) also holds at t = kδ. Part (1a) follows from part (1) by the defining integral formula for
aoc,jkδ (ρ, ν).

Part (2) follows from part (1a), since

aidlet (ν)− aidlet (ρ, ν) =
(∑
j≥0

aoc,jt (ρ, ν) + acritt (ρ, ν) + acrit
′

t (ρ, ν)
)
−
(∑
j≥0

aoc,jt (ν) + acritt (ν)
)
.

Similarly, we can represent the difference ρaidlet (ρ−1ν)− aidlet (ρ, ν) as(∑
j≥0

aoc,jt (ρ, ν) + acritt (ρ, ν) + acrit
′

t (ρ, ν)
)
− ρ
(∑
j≥0

aoc,jt (ρ−1ν) + acritt (ρ−1ν)
)

+ ρ− 1,

so that an application of part (1a) concludes the proof of part (3).

Next, we note that as in Lemma 3.4 the number of users aδ,crit(ρ, ν) that are critical due to time
discretization vanish in the limit δ ↓ 0.

Lemma 3.10. Put r−λ = r ∧ rλ, r+λ = r ∨ rλ and ρλ = r+λ /r
−
λ . Then, aδ,crittf

(ρλ, (r
−
λ )−1Lλ) is an

exponentially good approximation of zero.

Proof. Since the arguments from Lemma 3.4 apply verbatim, we omit the proof.

Moreover, also second-type critical users aδ,crit
′
(ρ, ν) become negligible as δ ↓ 0.

Lemma 3.11. It holds that aδ,crit
′

tf
(ρλ, (r

−
λ )−1Lλ) is exponentially equivalent to zero.
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Proof. Since aδ,idle(ρλ, (r
−
λ )−1Lλ) is bounded above by 1,

lim sup
λ↑∞

sup
t∈[0,tf ]

|1− ρλ|aδ,idlet− (ρλ, (r
−
λ )−1Lλ) ≤ lim sup

λ↑∞
|1− ρλ| = 0.

In particular, the asserted exponential equivalence is a consequence of part (3) of Lemma 3.3.

Corollary 3.12. The expressions

aδ,idlet (r−1Lλ)− aδ,idlet (ρλ, (r
−
λ )−1Lλ) and aδ,idlet (r−1λ Lλ)− aδ,idlet (ρλ, (r

−
λ )−1Lλ).

are both of exponentially good approximations of 0.

Proof. We only prove the first assertion, as the second one is shown using similar arguments. If
rλ > r, then part (2) of Lemma 3.9 gives the upper bound for

|aδ,idlet (r−1Lλ)− aδ,idlet (ρλ, r
−1Lλ)| ≤ aδ,critt (ρλ, r

−1Lλ) + aδ,crit
′

t (ρλ, r
−1Lλ).

Hence, in that case Lemmas 3.10 and 3.11 conclude the proof. Similarly, if r > rλ, then part (3) of
Lemma 3.9 gives that

|ρλaδ,idlet (r−1Lλ)− aδ,idlet (ρλ, (r
−
λ )−1Lλ)| ≤ aδ,critt (ρλ, r

−1
λ Lλ) + aδ,crit

′

t (ρλ, r
−1
λ Lλ) + ρλ − 1,

so that another application of Lemmas 3.10 and 3.11 concludes the proof.

Proof of Proposition 2.7. As in the proof of Proposition 2.8, we see that

‖γδ(Lλ, r)− γδ(Lλ, rλ)‖ ≤ ‖γδ(Lλ, r)− γδ(ρλ, (r−λ )−1Lλ)‖+ ‖γδ(ρλ, (r−λ )−1Lλ)− γδ(Lλ, rλ)‖
≤ Lλ(A

(1),δ
∗ (Lλ)) + Lλ(A

(2),λ,δ
∗ (Lλ)),

where

A(1),λ,δ
∗ (Lλ) = {(s, t, x, u) ∈ V : u ∈ [aδ,idlet (ρλ, (r

−
λ )−1Lλ), a

δ,idle
t (r−1Lλ)]}

and
A(2),λ,δ
∗ (Lλ) = {(s, t, x, u) ∈ V : u ∈ [aδ,idlet (ρλ, (r

−
λ )−1Lλ), a

δ,idle
t (r−1λ Lλ)]}.

Hence, applying Lemma 3.3 part (3) together with Corollary 3.12 concludes the proof.

4 Outline of proof of Theorem 1.2

Following the route of [9], we prove Theorem 1.2 by reducing it to the setting of flat preference kernels
considered in Theorem 1.1. Although in general, the preference kernel κ is non-flat on a global scale,
our assumptions imply that it can be approximated by a flat preference kernel locally. This allows us to
apply Theorem 1.1 on a local scale. In comparison to the setting in [9], the introduction of exit times
entails that perturbations of the underlying point process can lead to more severe fluctuations in the
process of frustrated users. Hence, more refined estimates are needed in order to derive the desired
exponential approximation properties.

To make this precise, we partition the given observation windowW into cubesW δ = {W1, . . . ,Wk}
of side length δ. Then, we introduce an approximating process as follows. We let a transmitter choose
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a sub-windowWi according to the preference function, whereas the relay choice withinWi is uniform.
More precisely, put νR = µR or νR = lλ and let Zλ,δ(νR) denote a Poisson point process on the state
space V (Y λ) = [0, tf ]

2 ×W × Y λ with intensity measure λµδ(νR, lλ) where

µδ(νR, lλ)(ds, dt, dx, dy) = κδνR,lλ(y|x)(µt
T ⊗ µs

T ⊗ lλ)(ds, dt, dx, dy)

and, recalling κνR from (7),

κδνR,lλ(y|x) =
k∑
i=1

κνR(Wi|x)

lλ(Wi)
1{y ∈ Wi}.

Note that our verbal description of the approximating process fits best to the process Zλ,δ(lλ). How-
ever, here the intensities of the locally flat preference kernels κlλ(Wi|x) vary in λ, even after normal-
ization, so that this setting is not covered by Theorem 1.1. This motivates the approximation Zλ,δ(νR)
with νR = µR and with νR = lλ.

Now, note that Zλ,δ(νR) is a Poisson point process on the state space V (Y λ). In equation (2) we
have seen how to construct an empirical measure of frustrated transmitters from such a Poisson point
process. In the spatial situation we denote this process by γ(Lδλ(νR)) where

Lδλ(νR) =
1

λ

∑
Zi∈Zλ,δ(νR)

δZi .

To prove Theorem 1.2, we proceed in four steps. First, we leverage Theorem 1.1 to establish an LDP
for γ(Lδλ(µR)). As above, we denote by

µδT(µR, µR) = µδ(µR, µR)⊗U([0, 1]),

the intensity measure on the extended state space V ′.

Proposition 4.1. The family of random measures γ(Lδλ(µR)) satisfies the LDP with good rate function
Iδ(γ) = infn∈M′: γ(n)=γ h(n|µδT(µR, µR)).

Second, it is possible to switch between νR = lλ and νR = µR without changing substantially the
approximating process of frustrated transmitters.

Proposition 4.2. The family of random measures γ(Lδλ(µR)) − γ(Lδλ(lλ)) is ‖ · ‖-exponentially
equivalent to zero.

Third, γ(Lδλ(lλ)) is an exponentially good approximation of Γλ.

Proposition 4.3. The family of random measures γ(Lδλ(lλ)) is an ‖ · ‖-exponentially good approxi-
mations of Γλ.

Finally, after having established Propositions 4.1, 4.2 and 4.3, in Section 5.3 the proof of Theorem 1.2
is completed by identifying the rate function.
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5 Proof of Theorem 1.2 and its supporting results

5.1 Proof of Propositions 4.1

In order to prove Proposition 4.1, we perform a reduction to the setting of flat preference functions
considered in Theorem 1.1.

Proof of Proposition 4.1. First, we decompose γ(Lδλ(µR)) into a sum of independent random mea-
sures

γ(Lδλ(µR)) =
∑
i≤k

γ(Lδ,iλ (µR)),

where Lδ,iλ (µR) is the empirical measure associated with a Poisson point process on V (Y λ ∩Wi)
with intensity measure

λ
κµR(Wi|x)

lλ(Wi)
1{y ∈ Wi}(µt

T ⊗ µs
T ⊗ lλ)(ds, dt, dx, dy).

Then, Theorem 1.1 shows that γ(Lδ,iλ (µR)) satisfies the LDP with good rate function

γ 7→ inf
ν∈M: γ(ν,µR(Wi))=γ

h(ν|µT,i),

where
µT,i(ds, dt, dx, du) = κµR(Wi|x)µT(ds, dt, dx, du).

Finally, by independence, we conclude from the identity

µδT(µR, µR) =
∑
i≤k

µT,i(ds, dt, dx, du)⊗ 1{y ∈ Wi}µR(dy)

µR(Wi)

that γ(Lδλ(µR)) satisfies an LDP with good rate function

γ 7→ inf
n∈M′: γ(n)=γ

h(n|µδT(µR, µR)),

as required.

5.2 Proofs of Propositions 4.2 and 4.3

Lemma 5.1 below shows that the total-variation distance between γ(Lδλ(µR)) and γ(Lδλ(lλ)) can be
computed in two steps. First, we determine the set of critical relays. That is, those relays that are
chosen in one of the processes but not the other. Second, we determine the number of transmitters
pointing to the critical relays.

More precisely, for any empirical measure ν on V (Y λ) and any relay y ∈ Y ,

π(ν)−1(y) = {(Si, Ti, Xi, Yi) ∈ supp(ν) : Yi = y}

denotes the set of all transmitters selecting relay y. Then,

Y crit(ν, ν ′) = {y ∈ Y : π(ν)−1(y) 6= π(ν ′)−1(y)}

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



Large deviations for the capacity in dynamic spatial relay networks 23

denotes the set of critical relays. In other words, non-critical relays must be chosen by the same
transmitters in ν and in ν ′. Recalling the definition ofMρ from (11), in the next result, we provide a
concise bound on the total-variation distance between two transmitter processes in terms of critical
relays. We denote by ν ′ ≤ ν stochastic dominance of measures, that is ν ′(A) ≤ ν(A) for all
A ∈ B(V̂ ).

Lemma 5.1. Let ν, ν ′ ∈Mρ be such that ν ′ ≤ ν. Then,

‖γ(ν)− γ(ν ′)‖ ≤ ν(π(ν)−1(Y crit(ν, ν ′))).

Proof. First, the total-variation distance ‖γ(ν)− γ(ν ′)‖ equals

ρ#(supp(ν)∆supp(ν ′)) =

ρ
∑

y∈Y crit(ν,ν′)

#(π−1(γ(ν))(y)∆π−1(γ(ν ′))(y)) + ρ
∑

y 6∈Y crit(ν,ν′)

#(π−1(γ(ν))(y)∆π−1(γ(ν ′))(y)).

Clearly, the first summand is bounded above by ν(π(ν)−1(Y crit(ν, ν ′))). Hence, it remains to show
that the second summand vanishes. In other words, we claim that a transmitter pointing to a non-critical
relay is frustrated in ν if and only if it is frustrated in ν ′.

To prove this claim, we perform induction on the arrival time of the transmitter, noting that the first
transmitter pointing to a relay is always satisfied. Now, let (Si, Ti, Xi, Yi) ∈ ν be a transmitter pointing
to a non-critical relay Yi and assume that we have proven the claim for transmitters arriving before Si.
By induction hypothesis, the relay Yi is already occupied at time Si in ν if and only if it is already
occupied at time Si in ν ′. Therefore, also (Si, Ti, Xi, Yi) is frustrated in ν if and only if it is frustrated
in ν ′.

In order to compare the empirical measures Lδλ(lλ), Lδλ(µR) and Lλ, it is essential to understand the
differences in the intensity measures κδlλ,lλ , κδµR,lλ and κlλ . Therefore, we recall the following intensity
bound from [9, Lemma 5.4], where µλ = µs

T ⊗ lλ.

Lemma 5.2. 1 Let δ > 0 be arbitrary. Then, limλ↑∞
∫
|κδµR,lλ − κ

δ
lλ,lλ
|dµλ = 0.

2 It holds that limδ↓0 limλ↑∞
∫
|κδlλ,lλ − κlλ |dµλ = 0.

3 It holds that limδ↓0 limλ↑∞
∫
|κδµR,µR − κµR |d(µs

T ⊗ µR) = 0.

Proof. This is shown in [9, Lemma 5.4].

Now, we conclude the proof of Propositions 4.2 and 4.3.

Proofs of Propositions 4.2 and 4.3. For the proof of Proposition 4.2, we let κδ,min denote the pointwise
minimum of κδµR,lλ and κδlλ,lλ and write Lmin

λ for the empirical measure of the associated Poisson point
process. In particular,

‖γ(Lδλ(µR))− γ(Lδλ(lλ))‖ ≤ ‖γ(Lδλ(µR))− γ(Lmin
λ )‖+ ‖γ(Lmin

λ )− γ(Lδλ(lλ))‖.

We only derive a bound for the first summand, as we can proceed similarly for the second one.
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First, Lemma 5.1 gives that

‖γ(Lδλ(µR))− γ(Lmin
λ )‖ ≤ Lδλ(µR)(π−1(Lδλ(µR))(Y crit(Lδλ(µR), Lmin

λ ))).

By stochastic monotonicity, the right-hand side is bounded above by

Lδλ(µR)(V̂ )− Lmin
λ (V̂ ) + Lmin

λ (π−1(Lmin
λ )(Y crit(Lδλ(µR), Lmin

λ ))). (19)

For the first part, note that λ(Lλ(µR)(V̂ ) − Lmin
λ (V̂ )) is a Poisson random variable with parameter∫

|κδµR,lλ − κ
δ,min|dµλ. Hence, by part (1) of Lemma 5.2,

lim sup
λ↑∞

λ−1 logP(Lδλ(µR)(V̂ )− Lmin
λ (V̂ ) > ε) = −∞. (20)

For the second summand in (19), we observe that Y crit(Lδλ(µR), Lmin
λ ) is measurable w.r.t. Lδλ(µR)−

Lmin
λ and therefore independent of Lmin

λ . Hence, the expression

λLmin
λ (π−1(Lmin

λ )(Y crit(Lδλ(µR), Lmin
λ )))

is a Cox random variable with random intensity

Bδ,λ =

∫
[0,tf ]2×W

∑
y∈Y crit(Lδλ(µR),L

min
λ )

κδ,min(y|x)(µt
T ⊗ µs

T)(ds, dt, dx).

Since Y crit(Lδλ(µR), Lmin
λ ) is bounded from above by

λ(Lδλ(µR)(V̂ )− Lmin
λ (V̂ )),

by (20) we have
lim sup
λ↑∞

λ−1 logP(Bδ,λ > ελ) = −∞.

Moreover,

P(Lmin
λ (π−1(Lmin

λ )(Y crit(Lδλ(µR), Lmin
λ ))) > ε) ≤ P(Nκ∞µT(V )ε′λ > ελ) + P(Bδ,λ > ε′λ)

where Nκ∞µT(V )ε′λ denotes a Poisson random variable with parameter κ∞µT(V )ε′λ. Hence, part
(3) of Lemma 3.1 concludes the proof Proposition 4.2.

For the proof of Proposition 4.3, we proceed similarly. This time, κδ,min is the pointwise minimum of
κδµR,lλ and κlλ , so that

‖γ(Lδλ(µR))− Γλ‖ ≤ ‖γ(Lδλ(µR))− γ(Lmin
λ )‖+ ‖γ(Lmin

λ )− Γλ‖
and we can proceed as above, applying part (2) of Lemma 5.2 instead of part (1).

5.3 Identification of the rate function and proof of Theorem 1.2

Propositions 4.1 - 4.3 imply already that Γλ satisfies an LDP, but we do not know yet whether the rate
function is of the form asserted in Theorem 1.2. In order to apply the machinery from [3, Theorem
4.2.23], we need uniform bounds on the total-variation distance of frustrated transmitters and the
approximating process in the space of absolutely continuous measures.

To achieve this goal, we proceed in several steps. First, in Section 5.3.1, we introduce an extension of
the approximating process considered in Definition 10 that is capable of reflecting not only fluctuations
in time but also in the measures. Next, in Section 5.3.2, we introduce a coupling construction allowing
us to represent both the frustrated transmitters and their approximations as functions of a common
coupling measure. Finally, these two ingredients are combined in Section 5.3.3 to derive the desired
uniform approximation bound.
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5.3.1 Approximation w.r.t. both time and measure

In Section 2, we have introduced the process of frustrated transmitters as a limit of carefully chosen
time-discretized approximations. In the following, we construct approximations not only w.r.t. time but
also w.r.t. the measure.

Definition 5.3. Let ν, ν ′ ∈Mac(µT) be such that ν ≤ ν ′. Then, we consider the following system of
differential equations

aidlet = aidle(k−1)δ −
∫ t

(k−1)δ
ν ′(ds, [0, tf ],W, [0, a

idle
s ])

aidlekδ = aidlekδ− + aoc,k−1kδ−

aoc,k−1t = aoc,k−1(k−1)δ −
∫ t

(k−1)δ
ν ′(ds, [0, tf ],W, [a

idle
s , aidles + aoc,k−1s ])

aoc,jt =

∫ t

0

ν(ds,∆δ(j),W, [0, a
idle
s ])

acritt = acrit(k−1)δ +

∫ t

(k−1)δ
ν(ds,∆δ(k − 1),W, [0, aidles + aoc,k−1s ])

+

∫ t

0

ν(ds, [kδ, tf ],W, [a
idle
s , aidles + aoc,k−1s ])

acrit
′

t =

∫ t

0

(ν ′ − ν)(ds, [0, tf ],W, [0, a
idle
s + aoc,k−1s ])

aoc,k−1kδ = 0

(21)

where j ≥ k and the initial condition is given by aidle0 = 1 and all other quantities equal to zero.

If ν and ν ′ are absolutely continuous, then the system (21) has a unique solution.

Lemma 5.4. Let ν, ν ′ ∈Mac(µT) be such that ν ≤ ν ′. Then, the system (21) has a unique solution
(aidle(ν, ν ′), aoc,∗(ν, ν ′), acrit(ν, ν ′), acrit

′
(ν, ν ′)).

Proof. Since Lemma 5.4 can be shown along the lines of Proposition 2.3, we omit the proof.

Conceptually, aidle(ν, ν ′) should capture the relays that can be guaranteed to be idle in the face of
uncertainties stemming from both time and measure fluctuations. In particular, aidle(ν, ν ′) should be
smaller than both aidle(ν) and aidle(ν ′) since in the latter approximations only time fluctuations are
taken into account. The next result provides a rigorous argument showing that this intuition is correct.

Lemma 5.5. Let ν, ν ′ ∈Mac(µT) be such that ν ≤ ν ′. Then,

1 for every t ≤ tf , we have aδ,idlet (ν, ν ′) ≤ aδ,idlet (ν) ∧ aδ,idlet (ν ′), and

2 aδ,idlet (ν) ∨ aδ,idlet (ν ′)− aδ,idlet (ν, ν ′) ≤ aδ,critt (ν, ν ′) + aδ,crit
′

t (ν, ν ′).

Proof. We suppress the δ-dependence in the proof. Let us first prove

(1) for every t ≤ tf , we have aidlet (ν, ν ′) ≤ aidlet (ν) ∧ aidlet (ν ′) and
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(1a) for every j, k ≥ 0, we have aoc,jkδ (ν, ν ′) ≤ aoc,jkδ (ν) ∧ aoc,jkδ (ν ′)

by induction on k and let t ∈ ((k − 1)δ, kδ] be arbitrary.

For t 6= kδ, domination for aidlet (ν, ν ′) follows from Lemma 3.2. From the same lemma, we conclude
that domination holds for aidlet (ν, ν ′) + aoc,k−1t (ν, ν ′). Hence, domination for aidlet (ν, ν ′) also holds at
t = kδ. By the defining integral formula for aoc,jkδ (ν, ν ′), part (1a) is implied by part (1). Since

aidlekδ (ν)− aidlekδ (ν, ν ′) = (aockδ(ν, ν
′) + acritkδ (ν, ν ′) + acrit

′

kδ (ν, ν ′))− (aockδ(ν) + acritkδ(ν)),

and similar for aidlekδ (ν ′), part (2) is an immediate consequence of part (1a).

As in Lemma 3.4, the number of users aδ,crit(ν, ν ′) that are critical due to the time discretization,
vanish in the limit δ ↓ 0.

Lemma 5.6. Let ν, ν ′ ∈Mac(µT) be such that ν ≤ ν ′. Then, limδ↓0 a
δ,crit
tf

(ν, ν ′) = 0.

Proof. Since the arguments from Lemma 3.4 apply verbatim, we omit the proof.

Corollary 5.7. Let ν, ν ′ ∈Mac(µT) be such that ν ≤ ν ′. Then, for every t ≤ tf ,

|βt(ν)− βt(ν ′)| ≤ 2‖ν − ν ′‖.

Proof. First, by Lemma 5.5 part (1),

|βt(ν)− βt(ν ′)| ≤ lim sup
δ↓0

(
aδ,idlet (ν)− aδ,idlet (ν, ν ′)

)
+ lim sup

δ↓0

(
aδ,idlet (ν ′)− aδ,idlet (ν, ν ′)

)
.

We only prove the bound for the first summand. The proof for the second summand is the same.
Writing kδ(t) for the integer k determined by t ∈ ∆δ(k − 1), absolute continuity of ν and ν ′ implies
that

lim sup
δ↓0

(
aδ,idlet (ν)− aδ,idlet (ν, ν ′)

)
= lim sup

δ↓0

(
aδ,idlekδ(t)δ

(ν)− aδ,idlekδ(t)δ
(ν, ν ′)

)
.

Hence, by Lemma 5.5 part (2), Lemma 5.6 and the definition of aδ,crit
′
,

lim sup
δ↓0

(
aδ,idlet (ν)− aδ,idlet (ν, ν ′)

)
≤ aδ,crit

′

t (ν, ν ′) ≤ ‖ν − ν ′‖,

as required.

5.3.2 Coupling

As mentioned in the introduction to this section, identifying the rate function with the technique of [3,
Theorem 4.2.23] involves showing that the contraction mappings defining the approximations are close
to the contraction mappings defining the original rate functions uniformly on sets of bounded entropy.
However, [3, Theorem 4.2.23] is applicable if both, the approximating rate functions as well as the
target rate function, are given via contraction mappings applied to a common rate function. Indeed,
although both I and Iδ are defined via contractions based on relative entropy functions, the corre-
sponding a priori measures are different. In order to remove this obstacle, we proceed as in [9, Section
5.5] and introduce a suitable coupling construction.
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To compare different measures on V ′, we add an additional [0,∞]-coordinate and introduce the
coupling space

V ∗ = V ′ × [0, κ∞] = [0, tf ]
2 ×W 2 × [0, 1]× [0, κ∞].

More precisely, given a measure n∗ ∈ M(V ∗) and a measurable function f : W 2 → [0, κ∞], we
construct a measure n∗(f) on V ′ defined by first restricting to the sub-level set

M(f) = {(s, t, x, y, u, v) : v ≤ f(x, y)}

and then forgetting the last coordinate. For instance, this definition allows us to represent µT(µR) and
µδT(µR, µR) as

µT(µR) = µ∗(κµR) and µδT(µR, µR) = µ∗(κδµR,µR),

where
µ∗ = µt

T ⊗ µs
T ⊗ µR ⊗U[0, 1]⊗ | · |.

Using this coupling construction, we now provide concise representations of total-variation distances
of measures in V ′. Indeed, for arbitrary measurable, bounded functions f, g : W 2 → [0, κ∞], we
use the identity n∗(f)− n∗(g) = n∗,+(f, g)− n∗,−(f, g), where

dn∗,+(f, g)

dn∗
(s, t, x, y, u, v) = 1{g(x, y) ≤ v ≤ f(x, y)}

and
dn∗,−(f, g)

dn∗
(s, t, x, y, u, v) = 1{f(x, y) ≤ v ≤ g(x, y)}.

Thus, the total variation distance between n∗(f) and n∗(g) becomes

‖n∗(f)− n∗(g)‖ = max{n∗,+(f, g)(V ∗), n∗,−(f, g)(V ∗)}. (22)

5.3.3 Identification of the rate function

Recall that our goal is to show that the rate function of the LDP for Γλ is given by

I(γ) = inf
n∈M′: γ(n)=γ

h(n|µT(µR)). (23)

After the preparations of the previous subsections, the only core ingredient that is missing to ap-
ply [3, Theorem 4.2.23] is the following uniform approximation result, whereM′

α = {n ∈ M(V ∗) :
h(n|µ∗) ≤ α}.

Lemma 5.8. Let α > 0 be arbitrary. Then, limδ↓0 supn∗∈M′α ‖γ(n∗(κµR))− γ(n∗(κδµR,µR))‖ = 0.

We sketch very briefly how Lemma 5.8 implies that the rate function is of the form asserted in Theo-
rem 1.2. For details, the reader is referred to the proof of [9, Proposition 4.3].

Proof of Theorem 1.2. From Propositions 4.2 and 4.3 we conclude that γ(Lδλ(µR)) form exponential
good approximations of Γλ. Moreover, by Proposition 4.1, the empirical measure γ(Lδλ(µR)) satisfies
an LDP with rate function

Iδ(γ) 7→ inf
n∈M(V ′): γ(n)=γ

h(n|µδT(µR, µR)). (24)

DOI 10.20347/WIAS.PREPRINT.2463 Berlin 2017



C.Hirsch, B.Jahnel 28

Thus, once the uniform approximation bound from Lemma 5.8 is shown, it remains to verify that the
rate functions in (23) and (24) coincide with

inf
n∗∈M(V ∗): γ(n∗(κµR ))=γ

h(n∗|µ∗) and inf
n∗∈M(V ∗): γ(n∗(κδµR,µR

))=γ
h(n∗|µ∗),

respectively. This is achieved by an optimization over the coupling coordinate, see [9, Proposition
4.3].

We conclude the paper by proving Lemma 5.8 along the lines of [9, Lemma 5.5]. Nevertheless, for the
convenience of the reader, we reproduce the most important steps.

Proof of Lemma 5.8. We first simplify notation and write κ and κδ for κµR and κδµR,µR , respectively. By
definition of γ, we need to compare the measures∫

W

n∗(κδ)y(ds, dt, dx, [1− βs(n∗(κδ)y), 1])µR(dy)

and ∫
W

n∗(κ)y(ds, dt, dx, [1− βs(n∗(κ)y), 1])µR(dy).

Recall that, by absolute continuity,

n∗(κ)(ds, dt, dx, dy, du) = n∗(κ)y(ds, dt, dx, du)µR(dy)

and
n∗(κδ)(ds, dt, dx, dy, du) = n∗(κδ)y(ds, dt, dx, du)µR(dy).

We subdivide the comparison into providing bounds separately for

‖
∫
W

(n∗(κ)y − n∗(κδ)y)(ds, dt, dx, [1− βs(n∗(κδ)y), 1])µR(dy)‖

and ∫
W

n∗(κ)y([0, tf ]
2 ×W × I(1− βs(n∗(κ)y), 1− βs(n∗(κδ)y)))µR(dy)

where I(x, y) = [x ∧ y, x ∨ y]. The first expression is bounded above by ‖n∗(κ) − n∗(κδ)‖, and
identity (22), Lemma 3.1 part (2) and Lemma 5.2 part (3) yield that

lim
δ↓0

sup
n∗∈M′α

‖n∗(κ)− n∗(κδ)‖ = 0.

By Corollary 5.7, the second expression is bounded above by n∗(κ)(Cn∗,δ) where

Cn∗,δ = {(s, t, x, y, u) : |u− 1 + βs(n
∗(κ)y)| ≤ 2‖n∗(κ)y − n∗(κδ)y‖}.

In particular, by Lemma 3.1 part (2) it remains to show that limδ↓0 supn∗∈M′α µ(µR)(Cn∗,δ) = 0. For
this, we note that reversing the disintegration of the relay measure gives that

µ(µR)(Cn∗,δ) ≤ 4µt
T([0, tf ]

2)

∫
W 2

‖n∗(κ)y − n∗(κδ)y‖κ(y|x)(µs
T ⊗ µR)(dx, dy)

≤ 4µt
T([0, tf ]

2)µs
T(W )κ∞

∫
W

max{n∗,+(κ, κδ)y(V
′), n∗,−(κ, κδ)y(V

′)}µR(dy)

≤ 4µt
T([0, tf ]

2)µs
T(W )κ∞(n∗,+(κ, κδ)(V ∗) + n∗,−(κ, κδ)(V ∗)).

Hence, using Lemma 3.1 part (2) and Lemma 5.2 finishes the proof.
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