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Finite element pressure stabilizations for incompressible flow
problems

Volker John, Petr Knobloch, Ulrich Wilbrandt

Abstract

Discretizations of incompressible flow problems with pairs of finite element spaces that do
not satisfy a discrete inf-sup condition require a so-called pressure stabilization. This paper gives
an overview and systematic assessment of stabilized methods, including the respective error
analysis.

1 Introduction

The behavior of incompressible flows is modeled by the incompressible Navier–Stokes equations,
given here already in dimensionless form,

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω,

(1)

where Ω ⊂ Rd, d ∈ {2, 3}, is the flow domain, T the final time, u the velocity field, p the pressure, ν
the (dimensionless) kinematic viscosity, and f represents forces acting on the fluid. The first equation
describes the conservation of linear momentum and the second equation, the so-called continuity
equation, the conservation of mass. System (1) has to be equipped with an initial velocity condition
and with boundary conditions on the boundary ∂Ω.

There are three aspects that might lead to difficulties in the analysis and numerical simulation of the
incompressible Navier–Stokes equations:

� It is a coupled system with two unknowns, where the pressure does not appear in the continuity
equation. One obtains a so-called saddle point problem.

� The Navier–Stokes equations form a nonlinear system.

� In the case of (very) small viscosities, the first order term (u ·∇)u dominates in the momentum
equation. This situation corresponds to turbulent flows. System (1) is convection-dominated and
its numerical simulation requires special approaches, so-called turbulence models.

This review will discuss numerical methods for treating the coupling of velocity and pressure. To con-
centrate on this issue, it suffices to consider the (scaled) stationary Stokes equations with homoge-
neous Dirichlet boundary conditions

−ν∆u+∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω.
(2)
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V. John, P. Knobloch, U. Wilbrandt 2

System (2) is a linear saddle point problem. The theory of linear saddle point problems was developed
in the early 1970s in the seminal papers [6, 24]. In this theory, the weak or variational form of (2)
is studied. It turns out that this form is well posed, i.e., there exists a unique solution that depends
continuously on the right-hand side, if the spaces V for the velocity andQ for the pressure are chosen
appropriately.

Applying a Galerkin finite element method to discretize the variational form of the Stokes equations,
i.e., solely replacing the infinite-dimensional spaces V and Q with finite-dimensional spaces V h and
Qh, leads to a finite-dimensional linear saddle point problem, whose algebraic form is

(
A BT

B 0

)(
u
p

)
=

(
f
0

)
.

From the theory of linear saddle point problems, it follows that the Galerkin finite element method is
only well posed for appropriate choices of the finite element spaces. Concretely, the spaces have to
satisfy a discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(
∇ · vh, qh

)

‖∇vh‖L2(Ω) ‖qh‖L2(Ω)

≥ βhis > 0. (3)

For obtaining optimal order convergence, βhis has to be independent of the mesh width h.

In practice, it turns out that the inequality (3) requires the use of different finite element spaces for
velocity and pressure. However, it was proved that lowest order spaces, using continuous linear or
d-linear functions for the finite element velocity and piecewise constant functions for the discrete pres-
sure, do not satisfy (3). Thus, implementing finite element methods that respect (3) requires some
effort. Another issue in practice is that many standard preconditioners for iterative solvers of linear
systems of equations cannot be applied to linear saddle point problems due to the zeros in the main
diagonal of the system matrix.

In view of these drawbacks, numerical methods were developed in order to circumvent the discrete
inf-sup condition (3). The main idea of these so-called pressure stabilizations consists in introducing
a pressure term in the finite element continuity equation to remove the saddle point character of the
discrete problem, leading to an algebraic system of the form

(
A D
B −C

)(
u
p

)
=

(
f
g

)
. (4)

Several methods were proposed in the 1980s, the first one by Brezzi and Pitkäranta in [26] and a
number of residual-based pressure stabilizations in [55, 54, 39]. At the end of the 1990s and during the
2000s, new approaches were developed, which often contain terms where only the pressure appears,
e.g., in [34, 13, 38, 29]. In recent years, variants of stabilized methods were proposed that allow an
easier implementation as previous variants, e.g., in [12, 7, 31], or a finite element error analysis was
presented with less regularity assumptions on the solution of the continuous problem in [83].

Altogether, there are many different proposals for pressure stabilizations. However, to the best of our
knowledge, there is no up-to-date comprehensive survey of this topic in the literature available. In
addition, it was pointed out as an open problem in [57] that Systematic assessments of the proposed
stabilized methods are missing that clarify their advantages and drawbacks and give finally proposals
which ones should be preferred in simulations. The present paper aims to close these gaps to some
extent. However, there will be also some limitations of this survey. It is restricted to conforming finite
element methods and to the discussion of the a priori error analysis.
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Finite element pressure stabilizations for incompressible flow problems 3

Throughout the paper, standard notation for Lebesgue and Sobolev spaces is used. The inner product
of L2(Ω)d, d ∈ {1, 2, 3}, will be denoted by (·, ·). All constants C , C1, etc. do neither depend on the
viscosity coefficient ν nor on the mesh width h. The notation C indicates a general constant that can
have different values at different places.

The paper is organized as follows. Section 2 introduces the considered finite element spaces and
provides some properties which are used in the numerical analysis. Available convergence results
for inf-sup stable discretizations are summarized in Section 3, to allow an easy comparison with the
results for pressure-stabilized discretizations. The topic of Section 4 is the class of residual-based
stabilizations. For some of them, the finite element analysis is presented in detail. Stabilizations that
use only the pressure are described in Section 5. A detailed presentation of the analysis is provided for
a local projection stabilization (LPS) scheme. Section 6 describes the connection of some stabilized
discretizations to inf-sup stable methods that are enriched with bubble functions. Finally, numerical
studies involving three residual-based stabilizations and one LPS method are presented in Section 7.

2 Weak Form of the Stokes Equations, Finite Element Spaces

Throughout the remaining part of this chapter, the following assumptions on the data of the Stokes
problem (2) will be made. It will be assumed that Ω is a bounded domain with a polygonal resp. poly-
hedral Lipschitz-continuous boundary, the viscosity ν is a positive constant, and f ∈ L2(Ω)d.

A weak form of the Stokes equations (2) reads: Given f ∈ L2(Ω)d, find (u, p) ∈ H1
0 (Ω)d × L2

0(Ω)
such that

ν(∇u,∇v)− (∇ · v, p) + (∇ · u, q) = (f ,v) ∀ (v, q) ∈ H1
0 (Ω)d × L2

0(Ω). (5)

We shall use the notation V = H1
0 (Ω)d and Q = L2

0(Ω). The unique solvability of (5) is closely
connected with the fact that the spaces V and Q satisfy the inf–sup condition

inf
q∈Q\{0}

sup
v∈V \{0}

(∇ · v, q)
‖∇v‖L2(Ω) ‖q‖L2(Ω)

≥ βis > 0. (6)

The inequality

‖∇ · v‖L2(Ω) ≤ ‖∇v‖L2(Ω) ∀ v ∈ V (7)

will be used in the analysis. The space of weakly divergence-free functions is given by

Vdiv = {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q} .

We assume that we are given a family {T h} of triangulations of Ω consisting of simplices, quadrilat-
erals or hexahedra and possessing the usual compatibility properties. The set of interior faces (edges
for d = 2) will be denoted by Eh. We denote hK := diam(K) and hE := diam(E) for any K ∈ T h
and E ∈ Eh and assume that hK ≤ h for all K ∈ T h. For each face E ∈ Eh, we denote by nE
a fixed unit normal vector to E and by [|q|]E the jump of the function q across the face E such that
[|q|]E > 0 if q decreases in the direction of nE .

For each T h, we introduce finite element spaces V h ⊂ V and Qh ⊂ Q containing piecewise
(mapped) polynomials of degree k ≥ 1 and l ≥ 0, respectively. We assume that the finite element
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spaces V h and Qh possess standard interpolation properties. More precisely, we denote by Ih :
V ∩Hk+1(Ω)d → Vh and Jh : Q ∩H l+1(Ω)→ Qh interpolation operators satisfying

(∑

K∈T h

h−2
K

∥∥v − Ihv
∥∥2

L2(K)

)1/2

+
∥∥∇(v − Ihv)

∥∥
L2(Ω)

+

(∑

K∈T h

h2
K

∥∥∆(v − Ihv)
∥∥2

L2(K)

)1/2

+

(∑

E∈Eh
h−1
E

∥∥v − Ihv
∥∥2

L2(E)

)1/2

≤ C hk ‖v‖Hk+1(Ω) , (8)

(∑

K∈T h

h−2
K

∥∥q − Jhq
∥∥2

L2(K)

)1/2

+

(∑

K∈T h

∥∥∇(q − Jhq)
∥∥2

L2(K)

)1/2

+

(∑

K∈T h

∑

E⊂∂K
h−1
E

∥∥q − (Jhq)|K
∥∥2

L2(E)

)1/2

≤ C hl ‖q‖Hl+1(Ω) , (9)

for v ∈ V ∩ Hk+1(Ω)d and q ∈ Q ∩ H l+1(Ω). The operator Ih may be the standard Lagrange
interpolation. The definition of Jh depends on the construction of Qh. For example, if Qh ⊂ H1(Ω),
the operator Jh may be defined as the Lagrange interpolation projected into Q. If the functions in Qh

are discontinuous across faces, the operator Jh may be defined as the projection into a polynomial
space on each element of the triangulation.

In addition, for v ∈ V , we shall use a piecewise (multi)linear interpolant Ihv ∈ V h (e.g., the Clément
or Scott–Zhang interpolant) satisfying

(∑

K∈T h

h−2
K

∥∥v − Ihv
∥∥2

L2(K)

)1/2

+
∥∥∇Ihv

∥∥
L2(Ω)

+

(∑

E∈Eh
h−1
E

∥∥v − Ihv
∥∥2

L2(E)

)1/2

≤ C ‖∇v‖L2(Ω) . (10)

Similarly, for q ∈ Q ∩H1(Ω), we introduce an interpolant J hq ∈ Qh satisfying

(∑

K∈T h

h−2
K

∥∥q − J hq
∥∥2

L2(K)

)1/2

+

(∑

K∈T h

∥∥∇J hq
∥∥2

L2(K)

)1/2

+

(∑

K∈T h

∑

E⊂∂K
h−1
E

∥∥q − (J hq)|K
∥∥2

L2(E)

)1/2

≤ C ‖∇q‖L2(Ω) . (11)

Finally, it is assumed that the following inverse inequality holds
∥∥∆vh

∥∥
L2(K)

≤ Cinvh
−1
K

∥∥∇vh
∥∥
L2(K)

∀ vh ∈ V h, K ∈ T h. (12)

Note that Cinv depends on the polynomial degree. It was shown in [53] for some types of mesh cells
that it increases with increasing polynomial degree. For example, it has the value 0, 48, 149.1 for
P1(K), P2(K), and P3(K), respectively, in the case that K is a right isoscale triangle.
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Finite element pressure stabilizations for incompressible flow problems 5

3 Inf-Sup Stable Finite Element Discretizations

Inf-sup stable pairs of finite element spaces satisfy the discrete inf-sup condition (3). For the well-
posedness of the discrete problem, the introduction of a pressure stabilization is not necessary. This
section provides a survey on the most important results from the finite element convergence theory for
inf-sup stable finite element discretizations to facilitate the comparison with the convergence results
for stabilized discretizations presented in the subsequent sections.

Let the spaces V h and Qh satisfy the discrete inf-sup condition (3). Then, the conforming discretiza-
tion of the Stokes problem reads as follows: Find

(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
=
(
f ,vh

)
∀
(
vh, qh

)
∈ V h ×Qh. (13)

The natural norms for the analysis of the Stokes problem are the L2(Ω) norm of the velocity gradient
and the L2(Ω) norm of the pressure. Since the error analysis for these norms utilizes typical tools and
it is rather short, the proofs will be presented in detail. The presentation follows [56, Section 4.2.1].

A crucial role in the analysis plays the subspace of discretely divergence-free functions

V h
div =

{
vh ∈ V h :

(
∇ · vh, qh

)
= 0 ∀ qh ∈ Qh

}
.

The solution of (13) belongs to this subspace. Note that in general functions from this subspace are
not weakly divergence-free, i.e., it holds V h

div 6⊂ Vdiv.

Theorem 3.1 (Error estimate for the L2(Ω) norm of the velocity gradient). Let (u, p) ∈ V ×Q be the
unique solution of the Stokes problem (5) and assume that the spaces V h and Qh satisfy (3). Then,
the solution of the conforming discretization (13) satisfies the error estimate

∥∥∇(u− uh)
∥∥
L2(Ω)

≤ 2 inf
vh∈V h

div

∥∥∇(u− vh)
∥∥
L2(Ω)

+
1

ν
inf

qh∈Qh

∥∥p− qh
∥∥
L2(Ω)

. (14)

Proof. The proof starts by formulating the error equation. Since V h ⊂ V , functions from V h can be
used as test functions in (5). Subtracting (13) from (5) and setting q = qh = 0 yields the so-called
error equation

ν
(
∇(u− uh),∇vh

)
−
(
∇ · vh, p− ph

)
= 0 ∀ vh ∈ V h. (15)

Now, restricting the test functions to the space V h
div, the second term on the left-hand side is mod-

ified such that an approximation term with respect to the pressure is obtained. One observes that(
∇ · vh, qh

)
= 0 for all vh ∈ V h

div and qh ∈ Qh, which leads to

ν
(
∇(u− uh),∇vh

)
−
(
∇ · vh, p− qh

)
= 0 ∀ vh ∈ V h

div, q
h ∈ Qh. (16)

Next, an approximation error for the velocity is introduced. To this end, the error is decomposed into

u− uh =
(
u−wh

)
−
(
uh −wh

)
= η − φh,

where wh denotes an arbitrary interpolant of u in V h
div. Hence, η is an approximation error which

depends only on the finite element space V h
div. The goal consists in estimating φh ∈ V h

div by approxi-
mation errors as well. Therefore, this decomposition is inserted in (16) and the test function vh = φh

is chosen. It follows that

ν
∥∥∇φh

∥∥2

L2(Ω)
= ν

(
∇φh,∇φh

)
= ν

(
∇η,∇φh

)
−
(
∇ · φh, p− qh

)
∀ qh ∈ Qh. (17)
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V. John, P. Knobloch, U. Wilbrandt 6

The first term on the right-hand side is estimated with the Cauchy–Schwarz inequality

ν
∣∣(∇η,∇φh

)∣∣ ≤ ν ‖∇η‖L2(Ω)

∥∥∇φh
∥∥
L2(Ω)

.

For the second term, one uses in addition (7), which gives
∣∣−
(
∇ · φh, p− qh

)∣∣ ≤
∥∥p− qh

∥∥
L2(Ω)

∥∥∇ · φh
∥∥
L2(Ω)

≤
∥∥p− qh

∥∥
L2(Ω)

∥∥∇φh
∥∥
L2(Ω)

.

Inserting these estimates in (17) and dividing by ν
∥∥∇φh

∥∥
L2(Ω)

6= 0 yields

∥∥∇φh
∥∥
L2(Ω)

≤ ‖∇η‖L2(Ω) +
1

ν

∥∥p− qh
∥∥
L2(Ω)

.

This estimate is trivially true if
∥∥∇φh

∥∥
L2(Ω)

= 0.

With the triangle inequality, it follows that
∥∥∇(u− uh)

∥∥
L2(Ω)

≤
∥∥∇φh

∥∥
L2(Ω)

+ ‖∇η‖L2(Ω)

≤ 2 ‖∇η‖L2(Ω) +
1

ν

∥∥p− qh
∥∥
L2(Ω)

for allwh ∈ V h
div and for all qh ∈ Qh, such that (14) follows.

Theorem 3.2 (Error estimate for the L2(Ω) norm of the pressure). Let the assumption of Theorem 3.1
be satisfied. Then the following error estimate holds

∥∥p− ph
∥∥
L2(Ω)

≤ 2ν

βhis
inf

vh∈V h
div

∥∥∇(u− vh)
∥∥
L2(Ω)

+

(
1 +

2

βhis

)
inf

qh∈Qh

∥∥p− qh
∥∥
L2(Ω)

. (18)

Proof. Let qh ∈ Qh be arbitrary, then the triangle inequality implies
∥∥p− ph

∥∥
L2(Ω)

≤
∥∥p− qh

∥∥
L2(Ω)

+
∥∥ph − qh

∥∥
L2(Ω)

.

Replacing the right-hand side of the momentum equation of the finite element Stokes problem (13) by
the left-hand side of the the momentum equation of the continuous Stokes problem (5) for vh ∈ V h

yields

−
(
∇ · vh, ph − qh

)
= −ν

(
∇uh,∇vh

)
+
(
f ,vh

)
+
(
∇ · vh, qh

)

= ν
(
∇
(
u− uh

)
,∇vh

)
−
(
∇ · vh, p− qh

)

for all
(
vh, qh

)
∈ V h × Qh. With the discrete inf-sup condition (3), the Cauchy–Schwarz inequality,

and (7), it follows now that
∥∥ph − qh

∥∥
L2(Ω)

≤ 1

βhis
sup

vh∈V h\{0}

−
(
∇ · vh, ph − qh

)

‖∇vh‖L2(Ω)

=
1

βhis
sup

vh∈V h\{0}

ν
(
∇
(
u− uh

)
,∇vh

)
−
(
∇ · vh, p− qh

)

‖∇vh‖L2(Ω)

≤ 1

βhis
sup

vh∈V h\{0}

ν
∥∥∇
(
u− uh

)∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

+
∥∥p− qh

∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

‖∇vh‖L2(Ω)

=
1

βhis

(
ν
∥∥∇
(
u− uh

)∥∥
L2(Ω)

+
∥∥p− qh

∥∥
L2(Ω)

)
∀ qh ∈ Qh.
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Finite element pressure stabilizations for incompressible flow problems 7

Inserting the error bound (14) for the velocity yields the error estimate (18) for the pressure.

The best approximation error in the subspace V h
div can be estimated by the best approximation error

in V h

inf
vh∈V h

div

∥∥∇
(
u− vh

)∥∥
L2(Ω)

≤
(

1 +
1

βhis

)
inf

wh∈V h

∥∥∇
(
u−wh

)∥∥
L2(Ω)

, (19)

e.g., see [56, Lemma 3.60]. With respect to the dependency on the discrete inf-sup constant, estimate
(19) is a worst case estimate. For many pairs of finite element spaces, an alternative estimate using a
quasi-local Fortin projection is possible which does not depend on the inverse of βhis, see [49]. Applying
(19) to the error bounds (14) and (18) gives the following estimate.

Corollary 3.3 (Error estimate). Let the spaces V h and Qh satisfy (3) with βhis bounded from below by
β0 > 0 independent of h. Assume that the solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω),
then one has the error estimate

ν ‖∇(u− uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
. (20)

Another norm of interest is the L2(Ω) norm of the velocity because its square is proportional to the
kinetic energy of the flow. Applying the Poincaré–Friedrichs inequality, one observes that the estimate
from Corollary 3.3 also holds for ν

∥∥u− uh
∥∥
L2(Ω)

. However, such an error estimate is suboptimal

with respect to h. In what follows, an optimal estimate of the velocity error in the L2(Ω) norm will be
derived using the usual Aubin–Nitsche technique. To this end, a regularity assumption on the Stokes
problem in the following sense will be needed.

Definition 3.4. The Stokes problem (2) is regular if, for any f ∈ L2(Ω)d, the solution of the weak
formulation (5) satisfies (u, p) ∈ H2(Ω)d ×H1(Ω) and it holds

ν ‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C ‖f‖L2(Ω)

with a constant C independent of f and ν.

Theorem 3.5 (L2 estimate of the velocity error). Let the spaces V h and Qh satisfy (3) with βhis
bounded from below by β0 > 0 independent of h. Assume that the solution of (5) satisfies (u, p) ∈
Hk+1(Ω)d×H l+1(Ω) and let the Stokes problem (2) be regular. Then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
. (21)

Proof. Let (z, r) ∈ V ×Q be the solution of the problem

ν(∇z,∇v)− (∇ · v, r) + (∇ · z, q) = ν(u− uh,v) ∀ (v, q) ∈ V ×Q. (22)

Then, according to the regularity assumption, one has (z, r) ∈ H2(Ω)d ×H1(Ω) and

ν ‖z‖H2(Ω) + ‖r‖H1(Ω) ≤ Cν
∥∥u− uh

∥∥
L2(Ω)

. (23)

Since u− uh ∈ V , one can set v = u− uh and q = 0 in (22), which gives

ν
∥∥u− uh

∥∥2

L2(Ω)
= ν(∇z,∇(u− uh))− (∇ · (u− uh), r). (24)
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V. John, P. Knobloch, U. Wilbrandt 8

Let zI ∈ V h be the continuous piecewise (multi)linear Lagrange interpolant of z satisfying (8) with
k = 1 and let rI = J hr ∈ Qh be an interpolant of r satisfying (11). Then

∥∥∇(z − zI)
∥∥
L2(Ω)

≤ Ch ‖z‖H2(Ω) ≤ Ch
∥∥u− uh

∥∥
L2(Ω)

, (25)
∥∥r − rI

∥∥
L2(Ω)

≤Ch ‖∇r‖L2(Ω) ≤ Cνh
∥∥u− uh

∥∥
L2(Ω)

. (26)

It follows from (24) that

ν
∥∥u− uh

∥∥2

L2(Ω)
= ν(∇(z − zI),∇(u− uh))− (∇ · (u− uh), r − rI)

+ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI). (27)

Applying the Cauchy–Schwarz inequality and (25), (26), the first two terms in (27) can be estimated
by

ν(∇(z − zI),∇(u− uh))− (∇ · (u− uh), r − rI)
≤ Cνh

∥∥∇(u− uh)
∥∥
L2(Ω)

∥∥u− uh
∥∥
L2(Ω)

. (28)

Setting vh = zI in (15), using the fact that ∇ · z = 0 and applying the Cauchy–Schwarz inequality
and (25), one derives

ν(∇zI ,∇(u− uh)) =
(
∇ · (zI − z), p− ph

)

≤
∥∥∇(z − zI)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

≤ Ch
∥∥u− uh

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

.

Finally, the last term in (27) vanishes since, according to (5) and (13), u is weakly divergence-free and
uh is discretely divergence-free. Combining the above estimates gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Ch
(
ν ‖∇(u− uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

)

and the statement of the theorem follows from Corollary 3.3.

It should be noted that the velocity error bounds (20) and (21) improve substantially if an inf-sup stable
pair of finite element spaces is used with V h

div ⊂ Vdiv. Such pairs exist, e.g., the Scott–Vogelius pair
P2/P

disc
1 applied on special meshes. Then, the pressure term in the error equation (16) vanishes

and consequently the pressure terms vanish on the right-hand sides of the estimates (20) and (21).
The consequences are that the velocity error bounds do not depend on the pressure and they do not
depend explicitly on inverse powers of the viscosity. Even for spaces with V h

div 6⊂ Vdiv, an approach
has been developed such that the velocity error bounds have these two properties, see [70, 71] or
the recent survey paper [58]. To derive velocity error bounds with these two properties for pressure-
stabilized methods, as presented in the following sections, is impossible.

For inf-sup stable pairs of finite element spaces, error estimates with respect to the norms of other
Lebesgue spaces can be proved. In particular, estimates inL∞(Ω) were derived in [47, 33, 51, 46, 52]
that are of the form

ν
∥∥∇
(
u− uh

)∥∥
L∞(Ω)

+
∥∥p− ph

∥∥
L∞(Ω)

≤ C

(
ν inf

vh∈V h

∥∥∇
(
u− vh

)∥∥
L∞(Ω)

+ inf
qh∈V h

∥∥p− qh
∥∥
L∞(Ω)

)
. (29)
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In [46], even an estimate of the form

ν
∥∥∇
(
u− uh

)∥∥
Lr(Ω)

+
∥∥p− ph

∥∥
Lr(Ω)

(30)

≤ C

(
ν inf

vh∈V h

∥∥∇
(
u− vh

)∥∥
Lr(Ω)

+ inf
qh∈V h

∥∥p− qh
∥∥
Lr(Ω)

)
, 2 ≤ r ≤ ∞

was shown. The current state of the art is that estimates of form (29) and (30) can be proved for convex
polyhedral domains.

4 Residual-Based Stabilizations

For another review of residual-based stabilizations, it is referred to [42].

4.1 A Framework

A framework for the derivation of residual-based stabilizations was presented in [19]. Starting point is
the regularization of the Galerkin finite element method (13) with respect to the norm of Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δ

(
ph, qh

)
= (f ,vh),

where δ > 0 is a stabilization parameter. However, this stabilization acts like a penalty term which
prevents the method from being optimally convergent for higher order finite element spaces. Thus, this
stabilization should be replaced by a stabilization that is, on the one hand, similarly strong but, on the
other hand, possesses a sufficiently small consistency error. Using [48, Cor. 2.1], it is known that there
are positive constants C1 and C2 such that

C1 ‖q‖L2(Ω) ≤ ‖∇q‖H−1(Ω) ≤ C2 ‖q‖L2(Ω) ∀ q ∈ Q,

i.e., theH−1(Ω)d norm of∇q is equivalent to the L2(Ω) norm of q. Consequently,
∥∥∇qh

∥∥2

H−1(Ω)
has

the same stabilization effect like
∥∥qh
∥∥2

L2(Ω)
. The term

(
∇ph,∇qh

)
−1

can be included in a stabilization

term naturally by using the residual, where (·, ·)−1 is the inner product in H−1(Ω)d, see [19] for a
definition of this inner product.

For simplicity of presentation, only the case Qh ⊂ H1(Ω) is considered. The prototype of a residual-
based stabilization from [19] has the form: Find

(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)

+δ
(
−ν∆uh +∇ph, κν∆vh +∇qh

)
−1

(31)

= (f ,v) + δ
(
f , κν∆vh +∇qh

)
−1
∀
(
vh, qh

)
∈ V h ×Qh,

with κ ∈ {−1, 0, 1} and δ > 0. There are still two issues in (31). First, (·, ·)−1 is not computable
and second, ∆uh,∆vh are not defined. Thanks to the regularity assumption on Qh, the functions
∇ph,∇qh are well defined.

A standard way to resolve these issues consists in approximating (·, ·)−1 by a weighted L2(Ω) inner
product, leading to the following problem: Find

(
uh, ph

)
∈ V h × Qh such that for all

(
vh, qh

)
∈

DOI 10.20347/WIAS.PREPRINT.2587 Berlin 2019



V. John, P. Knobloch, U. Wilbrandt 10

V h ×Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)

+
∑

K∈T h

δh2
K

(
−ν∆uh +∇ph, κν∆vh +∇qh

)
K

(32)

= (f ,v) +
∑

K∈T h

δh2
K

(
f , κν∆vh +∇qh

)
K
.

For κ = 0, one obtains the PSPG method, which is discussed in Section 4.2, for κ = 1 the sym-
metric GLS method, see Section 4.3, and for κ = −1 the non-symmetric GLS method presented in
Section 4.4.

In [19], a new proposal for approximating the inner product in H−1(Ω)d was presented. This proposal
is discussed briefly in Section 4.5.

Definition 4.1 (Absolutely and conditionally stable methods). A stabilized discrete method is called
absolutely stable if it is stable for all δ > 0. Otherwise, if it is stable only for a restricted set of
parameters, it is called conditionally stable.

4.2 The PSPG Method

The Pressure Stabilizing Petrov–Galerkin (PSPG) method was proposed for finite element spaces
with continuous discrete pressures in [55]. In the case of piecewise polynomial but discontinuous finite
element pressure spaces, an additional term is necessary, which was introduced in [54, 39].

The PSPG method has the form: Find
(
uh, ph

)
∈ V h ×Qh such that

Apspg

((
uh, ph

)
,
(
vh, qh

))
= Lpspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (33)

where the bilinear form Apspg :
(
Ṽ × Q̃

)
×
(
V × Q̃

)
→ R is given by

Apspg ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)E +

∑

K∈T h

(−ν∆u+∇p, δK∇q)K (34)

and the linear form Lpspg : V × Q̃→ R by

Lpspg ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK∇q)K , (35)

with

Ṽ =
{
v ∈ V : v|K ∈ H2(K)d for all K ∈ T h

}
, (36)

Q̃ =
{
q ∈ Q : q|K ∈ H1(K) for all K ∈ T h

}
(37)

and nonnegative stabilization parameters γE and δK . Their appropriate choices will be based on the
study of the existence and uniqueness of a solution of (33), see Lemma 4.3, and on finite element
error estimates, see Theorem 4.6. The volume integrals in the stabilization terms contain the so-called
strong residual of the Stokes equations.

The definition of Q̃ ensures that the jumps of the pressure across the faces of the mesh cells are well
defined. If Qh ⊂ H1(Ω), then the jumps of the pressure vanish almost everywhere on the faces.
From the practical point of view, the case of piecewise polynomial and continuous discrete pressure
functions is very important such that then even Qh ⊂ C(Ω).
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Lemma 4.2 (A norm in V h×Qh containing the stabilization terms). Let δK > 0 for all K ∈ T h and,
in the case Qh 6⊂ H1(Ω), let γE > 0 for all E ∈ Eh. Then

∥∥(vh, qh
)∥∥

pspg
=

(
ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)

+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2

(38)

defines a norm in V h ×Qh.

Proof. Expression (38) is the square root of a sum of squares of seminorms. Thus, it is clearly a
seminorm itself. It remains to prove that from

∥∥(vh, qh
)∥∥

pspg
= 0, it follows that vh = 0 and qh = 0.

Let
∥∥(vh, qh

)∥∥
pspg

= 0, then all terms in (38) vanish. In particular, it holds
∥∥∇vh

∥∥
L2(Ω)

= 0. Since

this expression is a norm in V h, it follows that vh = 0. With this result, one gets

0 =
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

Because δK is assumed to be positive for all mesh cells, it follows that
∥∥∇qh

∥∥
L2(K)

= 0 for all

K ∈ T h. If Qh ⊂ H1(Ω), then
∥∥[∣∣qh

∣∣]
E

∥∥
L2(E)

= 0 for all faces. Otherwise, one gets this property

from the assumption γE > 0 for all faces. Altogether, it follows that qh is constant on Ω. The only
globally constant function in Qh is qh = 0. Hence

∥∥(vh, qh
)∥∥

pspg
defines a norm on V h ×Qh.

Lemma 4.3 (Existence and uniqueness of a solution of (33)). Let the assumptions of Lemma 4.2 be
satisfied and let

δK ≤
h2
K

νC2
inv

. (39)

Then the PSPG problem (33) possesses a unique solution.

Proof. First, the coercivity of the bilinear form Apspg(·, ·) with respect to the norm ‖·‖pspg will be

shown for any (vh, qh) ∈ V h × Qh. One obtains with the Cauchy–Schwarz inequality, the inverse
inequality (12), the Young inequality, and the condition (39) on the stabilization parameters

Apspg

((
vh, qh

)
,
(
vh, qh

))

≥ ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

−
∑

K∈T h

δKν
∥∥∆vh

∥∥
L2(K)

∥∥∇qh
∥∥
L2(K)

≥
∥∥(vh, qh

)∥∥2

pspg
−
∑

K∈T h

δKh
−1
K Cinvν

∥∥∇vh
∥∥
L2(K)

∥∥∇qh
∥∥
L2(K)

≥
∥∥(vh, qh

)∥∥2

pspg
− 1

2

∑

K∈T h

δKC
2
invν

2

h2
K

∥∥∇vh
∥∥2

L2(K)
− 1

2

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

≥ 1

2

∥∥(vh, qh
)∥∥2

pspg
. (40)

The PSPG problem (33) is equivalent to a system of linear algebraic equations with a square matrix.
The coercivity (40) implies that the homogeneous PSPG problem (for f = 0) has only the trivial
solution. Consequently, the matrix is non-singular, which proves the lemma.
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Since the stabilization parameters have to satisfy (39), they depend on the local mesh size. Hence,
the norm ‖·‖pspg is a mesh-dependent norm. Note that in the case that ∆vh|K = 0 for all mesh cells
K , as it is given, e.g., for P1 finite elements, the restriction (39) on the stabilization parameter is not
necessary.

Lemma 4.4 (Stability estimate). Let the assumptions of Lemmas 4.2 and 4.3 be satisfied. Then the
solution of the PSPG problem (33) satisfies the stability estimate

∥∥(uh, ph
)∥∥

pspg
≤ C

ν1/2
‖f‖L2(Ω) + 2

(∑

K∈T h

δK ‖f‖2
L2(K)

)1/2

. (41)

Proof. Using the Cauchy–Schwarz inequality, the Poincaré–Friedrichs inequality, and the Cauchy–
Schwarz inequality for sums, one obtains

Lpspg

((
vh, qh

))

≤ ‖f‖L2(Ω)

∥∥vh
∥∥
L2(Ω)

+
∑

K∈T h

δK ‖f‖L2(K)

∥∥∇qh
∥∥
L2(K)

≤ C ‖f‖L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

+

(∑

K∈T h

δK ‖f‖2
L2(K)

)1/2(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2

≤


 C

ν1/2
‖f‖L2(Ω) +

(∑

K∈T h

δK ‖f‖2
L2(K)

)1/2

∥∥(vh, qh

)∥∥
pspg

,

for all
(
vh, qh

)
∈ V h × Qh. Inserting this estimate in (33) and setting

(
vh, qh

)
=
(
uh, ph

)
, the

stability estimate follows using the coercivity (40).

Lemma 4.5 (Consistency and Galerkin orthogonality). Let the solution of (5) satisfy (u, p) ∈ H2(Ω)d×
H1(Ω) and let (uh, ph) ∈ V h ×Qh be the solution of the PSPG method (33). The PSPG method is
consistent, i.e., it holds

Apspg

(
(u, p) ,

(
vh, qh

))
= Lpspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (42)

and it satisfies the Galerkin orthogonality

Apspg

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (43)

Proof. The residual vanishes for (u, p) and with that the residual-based stabilization terms in Apspg

and Lpspg are equal. Moreover, the stabilization term with pressure jumps vanishes since p ∈ H1(Ω).
Thus, only the terms from the weak formulation (5) remain and since the finite element spaces are
conforming, (42) holds.

The Galerkin orthogonality is obtained by subtracting (33) from (42).

To prove error estimates for the solution of (33), we shall need additional assumptions on the stabi-
lization parameters. It will be assumed that there are positive constants δ0, δ1 and γ0, γ1 independent
of ν and h such that

0 < δ0
h2
K

ν
≤ δK ≤ δ1

h2
K

ν
∀ K ∈ T h (44)

and

0 < γ0
hE
ν
≤ γE ≤ γ1

hE
ν

∀ E ∈ Eh. (45)
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Theorem 4.6 (Error estimate). Let the solution of (5) satisfy (u, p) ∈ Hk+1(Ω)d × H l+1(Ω) and
let
(
uh, ph

)
∈ V h × Qh be the solution of the PSPG problem (33). Assume that the stabilization

parameters satisfy (44) and (45) with δ1 ≤ 1/C2
inv. Then the following error estimate holds

∥∥(u− uh, p− ph
)∥∥

pspg
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
. (46)

Proof. The triangle inequality gives
∥∥(u− uh, p− ph

)∥∥
pspg

≤
∥∥(u− Ihu, p− Jhp

)∥∥
pspg

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
pspg

, (47)

where Ih and Jh are the interpolation operators satisfying (8) and (9). Both terms on the right-hand
side of (47) are estimated separately.

One obtains with the interpolation estimates (8) and (9), and with the assumptions (44) and (45) on
the stabilization parameters

∥∥(u− Ihu, p− Jhp
)∥∥2

pspg

≤ ν
∥∥∇
(
u− Ihu

)∥∥2

L2(Ω)
+
γ1h

ν

∑

E∈Eh

∥∥[∣∣p− Jhp
∣∣]
E

∥∥2

L2(E)

+
δ1h

2

ν

∑

K∈T h

∥∥∇
(
p− Jhp

)∥∥2

L2(K)

≤ C

(
νh2k ‖u‖2

Hk+1(Ω) +
h2(l+1)

ν
‖p‖2

Hl+1(Ω)

)
. (48)

The estimate of the second term of (47) starts with the coercivity (40) and the Galerkin orthogonality
(43)

∥∥(uh − Ihu, ph − Jhp
)∥∥2

pspg

≤ 2Apspg

((
uh − Ihu, ph − Jhp

)
,
(
uh − Ihu, ph − Jhp

))

= 2Apspg

((
u− Ihu, p− Jhp

)
,
(
uh − Ihu, ph − Jhp

))
. (49)

Now, each term of the right-hand side of (49) is estimated separately. The goal of these estimates is
to obtain interpolation errors and to hide the other terms in the left-hand side of (49).

Using the Cauchy–Schwarz inequality, the Young inequality, and the interpolation estimate (8), one
obtains for the viscous term

ν
(
∇
(
u− Ihu

)
,∇
(
uh − Ihu

))

≤ ν
∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

≤ 4ν
∥∥∇
(
u− Ihu

)∥∥2

L2(Ω)
+

ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)

≤ Cνh2k ‖u‖2
Hk+1(Ω) +

ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)
.

The last term can be absorbed in the left-hand side of (49). In a similar way, using (9), one gets

(
∇ ·
(
uh − Ihu

)
, p− Jhp

)
≤ C

h2(l+1)

ν
‖p‖2

Hl+1(Ω) +
ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)
.
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The estimate of the next term requires an integration by parts
(
∇ ·
(
u− Ihu

)
, ph − Jhp

)
=

∑

E∈Eh

((
u− Ihu

)
· nE,

[∣∣ph − Jhp
∣∣]
E

)
E

−
∑

K∈T h

(
u− Ihu,∇

(
ph − Jhp

))
K
. (50)

Both terms on the right-hand side of (50) are estimated more or less in the same way, e.g., one
obtains for the last term with the Cauchy–Schwarz inequality, the Young inequality, the property (44)
of the stabilization parameters, and the interpolation estimate (8)

∑

K∈T h

(
u− Ihu,∇

(
ph − Jhp

))
K
≤
∑

K∈T h

∥∥u− Ihu
∥∥
L2(K)

∥∥∇
(
ph − Jhp

)∥∥
L2(K)

≤ 4
∑

K∈T h

1

δK

∥∥u− Ihu
∥∥2

L2(K)
+

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)

≤ 4ν

δ0

∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)
+

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)

≤ Cν

δ0

h2k ‖u‖2
Hk+1(Ω) +

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
.

The estimate of the other term on the right-hand side of (50) uses (45). All stabilization terms are
estimated with the same tools used so far. One gets

∑

K∈T h

(
−ν∆

(
u− Ihu

)
, δK∇

(
ph − Jhp

))
K

≤ Cνh2k ‖u‖2
Hk+1(Ω) +

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
,

and
∑

K∈T h

(
∇
(
p− Jhp

)
, δK∇

(
ph − Jhp

))
K

≤ C
h2(l+1)

ν
‖p‖2

Hl+1(Ω) +
1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
.

Finally, for the term with the pressure jumps, one gets with (9)
∑

E∈Eh
γE
([∣∣p− Jhp

∣∣]
E
,
[∣∣ph − Jhp

∣∣]
E

)
E

≤ C
h2(l+1)

ν
‖p‖2

Hl+1(Ω) +
1

16

∑

E∈Eh
γE
∥∥[∣∣ph − Jhp

∣∣]
E

∥∥2

L2(E)
.

Collecting all estimates proves the statement of the theorem.

To derive an error estimate for the pressure in the L2 norm, the following auxiliary problem (a kind of
Stokes projection) will be considered: Find (w, r) ∈ V ×Q such that

(∇w,∇v)− (∇ · v, r) = 0 ∀ v ∈ V,
− (∇ ·w, q) =

(
p− ph, q

)
∀ q ∈ Q. (51)

It follows from the theory of linear saddle point problems that (51) possesses a unique solution.
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Lemma 4.7 (Stability estimate for (51)). For the unique solution of (51) there holds the stability esti-
mate

‖∇w‖L2(Ω) + ‖r‖L2(Ω) ≤ C
∥∥p− ph

∥∥
L2(Ω)

. (52)

The constant depends on the inverse of βis from (6).

Proof. Using (6), (51), and the Cauchy–Schwarz inequality gives

βis ‖r‖L2(Ω) ≤ sup
v∈V \{0}

(∇ · v, r)
‖∇v‖L2(Ω)

= sup
v∈V \{0}

(∇w,∇v)

‖∇v‖L2(Ω)

≤ sup
v∈V \{0}

‖∇w‖L2(Ω) ‖∇v‖L2(Ω)

‖∇v‖L2(Ω)

= ‖∇w‖L2(Ω) . (53)

Inserting (v, q) = (w, r) in (51), subtracting both equations, and applying the Cauchy–Schwarz
inequality and (53) yields

‖∇w‖2
L2(Ω) = −

(
p− ph, r

)
≤
∥∥p− ph

∥∥
L2(Ω)

‖r‖L2(Ω)

≤ 1

βis

∥∥p− ph
∥∥
L2(Ω)

‖∇w‖L2(Ω) . (54)

Combining (53) and (54) leads to

‖∇w‖L2(Ω) + ‖r‖L2(Ω) ≤
(

1 +
1

βis

)
‖∇w‖L2(Ω)

≤ 1

βis

(
1 +

1

βis

)∥∥p− ph
∥∥
L2(Ω)

.

Theorem 4.8 (L2 estimate of the pressure error). Assume that the solution of (5) satisfies (u, p) ∈
Hk+1(Ω)d ×H l+1(Ω) and that the stabilization parameters satisfy (44) and (45) with δ1 ≤ 1/C2

inv.
Then there holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
.

Proof. Let (w, r) be the solution of (51). Let Ihw ∈ V h be an interpolant of w satisfying (10).
Inserting q = p− ph in (51) gives

∥∥p− ph
∥∥2

L2(Ω)
= −

(
∇ ·w, p− ph

)

= −
(
∇ ·
(
w − Ihw

)
, p− ph

)
−
(
∇ ·
(
Ihw

)
, p− ph

)
. (55)

Consider now the second term on the right-hand side of (55). The Galerkin orthogonality (43) with
vh = Ihw and qh = 0 leads to

0 = ν
(
∇
(
u− uh

)
,∇Ihw

)
−
(
∇ ·
(
Ihw

)
, p− ph

)
.

Hence, one obtains with the Cauchy–Schwarz inequality, (10), and (52)

∣∣(∇ ·
(
Ihw

)
, p− ph

)∣∣ ≤ Cν
∥∥∇(u− uh)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

. (56)
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The estimate of the first term on the right-hand side of (55) starts with integration by parts, followed by
the Cauchy–Schwarz inequality and application of (44), (45), (10), and (52)

−
(
∇ ·
(
w − Ihw

)
, p− ph

)

=
∑

K∈T h

(
w − Ihw,∇

(
p− ph

))
K
−
∑

E∈Eh

((
w − Ihw

)
· nE,

[∣∣p− ph
∣∣]
E

)
E

≤
(∑

K∈T h

δ−1
K

∥∥w − Ihw
∥∥2

L2(K)

)1/2(∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)

)1/2

+

(∑

E∈Eh
γ−1
E

∥∥w − Ihw
∥∥2

L2(E)

)1/2(∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥2

L2(E)

)1/2

≤ Cν1/2

(
1

δ
1/2
0

+
1

γ
1/2
0

)
‖∇w‖L2(Ω)

∥∥(u− uh, p− ph)
∥∥

pspg

≤ Cν1/2

(
1

δ
1/2
0

+
1

γ
1/2
0

)
∥∥p− ph

∥∥
L2(Ω)

∥∥(u− uh, p− ph)
∥∥

pspg
. (57)

Combining the estimates (55), (56), and (57) yields
∥∥p− ph

∥∥
L2(Ω)

≤ Cν1/2
∥∥(u− uh, p− ph)

∥∥
pspg

,

where the constantC depends on δ−1/2
0 and γ−1/2

0 . Thus, the final estimate follows from Theorem 4.6.

Theorem 4.9 (L2 estimate of the velocity error). Let the stabilization parameters satisfy (44) and (45)
with δ1 ≤ 1/C2

inv and let the Stokes problem (2) be regular. Assume that the solution of (5) satisfies
(u, p) ∈ Hk+1(Ω)d ×H l+1(Ω), then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. We start as in the proof of Theorem 3.5 since, up to (28), the proof is independent of the
analyzed method. We shall use the fact that, in view of (11), (23), and (45), the interpolant rI satisfies

(∑

K∈T h

∥∥∇rI
∥∥2

L2(K)

)1/2

≤ C ‖∇r‖L2(Ω) ≤ Cν
∥∥u− uh

∥∥
L2(Ω)

, (58)

(∑

E∈Eh
γE
∥∥[∣∣r − rI

∣∣]
E

∥∥2

L2(E)

)1/2

≤ Cν1/2h
∥∥u− uh

∥∥
L2(Ω)

. (59)

To estimate the last two terms in (27), we employ the Galerkin orthogonality (43). Since zI ∈ V h, we
may set

(
vh, qh

)
= (zI , 0) in (43), which gives

ν
(
∇(u− uh),∇zI

)
−
(
∇ · zI , p− ph

)
= 0. (60)

Furthermore, for
(
vh, qh

)
= (0, rI), one deduces from (43) that

(
∇ · (u− uh), rI

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI
∣∣]
E

)
E

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK∇rI

)
K

= 0. (61)
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Thus, using the property∇ · z = 0 and the fact that r ∈ H1(Ω), one has

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
=

(
∇ · (zI − z), p− ph

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI − r

∣∣]
E

)
E

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK∇rI

)
K
. (62)

Then, applying the Cauchy–Schwarz inequality, (44), (25), (58), and (59), one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
≤

∥∥∇(z − zI)
∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

+
∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥
L2(E)

∥∥[∣∣r − rI
∣∣]
E

∥∥
L2(E)

+
∑

K∈T h

νδK
∥∥∆(u− uh)

∥∥
L2(K)

∥∥∇rI
∥∥
L2(K)

+
∑

K∈T h

δK
∥∥∇(p− ph)

∥∥
L2(K)

∥∥∇rI
∥∥
L2(K)

≤ Ch

(
∥∥p− ph

∥∥2

L2(Ω)
+ ν

∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥2

L2(E)

+ν
∑

K∈T h

δK
∥∥∇(p− ph)

∥∥2

L2(K)

)1/2 ∥∥u− uh
∥∥
L2(Ω)

+Cνh

(∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)

)1/2 ∥∥u− uh
∥∥
L2(Ω)

. (63)

To estimate the last term, we employ the triangle inequality and (12) to obtain

hK
∥∥∆(u− uh)

∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ hK
∥∥∆(Ihu− uh)

∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ Cinv

∥∥∇(Ihu− uh)
∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ Cinv

∥∥∇(Ihu− u)
∥∥
L2(K)

+ Cinv

∥∥∇(u− uh)
∥∥
L2(K)

.

Then (8) implies that

(∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)

)1/2

≤ Chk ‖u‖Hk+1(Ω) + C
∥∥∇(u− uh)

∥∥
L2(Ω)

. (64)

Combining (27), (28), (63), and (64) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Cν1/2h
∥∥(u− uh, p− ph

)∥∥
pspg

+ Ch
∥∥p− ph

∥∥
L2(Ω)

+ Cνhk+1 ‖u‖Hk+1(Ω)

and the statement of the theorem follows from Theorems 4.6 and 4.8.
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One observes the usual scaling properties of the error estimates with respect to ν: small values of ν
lead to large bounds for velocity errors due to large weights of the pressure contributions in the error
bounds whereas large values of ν lead to large bounds for pressure errors due to the scaling of the
velocity terms in the error bounds.

For discontinuous pressure approximations, the jump term in (34) can be replaced by a so-called local
jump term, as proposed in [82, 60]. In this approach, there is an outer sum over appropriate macro
mesh cells and than an inner sum of jumps over edges that are strictly in the interior of the macro
mesh cells. Numerical studies of this method can be found in [82] and a finite element error analysis
for P1/P0 and Q1/Q0 in [60]. The analysis for the Q1/Q0 case was extended to special anisotropic
meshes in [69].

If the PSPG method is used with the P1/P0 finite element, then it is possible to compute a divergence-
free velocity field in Hdiv(Ω), where

Hdiv(Ω) =
{
v : v ∈ L2(Ω),∇ · v ∈ L2(Ω),∇ · v = 0, and v · n = 0 on ∂Ω

in the sense of traces} .

with an inexpensive post-processing step, see [12]. The idea consists in adding to uh a correction
uhRT0

∈ RT0, the Raviart–Thomas space of lowest order, such that∇ ·
(
uh + uhRT0

)
= 0 in L2(Ω).

Details of this approach and some numerical results can be found also in [56, Remark 4.102, Exam-
ple 4.103].

The paper [79] studies a stabilization of somewhat general form, which contains as special cases the
PSPG method and the inf-sub stable MINI element from [5]. Error estimates are derived for both, the
H1(Ω) and the L2(Ω) norm of the velocity and the pressure. A PSPG method with weak imposition
of the boundary condition using a penalty-free Nitsche method was analyzed in [22]. It was shown
in [9] that a PSPG-type method, with an appropriate stabilization parameter, can be used to stabilize
discrete inf-sup conditions of the dual Darcy problem and of the curl formulation of Maxwell’s problem.

Remark 4.10 (Anisotropic meshes). The PSPG method for the Q1/Q1 pair of finite element spaces
on anisotropic quadrilateral grids aligned with the Cartesian coordinate axes was studied in [16]. The
definition of the stabilization parameter includes both edge lengths of the quadrilateral cells.

The PSPG method on anisotropic grids was studied for the P1/P1 pair of spaces in [73]. A finite
element analysis is presented, where the stabilization parameter is of the form

δK = δ
hK,min

ν
,

with hK,min being the smaller characteristic length of K obtained via the polar decomposition of the
matrix from the affine map from a standard reference cell to K .

A PSPG method on anisotropic grids in boundary layers, in the context of the Oseen equations, was
studied in [2]. For the Stokes equations, the stabilization parameter has the form

δK = δ
hK,min

C2
invν

,

where hK,min is some kind of minimal length of the mesh cellK , e.g., the shortest edge for mesh cells
of brick form. 4

A modification of the PSPG method for continuous discrete pressure that is stable for stabilization
parameters δ = δ0h

2/ν with arbitrary δ0 > 0, in contrast to condition (39), will be discussed briefly in
Section 4.5.
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4.3 The (Symmetric) Galerkin Least Squares (GLS) Method

The (symmetric) Galerkin Least Squares (GLS) method uses, like the PSPG method (33) – (35), the
residual of the strong form of the equation. In contrast to the PSPG method, the operator of the strong
form of the equation is applied also to the test functions. Hence, the application of a GLS method is a
little bit more expensive than the use of the PSPG method.

The symmetric GLS method was proposed in [54]. It has the following form: Find
(
uh, ph

)
∈ V h×Qh

such that

Asgls

((
uh, ph

)
,
(
vh, qh

))
= Lsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (65)

with

Asgls ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)E +

∑

K∈T h

(−ν∆u+∇p, δK (ν∆v +∇q))K , (66)

Lsgls ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK (ν∆v +∇q))K . (67)

Remark 4.11. The discretization (65) can be equivalently written in the form

Ãsgls

((
uh, ph

)
,
(
vh, qh

))
= L̃sgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (68)

where Ãsgls ((u, p) , (v, q)) = Asgls ((u, p) , (v,−q)) and L̃sgls ((v, q)) = Lsgls ((v,−q)). It is
easy to see that the bilinear form Ãsgls is symmetric, which is the reason for calling the discretization
(65) symmetric GLS method. The form (68) is typically used in implementations. However, to unify the
presentation of the various methods, we consider (65) for the analysis. 4

To simplify the subsequent considerations, the analysis will be given only for the case of continuous
pressure finite element spaces, i.e., Qh ⊂ H1(Ω). In this case, the pressure jumps across faces in
(66) vanish. Discontinuous pressure approximations are discussed briefly in Remark 4.18.

As before, it will be assumed that the stabilization parameter δK satisfies (44).

Defining an extended L2(Ω) norm for the pressure

‖q‖ext =

(
1

ν
‖q‖2

L2(Ω) +
∑

K∈T h

δK ‖∇q‖2
L2(K)

)1/2

,

the norm for the analysis of the symmetric GLS method is given by

‖(v, q)‖sgls =
(
ν ‖∇v‖2

L2(Ω) + ‖q‖2
ext

)1/2

. (69)

In contrast to the bilinear form of the PSPG method, the bilinear form Asgls is not coercive. However,
we shall show that it satisfies an inf–sup condition, which is sufficient for proving the unique solvability
and error estimates for the symmetric GLS method. First, let us prove the following auxiliary result.

Lemma 4.12 (Weaker estimate in the spirit of the discrete inf-sup condition). There are positive con-
stants C1 and C2 independent of h such that for all q ∈ Q ∩H1(Ω), it holds

sup
vh∈V h\{0}

(
∇ · vh, q

)

‖∇vh‖L2(Ω)

≥ C1 ‖q‖L2(Ω) − C2

(∑

K∈T h

h2
K ‖∇q‖2

L2(K)

)1/2

. (70)
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Proof. Choose q ∈ Q∩H1(Ω)\{0} arbitrarily but fixed. The idea of the proof consists in constructing
a functionwh ∈ V h such that an inequality of form (70) is already satisfied withwh.

In view of the inf–sup condition (6), there existsw ∈ V such that

∇ ·w = q, ‖∇w‖L2(Ω) ≤
1

βis

‖q‖L2(Ω) ,

see [56, Cor. 3.44]. It follows that

(∇ ·w, q)
‖∇w‖L2(Ω)

=
(q, q)

‖∇w‖L2(Ω)

≥ βis ‖q‖L2(Ω) . (71)

Let wh = Ihw ∈ V h be an interpolant of w satisfying (10). Then, using (71), integration by parts,
the Cauchy–Schwarz inequality, the Cauchy–Schwarz inequality for sums, and (10) yields

(
∇ ·wh, q

)

=
(
∇ ·
(
wh −w

)
, q
)

+ (∇ ·w, q)
≥

(
w −wh,∇q

)
+ βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

≥ −
(∑

K∈T h

h−2
K

∥∥w −wh
∥∥2

L2(K)

)1/2(∑

K∈T h

h2
K ‖∇q‖2

L2(K)

)1/2

+βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

≥ −C ‖∇w‖L2(Ω)

(∑

K∈T h

h2
K ‖∇q‖2

L2(K)

)1/2

+ βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

=


βis ‖q‖L2(Ω) − C

(∑

K∈T h

h2
K ‖∇q‖2

L2(K)

)1/2

 ‖∇w‖L2(Ω) . (72)

If the expression in the square brackets in (72) is positive, it follows thatwh 6= 0 and then using (10)
and (72) yields

(
∇ ·wh, q

)

‖∇wh‖L2(Ω)

≥ C

(
∇ ·wh, q

)

‖∇w‖L2(Ω)

≥ C1 ‖q‖L2(Ω) − C2

(∑

K∈T h

h2
K ‖∇q‖2

L2(K)

)1/2

. (73)

If the right-hand side of (73) (which is a multiple of the expression in the square brackets in (72))
is nonpositive, one chooses an arbitrary wh ∈ V h \ {0} for which the left-hand side of (73) is
nonnegative, such that (73) holds also in this case.

Lemma 4.13 (Inf-sup condition for the bilinear form Asgls). Let Qh ⊂ H1(Ω). Let the conditions (44)
on {δK} be satisfied and let

δ1 <
1

C2
inv

. (74)

Then, there is a positive constant C such that for all
(
vh, qh

)
∈ V h ×Qh, it holds

sup
(wh,rh)∈V h×Qh\{(0,0)}

Asgls

((
vh, qh

)
,
(
wh, rh

))

‖(wh, rh)‖sgls

≥ C
∥∥(vh, qh

)∥∥
sgls

. (75)
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Proof. Consider an arbitrary pair
(
vh, qh

)
∈ V h×Qh. The idea of the proof consists in constructing

a pair
(
wh, rh

)
∈ V h ×Qh \ {(0, 0)} that satisfies inequality (75).

First, assume that qh 6= 0. According to the proof of Lemma 4.12, there is zh ∈ V h \ {0} such that
(70) holds for vh = zh and q = qh without the supremum. Note that (70) also holds when zh is
multiplied by any positive number. Accordingly, one chooses zh such that

∥∥∇zh
∥∥
L2(Ω)

=
1

ν

∥∥qh
∥∥
L2(Ω)

. (76)

Now, the pair for which the satisfaction of (75) will be shown is

(
wh, rh

)
=
(
vh − κzh, qh

)
, (77)

where κ will be chosen appropriately in the forthcoming analysis. It is

Asgls

((
vh, qh

)
,
(
wh, rh

))

= Asgls

((
vh, qh

)
,
(
vh, qh

))
+ κAsgls

((
vh, qh

)
,
(
−zh, 0

))
. (78)

Both terms on the right-hand side of this identity will be studied separately.

With the Cauchy–Schwarz inequality, one obtains

Asgls

((
vh, qh

)
,
(
−zh, 0

))

= −ν
(
∇vh,∇zh

)
+
(
∇ · zh, qh

)
−
∑

K∈T h

δK
(
−ν∆vh +∇qh, ν∆zh

)
K

≥ −ν
∥∥∇vh

∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

+
(
∇ · zh, qh

)

+ν2
∑

K∈T h

δK
(
∆vh,∆zh

)
K
− ν

∑

K∈T h

δK
(
∇qh,∆zh

)
K
. (79)

Each term on the right-hand side of (79) will be estimated from below.

Using (70) (without supremum) with (vh, q) = (zh, qh), (76), and (44) yields

(
∇ · zh, qh

)
≥


C1

∥∥qh
∥∥
L2(Ω)

− C2

(∑

K∈T h

h2
K

∥∥∇qh
∥∥2

L2(K)

)1/2

∥∥∇zh

∥∥
L2(Ω)

=
C1

ν

∥∥qh
∥∥2

L2(Ω)
− C2

ν

(∑

K∈T h

h2
K

∥∥∇qh
∥∥2

L2(K)

)1/2 ∥∥qh
∥∥
L2(Ω)

≥ C1

ν

∥∥qh
∥∥2

L2(Ω)
− C2

δ
1/2
0

(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2
1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

Applying the Cauchy–Schwarz inequality, the inverse inequality (12), (44), the Cauchy–Schwarz in-
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equality for sums, and (76) yields

ν2
∑

K∈T h

δK
(
∆vh,∆zh

)
K
≥ −ν2

∑

K∈T h

δK
∥∥∆vh

∥∥
L2(K)

∥∥∆zh
∥∥
L2(K)

≥ −ν2C2
inv

∑

K∈T h

δKh
−2
K

∥∥∇vh
∥∥
L2(K)

∥∥∇zh
∥∥
L2(K)

≥ −νC2
invδ1

∑

K∈T h

∥∥∇vh
∥∥
L2(K)

∥∥∇zh
∥∥
L2(K)

≥ −νC2
invδ1

∥∥∇vh
∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

= −C2
invδ1ν

1/2
∥∥∇vh

∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

The estimate of the third term uses the same tools

−ν
∑

K∈T h

δK
(
∇qh,∆zh

)
K

≥ −ν
(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2(∑

K∈T h

δK
∥∥∆zh

∥∥2

L2(K)

)1/2

≥ −Cinvδ
1/2
1

(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2
1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

Inserting all estimates in (79) and applying (76) leads to

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥ −
(
1 + C2

invδ1

)
ν1/2

∥∥∇vh
∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

+
C1

ν

∥∥qh
∥∥2

L2(Ω)

−
(
C2

δ
1/2
0

+ Cinvδ
1/2
1

)(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2
1

ν1/2

∥∥qh
∥∥
L2(Ω)

= −C3 ν
1/2
∥∥∇vh

∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

+
C1

ν

∥∥qh
∥∥2

L2(Ω)

−C4

(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2
1

ν1/2

∥∥qh
∥∥
L2(Ω)

,

with positive constants C3 and C4 that do not depend on ν, but C4 depends on δ−1/2
0 . The application

of the Young inequality with some ε > 0 gives

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥
(
C1 −

ε

2
(C3 + C4)

) 1

ν

∥∥qh
∥∥2

L2(Ω)
− C3

2ε
ν
∥∥∇vh

∥∥2

L2(Ω)

−C4

2ε

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

Choosing now 0 < ε < 2C1/(C3 + C4) leads to

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥ C5
1

ν

∥∥qh
∥∥2

L2(Ω)
− C6ν

∥∥∇vh
∥∥2

L2(Ω)
− C7

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
, (80)
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with positive constants C5, C6, and C7.

Now, the first term on the right-hand side of (78) will be estimated. Using the definition (66) gives

Asgls

((
vh, qh

)
,
(
vh, qh

))

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
(
−ν∆vh +∇qh, ν∆vh +∇qh

)
K

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
− ν2

∑

K∈T h

δK
∥∥∆vh

∥∥2

L2(K)
.

By using (12) and (44), one obtains

Asgls

((
vh, qh

)
,
(
vh, qh

))

≥ ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
− νC2

invδ1

∥∥∇vh
∥∥2

L2(Ω)

=
(
1− C2

invδ1

)
ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

By the assumption (74) on δ1, the term in the parentheses is positive. Hence, with a positive constant
C8, it is

Asgls

((
vh, qh

)
,
(
vh, qh

))
≥ C8ν

∥∥∇vh
∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
. (81)

Inserting (80) and (81) in (78) yields

Asgls

((
vh, qh

)
,
(
wh, rh

))

≥ (C8 − κC6) ν
∥∥∇vh

∥∥2

L2(Ω)
+ κC5

1

ν

∥∥qh
∥∥2

L2(Ω)

+ (1− κC7)
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

Choosing now 0 < κ < min {C8/C6, 1/C7} leads to the existence of a positive constant C9 such
that

Asgls

((
vh, qh

)
,
(
wh, rh

))
≥ C9

∥∥(vh, qh)
∥∥2

sgls
. (82)

Considering the denominator of (75), using the definition (77) of
(
wh, rh

)
, the triangle inequality, and

(76) yields

∥∥(wh, rh
)∥∥

sgls
=

(
ν
∥∥∇
(
vh − κzh

)∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

≤
(

2ν
∥∥∇vh

∥∥2

L2(Ω)
+ 2κ2ν

∥∥∇zh
∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

=

(
2ν
∥∥∇vh

∥∥2

L2(Ω)
+ 2κ2 1

ν

∥∥qh
∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

≤
(
2 + 2κ2

)1/2 ∥∥(vh, qh)
∥∥

sgls
= C10

∥∥(vh, qh)
∥∥

sgls
(83)

with a positive constant C10 that is independent of ν.

Combining (82) and (83) gives the inf-sup condition (75).

Finally, if qh = 0, the inf-sup condition (75) immediately follows from (81).
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The proof of the inf-sup condition for the bilinear formAsgls requires an upper bound of the stabilization
parameter, hence this method is not absolutely stable. Note that the bound (74) for δ1 depends on the
polynomial degree, compare the note after (12).

Lemma 4.14 (Existence and uniqueness of a solution of (65)). Let the assumptions of Lemma 4.13
be satisfied, then the symmetric GLS problem (65) possesses a unique solution.

Proof. The existence and uniqueness of the solution follows analogously as in the proof of Lemma 4.3
since the inf-sup condition (75) implies that the homogeneous symmetric GLS problem has only the
trivial solution.

Lemma 4.15 (Consistency and Galerkin orthogonality). Let the solution of (5) satisfy (u, p) ∈ H2(Ω)d×
H1(Ω) and let (uh, ph) ∈ V h×Qh be the solution of the symmetric GLS method (65). This method
is consistent, i.e., it holds

Asgls

(
(u, p) ,

(
vh, qh

))
= Lsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (84)

and it satisfies the Galerkin orthogonality

Asgls

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (85)

Proof. The lemma follows in the same way as Lemma 4.5.

Theorem 4.16 (Error estimate). Let the assumptions of Lemma 4.13 be satisfied. Assume that the
solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω), then there holds the error estimate

∥∥(u− uh, p− ph
)∥∥

sgls
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (8) and (9). From the proof of Lemma 4.13,
it is known that there is a pair

(
vh, qh

)
∈ V h ×Qh such that

∥∥(uh − Ihu, ph − Jhp
)∥∥

sgls
≤ C

Asgls

((
uh − Ihu, ph − Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖sgls

.

With the Galerkin orthogonality (85) of the symmetric GLS method, one obtains

∥∥(uh − Ihu, ph − Jhp
)∥∥

sgls
≤ C

Asgls

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖sgls

. (86)

Now, all terms of the numerator of the right-hand side of (86) will be estimated such that the contribu-
tion from

(
vh, qh

)
can be bounded by

∥∥(vh, qh
)∥∥

sgls
. With the Cauchy–Schwarz inequality and (7),

one obtains

ν
(
∇
(
u− Ihu

)
,∇vh

)
≤ ν

∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

,
(
∇ · vh, p− Jhp

)
≤

∥∥p− Jhp
∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

,
(
∇ ·
(
u− Ihu

)
, qh
)
≤

∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥qh
∥∥
L2(Ω)

.

DOI 10.20347/WIAS.PREPRINT.2587 Berlin 2019



Finite element pressure stabilizations for incompressible flow problems 25

The terms coming from the stabilization are estimated individually, using also the inverse inequality
(12) and the upper bound (44) of the parameter δK :

∑

K∈T h

δK
(
−ν∆

(
u− Ihu

)
, ν∆vh

)
K

≤ Cν

(∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2 ∥∥∇vh
∥∥
L2(Ω)

,

∑

K∈T h

δK
(
−ν∆

(
u− Ihu

)
,∇qh

)
K

≤ Cν1/2

(∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2

,

∑

K∈T h

δK
(
∇
(
p− Jhp

)
, ν∆vh

)
K

≤ Cν1/2

(∑

K∈T h

δK
∥∥∇
(
p− Jhp

)∥∥2

L2(K)

)1/2 ∥∥∇vh
∥∥
L2(Ω)

,

∑

K∈T h

δK
(
∇
(
p− Jhp

)
,∇qh

)
K

≤
(∑

K∈T h

δK
∥∥∇
(
p− Jhp

)∥∥2

L2(K)

)1/2(∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2

.

Collecting terms and using the definition (69) of the symmetric GLS norm yields

Asgls

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

≤ C

[
∥∥(u− Ihu, p− Jhp

)∥∥
sgls

(87)

+

(
ν
∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2]∥∥(vh, qh
)∥∥

sgls
.

The triangle inequality gives

∥∥(u− uh, p− ph
)∥∥

sgls
≤
∥∥(u− Ihu, p− Jhp

)∥∥
sgls

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
sgls

and hence, inserting (87) in (86), one obtains

∥∥(u− uh, p− ph
)∥∥

sgls
≤ C

∥∥(u− Ihu, p− Jhp
)∥∥

sgls

+C

(
ν
∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2

.

The terms on the right-hand side of this estimate can be estimated using (8), (9), and (44), giving the
statement of the theorem.
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Theorem 4.17 (L2 estimate of the velocity error). Let the assumptions of Lemma 4.13 be satisfied and
let the Stokes problem (2) be regular. Assume that the solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d×
H l+1(Ω), then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. The proof is very similar to the proof of Theorem 4.9. First, we again repeat the part of the
proof of Theorem 3.5 up to (28). Second, applying the Galerkin orthogonality (85) in an analogous
way as in the proof of Theorem 4.9, one obtains

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
=

(
∇ · (zI − z), p− ph

)

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK(−ν∆zI +∇rI)

)
K
. (88)

To estimate the additional terms (in comparison to (62)), one may use the estimate

(∑

K∈T h

h2
K

∥∥∆zI
∥∥2

L2(K)

)1/2

≤ Ch
∥∥u− uh

∥∥
L2(Ω)

, (89)

which follows from the triangle inequality, (8) and (23). Then, the right-hand side of (88) can be esti-
mated by the right-hand side of (63) (the jump term now vanishes), which leads to the estimate

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
≤ Cν1/2h

∥∥p− ph
∥∥

ext

∥∥u− uh
∥∥
L2(Ω)

+Cνh

(∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)

)1/2 ∥∥u− uh
∥∥
L2(Ω)

. (90)

Combining (27), (28), (90), and (64) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Cν1/2h
∥∥(u− uh, p− ph

)∥∥
sgls

+ Cνhk+1 ‖u‖Hk+1(Ω)

and the theorem follows from Theorem 4.16.

Remark 4.18 (Discontinuous pressure finite element space). The proof of the inf-sup condition (75)
relies on (70). It can be shown that an inequality of this form holds also for discontinuous pressure
spaces, see [43]. Then, for low order spaces, one has to include pressure jumps in the method, as for
the PSPG method. The optimal choice of the stabilization parameter for the pressure jumps in (66) is
γE ∼ hE/ν, see [54] for details. For high order spaces, the inclusion of such jumps is not necessary.
High order means that Pd ⊂ V h for simplicial meshes and Q2 ⊂ V h for quadrilateral or hexahedral
meshes. With such spaces, the known discrete inf-sup stability of V h/P0 or V h/Q0 is utilized in the
proof. 4

In [3], a multiscale enrichment of the velocity finite element space is proposed that leads to a family
of stabilized methods. The enrichment functions are defined locally, but the functions of the ansatz
space do not vanish on the boundary of the mesh cells. After performing some manipulations and
applying static condensation, the resulting method contains the symmetric GLS stabilization term and
a jump term at the faces. The stabilization parameter of the jump term is known exactly. One member
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of the family uses the jump of the Cauchy stress tensor across the faces. This method is called alge-
braic subgrid scale method (ASGS) in [8], where it was analyzed for the Brinkman equations (Stokes
equations plus a zeroth order velocity term in the momentum balance).

An a priori and a posteriori error analysis for the symmetric GLS method with minimal regularity con-
ditions on the solution of the weak problem is presented in [83]. It uses a technique developed in
[50].

4.4 The Non-Symmetric Galerkin Least Squares Method (Douglas–Wang Method)

A method that looks similar to the symmetric GLS method (65) – (67) was proposed in [39]: Find(
uh, ph

)
∈ V h ×Qh such that

Ansgls

((
uh, ph

)
,
(
vh, qh

))
= Lnsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (91)

with

Ansgls ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)E +

∑

K∈T h

(−ν∆u+∇p, δK (−ν∆v +∇q))K , (92)

Lnsgls ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK (−ν∆v +∇q))K . (93)

The difference between (65) – (67) and (91) – (93) is just the sign in front of ν∆v in the residual-based
stabilization terms. The method (91) – (93) is non-symmetric.

Again, the presentation of the analysis will be restricted to continuous pressure finite element spaces,
i.e., Qh ⊂ H1(Ω). To prove error estimates, we shall again use the assumptions (44) on the sta-
bilization parameters, to ensure a correct scaling with respect to hK and ν. However, an important
difference to the previous two methods is that the stability holds without any upper bound on the
stabilization parameters, cf. Lemmas 4.3, 4.13, and 4.20.

The following norm will be used

‖(v, q)‖nsgls =

(
ν ‖∇v‖2

L2(Ω) +
∑

K∈T h

δK ‖−ν∆v +∇q‖2
L2(K)

)1/2

. (94)

Lemma 4.19 (‖(·, ·)‖nsgls defines a norm). If Qh ⊂ H1(Ω), then the expression defined in (94) is a

norm in V h ×Qh for any set of positive stabilization parameters {δK}.

Proof. Clearly, ‖(·, ·)‖nsgls defines a seminorm as a sum of norms and seminorms. It remains to show

that
∥∥(vh, qh)

∥∥
nsgls

= 0 implies (vh, qh) = (0, 0).

From
∥∥(vh, qh)

∥∥
nsgls

= 0, it follows that
∥∥∇vh

∥∥
L2(Ω)

= 0, hence that vh = 0. Now, one has

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
= 0.

Since all δK are positive, one finds that qh is piecewise constant. The only piecewise constant function
that belongs to H1(Ω) ∩ L2

0(Ω) is qh = 0.
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Lemma 4.20 (Existence and uniqueness of a solution of (91)). For any set of positive stabilization
parameters {δK}, the non-symmetric GLS problem (91) with Qh ⊂ H1(Ω) has a unique solution.

Proof. For (vh, qh) ∈ V h ×Qh, one has

Ansgls

((
vh, qh

)
,
(
vh, qh

))

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥−ν∆vh +∇qh

∥∥2

L2(K)
=
∥∥(vh, qh)

∥∥2

nsgls
(95)

and hence the bilinear form given in (92) is coercive. Now, the existence and uniqueness of the solution
follows in the same way as in the proof of Lemma 4.3.

Lemma 4.21 (Consistency and Galerkin orthogonality). Let the solution of (5) satisfy (u, p) ∈ H2(Ω)d×
H1(Ω) and let (uh, ph) ∈ V h × Qh be the solution of the non-symmetric GLS method (91). This
method is consistent, i.e., it holds

Ansgls

(
(u, p) ,

(
vh, qh

))
= Lnsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (96)

and it satisfies the Galerkin orthogonality

Ansgls

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (97)

Proof. The proof follows the lines of the proof of Lemma 4.5.

Lemma 4.22 (Estimate of the term with the divergence). Let Qh ⊂ H1(Ω) and let the stabilization
parameters satisfy (44). Then, for any v ∈ V , any (zh, qh) ∈ V h ×Qh and for any ε > 0, it holds

∣∣(∇ · v, qh
)∣∣ ≤ ε

∥∥(zh, qh)
∥∥2

nsgls
+

ν

4ε

(
1

δ0

+ C2
inv

) ∑

K∈T h

h−2
K ‖v‖2

L2(K) . (98)

Proof. Applying integration by parts and using that qh ∈ H1(Ω) yields
(
∇ · v, qh

)
= −

(
v,∇qh

)
.

For each mesh cell K , it is for arbitrary zh ∈ V h

−
(
v,∇qh

)
K

= −
(
v,−ν∆zh +∇qh

)
K

+
(
v,−ν∆zh

)
K
.

Using the triangle inequality, the Cauchy–Schwarz inequality, the property (44), as well as the Young
inequality gives for any ε1 > 0

∣∣(∇ · v, qh
)∣∣

≤
∑

K∈T h

∣∣(v,−ν∆zh +∇qh
)
K

∣∣+
∑

K∈T h

∣∣(v,−ν∆zh
)
K

∣∣

≤ ν

4δ0ε

∑

K∈T h

h−2
K ‖v‖2

L2(K) + ε
∑

K∈T h

δK
∥∥−ν∆zh +∇qh

∥∥2

L2(K)

+ε1

∑

K∈T h

h2
K

∥∥ν∆zh
∥∥2

L2(K)
+

1

4ε1

∑

K∈T h

h−2
K ‖v‖2

L2(K) .

Utilizing the inverse inequality (12) yields

ε1

∑

K∈T h

h2
K

∥∥ν∆zh
∥∥2

L2(K)
≤ ε1C

2
invν

2
∑

K∈T h

∥∥∇zh
∥∥2

L2(K)
.

Choosing ε1 = εC−2
invν

−1 and collecting terms gives (98).

DOI 10.20347/WIAS.PREPRINT.2587 Berlin 2019



Finite element pressure stabilizations for incompressible flow problems 29

Theorem 4.23 (Error estimate). Assume that the solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d ×
H l+1(Ω), that Qh ⊂ H1(Ω), and that the stabilization parameters satisfy (44), then there holds the
error estimate

∥∥(u− uh, p− ph
)∥∥

nsgls
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (8) and (9). Using the coercivity (95)
and the Galerkin orthogonality (97) yields

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls

= Ansgls

((
uh − Ihu, ph − Jhp

)
,
(
uh − Ihu, ph − Jhp

))

= Ansgls

((
u− Ihu, p− Jhp

)
,
(
uh − Ihu, ph − Jhp

))
.

Applying the Cauchy–Schwarz inequality, Lemma 4.22 with zh = uh − Ihu and ε = 1/4, and the
Young inequality gives

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls

≤ ν
∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

+
∥∥p− Jhp

∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

+
∣∣(∇ ·

(
u− Ihu

)
, ph − Jhp

)∣∣

+
∑

K∈T h

δK
∥∥−ν∆

(
u− Ihu

)
+∇(p− Jhp)

∥∥
L2(K)

×
∥∥−ν∆

(
uh − Ihu

)
+∇(ph − Jhp)

∥∥
L2(K)

≤ 1

2

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls
+ 2

∥∥(u− Ihu, p− Jhp
)∥∥2

nsgls

+
2

ν

∥∥p− Jhp
∥∥2

L2(Ω)
+ ν

(
1

δ0

+ C2
inv

) ∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)
.

The proof is finished by applying the triangle inequality
∥∥(u− uh, p− ph

)∥∥
nsgls
≤
∥∥(u− Ihu, p− Jhp

)∥∥
nsgls

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
nsgls

and using (44), (8), and (9).

Theorem 4.24 (L2 estimate of the pressure error). Assume that the solution of (5) satisfies (u, p) ∈
Hk+1(Ω)d × H l+1(Ω), that Qh ⊂ H1(Ω), and that the stabilization parameters satisfy (44), then
there holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
.

Proof. Like in the proof of Theorem 4.8, we start with (55). The Galerkin orthogonality (97) with
(vh, qh) = (Ihw, 0) gives

0 = ν
(
∇
(
u− uh

)
,∇Ihw

)
−
(
∇ ·
(
Ihw

)
, p− ph

)

−
∑

K∈T h

(
−ν∆

(
u− uh

)
+∇

(
p− ph

)
, δKν∆Ihw

)
K
.
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Hence, using the Cauchy–Schwarz inequality and applying (44), (12), (10), and (52), one obtains
∣∣(∇ ·

(
Ihw

)
, p− ph

)∣∣ ≤ Cν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

∥∥p− ph
∥∥
L2(Ω)

. (99)

The estimate (57) reduces to

−
(
∇ ·
(
w − Ihw

)
, p− ph

)

≤ Cν1/2

δ
1/2
0

∥∥p− ph
∥∥
L2(Ω)

(∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)

)1/2

. (100)

To estimate the last term in (100), we apply the triangle inequality, (44), and (64), which gives

∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)

≤ 2
∥∥(u− uh, p− ph)

∥∥2

nsgls
+ 2δ1ν

∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)

≤ C
∥∥(u− uh, p− ph)

∥∥2

nsgls
+ Cνh2k ‖u‖2

Hk+1(Ω) .

Combining this estimate with (55), (99), and (100) yields
∥∥p− ph

∥∥
L2(Ω)

≤ Cν1/2
∥∥(u− uh, p− ph)

∥∥
nsgls

+ Cνhk ‖u‖Hk+1(Ω) ,

where the constant C depends on δ−1/2
0 . Applying Theorem 4.23 finishes the proof.

Theorem 4.25 (L2 estimate of the velocity error). Let the Stokes problem (2) be regular. Assume
that the solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d × H l+1(Ω), that Qh ⊂ H1(Ω), and that the
stabilization parameters satisfy (44), then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. We proceed analogously as in the proofs of Theorems 4.9 and 4.17. Again, the starting point
is the identity (27), where the first two terms on the right-hand side can be estimated by (28). From the
Galerkin orthogonality (97), one obtains

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
=

(
∇ · (zI − z), p− ph

)

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK(ν∆zI +∇rI)

)
K
.

Thus, using (44), (25), (58), and (89), one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
≤
∥∥∇(z − zI)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

+
∥∥(u− uh, p− ph

)∥∥
nsgls

(∑

K∈T h

δK
∥∥ν∆zI +∇rI

∥∥2

L2(K)

)1/2

≤ Ch
(∥∥p− ph

∥∥
L2(Ω)

+ ν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

)∥∥u− uh
∥∥
L2(Ω)

. (101)
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Combining (27), (28), and (101) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Ch
(∥∥p− ph

∥∥
L2(Ω)

+ ν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

)

and the theorem follows from Theorems 4.23 and 4.24.

In the case of discontinuous pressure approximations, the optimal choice of the stabilization parameter
for the pressure jumps is γE = O (hE/ν), see [39].

In [4], an extension of the non-symmetric GLS method is proposed. This method possesses jump
terms that contain the residual of the stress tensor on the internal edges, i.e., the jump of the normal
derivative of the finite element velocity and the jump of the finite element pressure. It is unconditionally
stable for a norm where, in comparison with ‖(·, ·)‖nsgls defined in (94), the Laplacian of the velocity
is absent but the residual of the stress tensor at the inner faces is present. An a priori analysis and an
a posteriori analysis of this method are provided in [4].

For P1/P1 finite elements, the non-symmetric GLS method with a weak imposition of the boundary
condition via a penalty-free Nitsche method was studied in [18].

4.5 An Absolutely Stable Modification of the PSPG Method

The PSPG method from Section 4.2 is only conditionally stable, see the upper bound (39) for the stabi-
lization parameter used in Lemma 4.3 to prove the coercivity. In [19], an absolutely stable modification
of the PSPG method was proposed which we now briefly describe.

The PSPG method (33) will be now considered with Qh ⊂ H1(Ω) and δK = δ := δ0h
2/ν, which

can be used on an uniform grid. In (34), the operator ∆ is applied elementwise. In [19], it was replaced
by the discrete Laplacian ∆h : V → V h defined by

(
∆hu,vh

)
= −

(
∇u,∇vh

)
∀ u ∈ V, vh ∈ V h. (102)

Then the modified PSPG method reads: Find
(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δ

(
−ν∆huh +∇ph,∇qh

)

= (f ,vh) + δ
(
f ,∇qh

)
∀
(
vh, qh

)
∈ V h ×Qh. (103)

Thus, the modified PSPG method requires the additional solution of problem (102), which is a linear
system with the mass matrix as system matrix. In practical computations, the mass matrix can be
replaced by a lumped mass matrix or local projection. Using (102), method (103) can be rewritten as

(
−ν∆huh +∇ph,vh + δ∇qh

)
+
(
∇ · uh, qh

)
=
(
f ,vh + δ∇qh

)
, (104)

such that it has the form of a Petrov–Galerkin method.

Recall that the conditional stability of the PSPG method stems from the fact that the coercivity is based
on estimating the term

∑
K∈T h δK

(
−ν∆vh,∇qh

)
K

by
∥∥(vh, qh

)∥∥2

pspg
. This step inevitably leads

to a bound on δK . However, replacing ∆ by ∆h, it is possible to get rid of this term by a suitable
choice of vh. Indeed, defining vh as the L2 projection of −δ∇qh onto V h, we see from (104) that
the respective term disappears. This together with further tools enabled to prove in [19] that, for any
δ0 > 0, the bilinear form corresponding to the modified PSPG method satisfies an inf–sup condition of
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the type (75) with respect to the norm ν1/2
∥∥∇vh

∥∥
L2(Ω)

+ν−1/2
∥∥qh
∥∥
L2(Ω)

with a constant dependent

on δ0.

The modified PSPG method (103) is obviously not consistent in general. However, this inconsistency
is very weak so that the optimal order of convergence with respect to the mentioned norm could be
proved in [19].

5 Stabilizations Using only the Pressure

This section is dedicated to methods that use only the pressure in the stabilization term. Hence, there
is no need to compute the residual and the use of second derivatives of the finite element functions is
not necessary. However, many methods connect pressure degrees of freedom that do not belong to
the same mesh cell. Consequently, the stencil of the matrix C in (4) is denser than for residual-based
stabilizations.

After having introduced a framework in Section 5.1, a number of methods will be presented briefly. A
detailed analysis is provided for a Local Projection Stabilization (LPS) method in Section 5.4.

5.1 A Framework

An abstract approach for the derivation and analysis of pressure-stabilized schemes was presented in
[25], see also [21, Chapter 6.3]. For the Stokes equations, the considered scheme has the form: Find(
uh, ph

)
∈ V h ×Qh such that for all

(
vh, qh

)
∈ V h ×Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δS

((
uh, ph

)
,
(
vh, qh

))
=
(
f ,vh

)
, (105)

with δ > 0 and S :
(
V h ×Qh

)
×
(
V h ×Qh

)
→ R being a bilinear form that should be chosen

such that (105) is a stable and consistent discrete scheme. There are two essential assumptions on
S. The bilinear form should be bounded with a constant independent of h. Likewise, uniformly in h,
there should exist a Hilbert spaceH, some operator Gh ∈ L

(
V h ×Qh,H

)
, and a constant C > 0

such that for all
(
vh, qh

)
∈ V h ×Qh

S
((
vh, qh

)
,
(
vh, qh

))
≥ C

∥∥Gh
((
vh, qh

))∥∥2

H .

For the abstract problem considered in [25], more operators, assumptions, etc. were introduced. Then,
stability and error estimates, e.g., with respect to the errors in the norms of V and Q were derived.

Let Qh ⊂ H1(Ω). The application of the abstract theory presented in [25] to the Stokes equations
considers pressure stabilizations that use only the pressure. A first example consists in taking

S
((
uh, ph

)
,
(
vh, qh

))
=
(
∇ph,∇qh

)
,

Gh
(
vh, qh

)
= ∇qh, H = L2(Ω)d, and δ = O (h2), which gives the method of Brezzi–Pitkäranta,

see Section 5.2. A second example consists in choosing

S
((
uh, ph

)
,
(
vh, qh

))
=
((
I − P

V h

)
∇ph,∇qh

)
,

with P
V h being a the L2(Ω) projection operator onto V h, where V h is defined with the same poly-

nomials as V h but without incorporating the boundary conditions in the definition. In this method, one
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has H = L2(Ω)d and Gh
(
vh, qh

)
=
(
I − P

V h

)
∇qh. One obtains the method proposed in [34],

see Section 5.3. Concerning the choice of δ, one finds in [34], where bounds for the pressure error in
different norms than in [25] were proved, that one gets stability for δ ≥ Ch2 and optimal convergence
for δ = O (h2). In [25], see also [21, Chapter 8.13.3], it is shown that for V h×Qh = P1/P1, stability
and optimal convergence are obtained with δ = O (1).

For a detailed investigation on how several methods introduced in this section fit into the framework of
[25], it is referred to [27].

5.2 The Brezzi–Pitkäranta Method

The Brezzi–Pitkäranta method from [26] was the first stabilization method for circumventing the dis-
crete inf-sup condition (3). This method was proposed for the P1/P1 pair of finite element spaces and
it has the form: Find (uh, ph) ∈ V h ×Qh = P1 × P1 such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑

K∈T h

(
∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh. (106)

Considering a uniform family of triangulations, the optimal order convergence of the solution of (106)
with respect to

∥∥∇
(
u− uh

)∥∥
L2(Ω)

and
∥∥p− ph

∥∥
L2(Ω)

was proved for the stabilization parameter

δpK = O (h2) (for ν = 1). As discussed above, method (106) fits into the framework presented in
Section 5.1.

As it is often noted in the literature, the Brezzi–Pitkäranta method imposes artificial boundary condi-
tions for the finite element pressure. Considering for simplicity δpK = δ, then the strong form of the
continuity equation of (106) reads as

−∇ · u+ δ∆p = 0.

Deriving in the usual way the corresponding weak form leads to

− (∇ · u, q)− δ (∇p,∇q) + δ

∫

∂Ω

(∇p · n) q ds = 0 ∀ q ∈ Q.

Since no boundary integral appears in (106), one finds that an artificial boundary condition of the form

δ
(
∇ph · n

)
= 0 on ∂Ω

for the discrete pressure is introduced with this method.

A stabilized method of Brezzi–Pitkäranta-type with a nonlinear stabilization parameter is presented in
[77], the so-called pressure Laplacian stabilization (PLS) method. The stabilization parameter depends
on the residuals of the finite element continuity and the momentum equation.

5.3 Stabilization with Global Fluctuations of the Pressure Gradient

In [34], it was shown that for constructing a pressure-stable method, it is not necessary to use the full
gradient of the discrete pressure, as in (106). Denoting by V h the velocity finite element space with
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the same polynomials as V h but without prescribed boundary conditions, then it is proposed in [34] to

apply the following method: Find
(
uh, ph,∇ph

)
∈ V h ×Qh × V h such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑

K∈T h

(
∇ph −∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh,

(
∇ph −∇ph,vh

)
= 0 ∀ vh ∈ V h.

(107)

The third equation of (107) defines∇ph to be the L2(Ω) projection of∇ph onto V h. In this way, one
can interprete∇ph as being large scales of∇ph and the difference∇ph−∇ph of being fluctuations.
Only the fluctuations appear in the stabilization term of the discrete continuity equation. It was already
discussed above that this method fits into the framework described in Section 5.1.

A finite element analysis of the method can be found in [34]. This analysis considers a family of quasi-
uniform triangulations and δpK = δ. For δ = O (h2), the stability of the finite element solution and

optimal error estimates for
∥∥∇
(
u− uh

)∥∥
L2(Ω)

,
∥∥∇
(
p− ph

)∥∥
L2(Ω)

, and
∥∥∥∇p−∇ph

∥∥∥
L2(Ω)

were

proved. Extensions of the analysis that allow the choice of local stabilization parameters and to the
steady-state Navier–Stokes equations can be found in [35].

Another analysis of method (107) can be found in [66]1. The error estimate from [66] bounds
∥∥p− ph

∥∥
L2(Ω)

whereas the estimate from [34] gives a bound for h
∥∥∇
(
p− ph

)∥∥
L2(Ω)

.

A method of type (107) was analyzed for the Brinkman equations in [8]. As additional terms, a grad-
div stabilization, using fluctuations of the divergence, and jump terms across faces, which involve the
Cauchy stress tensor, appear. The analysis covers both limit cases of the Brinkman equations, namely
the Stokes and the Darcy equations. Global Fluctuations of the Pressure Gradient

5.4 Local Projection Stabilization (LPS) Methods

To assure the stability of the PSPG method (33), it would be sufficient to consider the term

∑

K∈T h

δK (∇p,∇q)K (108)

instead of the residual-based terms in (34) and (35). This would provide several advantages (e.g.,
symmetry of the stabilization, simpler implementation, absolute stability) but it would not lead to opti-
mal error estimates. A remedy preserving most of the advantages of (108) without compromising the
convergence rates of the PSPG method is to apply locally suitable projection operators to∇p and∇q
in (108) so that the consistency error can be estimated in the desired way.

It is convenient to define the mentioned local projections on macroelements. Precisely, one introduces
a set Mh consisting of a finite number of open subsets M of Ω such that Ω = ∪M∈Mh M . In
contrast to T h, the sets inMh are allowed to overlap. For any K ∈ T h, E ∈ Eh, and M ∈Mh it is
assumed that either K ⊂ M or K ⊂ Ω \M and that either E ⊂ M or E ⊂ Ω \M . Furthermore,
for anyM ∈Mh, one introduces a finite-dimensional spaceDM ⊂ L2(M)d and a continuous linear
projection operator πM which maps the space L2(M)d onto the space DM . Then one defines the

1Reading [66], one is wondering that there is no reference to [34] for method (107). From the article’s history, one finds
that [66] was submitted shortly after [34] was published.
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so-called fluctuation operator κM = id − πM , where id is the identity operator on L2(M)d. Finally,
the term (108) is replaced by

∑

M∈Mh

δM(κM(∇hp), κM(∇hq))M ,

where (∇hq)|K = ∇(q|K) for any K ∈ T h.

Thus, the local projection stabilization (LPS) method reads: Find
(
uh, ph

)
∈ V h ×Qh such that

Alps

((
uh, ph

)
,
(
vh, qh

))
= (f ,vh) ∀

(
vh, qh

)
∈ V h ×Qh, (109)

where the bilinear form Alps :
(
V × Q̃

)
×
(
V × Q̃

)
→ R is given by

Alps ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)E +

∑

M∈Mh

δM(κM(∇hp), κM(∇hq))M

and the space Q̃ was defined in (37).

We make analogous assumptions on the stabilization parameters as for the residual-based methods,
i.e., it is assumed that the parameters {γE} satisfy (45) and that

0 < δ0
h2
M

ν
≤ δM ≤ δ1

h2
M

ν
∀M ∈Mh (110)

with some positive constants δ0, δ1 and hM := diam(M).

To perform an analysis of the method and prove optimal error estimates, a key assumption is the
validity of the inf-sup conditions

sup
v∈VM\{0}

(v, q)M
‖v‖L2(M)

≥ βLP ‖q‖L2(M) ∀ q ∈ DM , M ∈Mh (111)

with VM = {vh ∈ V h : vh = 0 in Ω \M} and a constant βLP independent of h. This poperty
limits possible combinations of spaces V h and DM .

Using local projections onto macro mesh cells for pressure stabilization was proposed for the Q1/Q0

pair of finite element spaces already in [81]. The original local projection stabilization [13, 14] was
designed as a two-level method. Given a triangulation of Ω, the elements of this triangulation are con-
sidered as the setMh. Then this triangulation is refined as depicted in Fig. 1 for the two-dimensional
case, i.e., each triangle is divided into three triangles by connecting its vertices with the barycenter
and each quadrilateral is divided into four quadrilaterals by connecting midpoints of opposite edges.
This gives the triangulation T h. If the space V h is defined on T h like before (i.e., it contains locally
(mapped) polynomials of degree k ≥ 1), then the inf-sup conditions (111) hold forDM = Pk−1(M)d.

Another choice of the spaces V h and DM (a one-level method) was proposed in [72]. In this case
Mh = T h and to satisfy the inf-sup conditions (111) with DM = Pk−1(M)d the space V h is
enriched elementwise by bubble functions.

Finally, let us describe a choice of the spaces V h and DM based on a setMh consisting of over-
lapping sets M as proposed in [62]. Assuming that each element of T h has at least one vertex in
Ω, then for each interior vertex a macroelement consisting of elements of T h sharing this vertex is
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Figure 1: Relation between the meshesMh (bold lines) and T h (bold and fine lines) in the two-level
method.

defined. For this setMh, one can use our standard choice of V h and local spacesDM = Pk−1(M)d

to satisfy the inf-sup conditions (111).

Note that the first two ways of constructing the spaces V h and DM lead to a significant increase of
the number of degrees of freedom, either due to an enrichment by bubble functions (in the one-level
method) or due to a refinement of the given triangulation (in the two-level method). On the other hand,
in the variant with overlapping sets M , the number of degrees of freedom remains the same as if one
would use, e.g., a residual-based stabilization.

We refer to [62, 72] for details on the definitions of the spaces and for proofs of the inf-sup conditions.

In view of the examples of the spaces DM , it is reasonable to assume that there exist interpolation
operators jM : L2(M)d → DM such that, for m = 0, . . . , k, one has

‖q − jMq‖L2(M) ≤ C hmM ‖q‖Hm(M) ∀ q ∈ Hm(M)d, M ∈Mh. (112)

Finally, let us state a few natural assumptions needed for the subsequent analysis. We assume that
there are various positive constants independent of h such that

card{M ′ ∈Mh ; M ∩M ′ 6= ∅} ≤ CM ∀ M ∈Mh, (113)

card{K ∈ T h ; K ⊂M} ≤ CT ∀ M ∈Mh , (114)

card{M ∈Mh ; K ⊂M} ≤ CT ∀ K ∈ T h , (115)

card{E ∈ Eh ; E ⊂M} ≤ CE ∀ M ∈Mh , (116)

card{M ∈Mh ; E ⊂M} ≤ CE ∀ E ∈ Eh, (117)

‖κM‖L(L2(M)d,L2(M)d) ≤ Cκ ∀ M ∈Mh , (118)

hM ≤ C ′M hM ′ ∀ M,M ′ ∈Mh, M ∩M ′ 6= ∅. (119)

Furthermore, for any E ∈ Eh and M ∈Mh with E ⊂M , we assume that

hM ≤ C ′E hE , (120)

‖v‖L2(E) ≤ Ce (h
−1/2
M ‖v‖L2(M) + h

1/2
M ‖∇v‖L2(M)) ∀ v ∈ H1(M). (121)

Finally, we shall need the inverse inequalities

∥∥∇vh
∥∥
L2(M)

≤ C̄inv h
−1
M ‖vh‖L2(M) ∀ vh ∈ V h, M ∈Mh . (122)

Let us now investigate the stability of the LPS method. One obviously has

Alps ((v, q) , (v, q)) = |(v, q)|2lps ∀ (v, q) ∈ V × Q̃, (123)
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where

|(v, q)|lps =

(
ν ‖∇v‖2

L2(Ω) +
∑

E∈Eh
γE ‖[|q|]E‖

2
L2(E)

+
∑

M∈Mh

δM
∥∥κM(∇hq)

∥∥2

L2(M)

)1/2

.

The functional |·|lps is only a seminorm on V × Q̃. In what follows we shall prove that the bilinear form

Alps is stable on V h ×Qh with respect to the norm

‖(v, q)‖lps =

(
ν ‖∇v‖2

L2(Ω) +
∑

E∈Eh
γE ‖[|q|]E‖

2
L2(E)

+
∑

M∈Mh

δM
∥∥∇hq

∥∥2

L2(M)

)1/2

in the sense of an inf-sup condition. The norm ‖·‖lps is an analogue of the PSPG norm (38) and the

proof that it is a norm on V × Q̃ is the same as in Lemma 4.2. One even has the following result.

Lemma 5.1 (Relation to the PSPG norm). Given stabilization parameters {δM} and {γE} satisfying
(110) and (45), respectively, one has

‖(v, q)‖lps = ‖(v, q)‖pspg ∀ (v, q) ∈ V × Q̃,
where the norm ‖·‖pspg is defined using stabilization parameters {δK} satisfying

0 < δ0
h2
K

ν
≤ δK ≤ δ′1

h2
K

ν
∀ K ∈ T h (124)

with a constant δ′1 independent of h and ν.

Proof. One has ∑

M∈Mh

δM
∥∥∇hq

∥∥2

L2(M)
=
∑

M∈Mh

δM
∑

K ∈ T h,

K ⊂M

‖∇q‖2
L2(K)

=
∑

K∈T h

∑

M ∈Mh,

K ⊂M

δM ‖∇q‖2
L2(K)

=
∑

K∈T h

δK ‖∇q‖2
L2(K) (125)

with
δK :=

∑

M ∈Mh,

K ⊂M

δM . (126)

For anyM ∈Mh such thatK ⊂M one gets δK ≥ δM ≥ δ0h
2
M/ν ≥ δ0h

2
K/ν. On the other hand,

using (120) and (115), it follows that

δK ≤ δ1

∑

M ∈Mh,

K ⊂M

h2
M

ν
≤ δ1 (C ′E)

2
CT

h2
K

ν
.
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Lemma 5.2 (Inf-sup condition for the bilinear form Alps). Let the conditions (110) and (45) on the
stabilization parameters {δM} and {γE} be satisfied and let the inf-sup conditions (111) hold. Then,
there is a positive constant C such that for all

(
vh, qh

)
∈ V h ×Qh, it holds

sup
(wh,rh)∈V h×Qh\{(0,0)}

Alps

((
vh, qh

)
,
(
wh, rh

))

‖(wh, rh)‖lps

≥ C
∥∥(vh, qh

)∥∥
lps
.

Proof. Consider any
(
vh, qh

)
∈ V h × Qh and set s = ∇hqh. Then s ∈ L2(Ω)d and, using the

identity

(∇ ·w, q) + (w,∇hq) =
∑

E∈Eh
(w · nE, [|q|]E)E ∀ w ∈ V, q ∈ Q̃, (127)

that follows from integration by parts, one obtains

Alps((v
h, qh), (zh, 0)) ≥ (zh, s)− ν

∥∥∇vh
∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

−
∑

E∈Eh

(
zh · nE,

[∣∣qh
∣∣]
E

)
E

(128)

for any zh ∈ V h. Our aim is to choose the function zh in such a way that the term (zh, s) provides a
control of

S :=
∑

M∈Mh

δM‖s‖2
L2(M) .

For this one can employ the inf-sup conditions (111) which imply that, for any M ∈ Mh, there exists
zM ∈ VM such that (cf., e.g., [40])

(zM , q)M = δM (s, q)M ∀ q ∈ DM , (129)

‖zM‖L2(M) ≤ β−1
LP δM ‖s‖L2(M) . (130)

Since πMs ∈ DM , one gets

(zM , s) = (zM , πMs)M + (zM , κMs)M

= δM (s, πMs)M + (zM , κMs)M

= δM ‖s‖2
L2(M) − δM (s, κMs)M + (zM , κMs)M .

Due to (130) and the Young inequality, one has

|δM (s, κMs)M − (zM , κMs)M | ≤ (δM ‖s‖L2(M) + ‖zM‖L2(M)) ‖κMs‖L2(M)

≤ δM (1 + β−1
LP ) ‖s‖L2(M) ‖κMs‖L2(M)

≤ δM
2
‖s‖2

L2(M) + (1 + β−2
LP ) δM ‖κMs‖2

L2(M)

and hence

(zM , s) ≥ δM
2
‖s‖2

L2(M) − (1 + β−2
LP ) δM ‖κMs‖2

L2(M) .

Thus, setting zh =
∑

M∈Mh zM , one gets

(zh, s) ≥ 1

2
S − (1 + β−2

LP )
∑

M∈Mh

δM ‖κMs‖2
L2(M) .
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In view of (113), one has

‖∇zh‖2
L2(Ω) ≤

∑

M ′∈Mh

‖∇zh‖2
L2(M ′)

≤
∑

M ′∈Mh

( ∑

M ∈Mh,

M ∩M ′ 6= ∅

‖∇zM‖L2(M ′)

)2

≤ CM
∑

M ′∈Mh

∑

M∈Mh

‖∇zM‖2
L2(M ′)

= CM
∑

M∈Mh

∑

M ′ ∈Mh,

M ∩M ′ 6= ∅

‖∇zM‖2
L2(M ′)

≤ C2
M
∑

M∈Mh

‖∇zM‖2
L2(M) .

Using (122), (130), and (110), one derives

ν ‖∇zM‖2
L2(M) ≤ C̄2

invνh
−2
M ‖zM‖2

L2(M) ≤ δ1C̄
2
invβ

−2
LP δM‖s‖2

L2(M)

and hence
ν1/2

∥∥∇zh
∥∥
L2(Ω)

≤ C1S
1/2, (131)

with C1 = δ
1/2
1 CMC̄invβ

−1
LP . Finally, using the Cauchy–Schwarz inequality, (121), (122), (130), (110),

(45), (120), (116), and (117), the last term in (128) can be estimated by
∣∣∣∣∣
∑

E∈Eh

(
zh · nE,

[∣∣qh
∣∣]
E

)
E

∣∣∣∣∣ ≤
∑

E∈Eh, M∈Mh,

E ⊂M

‖zM‖L2(E)‖
[∣∣qh

∣∣]
E
‖L2(E)

≤ Ce (1 + C̄inv) β−1
LP

∑

E∈Eh, M∈Mh,

E ⊂M

h
−1/2
M δM ‖s‖L2(M)‖

[∣∣qh
∣∣]
E
‖L2(E)

≤ CE Ce (1 + C̄inv) β−1
LP

(
C ′E

δ1

γ0

)1/2

S1/2

(∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)

)1/2

.

Thus, combining the above inequalities and applying the Young inequality, it follows that

Alps((v
h, qh), (zh, 0)) ≥ 1

4
S − C2

∣∣(vh, qh)
∣∣2
lps
,

where C2 depends only on CM, CE , C ′E , Ce, C̄inv, δ1, γ0, and βLP . Setting

wh = 4zh + (1 + 4C2)vh , rh = (1 + 4C2) qh

and using (123), one obtains

Alps((v
h, qh), (wh, rh)) ≥ S +

∣∣(vh, qh)
∣∣2
lps
≥
∥∥(vh, qh)

∥∥2

lps
.

From (131), it follows that
∥∥(wh, rh)

∥∥
lps
≤ 4 ν1/2

∥∥∇zh
∥∥
L2(Ω)

+ (1 + 4C2)
∥∥(vh, qh)

∥∥
lps

≤ (1 + 4C1 + 4C2)
∥∥(vh, qh)

∥∥
lps
,

which proves the theorem.
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We now move on to error estimates. First, let us investigate the consistency of the method.

Lemma 5.3 (Consistency error). Let the solution of (5) satisfy (u, p) ∈ H1
0 (Ω)d × H1(Ω) and let

(uh, ph) ∈ V h×Qh be the solution of the LPS method (109). The LPS method is not consistent and
it holds

Alps

((
u− uh, p− ph

)
,
(
vh, qh

))
=
∑

M∈Mh

δM(κM(∇p), κM(∇hqh))M (132)

for all
(
vh, qh

)
∈ V h ×Qh.

Proof. The lemma is a simple consequence of (5) and (109).

The term on the right-hand side of (132) represents the consistency error and is estimated in the
following lemma.

Lemma 5.4 (Estimate of the consistency error). Let {δM} satisfy (110) and let p ∈ Hm+1(Ω) with
0 ≤ m ≤ k. Then, for any qh ∈ Qh, one has

∑

M∈Mh

δM(κM(∇p), κM(∇hqh))M ≤ Cν−1/2hm+1 ‖p‖Hm+1(Ω)

∥∥(0, qh)
∥∥

lps
.

Proof. Applying the Cauchy–Schwarz inequality, (110), (118), and (112), one obtains for any qh ∈ Qh

∑

M∈Mh

δM (κM(∇p), κM(∇hq))M

≤
∑

M∈Mh

δM ‖κM(∇p− jM∇p)‖L2(M)

∥∥κM(∇hqh)
∥∥
L2(M)

≤ C2
κδ

1/2
1

ν1/2

( ∑

M∈Mh

h2
M ‖∇p− jM∇p‖2

L2(M)

)1/2( ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)

)1/2

≤ Cν−1/2

( ∑

M∈Mh

h2m+2
M ‖∇p‖2

Hm(M)

)1/2( ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)

)1/2

and the lemma follows using (114) and (115).

Theorem 5.5 (Error estimate). Let the solution of (5) satisfy (u, p) ∈ Hk+1(Ω)d × H l+1(Ω) and
let
(
uh, ph

)
∈ V h × Qh be the solution of the LPS problem (109). Assume that the stabilization

parameters satisfy (110) and (45) and that the inf-sup conditions (111) hold. Then the following error
estimate holds

∥∥(u− uh, p− ph
)∥∥

lps
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hmin{k,l}+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (8) and (9). From the proof of Lemma 5.2,
it is known that there is a pair

(
vh, qh

)
∈ V h ×Qh such that

∥∥(uh − Ihu, ph − Jhp
)∥∥

lps
≤ C

Alps

((
uh − Ihu, ph − Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖lps

.

DOI 10.20347/WIAS.PREPRINT.2587 Berlin 2019



Finite element pressure stabilizations for incompressible flow problems 41

With Lemmas 5.3 and 5.4, one obtains

∥∥(uh − Ihu, ph − Jhp
)∥∥

lps
≤ C

Alps

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖lps

+ Cν−1/2hmin{k,l}+1 ‖p‖Hmin{k,l}+1(Ω) .

Applying the Cauchy–Schwarz inequality, one gets

Alps

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))
≤
∣∣(u− Ihu, p− Jhp)

∣∣
lps

∣∣(vh, qh)
∣∣
lps

− (∇ · vh, p− Jhp) + (∇ · (u− Ihu), qh)

and
−(∇ · vh, p− Jhp) ≤ ν−1/2

∥∥p− Jhp
∥∥
L2(Ω)

∥∥(vh, qh)
∥∥

lps
.

Using (127), the Cauchy–Schwarz inequality, (110), (45), and (8), one derives

(∇ · (u− Ihu), qh) = −(u− Ihu,∇hqh) +
∑

E∈Eh

(
(u− Ihu) · nE,

[∣∣qh
∣∣]
E

)
E

≤ ν1/2

δ
1/2
0

(∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)

)1/2( ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)

)1/2

+
ν1/2

γ
1/2
0

(∑

E∈Eh
h−1
E

∥∥u− Ihu
∥∥2

L2(E)

)1/2(∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)

)1/2

≤ Cν1/2hk ‖u‖Hk+1(Ω)

∥∥(vh, qh)
∥∥

lps
.

Combining the above inequalities and using the triangle inequality, (9), (118) and Lemma 5.1, one
obtains

∥∥(u− uh, p− ph
)∥∥

lps
≤ C

∥∥(u− Ihu, p− Jhp
)∥∥

pspg

+ Cν1/2hk ‖u‖Hk+1(Ω) + Cν−1/2hmin{k,l}+1 ‖p‖Hl+1(Ω)

and the statement of the theorem follows from (48).

Theorem 5.6 (L2 estimate of the pressure error). Assume that the solution of (5) satisfies (u, p) ∈
Hk+1(Ω)d × H l+1(Ω), that the stabilization parameters satisfy (110) and (45) and that the inf-sup
conditions (111) hold. Then there holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hmin{k,l}+1 ‖p‖Hl+1(Ω)

)
.

Proof. Using {δK} defined in (126), the proof of Theorem 4.8 can be repeated without any changes.
Then the statement of the present theorem follows from Lemma 5.1 and Theorem 5.5.

Theorem 5.7 (L2 estimate of the velocity error). Let the stabilization parameters satisfy (110) and
(45), let the inf-sup conditions (111) hold, and let the Stokes problem (2) be regular. Assume that the
solution of (5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω), then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C

(
hk+1 ‖u‖Hk+1(Ω) +

hmin{k,l}+2

ν
‖p‖Hl+1(Ω)

)
.
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Proof. Up to (60), the proof of Theorem 4.9 remains valid also in this case. Then, instead of (61), one
obtains from (132)

(
∇ · (u− uh), rI

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI
∣∣]
E

)
E

+
∑

M∈Mh

δM(κM(∇h(p− ph)), κM(∇hrI))M

=
∑

M∈Mh

δM(κM(∇p), κM(∇hrI))M .

Thus, instead of (62), one obtains the following expression for the last two terms in (27)

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
=

(
∇ · (zI − z), p− ph

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI − r

∣∣]
E

)
E

+
∑

M∈Mh

δM(κM(∇h(p− ph)), κM(∇hrI))M

−
∑

M∈Mh

δM(κM(∇p), κM(∇hrI))M .

Analogously as in (63), but using also Lemma 5.4, (118), (125), and (124), one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)
≤ Ch

(∥∥p− ph
∥∥
L2(Ω)

+ ν1/2
∥∥(0, p− ph

)∥∥
lps

+ hmin{k,l}+1 ‖p‖Hl+1(Ω)

)∥∥u− uh
∥∥
L2(Ω)

.

Combining this estimate with (27) and (28), the theorem follows using Theorems 5.5 and 5.6.

The LPS method for the Stokes problem was introduced in [13]. A generalization and unified analysis
was presented in [72] where the stability with respect to a norm containing the L2(Ω) norm of the
pressure was established. The techniques presented here are a special case of the analysis published
in [64]. As one can see, the LPS method leads to analogous stability and convegence results as
residual-based approaches. However, in comparison with residual-based stabilizations, an important
advantage of LPS methods is that they do not create additional couplings between various unknowns.
A drawback is that the local projections couple pressure degrees of freedom that do not belong to the
same mesh cell. Hence, the sparsity pattern of the pressure-pressure matrix C in (4) is denser as,
e.g., for residual-based discretizations.

Remark 5.8 (LPS method with Scott–Zhang-type projector). An LPS method that uses a particular
Scott–Zhang-type projector, which is well defined for L1(Ω) functions, is proposed in [7]. Like the
LPS method with overlapping macroelements, it neither requires nested meshes nor an enrichment of
spaces by bubble functions. However, similarly as for the other versions of the LPS method, the pro-
jector leads to a wider sparsity pattern of the pressure-pressure matrix. A finite element error analysis
of this method and few numerical comparisons with the symmetric GLS method from Section 4.3 for
P1/P1 finite elements, which is in this case equivalent to the PSPG method, are presented in [7]. The
method is absolutely stable. There are no assumptions on upper bounds of the stabilization parameter
in the analysis and the numerical studies show even a slight improvement of the accuracy for large
stabilization parameters. 4
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A stabilizing term of the form

∑

K∈T h

α

ν
h2
K

((
I − P h

) (
∇ph

)
,
(
I − P h

) (
∇qh

))
K

is proposed in [31] for Pk/Pk finite elements, where P h is some stable approximation operator from
L2(Ω)d into the space of continuous piecewise polynomial functions of degree k − 1. This operator
was chosen in the numerical studies from [31] as an extension of a nodal interpolation operator. The
arising method is called term-by-term stabilized method. The differences to already existing methods
are discussed in detail in [31]. Depending on the actual choice of P h, it can be considered as an LPS
method that is defined on a single mesh and with standard finite element spaces. If P h is chosen to
be a global L2(Ω) projection, then the image of the projection operator is different than for the method
from [34]. In [31], a finite element convergence analysis is presented that proves optimal orders for the
L2(Ω) norm of the velocity gradient and of the pressure.

A two-level LPS method was studied in [76]. Using this method, the pressure gradient from the LPS
stabilization term can be locally eliminated, which facilitates the implementation of this LPS method.

In [11], the so-called residual local projection (RELP) method is proposed for low order pairs of finite
element spaces. It contains an LPS term for the pressure. An additional pressure-pressure coupling
is introduced by jump terms of the stress tensor across faces of the mesh cells. Special cases of the
RELP method coincide with methods from [38] and [3]. The finite element error analysis presented
in [11] shows optimal convergence for the L2(Ω) norms of the velocity gradient and of the pressure.
A similar method, where the jumps of the stress tensor are replaced by jumps of the pressure, is
proposed and analyzed in [12]. The methods from [11, 12] do not need multiple levels or extra degrees
of freedom for computing the local projection and all computations can be performed on the mesh cell
level. However, the stencil of some matrix blocks gets enlarged due to the jump terms.

5.5 Stabilization with Fluctuations of the Pressure

A pressure-stabilized method that uses fluctuations of the pressure itself, instead of the gradient of the
pressure as the methods discussed in Sections 5.3 and 5.4, was proposed in [38].

Let Qh = Pk or Qh = Qk, k ≥ 1, then the method utilizes the L2(Ω) projection P k−1
L2 : Qh →

P disc
k−1 onto the discontinuous piecewise polynomial space of degree k − 1. Since the image space

consists of discontinuous finite element functions, the projection operator P k−1
L2 can be computed

locally, i.e., mesh cell by mesh cell. The discrete continuity equation of the method proposed in [38]
reads as follows

−
(
∇ · uh, qh

)
− 1

ν

(
ph − P k−1

L2 ph, qh − P k−1
L2 qh

)
= 0 ∀ qh ∈ Qh. (133)

There is no user-chosen parameter in (133).

A finite element analysis of this method for the equal order pairs P1/P1 and Q1/Q1 of lowest order
is performed in [20]. The inverse of the viscosity does not appear in the stabilization term in contrast
to (133). An extension of the method to the pairs P1/P0 and Q1/Q0 is also proposed. The analysis
shows that in all cases the method is unconditionally stable and optimal error bounds were derived,
e.g., linear convergence for

∥∥∇
(
u− uh

)∥∥
L2(Ω)

and
∥∥p− ph

∥∥
L2(Ω)

.

A similar method, which uses projections in a pressure space defined on a coarser grid, was developed
in [65]. The derivation of this method used ideas from the variational multiscale framework.
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The stabilization term proposed in [38] can be written in the form

ch
(
ph, qh

)
=
α

ν
qT
(
M̃ −M

)
q, (134)

where α ∈ R (α = 1 in [38]), p and q are the vector representations of ph and qh with respect to the

standard basis of Qh, M is the mass matrix with respect to this basis, and M̃ is the mass matrix from
the functions arising in the L2(Ω) projection.

Subsequently, further methods with stabilization terms of type (134) were proposed in [15] and [67].
The method of [15] uses as M̃ an under-integrated mass matrix. Concrete examples for the bilinear
form from (134) are given for P1 finite elements in two dimensions, where

ch
(
ph, qh

)
=
α

ν

∫

Ω

(
Ih1 (phqh)− phqh

)
dx

and for P2 finite elements in 2d where

ch
(
ph, qh

)
=
α

ν

∫

Ω

(
Ih3 (phqh)− phqh

)
dx

Here, Ihk , k ≥ 1, is the Lagrangian interpolation operator onto the space of continuous piecewise
polynomial functions of degree k. Optimal estimates for the L2(Ω) errors of the velocity gradient and
the pressure are derived in [15].

The method from [67] uses two local Gauss integrations to define the matrices, where M̃ is defined
by a first order Gaussian integration in each direction. This method is proposed in [67] for P1/P1

and Q1/Q1 finite elements in two dimensions. It is already observed in [15] that for these cases the
method from [67] is equivalent to the method already proposed in [38]. However, the methods from
[15] and [38] are not equivalent.

5.6 Continuous Interior Penalty Methods

Continuous Interior Penalty (CIP) methods use jumps of the pressure gradient or the normal derivative
of the pressure across faces of mesh cells for stabilizing the inf-sup condition. The first method of this
class was proposed in [29, 28]. However, the use of jumps across faces of the mesh cells for pressure
stabilization dates back to a method proposed in [81]. For the Q1/Q0 pair of finite element spaces,
this method uses jumps of the pressure itself.

In [29], the stabilization term, which defines the matrix −C in (4), has the form

1

2

∑

K∈T h

(
δ0h

s+1
K

∑

E⊂∂K

([∣∣∇ph · nE
∣∣]
E
,
[∣∣∇qh · nE

∣∣]
E

)
E

)
, (135)

where

s =

{
2 if ν ≥ h,

1 if ν < h.

Additionally, a jump term containing the divergence of uh is included in the method studied in [29]. A
finite element analysis for the P1/P1 pair of spaces was presented. Assuming that p ∈ H2(Ω), the
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estimate

∥∥∇
(
u− uh

)∥∥
L2(Ω)

+
1

ν

∥∥p− ph
∥∥
L2(Ω)

≤ Ch

[
max

{
1 + δ0

ν1/2
, 1

}
max

{
hs/2, h(2−s)/2}+ ‖u‖H2(Ω)

+ max

{
1

ν1/2
,

1

ν
,
δ

1/2
0

ν1/2

}
max

{
hs/2, h(2−s)/2} ‖p‖H2(Ω)

]

was proved. It follows that in the case ν < h, the error reduction of
∥∥p− ph

∥∥
L2(Ω)

is of order 1.5.

Also the case that only p ∈ H1(Ω) holds was studied in [29].

The stabilization term of the method from [28] uses the jumps of the pressure gradient instead of the
normal derivative.

Using classical CIP stabilizations, e.g., (135), connects pressure degrees of freedom that do not be-
long to a common mesh cell. Hence, the matrix stencil of C is denser than, e.g., for residual-based
stabilizations.

A so-called local CIP method was introduced and analyzed in [30]. The advantage of this method is that
it allows static condensation. As result, the matrix stencil of the matrix C is substantially smaller than
for the classical CIP methods. The local CIP method uses a so-called macro-meshMh, where each
mesh cell M ∈ Mh consists of a small number of simplicial cells K ∈ T h. Then, the stabilization
term has the form

∑

M∈Mh


∑

K∈M
δKhK


 ∑

E∈∂K,E⊂int(K)

([∣∣∇ph
∣∣]
E
,
[∣∣∇qh

∣∣]
E

)
E




 ,

where int(K) is the interior of K and

δK = min

{
h2
K

ν
, hK

}
.

As a particular case of the error analysis presented in [30], one obtains the estimates for Pk/Pk finite
elements, k ≥ 1,

∥∥∇
(
u− uh

)∥∥
L2(Ω)

≤ Chk

((
1 +

h

ν

)1/2

|u|Hk+1(Ω) + min

{
h1/2

ν1/2
,
h

ν

}
|p|Hk+1(Ω)

)

and

∥∥p− ph
∥∥
L2(Ω)

≤ Chk
(

(ν + h)1/2 |u|Hk+1(Ω) +

(
h+ min

{
h1/2,

h

ν1/2

})
|p|Hk+1(Ω)

)
.

The error reduction for the pressure is of order k + 0.5 as long as ν < h. This higher order, even
k + 1 for ν � h, was observed in the numerical studies of [30].
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6 Connections to Inf-Sup Stable Methods with Bubble Functions

If a pair of finite element spaces for approximating the velocity and pressure does not satisfy the
discrete inf-sup condition (3), one can construct a stable pair of spaces by adding suitable functions
to the velocity space. The velocity space V h then has the form V h = V h

1 ⊕ V h
2 , where V h

1 typically
assures the approximation properties of the space V h and V h

2 guarantees the fulfilment of the inf-sup
condition (3) for the given pressure space Qh. In this section we shall consider only spaces of this
type.

The functions contained in the space V h
2 are often called bubble functions. It was realized very soon

[78] that there is a close relationship between stabilized methods and Galerkin methods with bubble
functions. Namely, if one drops the bubble part of the solution of a Galerkin method with bubble func-
tions, then one sometimes gets functions which represent a solution of a stabilized method. For linear
problems, this relationship was also established in an abstract framework via virtual bubbles in [10].
There is a lot of further papers devoted to investigations of the mentioned relationship, see, e.g., [63]
for references.

In this section we go a step further and consider also modifications of the conforming discretization for
the spaces V h = V h

1 ⊕ V h
2 , Qh to obtain equivalent representations for a wider class of stabilized

methods based on the spaces V h
1 , Qh. Such equivalences are helpful for a better understanding of

the properties of stabilized methods and for their theoretical investigations. Moreover, the technique
of modified discretizations can be used for designing new stabilized methods. The theory available for
the modified discretizations then automatically provides existence and convergence statements for the
corresponding stabilized methods.

There are many examples of finite element spaces of the mentioned type. The simplest choice for the
spaces V h

1 and Qh are piecewice constant functions for Qh and continuous piecewise (bi-, tri-)linear
functions for V h

1 . To satisfy the inf-sup condition, it suffices to use a space V h
2 consisting of one vector-

valued edge/face-bubble function per each inner edge/face, see [17, 41]. In the triangular/tetrahedral
case, spaces Qh, V h

1 consisting of continuous piecewise linear functions may be stabilized using V h
2

consisting of d vector-valued element bubble functions per each element. This pair of spaces is known
as the MINI element, cf. [5]. In two dimensions, the same space V h

2 can be used if V h
1 consists of

continuous piecewise quadratic functions and Qh of discontinuous piecewise linear functions, cf. [36].
A generalization of [5] to the quadrilateral case is described in [74]. Further examples of spaces V h

1 ,
V h

2 and Qh can be found, e.g., in [48].

Since V h = V h
1 ⊕ V h

2 (which implies that V h
1 ∩ V h

2 = {0}), any function vh ∈ V h can be written in
the form vh = vh1 + vh2 where the functions vh1 ∈ V h

1 and vh2 ∈ V h
2 are uniquely determined. When

there will be no danger of ambiguity, we shall also use the notations vh1 and vh2 for arbitrary functions
belonging to V h

1 and V h
2 , respectively. The conforming discretization (13) can be equivalently written

in the form: Find uh1 ∈ V h
1 , uh2 ∈ V h

2 , and ph ∈ Qh such that

ν(∇uh1 ,∇vh1) + ν(∇uh2 ,∇vh1)− (∇ · vh1 , ph) = (f ,vh1) ∀ vh1 ∈ V h
1 , (136)

ν(∇uh1 ,∇vh2) + ν(∇uh2 ,∇vh2)− (∇ · vh2 , ph) = (f ,vh2) ∀ vh2 ∈ V h
2 , (137)

−(∇ · uh1 , qh) − (∇ · uh2 , qh) = 0 ∀ qh ∈ Qh. (138)

It is assumed that the approximation properties of the space V h are determined by the space V h
1

and hence the interpolation operator Ih may be assumed to map V ∩ Hk+1(Ω)d into V h
1 . Then it

turns out (cf. Lemma 6.4 below) that the component uh1 of uh has the same asymptotic approximation
properties as uh. Therefore, it makes sense to consider uh1 as an approximation of the velocity u
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whereas uh2 serves as a stabilization tool only. Note that one can compute uh2 from (137) as a function
of uh1 and ph. Substituting this uh2 into (136) and (138), one obtains a discrete problem for uh1 and ph

where the terms ν(∇uh2 ,∇vh1) and (∇ · uh2 , qh) give rise to stabilization terms.

Let us demonstrate the procedure just described for the MINI element proposed in [5]. In this case
the spaces V h

1 and Qh consist of continuous piecewise linear functions with respect to a simplicial
triangulation T h. Furthermore,

V h
2 = [span{ϕK}K∈T h ]d , (139)

where ϕK are scalar element bubble functions defined on K as the product of the barycentric coordi-
nates on K and vanishing outside of K . Thus, ϕK |K ∈ Pd+1(K)∩H1

0 (K). The proof of the inf-sup
stability relies on the construction of a Fortin operator, see [5] or [56, Section 3.6.1] for details. The
component uh2 of uh can be expressed in the form

uh2 =
∑

K∈T h

uK ϕK

with uniquely determined numbers uK ∈ Rd. To elimininate uh2 from (136)–(138), one can employ
that

(∇uh2 ,∇vh1) = (∇uh1 ,∇vh2) = 0 ∀ vh1 ∈ V h
1 , v

h
2 ∈ V h

2 . (140)

Indeed, since the bubble functions vanish on ∂K and the Laplacian of a linear function vanishes, too,
one finds by integration by parts

(∇uh1 ,∇vh2)K = ((n∂K · ∇)uh1 ,v
h
2)∂K − (∆uh1 ,v

h
2)K = 0

for any K ∈ T h. Similarly, employing that the gradient of a linear function is constant, one gets

−(∇ · vh2 , ph)K = (vh2 ,∇ph)K = ∇ph|K ·
∫

K

vh2 dx . (141)

Setting vh2 = ei ϕK , i = 1, . . . , d, where ei is the unit vector in the direction of the ith coordinate
axis, and applying (140) and (141), one obtains from (137)

uK,i ν ‖∇ϕK‖2
L2(K) + ∂xip

h|K
∫

K

ϕK dx = (fi, ϕK) = f̄hi |K
∫

K

ϕK dx ,

where f̄hi are components of the piecewice constant function f̄
h

defined by averaging of f with the
weights ϕK , i.e.,

f̄
h|K :=

∫
K
f ϕK dx∫
K
ϕK dx

, K ∈ T h .

Thus, in view of (141), the second term in (138) becomes

−(∇ · uh2 , qh) =
∑

K∈T h

∇qh|K · uK
∫

K

ϕK dx

=
∑

K∈T h

∇qh|K · (f̄
h −∇ph)|K

(∫
K
ϕK dx

)2

ν ‖∇ϕK‖2
L2(K)

=
∑

K∈T h

(f̄
h −∇ph, δK∇qh)K ,
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where

δK =

(∫
K
ϕK dx

)2

ν ‖∇ϕK‖2
L2(K) |K|

.

Therefore, inserting (140) in (136), one ends up with the following problem for the linear part of the
approximate solution: Find uh1 ∈ V h

1 and ph ∈ Qh such that

ν(∇uh1 ,∇vh1)− (∇ · vh1 , ph) = (f ,vh1) ∀ vh1 ∈ V h
1 ,

(∇ · uh1 , qh) +
∑

K∈T h

(∇ph, δK∇qh)K =
∑

K∈T h

(f̄
h
, δK∇qh)K ∀ qh ∈ Qh .

It is known that
∫
K
ϕK dx = O (|K|) = O(hdK) and ‖∇ϕK‖L2(K) = O(h

d/2−1
K ), e.g., see [1,

Lemma 3.2, Theorem 3.3], and hence δK satisfies (44). Thus, one finds that the MINI element leads
for the linear part of the solution to the PSPG method for V h/Qh = P1/P1 (up to the averaging of
the right-hand side), see (33).

To recover the PSPG method for other finite elements than the MINI element or to obtain other sta-
bilized methods, it would be convenient to drop some of the terms from (136) and (137) representing
a coupling between the spaces V h

1 and V h
2 . Such modifications of the discrete problem (136)–(138)

were studied in [61] with the aim to reduce the size of the stiffness matrix which may be significantly
increased by enriching the velocity space V h

1 by the space V h
2 . Surprisingly, it was shown that not all

the terms in (136)–(138) are necessary for the solvability of the discrete problem and for optimal con-
vergence properties of the approximate solutions. One can even proceed in a more general fashion
and to multiply the terms ν(∇uh2 ,∇vh1), ν(∇uh1 ,∇vh2), and ν(∇uh2 ,∇vh2) by some real numbers
α1, α2, and α3, respectively. In other words, the bilinear form ν(∇uh,∇vh) in (13) is replaced by the
bilinear form

ah(uh,vh) = ν(∇uh1 ,∇vh1) + α1ν(∇uh2 ,∇vh1) + α2ν(∇uh1 ,∇vh2)

+α3ν(∇uh2 ,∇vh2) . (142)

The multiplication by α3 is considered since numerical experiments suggest that it can reduce the
velocity error for small ν. In addition, the right-hand side of (13) will be replaced by a functional fh ∈
H−1(Ω)d. In particular, fh defined by

〈fh,vh〉 = (f ,vh1) ∀ vh ∈ V h (143)

represents replacing the right-hand side of (137) by zero. Note that the relation (143) defines a func-
tional fh ∈ [V h]′ which can be extended to fh ∈ H−1(Ω)d according to the Hahn–Banach theorem.

Thus, the following discretization of the Stokes problem will be considered in the following: Find
(ũh, p̃h) ∈ V h ×Qh such that

ah(ũh,vh)− (∇ · vh, p̃h) + (∇ · ũh, qh) = 〈fh,vh〉 ∀
(
vh, qh

)
∈ V h ×Qh, (144)

with ah defined in (142).

To analyze the problem (144), we shall make additional assumptions on the finite element spaces
and the triangulations T h. We assume that there exists a reference element K̂ such that, for each
elementK ∈ T h, one can introduce a regular one-to-one mappingFK : K̂ → K withFK(K̂) = K .
Moreover, it will be assumed that the triangulations T h are shape regular in the sense that

‖∇̂FK‖L∞(K̂) ≤ C hK , ‖∇F−1
K ‖L∞(K) ≤ C h−1

K ∀ K ∈ T h .
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Thus, denoting for any element K ∈ T h and any v ∈ L2(K)

v̂K = v ◦ FK ,

one has, for any K ∈ T h,

C hdK ‖v̂K‖2
L2(K̂)

≤ ‖v‖2
L2(K) ≤ C̃ hdK ‖v̂K‖2

L2(K̂)
∀ v ∈ L2(K) , (145)

C hd−2
K ‖∇̂v̂K‖2

L2(K̂)
≤ ‖∇v‖2

L2(K) ≤ C̃ hd−2
K ‖∇̂v̂K‖2

L2(K̂)
∀ v ∈ H1(K) . (146)

It will be assumed that

V h
1 = {v ∈ H1

0 (Ω)d : v ◦ FK ∈ V̂1 ∀ K ∈ T h} , (147)

V h
2 ⊂ {v ∈ H1

0 (Ω)d : v ◦ FK ∈ V̂2 ∀ K ∈ T h} , (148)

where V̂1, V̂2 ⊂ H1(K̂)d are finite-dimensional spaces satisfying V̂1 ∩ V̂2 = {0}. The inclusion in
(148) is considered to cover the case when the vector bubbles in V h

2 are defined using normal vectors
to edges or faces of the triangulation. Then one can prove the following two important results.

Lemma 6.1. The space V h = V h
1 ⊕ V h

2 with V h
1 and V h

2 satisfying (147) and (148), respectively,
satisfies ∥∥∇vh1

∥∥
L2(Ω)

+
∥∥∇vh2

∥∥
L2(Ω)

≤ C
∥∥∇vh

∥∥
L2(Ω)

∀ vh ∈ V h . (149)

Proof. Since, in a finite-dimensional space, any bounded sequence contains a convergent subse-
quence, it is easy to show by contradiction that

0 < Ĉ1 := inf
v̂1∈V̂1, ‖v̂1‖H1(K̂)

=1
inf

v̂2∈V̂2
‖v̂1 + v̂2‖H1(K̂) .

This implies that Ĉ1 ‖v̂1‖H1(K̂) ≤ ‖v̂1 + v̂2‖H1(K̂) for any v̂1 ∈ V̂1, v̂2 ∈ V̂2. Thus, it follows from

the equivalence of norms in finite-dimensional spaces that Ĉ1 ‖∇̂v̂1‖L2(K̂) ≤ Ĉ2 ‖∇̂(v̂1+v̂2)‖L2(K̂)

for any v̂1 ∈ V̂1 ∩L2
0(K̂)d, v̂2 ∈ V̂2 ∩L2

0(K̂)d and hence for any v̂1 ∈ V̂1, v̂2 ∈ V̂2. Applying (146)
and summing over all elements of the triangulation, one gets ‖∇vh1‖L2(Ω) ≤ C ‖∇(vh1 + vh2)‖L2(Ω)

for any vh1 ∈ V h
1 , vh2 ∈ V h

2 and the lemma follows.

Lemma 6.2. Let V̂2 ∩ P0(K̂)d = {0}. Then the space V h
2 satisfying (148) satisfies

∥∥vh2
∥∥
L2(Ω)

≤ C h
∥∥∇vh2

∥∥
L2(Ω)

∀ vh2 ∈ V h
2 . (150)

Proof. It follows from the equivalence of norms in finite-dimensional spaces that ‖v̂2‖L2(K̂) ≤ C ‖∇̂v̂2‖L2(K̂)

for any v̂2 ∈ V̂2. Then (150) follows using (145) and (146).

Remark 6.3. The assumption V̂2 ∩ P0(K̂)d = {0} is satisfied for all common bubble spaces V h
2 .

Thus, in particular, (149) and (150) hold for all the examples of spaces V h
1 and V h

2 presented at the
beginning of this section. 4

The following lemma shows that, for a finite element discretization of any problem, the V h
2 component

of the approximate solution can be dropped without influencing the asymptotic convergence properties
of the approximate solution.
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Lemma 6.4 (Estimates for the components of vh ∈ V h). Consider any v ∈ V ∩ Hk+1(Ω)d and
vh ∈ V h. Then one has

∥∥∇(v − vh1)
∥∥
L2(Ω)

+
∥∥∇vh2

∥∥
L2(Ω)

≤ C
∥∥∇(v − vh)

∥∥
L2(Ω)

+C hk ‖v‖Hk+1(Ω) , (151)
∥∥v − vh1

∥∥
L2(Ω)

+
∥∥vh2

∥∥
L2(Ω)

≤
∥∥v − vh

∥∥
L2(Ω)

+C {h
∥∥∇(v − vh)

∥∥
L2(Ω)

+ hk+1 ‖v‖Hk+1(Ω)}. (152)

Proof. Due to (150) and (149), one has for m = 0, 1
∣∣vh2
∣∣
Hm(Ω)

=
∣∣(vh − Ih v)2

∣∣
Hm(Ω)

≤ C h1−m ∥∥∇(vh − Ih v)
∥∥
L2(Ω)

and hence it follows using the triangle inequality that
∣∣v − vh1

∣∣
Hm(Ω)

+
∣∣vh2
∣∣
Hm(Ω)

≤
∣∣v − vh

∣∣
Hm(Ω)

+C h1−m {
∥∥∇(v − vh)

∥∥
L2(Ω)

+
∥∥∇(v − Ih v)

∥∥
L2(Ω)
}.

Now (151) and (152) follow using (8).

Now let us investigate the properties of the discrete problem (144).

Theorem 6.5 (Existence and uniqueness of a solution of (144)). Let the constants α1, α2, α3 used in
the definition of ah satisfy α3 > 0 and |α1 + α2| ≤ 2

√
α3 and let the spaces V h and Qh satisfy the

discrete inf-sup condition (3). Then, for any fh ∈ H−1(Ω)d, the problem (144) has a unique solution.

Proof. Denoting α = (α1 + α2)/2, one has for any vh ∈ V h

ah(vh,vh) = ν (∇(vh1 + α vh2),∇(vh1 + α vh2)) + ν (α3 − α2) (∇vh2 ,∇vh2)

= ν
∥∥∇(vh1 + α vh2)

∥∥2

L2(Ω)
+ ν (α3 − α2)

∥∥∇vh2
∥∥2

L2(Ω)

and hence it follows from (149) and the triangle inequality that, for some C > 0,

C ν
∥∥∇vh

∥∥2

L2(Ω)
≤ ah(vh,vh) ∀ vh ∈ V h . (153)

This and the discrete inf-sup condition (3) imply that the problem (144) has only the trivial solution
if fh = 0. Consequently, since the problem (144) is equivalent to a linear algebraic system with a
square matrix, it has a unique solution for any fh ∈ H−1(Ω)d.

Theorem 6.6 (Error estimate). Let the assumptions of Theorem 6.5 be satisfied and let βhis from
(3) be bounded from below by β0 > 0 independent of h. Assume that the solution of (5) satisfies
(u, p) ∈ Hk+1(Ω)d ×H l+1(Ω), then one has the error estimate

ν ‖∇(u− ũh)‖L2(Ω) + ‖p− p̃h‖L2(Ω) ≤ C ‖f − fh‖[V h]′

+ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
+ ν |1− α2|h ‖u‖H2(Ω) . (154)

Proof. Subtracting (13) from (144), one obtains for qh = 0 and any vh ∈ V h

ah(ũh − uh,vh)− (∇ · vh, p̃h − ph) = 〈fh − f ,vh〉+ ν (1− α1) (∇uh2 ,∇vh1)

+ ν (1− α2) (∇uh1 ,∇vh2) + ν (1− α3) (∇uh2 ,∇vh2) . (155)
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One infers applying (150) that, for any vh2 ∈ V h
2 ,

(∇u,∇vh2) ≤ ‖∆u‖L2(Ω)

∥∥vh2
∥∥
L2(Ω)

≤ Ch ‖u‖H2(Ω)

∥∥∇vh2
∥∥
L2(Ω)

. (156)

Writing uh1 = (uh1 − u) + u, one gets

(∇uh1 ,∇vh2) ≤ C {
∥∥∇(uh1 − u)

∥∥
L2(Ω)

+ h ‖u‖H2(Ω)}
∥∥∇vh2

∥∥
L2(Ω)

.

Now, denoting

Ah = ‖f − fh‖[V h]′ + ν
∥∥∇(u− uh1)

∥∥
L2(Ω)

+ ν
∥∥∇uh2

∥∥
L2(Ω)

+ ν |1− α2|h ‖u‖H2(Ω) ,

one derives from (155) applying (149) that

ah(ũh − uh,vh)− (∇ · vh, p̃h − ph) ≤ CAh
∥∥∇vh

∥∥
L2(Ω)

∀ vh ∈ V h . (157)

Using (151) and (20), one obtains

Ah ≤ ‖f − fh‖[V h]′ + C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)

+ ν |1− α2|h ‖u‖H2(Ω) . (158)

Setting vh = ũh−uh in (157) and using the fact that vh is discretely divergence-free, one gets from
(153)

ν ‖∇(ũh − uh)‖L2(Ω) ≤ CAh . (159)

Using the Cauchy–Schwarz inequality and (149) gives

ah(wh,vh) ≤ C ν ‖∇wh‖L2(Ω)‖∇vh‖L2(Ω) ∀ wh,vh ∈ V h,

which together with (157) and (159) implies that

(∇ · vh, p̃h − ph) ≤ CAh ‖∇vh‖L2(Ω) ∀ vh ∈ V h.

Thus, applying (3), one gets
‖p̃h − ph‖L2(Ω) ≤ CAh . (160)

Now, using the triangle inequality, (20), and (158)–(160), one obtains (154).

Theorem 6.7 (L2 estimate of the velocity error). Let the assumptions of Theorem 6.5 be satisfied and
let βhis from (3) be bounded from below by β0 > 0 independent of h. Let the solution of (5) satisfy
(u, p) ∈ Hk+1(Ω)d×H l+1(Ω) and let the Stokes problem (2) be regular. Then there holds the error
estimate

‖u− ũh‖L2(Ω) ≤
C

ν
‖f − fh‖[V h

1 ]′ +
Ch

ν
‖f − fh‖[V h]′

+ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
+ |1− α2|h2 ‖u‖H2(Ω) . (161)

Proof. Let (z, r) ∈ V × Q be the solution of the problem (22) with u − uh replaced by ũh − uh.
Then all the relations (23)–(28) also hold with u−uh replaced by ũh −uh. Thus, using the fact that
ũh − uh is discretely divergence-free, one obtains

ν‖ũh − uh‖2
L2(Ω) ≤ Cνh ‖∇(ũh − uh)‖L2(Ω)‖ũh − uh‖L2(Ω)

+ ν(∇zI ,∇(ũh − uh)), (162)
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where zI satisfies

∥∥∇(z − zI)
∥∥
L2(Ω)

≤ Ch ‖z‖H2(Ω) ≤ Ch ‖ũh − uh‖L2(Ω). (163)

Since zI ∈ V h
1 , one has

ν(∇(ũh − uh),∇zI) = ah(ũh − uh, zI) + (1− α1)ν(∇(ũh2 − uh2),∇zI)

and hence it follows from (155) that

ν(∇(ũh − uh),∇zI) =〈fh − f , zI〉+ (∇ · zI , p̃h − ph) + (1− α1)ν(∇ũh2 ,∇zI)
=〈fh − f , zI〉 − (∇ · (z − zI), p̃h − ph)
− (1− α1)ν(∇ũh2 ,∇(z − zI)) + (1− α1)ν(∇ũh2 ,∇z).

Applying (163) and (156) with u replaced by z, one gets

ν(∇(ũh − uh),∇zI) ≤C ‖f − fh‖[V h
1 ]′‖ũ

h − uh‖L2(Ω)

+ Ch
(
ν‖∇ũh2‖L2(Ω) + ‖p̃h − ph‖L2(Ω)

)
‖ũh − uh‖L2(Ω).

Substituting this estimate into (162) and using the triangle inequality and (149), one obtains

ν‖ũh − uh‖L2(Ω) ≤ C ‖f − fh‖[V h
1 ]′

+Ch
(
ν‖∇uh2‖L2(Ω) + ν‖∇(ũh − uh)‖L2(Ω) + ‖p̃h − ph‖L2(Ω)

)
.

Then, (161) follows as a consequence of the triangle inequality, (151), (154), (20), and (21).

Remark 6.8. If fh is defined by (143), then, for any vh ∈ V h, one has 〈f − fh,vh〉 = (f ,vh2) ≤
‖f‖L2(Ω) ‖vh2‖L2(Ω) and, using (150) and (149), one deduces that fh satisfies ‖f − fh‖

[V h]′ ≤
Ch ‖f‖L2(Ω). Moreover, one has ‖f − fh‖

[V h
1 ]′ = 0. Thus, if k = 1, the problem (144) leads

to optimal error estimates with respect to h for any constants α1, α2, α3 satisfying α3 > 0 and
|α1 + α2| ≤ 2

√
α3. If k > 1, optimal error estimates are obtained for fh = f and α2 = 1. 4

Now let us discuss the relation of the modified discretization (144) to stabilized methods. For simplicity,
we confine ourselves to the two-dimensional case. It is convenient to write the problem (144) in the
equivalent form

ν(∇ũh1 ,∇vh1) +α1ν(∇ũh2 ,∇vh1)− (∇ · vh1 , p̃h) = 〈fh,vh1〉 ∀ vh1 ∈ V h
1 , (164)

α2ν(∇ũh1 ,∇vh2) +α3ν(∇ũh2 ,∇vh2)− (∇ · vh2 , p̃h) = 〈fh,vh2〉 ∀ vh2 ∈ V h
2 , (165)

−(∇ · ũh1 , qh) − (∇ · ũh2 , qh) = 0 ∀ qh ∈ Qh. (166)

First, let us consider the case α1 = α2 = 0, α3 = 1, and fh defined by (143). Let V h
1 consist of

continuous piecewise (bi)linear functions. IfQh consists of piecewise constant functions, then one can
set V h

2 = span{ϕE nE}E∈Eh , where ϕE ∈ H1
0 (Ω) are scalar finite element functions assigned to

interior edges E of the triangulation T h which have their supports in the two elements adjacent to E
and satisfy

∫
E
ϕE ds 6= 0, see, e.g., [17, 41] for particular examples of ϕE . The vectorsnE are again

fixed normal vectors to the edges E. Defining ϕE in such a way that the interiors of the supports of
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any two functions ϕE , ϕE′ with E 6= E ′ are disjoint, one can compute uh2 from (165) and substitute it
in (166), which gives

(∇ · ũh1 , qh) +
∑

E∈Eh
γE
([∣∣p̃h

∣∣]
E
,
[∣∣qh

∣∣]
E

)
E

= 0 ∀ qh ∈ Qh ,

where

γE =
|
∫
E
ϕE ds|2

ν ‖∇ϕE‖2
L2(Ω) hE

.

The usual scaling argument shows that γE satisfies (45). Thus, for the considered spaces V h and
Qh, the modified discretization is equivalent to the PSPG method (33) for the spaces V h

1 and Qh.

If V h
1 is as above and Qh consists of continuous piecewise (bi)linear functions, one can consider

a general space V h
2 = span{ϕhi thi }N

h

i=1 where thi are unit vectors and ϕhi ∈ H1
0 (Ω) are finite

element functions having their supports in one element or in two elements possessing a common
edge. To distinguish which element or elements a function ϕhi belongs to, points Ahi different from
the vertices of T h are introduced. If Ahi lies in the interior of some element K ∈ T h, one requires
that suppϕhi ⊂ K and if Ahi lies on an edge E, one requires that suppϕhi lies in the two elements
adjacent to E and that thi is parallel to E. For triangular meshes, one assumes that there exist two
points Ahi ∈ K for each element K . In the quadrilateral case, three points Ahi ∈ K are supposed
for any K . In other words, one needs two functions ϕhi per element in the triangular case and three
functions ϕhi per element in the quadrilateral case. In both cases, each function may be common
to two elements. Under further assumptions, see [63] for details, which are satisfied for the spaces
considered here, it can be shown that this space V h

2 assures the validity of the inf-sup condition (3).
For example, in the triangular case, the space V h

2 defined in (139) and leading to the MINI element
can be put into the above general framework. Then, for each elementK , one has two bubble functions
ϕhi which coincide and are equal to ϕK . If T h consists of quadrilaterals, the stability is assured by four
bubble functions on each element, see [74].

In particular, as a special case of the general framework from the previous paragraph, one can use
spaces of the type V h

2 = span{ϕE tE}E∈Eh , where tE are tangential vectors to the edges E and
Eh denotes the set of all edges of the triangulation T h. The functions ϕE are constructed in such a
way that the interiors of their supports are mutually disjoint and they vanish on ∂Ω also if E ⊂ ∂Ω,
see [63]. Using again the modified discretization (164)–(166) with α1 = α2 = 0, α3 = 1, and fh

defined by (143), one infers analogously as above that the piecewise (bi)linear part of the solution to
(164)–(166) satisfies

(∇ · ũh1 , qh) +
∑

E∈Eh
γE

(
∂p̃h

∂tE
,
∂qh

∂tE

)

E

= 0 ∀ qh ∈ Qh

with

γE =
|
∫

Ω
ϕE dx|2

ν ‖∇ϕE‖2
L2(Ω) hE

,

which is a different type of stabilization than those discussed in the preceding sections.

The spaces V h
1 , Qh consisting of continuous piecewise (bi)linear functions can be also used with a

space V h
2 of the type V h

2 = span{ϕhi thi }N
h

i=1. In the triangular case, let V h
2 be the space of the MINI

element defined by (139) and in the quadrilateral case, it will be assumed that the elements of T h are
rectangles and, for any element K ∈ T h, four functions ϕhi with disjoint supports in K will be used.
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The corresponding vectors thi are parallel to the edges of K , see [63] for details. Using the same
modified discretization as above and eliminating ũh2 , one obtains

(∇ · ũh1 , qh) +
∑

K∈T h

(
∇p̃h, δK∇qh

)
K

= 0 ∀ qh ∈ Qh ,

where δK satisfies (44), i.e., one recovers the Brezzi–Pitkäranta method (106) for the spaces V h
1 ,Qh.

If fh = f and f is piecewise (bi)linear, one obtains the stabilization

(∇ · ũh1 , qh) +
∑

K∈T h

(
∇p̃h − f , δK∇qh

)
K

= 0 ∀ qh ∈ Qh ,

which corresponds to the PSPG method (33) for the spaces V h
1 , Qh.

Finally, let the spaces V h
1 ,Qh consist of continuous piecewise quadratic functions on triangles. These

spaces do not satisfy the inf-sup condition (3). Dividing any element K ∈ T h into four equal triangles
by connecting midpoints of edges and introducing two vector bubble functions from the MINI element
on each subtriangle having a common vertex with K , one obtains a space V h

2 assuring the stability. If
one eliminates this space V h

2 from the original conforming discretization (136)–(138) and assumes that
f is piecewise linear, one obtains the symmetric GLS method (65) for the spaces V h

1 , Qh. However,
one can also use the modified discretization (164)–(166) with α1 = −1, α2 = α3 = 1 and fh = f
which guarantees the same asymptotic convergence rates of the discrete solution as (136)–(138).
Then, eliminating the space V h

2 , one obtains the non-symmetric GLS method (91) for the spaces V h
1 ,

Qh.

7 Numerical Studies

In this section, numerical studies with some of the stabilized methods will be presented: the PSPG
method (33) – (35), the symmetric GLS method (65) – (67), the non-symmetric GLS method (91) –
(93), and the LPS method that utilizes a modified Scott–Zhang projector, see Remark 5.8. In addition,
the Brezzi–Pitkäranta method (106) with P1/P1 finite elements was incorporated in our studies. For
the sake of brevity, the results with this method are not presented here since, in our experience, they
were not better than, e.g., the results obtained with the PSPG method.

Two examples were studied:

� an example for the Stokes equations (2) with prescribed solution, which studies standard er-
rors, their order of convergence, and the dependency on the viscosity coefficient and on the
stabilization parameter,

� an example for the stationary Navier–Stokes equations, a flow around a cylinder, which inves-
tigates the accuracy of computing quantities at the cylinder that are of physical relevance, the
dependency of the results on the discretization of the nonlinear term, and which provides a
comparison to results obtained with inf-sup stable pairs of finite elements.

All simulations were performed with the code PARMOON, [44, 84]. Linear systems of equations were
solved with the sparse direct solver UMFPACK [37].

Remark 7.1 (Comparative numerical studies in the literature). There are few numerical studies that
compare several stabilized methods already available in the literature.
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� Numerical studies at simple Stokes problems in [77] compare the PLS method, see Section 5.2,
the symmetric GLS method from Section 4.3, and the method with orthogonal subscales from
Section 5.3.

� A brief numerical comparison of the method based on two local Gauss integrations from [67],
which is equivalent to the method from [38], and the symmetric GLS method from Section 4.3
for P1/P1 finite elements (in this situation the latter method is equivalent to the PSPG method
from Section 4.2 and the non-symmetric GLS method from Section 4.4) can be found in [68]. For
a driven cavity problem, it was observed that the pressure approximation close to the boundary
is more accurate for the first method.

� A brief comparison of the LPS method mentioned in Remark 5.8 and the PSPG method for
P1/P1 finite elements can be found in [7].

4

7.1 Stokes Problem with Prescribed Solution

This example studies some of the stabilized discretizations in the framework of the numerical analysis:
the Stokes equations (2) possess a smooth solution with homogeneous Dirichlet boundary data. In
addition, the solution does not depend on the viscosity coefficient ν. Errors in standard norms were
monitored. The dependency of the errors and the order of convergence on the viscosity coefficient ν
and on the stabilization parameter were investigated.

Consider the domain Ω = (0, 1)2 together with a polynomial solution

u =

(
u1

u2

)
=

(
∂yφ
−∂xφ

)
,

where φ is the stream function given by

φ(x, y) = 1000 x2(1− x)4y3(1− y)2.

Due to this construction, the solution is divergence-free; furthermore, it has homogeneous Dirichlet
boundary values on ∂Ω. The corresponding pressure p therefore should have zero mean value, p ∈
L2

0(Ω). For this example, it is set to be

p = π2
(
xy3 cos(2πx2y)− x2y sin(2πxy)

)
+

1

8
.

The right-hand side f in (2) is set accordingly. Figure 2 shows visualizations of the prescribed solution.

The stabilized methods involved in our studies are already mentioned at the beginning of this section.
For all of them, Pk/Pk pairs of finite element spaces were considered with k ∈ {1, 2, 3}. Note that
for the P1/P1 pair of finite element spaces, the PSPG method, the symmetric GLS method, and the
non-symmetric GLS method coincide. The stabilization parameters of all methods have the form δK =
δ0h

2
K/ν and the numerical studies considered for most methods δ0 = 10i, i ∈ {−3,−2.5, . . . , 0}.

Only for the symmetric GLS method, we found that these stabilization parameters were too large,
since an irregular behavior of the monitored errors could be observed, compare Figure 4 below. For
this method, results obtained with δ0 = 10i, i ∈ {−5,−4.5, . . . ,−2}, will be presented. Simulations
for ν = 10j , j ∈ {−6,−5, . . . , 0}, were performed.
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Figure 2: Visualizations of the solution of the Stokes example. Top: pressure p. Bottom left: stream
function φ together with streamlines and arrows of the velocity u. Bottom right: For illustration, a
generated grid which is coarser than the ones actually used.

Table 1: Details on the generated grids used for the Stokes example.

grid number number of degrees of freedom
level of cells P1/P1 P2/P2 P3/P3

0 38728 58821 233823 525009
1 52464 79545 316479 710805
2 68628 103911 413703 929379
3 86398 130686 520563 1169634
4 106838 161466 643443 1445934

In our computational studies, unstructured grids of varying fineness have been employed, see Fig-
ure 2 for an example and Table 1 for more details. The grids were generated with GMSH [45]. The
convergence order has been computed via the formula log(eH/eh)/ log(H/h), where H and h are
the characteristic grid lengths2 while eH and eh are the respective errors on these grids.

In Figures 3–6, errors as well as convergence orders are shown for the studied methods. The errors
are those obtained on the finest grid level 4 and the order of convergence was computed with the
errors on the two finest levels. The PSPG method, the non-symmetric GLS method, and the LPS
method only show a weak dependency on δ0. This behavior can be expected from the analysis of the
non-symmetric GLS method since it is absolutely stable. Furthermore, the errors for the velocity are
larger for smaller ν while the errors for the pressure are larger for larger ν. This behavior reflects also

2In the case of uniform refinement, it is H = 2h.
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Figure 3: The errors (left) and computed orders of convergence (right) with respect to the L2 (top) and
H1 semi-norm (middle) of the velocity, as well as the L2 norm of the pressure (bottom) for the PSPG
method and P1/P1 (blue), P2/P2 (cyan), and P3/P3 (green).

the analytical results. These three methods also show a similar behavior in the estimated convergence
orders. The orders of error reduction are often higher than expected for small ν, compare also [56,
Fig. 4.14]. This effect was observed also for inf-sup stable discretizations, e.g., see [56, Fig. 4.9]. To
the best of our knowledge, an explanation for this phenomenon is not known so far. The symmetric
GLS method shows a more irregular behavior with respect to the dependency on δ0, see Figure 4 for
larger values of δ0 and higher order finite elements. For small values of δ0, one can observe the same
behavior as it is described above for the other methods.

Figure 7 presents a comparison of the methods among each other. For performing this comparison, for
each value of the viscosity ν, the most accurate result with respect to the L2(Ω) error of the velocity
on the finest level was selected for each method, among all values of the stabilization parameter. It can
be seen in Figure 7 that in many cases, in particular for P1/P1 and P3/P3 finite elements, the curves
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Figure 4: The errors (left) and computed orders of convergence (right) with respect to the L2 (top)
and H1 semi-norm (middle) of the velocity, as well as the L2 norm of the pressure (bottom) for the
symmetric GLS method and P1/P1 (blue), P2/P2 (cyan), and P3/P3 (green).

are almost on top of each other, i.e., all methods gave very similar results. Only for the P2/P2 finite
element and small viscosities, the non-symmetric GLS method led to slightly higher velocity errors and
the LPS method to notably higher pressure errors than the other methods.

We like to note that we obtained similar results as presented in Figures 3–7 on structured grids that
were generated by refining a coarse grid consisting of two triangles regularly.

In summary, the PSPG, the non-symmetric GLS, and the LPS methods behaved in this example quite
similarly. The most remarkable observation was that the instability of the symmetric GLS method for
large stabilization parameters became visible already for rather small values of δ0.
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Figure 5: The errors (left) and computed orders of convergence (right) with respect to the L2 (top)
and H1 semi-norm (middle) of the velocity, as well as the L2 norm of the pressure (bottom) for the
non-symmetric GLS method and P1/P1 (blue), P2/P2 (cyan), and P3/P3 (green).
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Figure 6: The errors (left) and computed orders of convergence (right) with respect to the L2 (top) and
H1 semi-norm (middle) of the velocity, as well as the L2 norm of the pressure (bottom) for the LPS
method and P1/P1 (blue), P2/P2 (cyan), and P3/P3 (green).
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Figure 7: The L2-errors of the velocity (left), its gradient (middle) and of the pressure (right) for the
considered methods and different polynomial degrees on the finest level 4. The stabilization parameter
δ0 is always chosen such that the L2-error of the velocity is smallest among the used values for δ0.
Note that lines are often on top of each other, i. e., the methods led to very similar errors.

7.2 A Steady-State Flow around a Cylinder

The second example serves for assessing the stabilized discretizations mentioned at the beginning of
this section at a more challenging example. It is given by the stationary Navier–Stokes equations

−ν∆u+ (u · ∇)u+∇p = f in Ω,
∇ · u = 0 in Ω,

(167)

and it requires the computation of coefficients which are of importance in applications. Furthermore,
comparisons to some inf-sup stable discretizations are also provided.

A standard benchmark problem for (167) is the so-called flow around a cylinder problem defined
in [80]. It is given by Ω = (0, 2.2) × (0, 0.41) \ B0.1(0.2, 0.2), where Br(x, y) is a (compact)
two-dimensional cylinder (circle) with radius r centered at (x, y), ν = 10−3, and f = 0. On the
top and bottom boundary as well as at the cylinder homogeneous Dirichlet condition are prescribed.
At the outflow boundary Γout = {2.2} × [0, 0.41], homogeneous Neumann (so-called do-nothing)
conditions are imposed while the flow is driven entirely through a parabolic inflow on the left boundary,

u(0, y) =

(
1.2y(1− y)

0

)
.

Benchmark parameters are the drag and lift coefficients at the cylinder and the pressure difference
∆p between the front and the back of the cylinder, see [80] or [56, Ex. D5]. Reference values were
computed in [59, 75], see also [56, Ex. D5]:

cdrag,ref = 5.57953523384, clift,ref = 0.010618948146,

∆pref = 0.11752016697.
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Figure 8: Coarse grid, generated with GMSH, used for the flow around a cylinder example.

For discretizing the Navier–Stokes equations (167), one has to choose the discrete form of the nonlin-
ear term. Several forms were proposed, which are equivalent only if the velocity is weakly divergence-
free. However, finite element velocity fields usually do not possess this property. In our numerical
studies, the so-called convective form

((
uh · ∇

)
uh,vh

)
,

the skew-symmetric form

1

2

[((
uh · ∇

)
uh,vh

)
−
((
uh · ∇

)
vh,uh

)]
,

and the energy momentum and angular momentum conserving (EMAC) form [32]

(
2D
(
uh
)
uh,vh

)
+
((
∇ · uh

)
uh,vh

)
, D (u) =

∇u+ (∇u)T

2
,

were tested. Note that the EMAC form has on the one hand several favourable properties with respect
to conservation of quantities, but on the other hand, it computes a modified pressure. For calculating
the benchmark parameters, a reconstruction of the actual pressure is necessary.

The nonlinear systems were solved with a Picard iteration. It was stopped if the Euclidean norm of the
residual vector was smaller than 10−10 or after 10 000 iterations.

Results are presented for simulations conducted on unstructured grids, which were generated with
GMSH, see Figure 8 and Table 2. On each grid, the Pk/Pk, k ∈ {1, 2, 3}, finite element spaces
were applied for the stabilized methods and the Pk/Pk−1, k ∈ {2, 3, 4}, inf-sup stable Taylor–Hood
pairs of finite element spaces. Stabilization parameters of the form δK = δ0h

2
K/ν with δ0 = 10i,

i ∈ {−5,−4.5, . . . , 0}, were considered. In all pictures, the results for the stabilization parameter
with the smallest error with respect to the drag coefficient is presented.

The accuracy for the computed benchmark parameters is illustrated in Figures 9–11. For the drag co-
efficient, Figure 9, it can be observed that the results obtained with the convective and skew-symmetric
form are usually more accurate than those computed with the EMAC form. Using the inf-sup stable
Taylor–Hood pairs of spaces gave often more accurate results than using the pressure-stabilized dis-
cretizations. For higher order pairs of spaces, the LPS method was a little bit more accurate than the
other methods. For the lift coefficient, Figure 10, again the EMAC form led to somewhat less accu-
rate results than the other forms of the discrete convective term. Among the stabilized methods, no
substantial differences of the accuracy can be observed. For higher order pairs of spaces, the Taylor–
Hood discretization was sometimes somewhat more accurate than the stabilized methods. The results
for the pressure difference are shown in Figure 11. Again, the results computed with the Taylor–Hood
pair of finite elements were usually among the most accurate ones. For the stabilized discretizations,
there is no clear picture. Often, the results from the LPS method belong to the better ones.

Information with respect to the number of nonlinear iterations for solving the Navier–Stokes equations
is provided in Figure 12. Apart of coarse grids, it can be seen that there are only minor differences
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Table 2: Information on the unstructured grids used in the simulations, the coarsest grid (level 0) is
shown in Figure 8.

grid number number of degrees of freedom
level of cells P1/P1 P2/P1 P2/P2 P3/P2 P3/P3 P4/P3

0 1629 2697 7753 10281 18595 22752 34324
1 5340 8475 24805 32970 59980 73485 111175
2 11202 17475 51529 68556 125014 153243 232105
3 19076 29493 87307 116214 212180 260163 394281
4 29193 44880 133186 177339 324031 397377 602455
5 41973 64260 191046 254439 465171 570537 865215
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Figure 9: Computed absolute differences to reference value for drag using the convective (left), skew
symmetric (center) and EMAC (right) nonlinear form on the unstructured grids, see Table 2 and Fig-
ure 8.
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Figure 10: Computed absolute differences to reference value for lift using the convective (left), skew
symmetric (center) and EMAC (right) nonlinear form on the unstructured grids, see Table 2 and Fig-
ure 8.
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Figure 11: Computed absolute differences to reference value for the pressure difference at the cylinder
using the convective (left), skew symmetric (center) and EMAC (right) nonlinear form on the unstruc-
tured grids, see Table 2 and Figure 8.
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Figure 12: The number of nonlinear iterations needed using the convective (left), skew symmetric
(center) and EMAC (right) nonlinear form on the unstructured grids, see Table 2 and Figure 8.

between the discretization methods. The lowest number of iterations, usually below 20, was needed
for the convective form of the convective term and the largest number, generally more than 50, for
the EMAC form of the convective term. It should be noted that there are values of δ0 for some of the
pressure-stabilized discretizations where the nonlinear iteration took much more steps than presented
in Figure 12, even reaching the maximal prescribed number was observed.

Very similar results as presented in Figures 9–12 were obtained on the more structured triangular grid
from [56, Figure 6.5].

To summarize, no fundamental differences between the pressure-stabilized discretizations could be
observed in this example. However, it could be seen that the benchmark parameters computed with
the inf-sup stable Taylor–Hood pair of finite element spaces were often more accurate.
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8 Outlook

The Stokes equations (2) are the simplest equations for modeling flows with incompressible fluids.
This section provides brief comments concerning the application of pressure-stabilized methods to
more complicated equations, like the steady-state or time-dependent Navier–Stokes equations (1).

Stabilizations that use only the pressure are independent of the type of equation. In particular, for
time-dependent problems, the matrix block C in (4) has to be assembled only in the initial time step,
if the space Qh does not change in the whole time interval. Later, only the matrix block A changes,
due to the nonlinearity of the Navier–Stokes equations. The assembling procedure is more expensive
for residual-based stabilizations, since there, the matrix blocks A, B, and D change whenever a new
assembling is performed, because the convective field in the nonlinear term of the residual changes.

The matrix block C has for residual-based stabilizations the standard sparsity pattern that comes from
the pressure finite element space Qh. Pressure-based stabilizations require in general an extended
sparsity pattern, since degrees of freedom of Qh are coupled that do not belong to a common mesh
cell.

Implementing residual-based stabilizations for certain temporal discretizations, like the Crank–Nicolson
scheme, is somewhat involved, since the residual at former time steps is needed. In this respect the
use of BDF schemes is easier.

In connection with optimization for flow problems, one finds in the literature, e.g. [23, Sec. 7.5], that
symmetric stabilizations are of advantage, since then optimizing and discretizing commute. Stabiliza-
tions that use only the pressure possess this property, whereas the only symmetric residual-based
stabilization is the symmetric GLS method. But this method has the drawback of being not absolutely
stable.
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