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ABSTRACT. Massive data sets have their own architecture. Each data source
has an inherent structure, which we should attempt to detect in order to
utilize it for applications, such as denoising, clustering, anomaly detection,
knowledge extraction, or classification. Harmonic analysis revolves around
creating new structures for decomposition, rearrangement and reconstruc-
tion of operators and functions—in other words inventing and exploring new
architectures for information and inference. Two previous very successful
workshops on applied harmonic analysis and sparse approximation have taken
place in 2012 and in 2015. This workshop was the an evolution and con-
tinuation of these workshops and intended to bring together world leading
experts in applied harmonic analysis, data analysis, optimization, statistics,
and machine learning to report on recent developments, and to foster new
developments and collaborations.
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Introduction by the Organisers

The workshop Applied Harmonic Analysis and Data Processing was organized by
Ingrid Daubechies (Durham), Gitta Kutyniok (Berlin), Holger Rauhut (Aachen)
and Thomas Strohmer (Davis). This meeting was attended by 49 participants
from three continents. Advances in technology and the ever-growing role of digital
sensors and computers in science have led to an exponential growth in the amount
and complexity of data we collect. Uncertainty, scale, non-stationarity, noise,
and heterogeneity are fundamental issues impeding progress at all phases of the
pipeline that creates knowledge from data. This means that the amount of new
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mathematical challenges arising from the need of data analysis and information
processing is enormous, with their solution requiring fundamentally new ideas and
approaches, with significant consequences in the practical applications.

Applied Harmonic Analysis provides a range of techniques towards the prob-
lem of efficiently representing, analyzing, compressing, and processing with “Big
Data”. Massive data sets have their own architecture. Each data source has an
inherent structure, which we should attempt to detect in order to utilize it for
applications, such as denoising, clustering, anomaly detection, knowledge extrac-
tion, recovery, etc. Harmonic analysis revolves around creating new structures for
decomposition, rearrangement and reconstruction of operators and functions—in
other words inventing and exploring new architectures for information and infer-
ence. Indeed, in the last three decades Applied Harmonic Analysis has been at the
center of many significant new ideas and methods crucial in a wide range of sig-
nal and image processing applications, and in the analysis and processing of large
data sets. For example, compressive sensing, sparse approximations and models,
geometric multiscale analysis and diffusion geometry represent some quite recent
important breakthroughs.

Several new directions have emerged on the heels of compressive sensing: Low-
rank matrix recovery aims at recovering a matrix with small rank from incomplete
data. In particular, matrix completion recovers the matrix from only a small
fraction of its entries. Since low-rank structures arise in numerous applications,
one can expect an enormous impact. However, much of the theory so far deals with
linear measurements, while in practice we often also face non-linear measurements,
for instance in situations where only signal intensity can be obtained. Despite
recent breakthroughs in the area of phase retrieval, many challenging mathematical
problems problems remain open in these areas.

Inverse problems arising in connection with massive, complex data sets pose
tremendous challenges and require new mathematical tools. Numerous deep ques-
tions arise. How can we utilize ideas of sparsity and minimal information complex-
ity in this context? Is there a unified view of such measures that would include
sparsity, lowrankness, and others (such as low-entropy), as special cases? This
may lead to a new theory that considers an abstract notion of simplicity in gen-
eral inverse problems. An important emerging topic in this context is the design
efficient non-convex algorithms with provable convergence guarantees.

One of the most exciting developments in machine learning in the past five years
is the advent of deep learning, which is a special form of a neural network. Deep
neural networks, and in particular convolutional networks have recently achieved
state-of-the-art results on several complex computer vision and speech recogni-
tion tasks. However, until now deep learning acts very much like a black box,
since algorithms are often based on ad hoc rules without theoretical foundation,
the learned representations lack intepretability; we do not really understand why
certain deep networks succeed and and we do not know how to modify them for
those cases where they fail. Thus, developing a mathematical foundation for deep
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learning is an important and rather challening task in data science, and one part
of this workshop was dedicated to this topic.

This workshop was a concerted effort to bring together researchers with vari-
ous backgrounds, including harmonic analysis, optimization, probabibility theory,
group theory, approximation theory, computer science, machine learning, and elec-
trical engineering. The workshop featured 27 talks, thereof several longer overview
talks. Moreover, a session of short presentations of 3 minutes took place on Mon-
day, which we call the & Minutes of Fame (following Andy Warhols concept of 15
minutes of fame). This session has meanwhile become a tradition and has proven
to be an efficient vehicle to ensure that every participant had the possibility to
advertise her resarch. At the same time it is very entertaining for the audience.
Almost all of the attendees participated, ranging from PhD students to renowned
professors, contributing to the success of this session.

Some highlights of the program included:

e Advanced sampling theory: One of the problems that link harmonic
analysis with data processing is the sampling problem. The main theoret-
ical issue is how the stability of sampling and recovery is related to the
number or density of samples. Related issues are the questions of local-
ization, non-uniform sampling, and last not least suitable numerical algo-
rithms. Karlheinz Grochenig presented a range of compelling results using
tools from shift-invariant spaces and totally positive functions. Albert Co-
hen discussed function approximation from sampling in high dimensions
using optimal weighted least squares approximation. Felix Krahmer talked
about “unlimited sampling”, a mathematical framework for sampling that
can overcome limitations in current analog-to-digital converters.

e Nonlinear inverse problems: In many applications we can only acquire
nonlinear measurements of the function of interest. Phase retrieval is but
the most prominent example. Several talks were dedicated to nonlinear
inverse problems. Babak Hassibi and Rima Alaifari both presented recent
progress in the solution of the phase retrieval problem, while Yuxin Chen
and Justin Romberg highlighted exciting progress in convex and nonconvex
optimization for certain nonlinear problems.

e Emerging theory of Deep Learning: Despite the huge practical suc-
cesses of Deep Learning in recent years, the mathematical understanding
of deep learning is in its infancy. Several talks aimed at to remedy this
situation. Philipp Grohs demonstrated how to avoid the curse of dimen-
sionality when solving Kolmogorov equation in high dimensions by means
of deep learning. Mahdi Soltanolkoltabi and Remi Gribonval were among
several speakers who presented theoretical progress towards understanding
some of the heuristics behind neural networks.

The organizers would like to take the opportunity to thank MFO for providing
support and a very inspiring environment for the workshop. The magic of the place
and the pleasant atmosphere contributed greatly to the success of the workshop.
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Abstracts

Sampling in Shift-Invariant Spaces, Gabor Frames, and Totally
Positive Functions

KARLHEINZ GROCHENIG
(joint work with José Luis Romero, Joachim Stockler)

One of the problems that link harmonic analysis with data processing is the sam-
pling problem: given data (x;,v;);e; € R? x C, one should find or recover or
approximate or learn a function f such that f(z;) ~ y;. In this talk we considered
the sampling problem with respect to a given a priori signal model in dimension
d = 1. We assume that f is contained in a shift-invariant space. Precisely, f lies
in a subspace of L?(R) of the form

Vig)={f =) agl-—k):ce ()},

keZ

where ¢ is a fixed, well localized and smooth generating function.

The main theoretical issue is how the stability of sampling and recovery is re-
lated to the number or density of samples. Related issues are the questions of
localization, non-uniform sampling, and last not least suitable numerical algo-
rithms.

For stability, we say that A C R is a set of stable sampling for V(g) C L*(R),
if there exist A, B > 0 (the sampling constants), such that

AIFIE <Y IFP < BIIfIE  YfeVig).
AEA

To explain how many samples are sufficient to recover a function in V(g), we use
the Beurling density of A C R defined by

D~ (A) = liminf inf #AN [z, 2 + 7]

r—oo xR r

The paradigm of sampling theory is the classical theory of bandlimited functions
covered by the theorems of Beurling and Landau. In this case the generator is
sin T

g(t) = ¥ or g = X[—1/2,1/2) and the corresponding shift-invariant space V(g)

™
coincides with the Paley-Wiener space

B={feL*R):suppfC[-1/2,1/2]}.

The classical theorems of Beurling and Landau yields an almost complete charac-
terization of sampling sets for the Paley-Wiener space.

Theorem 1. (i) Beurling: If D~ (A) > 1 and A is separated, then A is a set of
stable sampling for B.
(ii) Landau: If A is a set of stable sampling for B, then D~ (A) > 1.
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Item (i) is proved with complex analysis methods and Beurling’s theory of weak
limits of sets, (ii) uses the operator theory of localization operators.

The situation for general shift-invariant spaces is far from transparent. Nec-
essary density conditions in the style of Landau were already proved early on:
Assume that 3, sup,epo1119(x + k)| < co. If A is set of stable sampling for
V(g), then D—(A) > 1.

Until recently sufficient conditions were formulated in terms of the maximum
gap between consecutive samples and were mainly of qualitative nature, see e.g.
the survey [1]. Let 6(A) = sup,cz(Njr1 — Aj) maximum gap (or fill distance) and
assume that A is (relatively) separated. Aldroubi and Feichtinger were the first to
show that for sufficiently small 6(A), depending on the generator g, A is a set of
stable sampling for V(g). However, only in a few special cases, e.g. for B-splines,
exponential B-splines, or totally positive functions of finite type, the best bound
d(A) < 1 could be derived so far.

In this talk we report about recent progress for a general and natural class of
generators, namely certain totally positive functions. Using Schoenberg’s factor-
ization of totally positive functions, we restrict ourselves to the subclass of totally
positive functions whose Fourier transform factors as

N
(1) §(6) = e T[T (14 2miv &)~

j=1
with v > 0, v; € R, N € N, which we call totally positive generators of Gaussian
type. For such generators we were able to obtain a precise analogue of Beurling’s
result for Paley-Wiener space.

Theorem 2 ([3]). Assume that g is totally positive of Gaussian type as in (1).
If D=(A) > 1 and A is separated, then A is a set of stable sampling.

This theorem is optimal, since a sampling set satisfies always D~ (A) > 1.

The proof required a new combination of ideas from complex analysis (counting
density of zeros), spectral invariance (off-diagonal decay of infinite matrix is pre-
served by inversion), and Beurling technique of weak limits of sets. By contrast
we did not use the definition of total positivity.

As a modification we obtained a sampling theorem with derivatives. This prob-
lem occurs in contemporary data processing under the name event-based sampling
or gradient-augmented sampling. For the formulation we need a multiplicity func-
tion m : A — N such that sup,c, mx < 0o which counts the number of derivatives
at each sampling point of A. Correspondingly we use the weighted Beurling lower
density
(2) D™ (A, my) = liminf inf 1 Z M.

r—oo z€R 2r
AeAN[z—r,z+7]

Then the corresponding result about sampling with derivatives is as follows:

Theorem 3 ([4]). Let g be a totally positive function of Gaussian type as in (1).
Let A C R be a separated set and let mp be a bounded sequence of multiplicities. If
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D™ (A,mp) > 1, then (A, my) is a sampling set for V2(g), i.e. for some constants
A, B >0,

m>\—1

(3) AIFIE< DS Y PP < BIfIE  forall f €V (g).

AEAN k=0

Again the result is optimal, because one can show that for a set satisfying (3)
one has necessarily D™ (A, my) > 1.

A subtle connection of sampling in shift-invariant spaces and Gabor frames per-
mits to translate the sampling theorems into new statement about Gabor frames.
For this we denote the set of time-frequency shifts G(g, A x Z) = {2 g(- — \) :
k € Z,\ € A} and ask when this set is a frame (aka Gabor frame) for L?(R). The
following result adds to the long history of Gabor frames [2] and to a conjecture
of Ingrid Daubechies about the role of positivity in the theory of Gabor frames.

Theorem 4. Assume that g is a totally positive function of Gaussian type. Let
A C R be a separated set.
Then G(g, A x Z) is a Gabor frame for L*(R), if and only if D~ (A) > 1.

We formulate the case of rectangular lattices explicitly as a corollary.

Corollary 1. Assume that g is a totally positive function of Gaussian type. Then
G(g,aZ x BZ) is a frame, if and only if a5 < 1.
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Synthesis of Logical Clifford Operators via Symplectic Geometry
ROBERT CALDERBANK
(joint work with Narayanan Rengaswamy, Swanand Kadhe, Henry Pfister)

Quantum error-correcting codes can be used to protect qubits involved in quantum
computation. This requires that logical operators acting on protected qubits be
translated to physical operators (circuits) acting on physical quantum states. We
propose a mathematical framework for synthesizing physical circuits that imple-
ment logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by
representing the desired physical Clifford operator in CV*¥ as a partial 2m x 2m
binary symplectic matrix, where N = 2. We state and prove two theorems that
use symplectic transvections to efficiently enumerate all binary symplectic matri-
ces that satisfy a system of linear equations. As an important corollary of these
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results, we prove that for an [m,m — k] stabilizer code every logical Clifford op-
erator has 25 +1)/2 gymplectic solutions. The desired physical circuits are then
obtained by decomposing each solution as a product of elementary symplectic ma-
trices, each corresponding to an elementary circuit. Our assembly of the possible
physical realizations enables optimization over the ensemble with respect to a suit-
able metric. Furthermore, we show that any circuit that normalizes the stabilizer
of the code can be transformed into a circuit that centralizes the stabilizer, while
realizing the same logical operation. However, the optimal circuit for a given met-
ric may not correspond to a centralizing solution. Our method of circuit synthesis
can be applied to any stabilizer code, and this paper provides a proof of concept
synthesis of universal Clifford gates for the [6,4,2] CSS code. We conclude with
a classical coding-theoretic perspective for constructing logical Pauli operators for
CSS codes. Since our circuit synthesis algorithm builds on the logical Pauli oper-
ators for the code, this paper provides a complete framework for constructing all
logical Clifford operators for CSS codes. Programs implementing the algorithms
in this paper, which includes routines to solve for binary symplectic solutions of
general linear systems and our overall circuit synthesis algorithm, can be found at
https://github.com/nrenga/symplectic-arxivi8a.
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Learning via nonconvex optimization: ReLUs, neural nets, and
submodular maximization

MAHDI SOLTANOLKOTABI

Many problems of contemporary interest in signal processing and machine learning
involve highly non-convex optimization problems. While nonconvex problems are
known to be intractable in general, simple local search heuristics such as (stochas-
tic) gradient descent are often surprisingly effective at finding global/high quality
optima on real or randomly generated data. In this note we summarize some re-
cent results explaining the success of these heuristics focusing on two problems:
(1) learning the optimal weights of the shallowest of neural networks consisting
of a single Rectified Linear Unit (ReLU), (2) learning over-parameterized neural
networks with a single hidden layer. In the talk we also discussed a third problem
of maximizing submodular functions (we omit this description here due to space
limitation and refer to [3] for detail on this problem). This summary is based on
our papers [1, 2, 3]. We refer to these papers for a comprehensive discussion on
related work in these areas.

1. PROBLEM I: LEARNING RELUS

Nonlinear data-fitting problems are fundamental to many supervised learning tasks
in signal processing and machine learning. Given training data consisting of n
pairs of input features &; € R? and desired outputs y; € R we wish to infer a
function that best explains the training data. One form of nonlinearity which is
of particular interest in modern learning is that of fitting Rectified Linear Units
(ReLUs) to the data which are functions ¢, : R? — R of the form

Gw(x) = max (0, (w, x)) .
A natural approach to fitting ReLLUs is via nonlinear least-squares of the form

: 1 ¢ 2 :
1 L = — 0 i) — Yi bject to R <R,
V) i, L) = 3 (ax(0 (wni) — ) sublect to. R(w)

with R : R? — R a regularization function that encodes prior information on the
weight vector.

A simple heuristic for optimizing (1) is to use projected gradient descent like
updates. A-priori it is completely unclear why such local search heuristics should
converge for problems of the form (1), as not only the regularization function
maybe nonconvex but also the loss function! Our result aims to explain why
gradient descent is effective in this setting.

Theorem 1. Let w* € R? be an arbitrary weight vector and R : R — R be a
proper function (convex or nonconvex). Suppose the feature vectors x; € RY qare
i.i.d. Gaussian random vectors distributed as N'(0, I) with the corresponding labels
given by

y; = max (0, (x;, w")).
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To estimate w*, we start from the initial point wg = 0 and apply the Projected
Gradient (PGD) updates of the form

(2) wry1 = Pr (wr — - VL(w,)),

with K := {w € R?: R(w) < R(w*)}. Also set the learning parameter sequence
wo =2 and pu, =1 for allT=1,2,.... Also assume

(3) n > cno,

holds for a fixed numerical constant c. Here, ng is a lower bound on the minimum
number of samples required using any algorithm (see [1]| for a precise definition).
Then there is an event of probability at least 1 — 9e~ 7" such that on this event the
updates (2) obey

k 1 ! *
(@) e = wll, < (3) 1L,
Here v 1s a fixed numerical constant.

Despite the nonconvexity of both the objective and regularizer, the theorem
above shows that with a near minimal number of data samples, projected gradient
descent provably learns the original weight vector w* without getting trapped in
any local optima.

2. PROBLEM II: LEARNING OVER-PARAMETERIZED SHALLOW NEURAL NETS

Neural network architectures (a.k.a. deep learning) have recently emerged as pow-
erful tools for automatic knowledge extraction from raw data. These learning
architectures have lead to major breakthroughs in many applications. Despite
their wide empirical use the mathematical success of these architectures remains
a mystery. The main challenge is that training neural networks correspond to
extremely high-dimensional and nonconvex optimization problems and it is not
clear how to provably solve them to global optimality. These networks are trained
successfully in practice via local search heuristics on real or randomly generated
data. In particular, over-parameterized neural networks-where the number of pa-
rameters exceed the number of data samples-can be optimized to global optimality
using local search heuristics such as gradient or stochastic gradient methods. In
our paper [2] we provide theoretical insights into this phenomenon by develop-
ing a better understanding of optimization landscape of such over-parameterized
shallow neural networks.

We discuss the main results in [2]. The results we present here focuses on un-
derstanding the global landscape of neural network optimization with one hidden
layer with quadratic activation functions. The paper [2] also contains results on
the local convergence of gradient descent that applies to a broad set of activation
functions. We omit these results do to space limitations.
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Theorem 2. Assume we have an arbitrary data set of input/label pairs x; € R?
and y; fori=1,2,...,n. Consider a neural network of the form

x — vl p(Wa),

with ¢(z) = 22 a quadratic activation and W € R¥*? v € R* denoting the weights
connecting input to hidden and hidden to output layers. We assume k > 2d and
set the weights of the output layer v so as to have at least d positive entries and
at least d negative entries. Then, the training loss as a function of the weights W

of the hidden layer

n

1

2n
=1

—oTg( Wacl))2,

obeys the following two properties.

e There are no spurious local minima, 1i.e. all local minima are global.
o All saddle points have a direction of strictly negative curvature. That is,
at a saddle point W there is a direction U € RF*4 such that

vect(U)TV2L(W,)vect(U) < 0.
Furthermore, for almost every data inputs {x;}I"_, as long as
d<n< cdz,
the global optimum of L(W) is zero. Here, ¢ > 0 is a fixzed numerical constant.

The above result states that given an arbitrary data set, the optimization land-
scape of fitting neural networks have favorable properties that facilitate finding
globally optimal models. In particular, by setting the weights of the last layer
to have diverse signs all local minima are global minima and all saddles have a
direction of negative curvature. This in turn implies that gradient descent on the
input-to-hidden weights, when initialized at random, converges to a global optima.
All of this holds as long as the neural network is sufficiently wide in the sense that

the number of hidden units exceed the dimension of the inputs by a factor of two
(k > 2d).
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SUNLayer: stable denoising with generative networks
SOLEDAD VILLAR
(joint work with Dustin G. Mixon)

Exploiting the structure of signals is a fundamental idea in signal processing. For
instance, natural images are sparse on wavelets basis [4], and sparsity allows the
recovery of signals from few measurements (a la compressed sensing [3]).

The current trend, that takes advantage of the empirical success of deep learn-
ing, is to learn the structure of the signal first, and then exploit it. One way to
represent the structure of signals is through a generative model. Informally, a
generative model can be thought as a form of parametrization of the data

G:R" -RY n< N

such that G(R"™) is a proxy for the probability density of the data of interest.

Very impressive generative models have been produced (see for instance [1]) us-
ing autoencoders and generative adversarial networks [6]. However, there does not
seem to currently exist a provable way to produce generative models successfully
and even when the generative model produced is useful for application purposes it
is not clear whether a reasonable data distribution is actually learned. Producing
generative models that are useful for applications is a very active research area
within the machine learning community.

1. INVERSE PROBLEMS WITH GENERATIVE MODELS

If we have a good generative model we can do amazing things with it. For in-
stance, recent work by Bora, Jalal, Price and Dimakis [2] empirically shows that
a generative model obtained from a generative adversarial network can be used
to solve the compressed sensing problem with 10 times fewer measurements than
classical compressed sensing requires. The key idea is to replace the sparse signal
assumption by assuming the signal is close to the range of the generative model
G. Their theoretical result shows that under mild hypothesis, if y = Az* +n (n is
the noise), then

) 2" = argmin||AG(2) —

satisfies G(z*) ~ z* (see Theorem 1.1 of [2]).

However, it is not obvious that one can efficiently solve the optimization prob-
lem (1) since its landscape may a priori have many local minima. Recent work by
Hand and Voroninski [7] shows the optimization problem (1) can be solved using
local methods provided that

G=(poGy)o...o(poGy)

where p(t) = ReLU(¢) = max{0, ¢} and G; are matrices with i.i.d. Gaussian entries
properly scaled. There is no learning in this setting.
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FIGURE 1. Denoising with generative priors
(First line) Digits from the MNIST test set ([8]). (Second line) random noise
is added to the digits. (Third line) Denoising of images by shrinkage in wavelet
domain ([5]). (Fourth line) Denoising by minimizing total variation ([11]).
(Fifth line) We train a GAN using the training set of MNIST to obtain a
generative model G. We denoise by finding the closest element in the image of G
using stochastic grading descent.

2. SUNLAYER AND DENOISING WITH GENERATIVE MODELS

Motivated by both works [2, 7], in our paper [9] we study the simpler inverse
problem of signal denoising with generative networks. The aim of [9] is to explain
the phenomenon illustrated in Figure 1, i.e. given y = G(2*) 4+ 1 a noisy signal
then one can denoise by finding

2) 2 = argmin|G(=) — s
and the optimization problem (2) can be solved by local methods like gradient
descent (i.e. (2) has no spurious critical points).

We consider a simpler model for a generative model inspired by neural networks.
One layer of the SUNLayer (spherical uniform neural layer) is defined as

Lo S™ — 22(8™)
z = p((z,-)),
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where p is an arbitrary activation function. We aim to answer what properties of
activation functions allow denoising with local methods in this simplified model.
Consider the decomposition of p in the Gegenbauer polynomials (choosing the
correct normalization will be important). If p(t) = >_;2 ar@rn(t), we define
9p(t) = > regaipkn(t). Then our main result shows that the critical points
of (2) are close to £x* if inf,c[_1 1) |g},(¢)| is not too small in comparison with |||,

3. SPHERICAL HARMONICS

Squaring the coefficients in the Gegenbauer decomposition may look a priori mys-
terious. However, it shows up naturally due to the nice properties of the spherical
harmonics. Consider the simplified setting when there is no noise. We have

argmin || L, (z) — L(z")||* = argmin || Ly (2)|* + | La(2")||* = 2(Ln(2), Ln(z"))

and || Ly(2)||* = [4. p((z,y))?dy = cpn independent of z. Now we use the rela-
tionship between the Gegenbauer polynomials and the spherical harmonics (see
chapter 2 of [10]). Decompose £2(S™) = &2 HF(S™) where HE(S™) are the
spherical harmonics (homogeneous polynomials in n + 1 variables, of degree k,
with Laplacian 0, restricted to the sphere). In particular #¥(S™) is a finite dimen-
sional vector space. Let {Y1,...Y,} a basis of H}(S™), then define the bilinear

form Fy(o,7) = S0_, Yi(0)Ys(7) for o, 7 € S™
It turns out F}, is a reproducing kernel: (Fy(z, ), Fx(y,-)) = Fr(x,y) and it also
satisfies that Fj(z,y) only depends on the inner product ¢ := (z,y) and in fact

Fi(z,y) = ¢r,n(t). Then
(Ln(2), Ln(2)) = (p({z,-)), p((z",)))

Zakgokn Zalﬂpkn 7' )>
Zaka Zaka 7'

= Zai(Fk(Z, ), Fre({2™,))
k=0

= Z aienk((z,2%)).
k=0
Therefore

argmin || L, (2) — L(z*)||* = argmax (L, (2), L, (z*)) = argmaxZaigpmk«z,x*))
k=0

and a simple computation shows that the only critical points are z = +x* if
g,(t) > 0 for all t € [-1,1]. The analysis for the noisy case we do in [9] is still

simple but more interesting since it involves considering tight frames in H¥ (S™).
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I

Random Initialization in Nonconvex Phase Retrieval
YUXIN CHEN
(joint work with Cong Ma, Yuejie Chi, Jianqing Fan)

Suppose we are interested in learning an unknown object x! € R™, but only have
access to a few quadratic equations of the form

(1) vi=(a)x")’,  1<i<m,

where y; is the sample we collect and a; is the design vector known a priori. Is it
feasible to reconstruct x? in an accurate and efficient manner?

The problem of solving systems of quadratic equations (1) spans multiple do-
mains including physical sciences and machine learning. A natural strategy for
inverting the system of quadratic equations (1) is to solve the following nonconvex
least squares estimation problem

e e 1 - T \2 2
(2) minimizexcrn  f(X) := o Z; [(ai x) _ yl} _
1=

Under Gaussian designs where a; =" A/ (0,I,,), the solution to (2) is known to be
exact — up to some global sign — with high probability, as soon as the number m
of equations (samples) exceeds the order of the number n of unknowns. However,
the loss function in (2) is highly nonconvex, thus resulting in severe computational
challenges. Fortunately, in spite of nonconvexity, a variety of optimization-based
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methods are shown to be effective in the presence of proper statistical models.
Arguably, one of the simplest algorithms for solving (2) is vanilla gradient descent
(GD), which attempts recovery via the update rule

(3) Xt+1 :Xt_ntvf (Xt) s t:O715

with 7; being the stepsize /learning rate. The above iterative procedure is also
dubbed Wirtinger flow for phase retrieval, which can accommodate the complex-
valued case as well. This simple algorithm is remarkably efficient under Gaussian
designs: in conjunction with carefully-designed initialization and stepsize rules,
GD provably converges to the truth x7 at a linear rate!, provided that the ra-
tio m/n of the number of equations to the number of unknowns exceeds some
logarithmic factor.

One crucial element in prior convergence analysis is initialization. In order to
guarantee linear convergence, prior works typically recommend spectral initializa-
tion or its variants. Two important features are worth emphasizing:

o xY falls within a local ¢5-ball surrounding x? with a reasonably small ra-
dius, where f(-) enjoys strong convexity;

e x0 is incoherent with all the design vectors {a;} — in the sense that |a, x
is reasonably small for all 1 < i < m — and hence x° falls within a region
where f(-) enjoys desired smoothness conditions.

°

These two properties taken collectively allow gradient descent to converge rapidly
from the very beginning.

The enormous success of spectral initialization gives rise to a curious ques-
tion: is carefully-designed initialization necessary for achieving fast convergence?
A strategy that practitioners often like to employ is to initialize GD randomly.
The advantage is clear: compared with spectral methods, random initialization is
model-agnostic and is usually more robust vis-a-vis model mismatch. Despite its
wide use in practice, however, GD with random initialization is poorly understood
in theory.

In this work, we prove that under Gaussian designs (i.e. a; Rig (0,1,,)),
gradient descent — when randomly initialized — yields an e-accurate solution in
O(logn+log(1/e)) iterations given nearly minimal samples (up to some logarith-
mic factor), thus achieving near-optimal computational and sample complexities at
once. This provides the first global convergence guarantee concerning vanilla gra-
dient descent for phase retrieval, without the need of (i) carefully-designed initial-
ization, (ii) sample splitting, or (iii) sophisticated saddle-point escaping schemes.
All of these are achieved by exploiting the statistical models in analyzing opti-
mization algorithms, via a leave-one-out approach that enables the decoupling of
certain statistical dependency between the gradient descent iterates and the data.

LAn iterative algorithm is said to enjoy linear convergence if the iterates {x'} converge geo-
metrically fast to the minimizer x".



Applied Harmonic Analysis and Data Processing 741

Optimal weighted least squares approximations
ALBERT COHEN

(joint work with Benjamin Arras, Markus Bachmayr and Giovanni Migliorati)

We consider the problem of approximating an unknown function u € L?(X, p)
from its evaluation at given sampling points z',..., 2" € X, where X C R? is a
general domain and p a probability measure. The approximation u is picked in
a linear space V,,, where m = dim(V,,). We measure accuracy in the Hilbertian

norm
1/2
Joll = ( /X |v<w>|2dp> — ol s,

where p is a probability measure over X. The error of best approximation is
defined by

em(w) = min [lu— v,
m

The method is said to be near-optimal (or instance optimal with constant C') if
the comparison
lu — all < Cem(u),

holds for all u, where C' > 1 is some fixed constant.

For a given probability measure p and approximation space V,, of interest, a
relevant question is whether instance optimality can be achieved with sample size
n that is moderate, ideally linear in m. Recent results of [3, 5] for polynomial
spaces and [2] in a general approximation setting, show that this objective can be
achieved by certain random sampling schemes in the general framework of weighted
least squares methods. The approximation u is defined as the solution to

1 N NP
min n;w(x )y’ — ()%,
where w is a positive function and the z’ are independently drawn according to a
probability measure u, that satisfy the constraint

wdp = dp.

The case w = 1 and p = p corresponds to the standard unweighted least squares
method.
We denote by || - ||, the discrete Euclidean norm defined by

1 — , .
Ioll7 = ~ > wlau()P,
i=1
and by (-,-),, the associated inner product. The solution @ may be thought of as
an orthogonal projection of u onto V,,, for this norm. Expanding it into

m
u = E CjQOj,
j=1
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T

in a basis {¢1,...,pm} of Vi, the coefficient vector ¢ = (c1,...,¢n)" is solution

to the linear system
Gc =d,

where G is the Gramian matrix for the inner product (-, -),, with entries

Gjk = (), Pr)n = - E w(z")pj(z")pr(x"),
=1

and the vector d has entries dy = = > " | y'pi(2"). The solution ¢ always exists
and is unique when G is invertible. When {1, ..., ¢, } isan L?(X, p)-orthonormal
basis of V,,, one has

E(G) =1L

The stability and accuracy analysis of the weighted least squares method is related
to the amount of deviation between G and its expectation I measured in the
spectral norm. This deviation also describe the closeness of the norms || - || and
|| - || over the space V,,, since one has

IG-1]<6 = @QA=9)ol* <lvlz<@+)|vl*, ve Vi

The choice of a sampling measure y that differs from the error norm measure p
appears to be critical in order to obtain stable and accurate approximations with
an optimal sampling budget. The optimal sampling measure and weights are given
by

U = —dp and  w, = —,
m km,

where k,,, is the so-called Christoffel function defined by
k() =) lps(@)?,
j=1

with {¢1,...,¢m} any L?(X, p)-orthonormal basis of V,,,. With such choices, the
following result can be established, see [2, 1].

Theorem 1. With the above choice p,, of sampling measure, for any 0 < e < 1,
the condition

2
> In(2m) —1 I —
n > cm(In(2m) — In(e)), c:=7 3’
implies the following stability and instance optimality properties:

1
Pr(lG-1=3) <=

and
c

In(2m) — In

E(flu - %) < (1+ o )em(w)? +ellul®
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In summary, when using the optimal sampling measure p,,, stability and in-
stance optimality can be achieved in the near linear regime

n = n(m) = ne(m) := [em (In(2m) — ne)],

where € controls the probability of failure.
In various practical applications, the space V,,, is picked within a family (V;;,)m>1
that has the nestedness property

Vlc{/éc...

and accuracy is improved by raising the dimension m. The sequence (V,;,)m>1 may
either be a priori defined, or adaptively generated, which means that the way V,,
is refined into V,,11 may depend on the result of the least squares computation.
In this setting, we are facing the difficulty that the optimal measure pu.,, varies
with m.

In order to maintain an optimal sampling budget, one should avoid the option
of drawing a new sample S,, = {xl ... 2"} of increasing size n = n(m) at each
step m. For this purpose, we observe that the optimal measure pu,, enjoys the
mixture property

1
m+ 1 m+ 1

As noticed in [4], this leads naturally to sequencial sampling strategies where the
sample S,, is recycled for generating S,,+1. Here is one instance of such a strategy
that was studied in [1].

Omi1, where doy, == |om|*dp.

Hm+1 = (1 - ):UJm +

Algorithm 1 Sequential sampling

input: sample S, from p,,
output: sample S,, 1 from 41

fori=1,...,n(m) do
draw a; uniformly distributed in {1,...,m 4+ 1}
if a; = m+ 1 then
draw 2!, | from o,,41
else
set al, .4 = b,
end if
end for
fori=n(m)+1,...,n(m+1) do
draw x!  ; from fim,41.
end for

The interest of this sequencial sampling strategy is that the total number of
sample C,,, which has been generated after m steps remains within the same order
as the near optimal budget n(m). More precisely, the following result is established
in [1].
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Theorem 2. For Algorithm 1, one has
E(Cyn) < n(m) +nm — 1) + 1,
and for any T € [0, 1],
Pr(Cyp, > n(m) + (1 +7)(n(m — 1) + 1)) < M. e~ n(m=1)

2c72

with M, := e~ 3

It should be noted that these results are completely independent of the choice
of the spaces (Vi;,)m>1, as well as of the spatial dimension d of the domain X.
One natural perspective is to develop adaptive least square methods in various
context (wavelet refinements, high dimensional sparse polynomials) based on such
sequencial sampling strategies.
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On the Expressive Power of Deep Learning: A Tensor Analysis
NaDpAv COHEN

(joint work with Or Sharir, Yoav Levine, Ronen Tamari, David Yakira, Amnon
Shashua)

It is widely accepted that the driving force behind convolutional networks, and
deep learning in general, is the expressive power that comes with depth, i.e. the
ability to compactly represent rich and effective spaces of functions through com-
positionality. Despite the vast empirical evidence supporting this belief, formal
arguments to date are scarce. In particular, the machine learning community lacks
satisfactory analyses of depth efficiency, a concept which refers to a situation where
a deep network of polynomial size realizes a function that cannot be realized (or
approximated) by a shallow network unless the latter has super-polynomial size.
Moreover, even with a concrete understanding of depth efficiency, the mystery
behind the expressive power of deep learning would still remain. Deep networks
of polynomial size realize a small fraction of all possible functions, thus even if
depth efficiency holds almost always, meaning the space of functions efficiently re-
alizable by deep networks is much larger than that efficiently realizable by shallow
networks, it still does not explain why deep networks are effective in practice. To
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address this question one must consider the inductive bias, i.e. the assumptions
regarding functions required for real-world tasks that are implicitly encoded into
deep networks. In the series of papers described hereafter, we derive an equiv-
alence between convolutional networks and tensor decompositions, and use it to
analyze, for the first time, the depth efficiency and inductive bias of convolutional
networks.

We begin in [3] by constructing a universal hypotheses space over instances
defined as tuples of vectors, which in the context of images, corresponds to rep-
resentation via local patches. The hypotheses space is constructed as a tensor
product of finite-dimensional function spaces over the local structures. A general
hypothesis may thus be expressed as a linear combination over an exponentially
large basis of product functions, where the coefficients of the linear combination
are naturally viewed as a high-order tensor (every mode in the tensor corresponds
to a patch in the input). Naive computation of hypotheses is intractable, but by
applying hierarchical tensor decompositions to coefficient tensors, efficient com-
putation becomes possible. Moreover, circuits realizing the computations form a
special case of convolutional networks. Namely, they are convolutional networks
with linear activation and product pooling, and we accordingly refer to them as
convolutional arithmetic circuits. The key observation is that there is a one-to-one
correspondence between the type of decomposition applied to a coeflicient tensor,
and the structure of the convolutional arithmetic circuit computing the hypothe-
sis (number of hidden layers, number of channels in each hidden layer, sizes and
shapes of pooling windows etc.). This facilitates the study of networks through
analysis of their corresponding tensor decompositions, bringing forth a plurality
of mathematical tools from domains such as matrix algebra and measure theory.

We show that classic CANDECOMP/PARAFAC (CP) decomposition corre-
sponds to a shallow network with global pooling in its single hidden layer. The
recently introduced Hierarchical Tucker (HT) decomposition corresponds to a deep
network with multiple hidden layers, where the sizes of pooling windows (and the
resulting network depth) depend on the structure of the mode tree underlying the
decomposition. By analyzing tensors generated by CP and HT decompositions
in terms of their ranks when subject to canonical matrix arrangements, we show
that besides a set of Lebesgue measure zero, all weight settings for a deep net-
work lead to depth efficient functions. That is to say, besides a negligible set,
all functions realizable by a deep network of polynomial size cannot be realized
(or approximated) by a shallow network unless the latter has super-polynomial
size. Such result, which we refer to as complete depth efficiency, has never be-
fore been established for any deep learning architecture, convolutional networks in
particular.

Convolutional arithmetic circuits comprise the fundamental ingredients of con-
volutional networks — locality, weight sharing and pooling. We have implemented
and evaluated such circuits (a.k.a. SimNets), showing that they deliver promising
results on various visual recognition benchmarks [1, 2]. Nonetheless, they have yet
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to reach widespread use, especially compared to convolutional rectifier networks —
the most successful variant of convolutional networks to date. Convolutional rec-
tifier networks are characterized by ReLLU activation and max or average pooling.
They do not posses the algebraic nature of convolutional arithmetic circuits, thus
it is unclear to what extent our results from [3] apply to such networks.

To facilitate an analysis of convolutional rectifier networks, we head on in [4]
and define generalized tensor decompositions as constructs that are obtained by
replacing the multiplication operator in standard tensor decompositions with a
general associative and commutative operator g : R x R — R. Given convolu-
tional networks with activation o (e.g. o(z) = max{z,0} for ReLU) and pool-
ing P (e.g. P{c;}i = max{c;}; for max), we define the activation-pooling operator
9o p(a,b) := P{o(a),o(b)}. Apparently, if g,/ p is associative and commutative,
the generalized tensor decompositions it gives rise to are equivalent to convolu-
tional networks with activation o and pooling P, where again, there is a one-to-one
correspondence between the type of a decomposition and the structure of its re-
spective network. With convolutional rectifier networks the activation-pooling
operator g,,p is indeed associative and commutative, thus the equivalence holds.
We make use of it to analyze the expressive properties of such networks, and,
surprisingly, find that in contrast to convolutional arithmetic circuits, with convo-
lutional rectifier networks depth efficiency is not complete. There are still functions
efficiently realizable by deep networks and not by shallow ones, but these are not
as common — the set of functions in a deep network’s hypotheses space which
can be realized (or approximated) by polynomially-sized shallow networks is non-
negligible (has positive Lebesgue measure in the deep network’s weight space). We
interpret this result as indicating that in terms of expressiveness, the popular con-
volutional rectifier networks are inferior to the recently introduced convolutional
arithmetic circuits. Of course, to take advantage of a machine learning model, it
is not enough for it to be expressive, we have to be able to effectively train it as
well. Over the years, a huge body of empirical research has been devoted to train-
ing convolutional rectifier networks. We conjecture that directing similar efforts
into training convolutional arithmetic circuits, thereby fulfilling their expressive
potential, may give rise to a deep learning architecture that is provably superior
to convolutional rectifier networks yet has so far been overlooked by practitioners.

As discussed in the beginning of this section, depth efficiency alone does not
unravel the mystery behind the expressive power of deep convolutional networks.
For a complete understanding of the latter, one must consider the inductive bias,
i.e. the properties of functions realized by polynomially-sized deep networks, and
their suitability for real-world tasks. This is the purpose of the work in [5], where
we study the ability of convolutional arithmetic circuits to model correlations
among regions of their input. Correlations are formalized through the notion of
separation rank, which for a given input partition, measures how far a function is
from being separable. We show that a polynomially-sized deep network supports
exponentially high separation ranks for certain input partitions, while being lim-
ited to polynomial separation ranks for others. The network’s pooling geometry
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effectively determines which input partitions are favored, thus serves as a means for
controlling the inductive bias. Contiguous pooling windows as commonly employed
in practice favor interleaved (entangled) partitions over coarse ones, orienting the
inductive bias towards the statistics of natural images. Other pooling geometries
lead to different preferences, and this allows tailoring convolutional networks for
new types of data that depart from the usual domain of natural imagery. We vali-
date this empirically with both convolutional arithmetic circuits and convolutional
rectifier networks, showing that for image processing tasks of a local nature, such
as characterization of shape continuity, standard contiguous pooling is optimal.
On the other hand, for tasks such as symmetry detection, where modeling corre-
lations between distinct input regions is important, scattered pooling geometries
lead to better performance.

The prescription for tailoring a network to model correlations needed for a
given task, is an exemplar of how our theory, developed to address fundamental
questions regarding the expressiveness of convolutional networks, also brings forth
new capabilities to their application in practice. We take this further in the next
section, where I discuss two works leveraging our theory for designing new types
of networks with novel capabilities and improved performance.

Practical Applications. Convolutional arithmetic circuits, born by our con-
struction of a universal hypotheses space equipped with hierarchical tensor decom-
positions, are in fact closely related to probabilistic generative models. Namely, if
the weights of each filter are constrained to lie on the simplex (non-negative and
sum to one), the computation carried out by a convolutional arithmetic circuit
produces the likelihood of the input under a universal high-dimensional generative
model. As opposed to other generative methods recently considered in the litera-
ture (e.g. generative adversarial networks or variational models), our model admits
tractable inference (computation of likelihood), and more importantly, tractable
marginalization. This allows for previously infeasible capabilities such as clas-
sification under missing data where the missingness distribution at test time is
unknown. We demonstrate this on image recognition benchmarks in [6].

The equivalence we established between convolutional networks and tensor de-
compositions applies in particular to dilated convolutional networks — a newly
introduced variant that provides state of the art performance in audio and text
processing tasks. With dilated convolutional networks, the choice of dilations
throughout a network corresponds to determination of the mode tree underlying
the respective decomposition. We utilize this in [7], and introduce the notion
of a mixed tensor decomposition, blending together multiple mode trees. Mixed
tensor decompositions correspond to mized dilated convolutional networks, formed
by interconnecting hidden layers of networks with different dilations. We show
that mixing decompositions allows representation of tensors much more efficiently
than what would have been possible without the mixture, and by this prove that
interconnecting dilated convolutional networks brings forth a boost to their ex-
pressiveness. Empirical evaluations demonstrate that this translates to significant
gains in accuracy.
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Future Work. There are various promising avenues for future research. One
direction we are investigating is an extension of the equivalence with tensor de-
compositions beyond convolutional networks. Specifically, we have recently learned
that a decomposition named Tensor Train (TT) can be viewed as equivalent to
recurrent neural networks, opening the door to analyzing the expressive prop-
erties of the latter, as well as comparing them to convolutional networks. An
additional path we are exploring is the relation between our theory and that of
tensor networks in quantum mechanics. The latter was developed before hierar-
chical tensor decompositions were introduced, leading us to believe that it may be
possible to suggest more efficient algorithms than those used today, and perhaps
even shed some light on physical principles. Finally, in the longer term, I am
interested in leveraging the equivalence between convolutional networks and ten-
sor decompositions for addressing the fundamental theoretical questions beyond
expressiveness — optimization and generalization.
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Robust one-bit compressed sensing with non-(Gaussian matrices
SJOERD DIRKSEN
(joint work with Hans Christian Jung, Shahar Mendelson, Holger Rauhut)

The theory of compressed sensing predicts that one can reconstruct signals from
a small number of linear measurements using efficient algorithms, by exploiting
the empirical fact that many real-world signals possess a sparse representation.
In the traditional compressed sensing literature, it is typically assumed that one
can reconstruct a signal based on its analog linear measurements. In a realistic
sensing scenario, measurements need to be quantized to a finite number of bits
before they can be transmitted, stored, and processed. Formally, this means that
one needs to reconstruct a sparse signal x based on non-linear observations of the
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form y = Q(Ax), where @ : R™ — A™ is a quantizer and A denotes a finite
quantization alphabet.

We consider the one-bit compressed sensing model, which was first studied by
Boufounos and Baraniuk [3]. In this model one observes

(1) y = sign(Ax + 1),

where A € R™*N 'm < N, sign denotes the sign function applied entry-wise and
7 € R™ is a vector consisting of thresholds. Especially interesting is the memory-
less one-bit quantization model, in which every linear measurement is quantized
independently of the other measurements. The memoryless one-bit quantizer is
attractive from a practical point of view, as it can be implemented using an energy-
efficient comparator to a fixed voltage level (if the thresholds 7; are all equal to a
fixed constant) combined with dithering (if 7 is random). In the original work [3]
all thresholds were taken equal to zero. In this scenario, the energy of the original
signal is lost during quantization and one can only hope to recover its direction.

There is by now a rich theory available for one-bit compressed sensing with
standard Gaussian matrices. For instance, it is known that with high probability
one can accurately reconstruct the direction of any (approximately) sparse signal
via a tractable convex program, even if a fraction of the bits is corrupted at the
quantizer in an adversarial manner [8]. This result is valid if the number of one-
bit measurements m scales in terms of the signal sparsity s as m > Cslog(n/s),
which is the optimal scaling known from ‘unquantized’ compressed sensing. More
recently, it has been shown to be possible to efficiently reconstruct the complete
signal by using Gaussian thresholds, provided that one knows an a-priori bound on
the energy of the signal [2, 7]. Although these results are very interesting from a
mathematical perspective, their practical value is limited by the fact that Gaussian
matrices cannot be realized in a real-world measurement setup. It is therefore of
substantial interest to extend the known theory to non-Gaussian matrices. This
is a non-trivial task, as there exist measurement matrices that perform optimally
in unquantized compressed sensing, but may fail if one-bit quantization is used.
For instance, as was pointed out in [1], if A is a Bernoulli matrix and 7 = 0, then
there already exist 2-sparse vectors that cannot be reconstructed based on their
one-bit measurements, regardless of how many measurements we take. Still, [1]
established a positive recovery result for subgaussian measurement matrices which
shows that one can reconstruct a sparse signal = up to accuracy (at most) ||.%’||<1>é4
Informally, this means that one can still hope to recover the signal if it is sparse,
but not too sparse.

In joint work with H.C. Jung and H. Rauhut [4], we establish the first rigor-
ous reconstruction guarantees for memoryless one-bit compressed sensing with a
structured random matrix. We investigate a randomly subsampled Gaussian cir-
culant matrix, a measurement model that is relevant for several applications such
as SAR radar imaging, Fourier optical imaging and channel estimation (see e.g.
[9] and the references therein). In contrast to [1], the main results of [4] impose
a small sparsity assumption. Under this assumption, we establish guarantees for
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the accurate recovery of the direction of any s-sparse or effectively sparse vector
using a single hard thresholding step or a linear program, respectively, in the case
that the threshold vector 7 is zero. Our analysis relies on work of S. Foucart
[6], who observed that recovery results for these two reconstruction methods can
be obtained by showing that the matrix A satisfies an ¢ /¢s-restricted isometry
property. By taking 7 to be an appropriately scaled Gaussian vector, one can fully
recover effectively sparse signals via a second order cone program, provided that
an upper bound on their energy is known.

The works [1, 4] give the impression that in a non-Gaussian context one needs
additional restrictions on the signal in order to accurately recover from one-bit
measurements. In very recent joint work with S. Mendelson [5], we show that
this impression is misleading. We prove that if one chooses the random threshold
vector 7 appropriately, then one can accurately reconstruct signals from general
low-complexity sets based on their subgaussian, or even heavy-tailed, one-bit mea-
surements. In the special case of sparse signals we additionally prove recovery
results for randomly subsampled circulant matrices generated by a subgaussian
vector, without any restriction on the sparsity level. In addition, our recovery
results strongly improve over [1, 4] in terms of robustness: recovery is stable in
the presence of adversarial bit corruptions in the quantization process, as well
as heavy-tailed noise on the analog measurements. In the case of subgaussian
and randomly subsampled subgaussian circulant matrices, robust recovery can be
achieved via a convex (and, for many signal sets, tractable) recovery program.
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Transports on manifolds in data analysis
RONEN TALMON
(joint work with Or Yair, Mirela Ben-Chen)

- (1) (1 2) (12 (k) D
Consider two subsets {wz (t)}_1 and {wl (t)}'1’ where x;"’ () € R”, of N;
and N2 high-dimensional time Zs?elries, respectiveb;.i Assume that each subset is
obtained from the same acquisition system in a particular session, deployment,
and set of environmental conditions. In our notation, the superscript denotes the
index of the subset, the subscript ¢ denotes the index of the time-series within
each subset, and ¢ represents the time axis of each time-series. Our exposition
focuses only on two subsets, but generalization to any number of subsets is straight-
forward. Additionally, we consider here time-series, but our derivation does not
take the temporal order into account, and therefore, extension to other types of
data, e.g., images, is immediate, where ¢t could be just an index of a sample.

Analyzing such data typically raises many challenges. For example, one notable
problem is how to efficiently compare between high-dimensional point clouds, and
particularly, time-series. When the data are real measured signals, sample compar-
isons become even more challenging, since such high-dimensional measured data
usually contain high levels of noise.

In particular, in our setting, we face an additional challenge, since the data is
given in two separate subsets. Comparing time-series from the same subset is a
difficult task by itself, even more so is comparing time-series from two different
subsets.

Our goal in this work is to find a new joint representation of the two subsets in
an unsupervised manner. Broadly, we aim to devise a low-dimensional representa-
tion in a Euclidean space that facilitates efficient and meaningful comparisons. As
in many unsupervised tasks, this general description of the goal is not well-defined.

L . . . 1 .
To make our objective more concrete, we associate each time-series :cg )(t) with a

label ygl) and z?

; .7/ (t) with a label yl@, and define “meaningful” comparisons with
respect to these labels. Namely, we design the new representation such that the
Euclidean distance between the new representations of any two time-series with
similar corresponding labels is small, independently of the time-series respective
trial, and particularly, subset. To construct such a representation, we propose an
approach that computes covariance matrices as data features, and then employs
parallel transport on the manifold of symmetric positive-definite matrices [1, 2, 3].

Based on our new representation, we devise efficient and accurate solutions for

transfer learning and domain adaptation, which are long-standing problems in
Ny

data analysis. Specifically, given a subset {:c,gl) (t)} with corresponding labels
i=1

N1
{ygl)} , we train a classifier on the new derived representation of the subset.
i=1
Ny
Then, when another unlabeled subset {zcl(-z) (t)} becomes available, we apply
i=1
the trained classifier to the derived (joint) representation.
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To put the problem setting and our proposed solution in context, we will use an
illustrative example, taken from a recent competition
(http://www.bbci.de/competition/iv/). Consider data from a brain computer
interface (BCI) experiment of motor imagery comprising D Electroencephalogra-
phy (EEG) recordings. In this experiment, several subjects were asked to repeat-
edly perform one out of four motor imagery tasks (to raise their right hand, left

(1)

2

N1
(t)} be a subset of recordings
i=1

acquired from a single subject, indexed (1), where the time-series ml(.l) (t) consists of

the signals, recorded simultaneously from the D EEG channels during the ith trial.

hand, or feet, or to move their tongue), Let {a:

Each time series mgl)(t) is attached with a label y(l), denoting the imagery task

i
performed at the the ith trial. Common practice is to train a classifier based on

N1
{mgl) (t) } : and ygl), so that the imagery task could be identified from new EEG

_ (2
recordings._ This capability could then be the basis for devising brain computer

interfaces, for example, to control prosthetics.
N1

Suppose that a new subset {a:EQ) (t)} of recordings acquired from another
i=1
subject, indexed (2), becomes available. Applying the classifier, trained based on

data from subject (1), to the new subset of recordings from subject (2) typically
yields poor results, as we demonstrate in our study. Indeed, to the best of our
knowledge, all methods addressing this particular dataset, e.g., [4], as well as other
related problems, exclusively analyze data from each individual subject separately.

. . . (1) N (2) N1
By constructing a joint representation for both {:cZ (t)} and {wz (t)} :
i=1 i=1
which is oblivious to the specific subject, we are able to build a classifier that is

trained on data from one subject and applied to data from another subject without
any calibration, i.e., without any labeled data from the new (test) subject.
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Deep networks: engineered, trained, or randomized?
REMI GRIBONVAL

Many of the data analysis and processing pipelines that have been carefully en-
gineered by generations of mathematicians and practitioners can in fact be im-
plemented as deep networks. Allowing the parameters of these networks to be
automatically trained allows to revisit certain constructions.

The talk first describes an empirical approach to approximate a given ma-
trix by a fast linear transform through numerical optimization [1]. The main
idea is to write fast linear transforms as products of few sparse factors, and to
iteratively optimize over the factors. This corresponds to training a linear mul-
tilayer neural network with sparse connections. Algorithms exploiting iterative
hard-thresholding projections have been shown to perform well in practice. Yet,
developing a solid understanding of their conditions of success remains an open
mathematical question.

In a second part, the talk outlines the main features of a recent framework for
large-scale learning called compressive statistical learning [2]. Inspired by com-
pressive sensing, the framework allows drastic volume and dimension reduction to
learn from large/distributed /streamed data collections. Its principle is to compute
a low-dimensional (nonlinear) sketch (a vector of random empirical generalized
moments), in essentially one pass on the training collection.

For certain learning problems such as clustering [3], small sketches have been
shown to capture the information relevant to the considered learning task, and
empirical learning algorithms have been proposed to learn from such sketches.
As a proof of concept, more than a thousands hours of speech recordings can be
distilled to a sketch of only a few kilo-bytes, while capturing enough information
estimate a Gaussian Mixture Model for speaker verification [4].

The framework, which is endowed with statistical guarantees in terms of learn-
ing error, is illustrated on sketched clustering, and sketched PCA, using empirical
algorithms inspired by sparse recovery algorithms used in compressive sensing.
The promises of the framework in terms of privacy-aware learning are discussed,
as well as its connections with information preservation along pooling layers of
certain convolutional neural networks with random weights.

To conclude the talk, we describe ongoing work [5] providing definitions and
some characterizations of the approximation spaces [6] of deep networks and their
relations with classical function spaces. Of particular interest is the role of the
so-called activation function, and that of the depth of the considered networks.
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Approximation Properties of Deep ReLU Networks
FELIX VOIGTLAENDER
(joint work with Philipp Petersen)

In the area of machine learning, deep learning methods have dramatically improved
the state-of-the-art in many classification problems like visual object recognition
[5]. The general goal of machine learning is to find a good approximation f* to an
unknown ground-truth (classifier) function f that can only be observed through
known samples (z;, f(x;))i=1,... .n. In the case of deep learning this is achieved
by insisting that f* is implemented by a neural network & = &, which is
parametrized by its weights a € R¥. To determine these weights, one applies a
form of stochastic gradient descent in order to minimize a loss function L that is
defined in terms of the samples (x;, f(z;))i=1,... n. For details we refer to [5, 9].

Despite their incredible performance in applications, a theoretical explanation
for this success of deep learning methods is still missing. In this abstract, we
present recent results concerning the expressive power of neural networks. In
particular, our results partially explain why deep networks tend to perform better
than shallow ones, as is observed in practice [5].

We emphasize that we are only interested in the ezistence of a network &7/
approximating a given ground-truth classifier function f up to error e. We do not
address the practically important question of how one can find such a network,
much less if one is only given samples of f.

1. CLASSICAL RESULTS

A neural network ® : RMo — RN computes its output by alternatingly applying
affine-linear maps and a non-linear activation function o : R — R; thus

O(x) =Tr(o(Tp-1(...0(T1(x))...))) for =z € RNo |

where L € N denotes the depth of the network, and where each Ty : RN¢e-1 — RN
is affine-linear, say T, = Ay ® + by. Note that o is applied componentwise. If we
want to emphasize the choice of g, we say that ® is a p-network.
Observe that a 1-layer network is simply an affine-linear map, while a 2-layer
network is a linear combination of ridge functions, i.e., ®(z) = Zfil o((z,a;)+b;).
The number of neurons and the number of weights of ® are, respectively,

L L

N(®@)=) Ny and W(®) =) (| Aclleo + [lbelleo) -
=0 (=1
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For later use, we recall the notion of sigmoidal activation functions: A (mea-
surable, locally bounded) function p : R — R is sigmoidal of order k£ € Nj if

limg o0 % =1 and lim,_,_ % = 0. The so-called ReLU (rectified linear

unit) activation function go(x) := x4 is sigmoidal of order 1.

The expressiveness of neural networks is a well-studied subject [1, 2, 3, 4, 6, 7].
In particular, the following universal approximation theorem seems to settle—
at first glance—the question of the expressiveness of neural networks:

Theorem (cf. [6, Theorem 1]) If g is continuous but not a polynomial and K C R?
is compact, then the family of 2-layer neural networks is dense in C'(K).

Note, however, that the theorem does not yield any bounds on the complexity
of the networks ®/ that are used to approximate f up to error . Deriving such
bounds for ReLLU networks under suitable assumptions on f is our main goal. For
certain other types of activation functions, such bounds are classical; for example:

1) In [7] it is shown that if o is sigmoidal of order k > 2 and if f € C*([0,1]%),
then || f —®,|| =~ < n~%/? for a p-network with N(®,,) = n and L(®,,) = L(d, s, k).

2) In [2] it is shown for order zero sigmoidal activation functions g that if one
assumes that the Fourier transform of f : R? — C has a finite first moment, then
lf — @n”%Q(M) < n~! for a 2-layer g-network ®,, with N(®,) = n. Here, u is a
fixed (but arbitrary) probability measure on R? with compact support.

2. REsuLTS FOR RELU NETWORKS

Most classical results about the approximation properties of neural networks do
not apply to ReLU networks. Since in practice the ReLU is the most widely used
activation function [5], these networks received much attention in recent years.

Yarotsky [13] showed for Sobolev functions f € W*>°([0,1]¢) that there are
ReLU networks ®f of size N(®f) < W (®/) < e~4/* and depth L(®f) < In(1/e)
satisfying || f — ®/|| .~ < e. Thus, the depth of the networks ®/ tends to infinity
if the approximation accuracy gets better. As far as we know, if one insists on
L approximation with the same “network size to approximation error” relation
as above, it is unknown whether one can avoid this growth of the depth. But for
LP approximation with p < oo the situation is different:

Theorem ([8, Theorem A.9]) There is some ¢ > 0 such that for any ¢, p, 5 € (0, 00)
and f € CP([0,1]%), we have || f — ®f| 140,174y < € for a suitable ReLU network
®f satisfying N(®f) < W(®f) < e and L(®f) < c- (1 + B/d) -log,(2 + ).

The ground-truth classifier function f, however, usually has a discrete range;
e.g. in a digit classification problem, we could have f : RN*N — f-1,0,...,9},
where —1 stands for “not a number”. Since such a function cannot be smooth, we
consider a different “toy-model” for classifiers f, namely f = Ef\il a;1,, where
the sets K; C R? are assumed to have a smooth boundary, say 0K; € C?. By
using that locally—after a change of variables—the functions 1g, are similar to
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jumps along straight lines, and that ReLU networks can approximate such jumps
well, e.g. by e 1 (00(z;) — 0o(x; — €)), we proved the following result:

Theorem ([8, Theorem 3.5]) There is ¢ > 0 such that for any f = Zi\il a;1 g, with

OK; € CP and any € > 0 there is a ReLU network ®/ with || f — ®/||;2(j9,1j4) < &

and N(®f) SW(®f) < e72d=1/8 as well as L(®f) < c-logy(2 + B) - (1 + /d).
Using entropy arguments, we showed that the bound W (®f) < ¢=2(d=1/8 ig

optimal, assuming that each of the weights of the network can be encoded with
< et bits for a fixed t > 0. We refer to [8, Section 4.1] for the details.

Telgarsky [12, 11] observed for ReLU networks ® : RY — R that the one-
dimensional restrictions R — R,t + ®(ta + b) (with a,b € R?) are piecewise
affine-linear with at most N (®)“(®) pieces, and used this to show that there are
deep neural networks of size n that can only be approximated by shallow networks
whose size is exponential in n. Utilizing this observation, we were able to prove
the following lower bound for the approximation of non-linear smooth functions:

Theorem ([8, Theorem 4.5], see [10, Theorem 4] for the case p = 2)
Let @ # Q0 C RY be open and connected and let f € C3(£2) not affine-linear. Then
there is a constant C'y > 0 such that for every p € [1, o],

If = @llzr0) = Cp - max {(N(@) = 1)72*) (W(®) + )P}

Overall, our results show that smoother functions allow for better approrimation
rates by ReL U networks; but to achieve these rates, deep networks are needed!
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Time evolving data, diffusion geometry, and randomized matrix
decomposition

NICcHOLAS F. MARSHALL
(joint work with Matthew J. Hirn [5] )

We describe how the geometry of time evolving data can be efficiently summarized
using diffusion operators and randomized matrix decomposition. Suppose than an
n x d x m tensor corresponding to n points in R? measured over m times is given.
For each n x d temporal slice X; of the tensor we construct a diffusion operator
P;, following the diffusion maps framework [1], and study the product operator

pP™.—p P ...P.

We prove that this product operator approximates heat flow in a precise sense
when a manifold with a time dependent metric is assumed to underlie the data.
Furthermore, we generalize the notion of diffusion distance and diffusion maps to
this time evolving setting. We observe that the singular value decomposition of
the product operator P™ can be efficiently computed by implementing each P,
as a sparse matrix, applying each matrix successively to a collection of random
vectors, and then using the algorithm of Martinsson, Rokhlin, and Tygert [6]. This
decomposition can in turn be used to compute a generalized diffusion map, which
we call a time coupled diffusion map, that summarizes the geometry of the data
tensor. We remark that other recent works in the diffusion geometry literature
also consider embeddings defined via products of diffusion kernels, see for example
Lederman and Talmon [3], or Lindenbaum, Yeredor, Salhov, and Averbuch [4].

Main result. Our main result establishes a connection between the product oper-
ator P(") and heat flow on an assumed underlying manifold with a time dependent
metric. The existence and uniqueness of the heat kernel Hf on a manifold with a
time dependent Riemannian metric was established by Guenther [2]. In order to
prove a convergence result, we introduce a dependence on a bandwidth parameter
e for our product operator and write P(™) = Pa(m). Recall that n is the number
of spatial samples of the manifold M, and that m is the number of temporal mea-
surements. We assume that the underlying time interval [0, 7] is divided into m
intervals [r;_1,7;) each of length ¢ where 70 = 0 and 7, = T". For simplicity, we
assume that our m measurements are taken at (71,...,7,). Our main result is
that in the limit of large data, both spatially and temporally, the product operator

PE( [t/e1) converges to the heat kernel:

PUYED 5 HE as n — oo and & — 0.
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More precisely:

Theorem. Suppose the isometric embedding M, C R? of a time dependent man-
ifold (M, g(7)) is measured at a common set X = {x;}}_; C M of n points at
e spaced units of time over a time interval [0,T], so that, in particular, we have
time samples (1;)[%, C [0,T] with 7; =i -€ and m =T/e.

Then, for any sufficiently smooth function f : M — R and t < T, the heat
kernel HE can be approximated by the operator PE( [t/e1).

1
t _ t
PUYED f(25) = Hi f(5) + O (Wf) , wjeX.

Time coupled diffusion distance. Let §; denote a Dirac distribution centered
at ;. We compare the points z; and z; by comparing the posterior distributions
of 5; and §; under the Markov operator P("™). More specifically, following [1] we
define a diffusion based distance as the L? distance between these posterior dis-
tributions weighted by the reciprocal of the stationary distribution of the Markov
chain. That is, we define the distance D(™) by

where 7(,,) is the stationary distribution of Pm) e, ( ) = 7r( )P( ), and
I 1l22(1 /7 (y) I8 the weighted L? norm:

[ fll 221 /) = Zf ;)?

T(m) xa)

Time coupled diffusion map. The product operator P("™) is not, in general,
similar to a symmetric matrix (as in the standard diffusion maps framework [1]) so
our definition of a diffusion map necessarily differs. First, we define the operator
Alm) by
m) _ 1q/2 plm)p1/2

Alm) (/)P( )H(m)/ ’
where Il(,,) denotes the matrix with the stationary distribution 7(,,) of p(m)
along the diagonal and zeros elsewhere. Next, we compute the singular value
decomposition (SVD) of A(™):

AT = Uy Sy Vi

m)»

where U(,,) is an orthogonal matrix of left singular vectors, ¥,,) is a diagonal
matrix of corresponding singular values, and V{,,) is an orthogonal matrix of right
singular vectors. Define

m) . y7—1/2
WO = T U () S om)-

Then it is easy to check (see [5]) that the embedding

Tj 5;r\If(m)
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of the data X into Euclidean space preserves the time coupled diffusion distance.
That is to say,

D™ (x5, 23,) = Ha}q:(m) AR AURI

We refer to the embedding z; — 5;\11(7”) as the time coupled diffusion map.
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Morphing of Manifold-Valued Images
GABRIELE STEIDL
(joint work with Sebastian Neumayer, Johannes Persch)

Smooth image transition, also known as image morphing, is a frequently addressed
task in image processing and computer vision, and there are various approaches to
tackle the problem. For example, in feature based morphing only specific features
are mapped to each other and the whole deformation is then calculated by inter-
polation. This paper is related to a special kind of image morphing, the so-called
metamorphosis introduced by Miller, Trouvé and Younes [4, 5|. The metamorpho-
sis model can be considered as an extension of the flow of diffeomorphism model
and its large deformation diffeomorphic metric mapping framework in which each
image pixel is transported along a trajectory determined by a diffeomorphism path.
As an extension the metamorphosis model allows the variation of image intensities
along trajectories of the pixels.

This paper builds up on a time discrete geodesic paths model by Berkels, Ef-
fland and Rumpf [1], but considers images in L?(2, 1), where Q C R, n > 2, is an
open, bounded connected domain with Lipschitz boundary and H a finite dimen-
sional Hadamard manifold. Hadamard manifolds are simply connected, complete
Riemannian manifolds with non-positive sectional curvature. Typical examples are
hyperbolic spaces and symmetric positive definite matrices with the affine invari-
ant metric. As an important fact we will use that the distance in Hadamard spaces
is jointly convex which will imply weak lower semicontinuity of certain functionals
involving the distance function.
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We aim in finding a minimizing sequence I = (I1,...,Ix_1) € (L2(Q,R))K_1

of the discrete path energy

K

. - 1

T =Y inf /W(Dgok(:v))+’y|D gok(x)|2dx—i——/dQ(Ikogpk,Ik_l)Qd:v,
k:1@k€Ae Q 0 Q

(1) subject to Ip =T, Ix =R,

where 6, > 0, do denotes the distance in L?(Q, H),

Ae = {pe (W™2(Q)" : det(Dyp) > ¢, p(z) =z forx € 9Q}, m > 1+ g

is an admissible set of deformations and the function W has to satisfy certain
properties. A particular choice of W is given by the linearized elastic potential.
An illustration is given in Fig. 1. We prove that a minimizer of (1) exists.

‘ I Il,—‘—_" Iy - IA,‘—___ Iy o I

F1GURE 1. Illustration of the time discrete morphing path.

Dealing with digital images we have to introduce a space discrete model. We
establish a finite difference model on a staggered grid together with a multiscale
strategy. We have used this discretization already for gray-value images in [3].
For finding a minimizer, we also propose an alternating algorithm fixing either the
deformation or the image sequence:

i) For a fixed image sequence, we have to solve certain registration problems
for manifold-valued images in parallel to get a sequence (¢1,...,¢K) of
deformations. Necessary interpolations were performed via Karcher means
computation.

ii) For a fixed deformation sequence, we need to find a minimizing image
sequence (I1,...,Ix_1) of

K
> d3(Ik ok, Ix—1) subject to Ip=T,Ix =R
k=1

where dy denotes the distance in L*(Q, H).

Fig. 2 shows a path obtained by our model for images with 3 x 3 positive definite
matrices as entries. For more information we refer to [2].
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FIGURE 2. Morphing path between a part of the YZ-slices 49 and
51 of the Camino dataset with SPD(3) matrices.
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Solving linear Kolmogorov Equations by Means of Deep Learning
PuiLipp GROHS

1. THE MATHEMATICAL LEARNING PROBLEM

According to [1], the mathematical learning problem can be cast into the following
form.

Definition 1 (The Mathematical Learning Problem). Let K C R%, let (2,G,P)
be a probability space and let X : Q0 — K and Y : Q — R™ be random vectors. For
a Borel measurable function F': K — R"™ define the least squares error of F' with
respect to (w.r.t.) X andY by

(1) Exr(F) = /Q |F(X) = V|2 dP = E[| F(X) - Y|[2.] € [0, o0].

The Mathematical Learning Problem asks for a function F which minimizes
Ex vy (F).

This definition can be interpreted as the problem of finding the best func-
tional relation between two random vectors X,Y where X may take the role of
a data point and Y that of a label. Since the minimization of £ x y) amounts
to a quadratic minimization problem, the solution to the Mathematical Learn-
ing Problem of Definition 1 can be easily seen to be the conditional expectation
F(z) =E(Y|X =2).

In practice, one does not know the distributions of (X,Y) but one only has
access to i.i.d. samples (z;, ;)" , ~ (X,Y) from which one needs to estimate E.
A popular method to achieve this goal is Empirical Risk Minimization (ERM),
which minimizes the empirical risk

Sl=

m
(2) g(mi,yi)g’;l (F) = Z(F(xl) - %‘)2
i=1
over a hypothesis class H C C(RY,R"). The minimizer (which may be non-
unique) is denoted F| (z:,y:)m 1 Classical statistical learning theory, as for example
presented in [1] provides an estimate on the error

2

A

F(iﬁi,yi)m n—F

1=1?

g(ny) (F(wmyi)?;l,’ﬂ) - g(X,Y) (F) =

L2(K,dPx)
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R 112
Iy — F

These estimates involve bounds on the approximation error . ,
L2(K,dPx)

where Fy € argminggy |F — FHQLQ(K’dPX) and the generalization error
Ex,v)y(Flaiym 1) — Ex,y)(F3). The approximation error measures how well
the hypothesis class H approximates the regression function F' and its estimation
implicitly requires the knowledge of regularity properties of (X,Y) which is in
general not available for realistic learning problems.

2. NEURAL NETWORK HYPOTHESIS CLASSES

In recent years spectacular successes have been achieved by using deep (artificial
feedforward) neural networks as hypothesis classes [2]. These can be defined as
follows.

Definition 2. Let L, Ny,..., Ny € N. A neural network (NN) ® with L layers
is a finite sequence of matriz-vector tuples ® := ((A1,b1), (A2,b2),...,(AL,bL)) €
Xy (RNPN—1 5 RNY) - We refer to the sequence arch(®) := (No, N1,...,Np) as
the architecture of ® and denote its input and output dimension by d,(P) := Ny
and doyt (P) := N1, respectively.

Suppose o € C(R,R), then we define the realization of ® with activation func-
tion o as the map Ry(®) € C(RNo RNL) with R, (®)(x) = xp, where x1, is given
by the following scheme:

xo =z, x:=o0(Axi—1+b), forle{l,...,L -1}, xp:=Arxr_1+0bL.

Here, o is understood component wise, i.e., o(y) = (6(y1),...,0(Ym)). Finally,
we define size(P) := Zle (I1A;le0 + |1bjle0) and set

NoyNy) = {Ro(®) : arch(¢) = (No,...,Np)} € C(R™,RY:).

Examples of activation functions include the rectified linear unit ReLU(t) :=
(t)+ or the sigmoidal function sig(t) = tanh(¢/2). The resulting ERM problem
(2) becomes non-linear and non-convex and it can typically only be solved by
stochastic first order optimization methods whose convergence properties are not
yet understood.

3. LINEAR KOLMOGOROV EQUATIONS AS LEARNING PROBLEM

Consider linear Kolmogorov equations which are defined as follows for a function
u: Ry x R - R and initial value ¢ : R? — R:
(3)
1
%(t,x) = ETrace(a(a:)aT(m)Hessmu(t,x)) + p(x) - Vau(t,z), (t,x) €[0,T] x R,
u(0,2) = ().

The problem of approximating the function = +— u(T,z), T' > 0, given the initial
condition u(0,x) = ¢(z) arises in a wide area of applications, for example nonlin-
ear filtering or computational finance. Special cases include diffusion equations,
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the Black-Scholes-Equation or the Heston model which is used day after day in
the financial engineering industry. In these applications it is especially relevant to
develop efficient numerical schemes for high-dimensional problems with d > 100.
Due to the curse of dimensionality which states that the complexity of classi-
cal methods (Finite Element Methods, Finite Difference Methods, Sparse Tensor
Product Methods, Spectral Methods, ...) scales exponentially in the dimension d,
such methods are not applicable in this regime.

In [3] use the Feynman-Kac formula u(T r) = E(p(Z1)), where Z! is the pro-
cess defined as Z! =z = f(f (Z3)ds + fo 0(Z2)dWs to observe that u(T, z)|(, 4
equals the solution to the leammg problem in the precise sense of Definition 1
associated with X = Uy, yj« (the uniform distribution on [a,b]) and Y = o(Z%).
Using this reformulation we can simulate training data (z;,y;), distributed ac-
cording to (X,Y) and solve the resulting ERM problem with a NN hypothesis
class HReLU

N which results in a numerical approximation F(xl yi)™ | HRELU

i=1"Y(Ng,...,NL)
of FF = u(T,-). Numerical simulations carried out in [3] suggest that the resulting
algorithm does not suffer from the curse of dimensionality.

In ongoing work we show that in many cases of interest both the size ZzL:1 (N x
Ni—1+ N;) of the NN hypothesis class as well as the number m of required training
samples scale only polynomially in the dimension d.

Theorem 1 (informal and simplified version [G-Jentzen-von Wurstemberger] ).
Suppose that u,> are affine functions (this includes diffusion equations or the
Black-Scholes equation) and suppose that the initial condition ¢ can be very well
approzimated by ReLU NNs (this includes p(x) = max{zle x; — K;,0} (basket
option) or p(x) = max{x1 — Ki,...,xq— Kq,0} (maz option)). Then there exists
a polynomial p such that for every e > 0 there exist L, N1,...,Np,m € N with

(i) S (N: X Niy 4 Np) < |p(d)]e2
(ii) m < |p(d)|e~*
(iii) 7(b—1a)d <f[a,b]d |u(T, 1‘) F(xz;yz)z L HReLU

(NQg,--s Npy)

@e) " <e

In other words, the method does not suffer from the curse of dimensionality.
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A new paradigm for function approximation with deep networks
HRUSHIKESH N. MHASKAR

A central problem in machine learning is the following. Let D = {(z;,4;)}}, C
X x R for some non-empty set X. Find a model P : X — R such that P(z;) ~ y;,
1<i< M.

The traditional machine learning paradigm as described in [2, 3] is to consider
D as an i.i.d. sample from an unknown probability distribution . The goal is to

estimate the generalization error given by / ly — P(x)]*du(x,y). Writing
XxR
f(z) = E,(y|z), and denoting by p* the marginal distribution of p for z, the

generalization error is the sum of the variance, defined by / ly—f(x)Pdu(z,y)
XxR

and the bias, defined by / |f(z) — P(z)[*dp* (). In theoretical analysis, one
X

considers a sequence of model classes Vj € V4 C ---. The minimum bias for
P €V, is obtained for some P* = argminpcy, ||f — P|/,+ 2, and is called the
approximation error ||f — P*| 2*72. In the traditional paradigm, the actual
construction of P* is of no interest; only an estimate of this minimum bias is
studied in order to get some insight on what space V,, to choose the model from.
The actual model P# is computed based only on D typically using some empirical
risk minimization process that assumes f to belong, for example, to a reproducing
kernel Hilbert space (prior). Since the approximation error decreases as n 1 oo,
while the complexity of the process of finding P# increases with n, there is an
built-in trade off between the two estimates.

In the analysis of function approximation by deep networks, this paradigm does
not work. As pointed out in [10], the main reason for deep networks to have an ad-
vantage over shallow networks is their ability to utilize a compositional structure so
as to mitigate the curse of dimensionality with the blessing of compositionality. For
example, the number of parameters in approximating a function F' of 4 variables
up to accuracy € is O(e~"/4), where r measures the smoothness of F. However,
if F' has a compositional structure F'(z1,- - ,x4) = f(f1(x1,22), fo(x3,24)), then
a deep network with binary tree architecture of the same form, P(x1, -+ ,z4) =
P*(Py(x1,22), Pa(x3,24)) can provide the same approximation with only O(¢~"/2)
parameters, since only functions of two variables are approximated at each stage.
If the functions f, f1, fo are Lipschitz, one can easily obtain a rate of approx-
imation using triangle inequality (good propagation of errors) (see [10] for
details). This requires an approximation of f(fi, f2) by P*(Pyi, P») as bivariate
functions. The inputs to f are thus different from those to its approximation P*,
and it is not possible to define a measure with respect to which to take the L?
norm so that the measure is commensurate with the compositionality structure.

We propose an alternative, equivalent way to look at the problem that avoids
the trade off between approximation error and process complexity, and utilizes
the knowledge from approximation theory that can lead simultaneously to a good
approximation error as well as an explicit construction for the desired model. Our
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viewpoint is to treat the question of machine learning as the problem of finding
a good approximation to an unknown function f that captures the essential
functional relationship in the data set, given the values y; = f(z;)+¢;, where ¢; are
i.i.d. samples drawn from an unknown distribution with mean 0 and independent
of x;. Although this is an equivalent formulation of the original problem, it is more
natural from the point of view of approximation theory to do pointwise estimates
(alternately uniform estimates involving some weight functions) than those in L2,
and more importantly to look for constructive methods that yield a good (rather
than best) approximation. In particular, the generalization error is now defined
as the pointwise error |f(x) — P#(z)].

The author has developed constructive methods to accomplish this goal in many

contexts (e.g. [5, 8,9, 6, 7]). It is clear that these methods cannot yield an overall
better accuracy than the L? projection methods when the error is measured in the
global L? norm. In most applications though, the target function f is smooth on its
domain X except for a small set of “singularities”. It is well known in approxima-
tion theory that the error in L? projections are very sensitive to these singularities.
In contrast, our methods produce errors according to the local smoothness of the
target function at each point, analogous to those given in classical wavelet analysis
[4, Chapter 9], in spite of the fact that they are defined using global data, with
no a priori assumptions made on the smoothness of the target function whether
globally or locally.
In our talk, available at https://www.mathc.rwth-aachen.de/owncloud/index.
php/s/GataT6XimZCWTwl, we illustrated the local approximation properties of our
methods in the context of function approximation on the Euclidean (hyper-)sphere.
It is noted that approximation by ReLLU networks on the Euclidean space can be
reduced to an equivalent problem on the sphere. We also gave pointwise and uni-
form error estimates for shallow and deep networks to explain the phenomenon
that it is possible to drive the training error to zero and yet keep the test error
under control [1, 12, 11].
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On the gap between local recovery guarantees in structured
compressed sensing and oracle estimates

CLAIRE BOYER

This is an on-going work with Ben Adcock and Simone Brugiapaglia (Simon Fraser
University, Burnaby). Compressed sensing theory provides guarantees to recon-
struct sparse signals from a few linear of measurements. However, in order to
circumvent combinatorial issue, the "good” theoretical sensing matrices are often
random, typically

(i) Gaussian matrices with i.i.d. Gaussian entries,
(ii) matrices obtained by stacking rows drawn from a finite-dimensional isom-
etry, for instance randomly selected Fourier atoms.

However in practice, the acquisition is very structured due to the physics of ac-
quisition, and measurements can be performed by groups or blocks, standing for
admissible sampling patterns.

Therefore, in this work, we consider a compressed sensing (CS) theory more
compatible with real-life applications: we derive guarantees to ensure reconstruc-
tion of a structured sparse signal of interest while imposing structure in the ac-
quisition. We actually extend the setting of [1].

Once this setting established, one can study oracle-type bound: one can show
that if we know the support of the signal to reconstruct, to ensure robust recovery,
the required number of measurements can read as follows

(1) m > c-A(S, F)lIn(n),

where c is a numerical constant, S is the support of the signal, F' is the distribution
describing how to choose the blocks of measurements. In this bound, A(S, F') is
controlling the largest singular value of the sensing matrix restricted to the support
of interest.

For a fixed signal x to be recovered, assuming that x has a random sign struc-
ture, we derive robust reconstruction guarantee with a required number of mea-
surements:

(2) m > c-0(S, F)In*(n).

We study how far those CS results are from oracle-type guarantees: (i) ©(S, F') is
an upper bound of A(S, F'), (ii) there is an extra log factor. Actually by making
an extra assumption, one can derive an oracle-type result in terms of number of
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measurements as in (1). We also show that this additional assumption can be
satisfied by very structured sampling matrices: for instance when sampling iso-
lated measurements from a Fourier-wavelet transform (which can model Magnetic
Resonance Imaging).

These results give an insight to design new optimal sampling strategies when
realistic physical constraints are imposed in the acquisition. Indeed, one can min-
imize O(S, F') or A(S, F') with respect to F' given some prior on the support S.
For instance in the case of sampling isolated measurements from an isometry, the
state-of-the-art results [2, 3] consist in variable density sampling according to the
probability distribution 7, such that

T o [|ak |2,

where the (aj)’s are the measurement vectors. The new results show that one
should instead sample according to the following probability distribution

Tk O [|ak]loollar,s]|1-

This new strategy emphasizes that one should sample not only where the transform
is coherent but also if there is information in the signal that can be captured (by
some prior knowledge on the support 5).
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Stable Phase Retrieval in Infinite Dimensions
RIMA ALAIFARI
(joint work with Ingrid Daubechies, Philipp Grohs, Rujie Yin)

The problem of phase retrieval originated from X-ray crystallography, in which an
electron density distribution of a crystal or crystallized molecule is sought to be
reconstructed from only the magnitude of its Fourier transform. In the more recent
technique of coherent diffraction imaging for imaging of non—crystalline nanoscale
structures, one way to retrieve lost phase information is by adding redundancy in
the measurements. This is typically realized by a pinhole sliding over the object
support. Such measurements can be modelled as the intensities of a short—time
Fourier transform (STFT) of the underlying density. Another instance of a phase
retrieval problem comes from the phase vocoder in audio processing. A phase
vocoder is a device that realizes modifications of audio signals, such as time-—
stretching or pitch—shifting. One way to implement such modifications is through
fitting an audio signal to a modified spectrogram, i.e. to STFT magnitudes.
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In our work, we consider the problem of phase retrieval in an infinite-dimensio-
nal Hilbert space setting. More precisely, given a Hilbert space H and a frame
{rx}rea C H for some index set A, we ask when a signal f € H can be uniquely
and stably determined from {|(f, )|} rea up to a global phase factor 7 € St. By
stability we mean the existence of uniform constants ci,co > 0 s.t. for all f,g € H,

crdist(f, g) < [{I(fs o) baen — {1{g; ¥x) [ Faeallzz(a, < cadist(f, g),

where dist(f, g) :=inf.co1 ||f — Tg||u-
Clearly, if the frame is not sufficiently redundant, phase retrieval is not uniquely

solvable, because too much information has been lost. On the other hand, in
certain examples, one can show that sufficient oversampling of a frame can restore
the unique solvability of phase retrieval. For example, the reconstruction of real—
valued signals f € L%(R) from {|(f,¥x)|}ren is possible when {1y} eca is a Meyer
wavelet frame obtained from oversampling a Meyer wavelet orthonormal basis by
a factor of at least 16/3 [1].

A natural question that arises is whether oversampling can also be a tool for
restoring the stability of phase retrieval. In [4], it has been proven that when H
is infinite-dimensional and A is a discrete index set, phase retrieval can never be
uniformly stable. We show in [3] that this is also the case when A is allowed to be a
continuous index set. Thus, oversampling cannot improve the stability properties
of phase recovery. More precisely, we prove a conjecture formulated in [5] for
the finite-dimensional case, stating that the so—called strong complement property
(SCP) is a necessary condition for stability of phase retrieval. Furthermore, we
demonstrate that the SCP can never hold when H is infinite—dimensional.

Consequently, a function f € L?(R) cannot even be stably recovered from the
magnitudes of its continuous STFT or of its continuous wavelet transform, i.e.
even in cases where the signal transform is not sampled at all. While this result
on the stability of the problem is negative, we have noticed that in practice, the
instabilities that occur are all of a certain kind. Whenever the signal transform
is concentrated on at least two disjoint regions of the time—frequency/time—scale
domain, and small outside of these regions, phase retrieval up to one global phase
factor is no longer possible in practice.

On the positive side, we have made the observation that for audio signals that
have such STFTs or wavelet transforms, multiplying the signal transform by a
phase factor on only one of these regions results in an audio signal that is audibly
identical to the original one (although they are no longer equal up to a global phase
factor). More precisely, suppose that for example the STFT F of f is concentrated
on two disjoint regions D1, Dy C C, ES that F' = F] + F» and Fj is small outside of
D;,i = 1,2. Then, the audio signal f for which the STFT is equal to F=F +T1F5,
for 7 € S, is audibly indistinguishable from f.

This observation has led us to formulate a new paradigm for stable phase re-
trieval in audio processing applications [2]. We propose to consider so—called atoll
functions, i.e. functions concentrated on disjoint atolls and so that they are small
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outside of these atolls. In the example from above, F' is an atoll function con-
centrated on the two atolls Dy and Dy. Then, if one aims to reconstruct up to a
global phase factor on each atoll separately, stability can be restored. For this, the
requirement on the atoll function is that it is bounded below on the atolls (here,
one can allow small lagoons with possibly smaller values inside the atoll, where
the sizes and the number of the lagoons will enter in the stability constant).

Our result holds for signal transforms that are holomorphic up to a weight
function, i.e. for the STFT with Gaussian window and the continuous wavelet
transform with Cauchy wavelet. An open question we believe to be interesting is
that of extending this result to more general window classes and wavelets.
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Low-rank Recovery from Group Orbits
DaviD GROSS
(joint work with Richard Kueng, Markus Grassl, Huangjun Zhu)

We are concerned with the problem of recovering an unknown d x d matrix X from
m noisy rank-one measurements of the form

y; = trXa;a; + €, i=1,...,m

where a; € C% are measurement vectors, and €; represents noise. We assume
that a; are sampled from a group orbit. More precisely, we fix some finite group
G C U(C?) and a “fiducial vector” a € C¢. The orbit is then O = {ga|g € G}.
We assume that a (and hence all elements in the orbit) are normalized in that
|lal|2 = 1. The ag,...,a,, are assumed the be sampled independently from O.

The basic insight of Ref. [1] is that in this setting, recovery guarantees can
sometimes be proven using just representation-theoretic data about G.

Our approach works like this: The basis are the results of Ref. [2] that establish
low-rank recovery guarantees using just information about the fourth moments

(1) M = E[(aia;)™]
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of the rank-1 measurement matrices a;a;. Roughly speaking, the methods of
Ref. [2] require that the matrix element

(2) (6%4)* Mb®?

be “small” for all normalized vectors b € C¢.

If the random vector a; is sampled from a G-orbit, it has the same distribution as
ga; for any g € G. It follows that g®*M (g=1)®* = M or, equivalently, [M, g®4] =
0. We can thus apply Schur’s Lemma. Assume for simplicity that all irreducible
representations (irreps) of G' that appear in the representation g — ¢®* are non-
degenerate. In this case, Schur’s Lemma says that

M = ZO&Z'Pi,

where ¢ labels irreps, P; projects on the i-th irrep, and the «; are suitable coeffi-
cients.

From Eq. (1), one finds that trM = 1 and that M is positive semi-definite.
Hence the coefficients fulfill 0 < a; < 1/trP;. Therefore, a sufficient condition for
(2) to be small is that the dimensions of all irreps occuring in g®* is large. In fact,
one can easily verify that one can restrict attention to irreps that are contained in
the totally symmetric subspace Sym*(C%) c (C4)®*. By the polarization identity,
this space is equivalent to the space of degree-4 polynomials in d complex variables.
In this way, just using the existing techniques in [2], we get stable uniform recovery
guarantees for rank-1 measurements that are sampled from any orbit of any matriz
group whose action on order-4 polynomials does not contain small irreps.

In Refs. [1, 3], we use slightly strengthened arguments to show that a certain
Clifford group satisfies these criteria. The Clifford group plays a central role in
quantum information theory, and has long been studied e.g. in classical coding the-
ory. Refinements of the representation-theoretica analysis and further applications
appear in Refs. [4, 5].
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On unlimited sampling
FELIX KRAHMER
(joint work with Ayush Bhandari, Ramesh Raskar)

For the conversion of an analog (bandlimited) signal to a digital representation, so
called analog—to—digital converters (ADCs) are of key importance. The role of such
devices is to extract from an analog signal its values on a discrete grid. Provided
these samples are taken at a high enough rate, they then allow for the recovery of
the signal via Shannon’s sampling theorem. Unlike the sampling method assumed
in Shannon’s sampling theorem, practical ADCs are limited in dynamic range.
Whenever a signal exceeds some preset threshold, the ADC saturates, resulting in
aliasing due to clipping.

Recent developments in ADC design, allow for an alternative ADC construction,
namely ADCs that reset rather than to saturate, thus producing modulo samples.
Depending on the community, the resulting ADC constructions are known as fold-
ing-ADC (cf. [1] and references therein) or the self-reset-ADC, recently proposed
by Rhee and Joo [2] in context of CMOS imagers. More precisely, when reach-
ing the upper or lower saturation threshold £\, these ADCs would reset to the
respective other threshold, i.e., F\, in this way allowing to capture subsequent
changes even beyond the saturation limit. Mathematically, this is represented by
a memoryless, non-linear mapping of the form

(1) /\/l,\:ti—>2)\<|:{%+%}:|—%>.

These constructions give rise to the following mathematical problem. Given
such modulo samples of a bandlimited function as well as the dynamic range of
the ADC, how can the original signal be recovered and what are the sufficient
conditions that guarantee perfect recovery?

The following theorem provides such a sufficiency condition.

Theorem 1 (Unlimited Sampling Theorem [3]). Let g(t) be mw-bandlimited and
consider, for k € 7, the modulo samples yr, = Mx(g (kT)) of g(t) with sampling
rate T. Then a sufficient condition for recovery of g(t) from the {yi}r up to
additive multiples of 2\ is that

1
2) T'= 2me’

At the core of Theorem 1 is a constructive recovery method, as summarized in
Algorithm . While some estimate of the signal norm needs to be available when
recovering, the underlying circuit architecture is not limited to certain amplitude
ranges: the same architecture allows for the recovery of arbitrary large amplitudes.
That is why we refer to our approach as unlimited sampling.

The underlying observation of our recovery algorithm is that for significant
oversampling, the size of the n-th order finite difference scales like the n-th power
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Algorithm 1 Recovery from Modulo Folded Samples

Data: y;, = Mx(g(kT)), N € N, and 2)\Z > B4 > ||g|| .-
Result: g=g.
(1) Compute y = ANy.
(2) Compute &, = M(y) —¥. Set s(1) = &,.
(3) forn=1:N—-1
Compute k() in (4).
S(n+1) = SS(n) — 2/\H(n).
end
(4) 7 = Ssv).
(5) Compute g from 7 via low-pass filter.

of the oversampling rate and hence becomes small. In addition, the finite differ-
ence operator and the modulo operation M satisfy the following commutativity
relation.

Proposition 1. For any sequence a it holds that
(3) Mx(ANa) = My(AN (M (a)).

Combining these observations allows for the recovery of the finite differences.
Namely, the right hand side of (3) can be computed from the modulo samples,
which hence provides access to the left hand side. As the argument of the modulo
operation on the left hand side is small, the operation has no effect, so one has
computed the true finite difference.

To invert the finite difference operation, we consider the difference between true
samples and modulo samples, which will always lie on a grid of spacing 2\. For
this reason, the inversion will be considerably more stable than for arbitrary real
inputs. In particular, the integration constant that introduces ambiguity in each
of the inversion steps will also lie on a grid. As a consequence, choosing the wrong
constant will cause the output function in the subsequent step to exhibit a very
strong growth, which in turn can be detected when using enough samples. In this
estimate, the a priori bound of the amplitude of the signal 2AZ > B, > ||g||.,
plays an important role. Namely, for J = %, the appropriate inverse of the n-th
finite difference operator is given by the sequence of partial sums (this operation
is denoted by S) adjusted by a constant of 2Ak,,, where

| (S2A"e,)1 — (SPAey)gy1 | L
K(n) = 859 + 5 .

When the bandlimited signals under consideration have additional structure, a
corresponding approach can sometimes allow the recovery from just finitely many
modulo samples (e.g., in the context of superresolution [4] or for sums of sinu-
soids [5]). In more general scenarios without smoothness assumptions, such as

(4)
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redundant representations in RY, it is not clear under which conditions compa-
rable recovery guarantees can be obtained. We consider this to be an interesting
follow-up problem.
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Twisted X-rays — mathematical design of radiation for high-resolution
X-ray diffraction imaging
DOMINIK JUESTEL
(joint work with Gero Friesecke, Richard D. James)

Conventional methods for X-ray diffraction imaging use plane waves to illuminate
a sample. The incoming electromagnetic radiation induces oscillations of the elec-
tron density of the sample. Consequently, the moving charges produce an outgoing
field that can be recorded by detectors. The inverse problem to infer the structure
of the sample form its diffraction patterns can be formulated as a phase retrieval
problem: only the absolute values of the complex numbers that are needed for
reconstruction can directly be obtained from the measured diffraction intensities.
More precisely, the information about the electron density p that is contained in
the measurements is essentially the modulus of its Fourier transform |p|.

Atomic resolution X-ray diffraction imaging can today only be achieved by X-
ray crystallography, where the periodic arrangement of molecules leads to a high
amount of constructive and destructive interference, resulting in highly structured
peak patterns. Mathematically, this effect is explained by the Poisson summation
formula. Let I' :== AZ3, A € GL(3,R), be a periodic lattice in R3, then a crystal’s
electron density can be modeled as an infinite periodic function p = dr * ¢, where
or = err 0, is the Dirac comb of the lattice I', and ¢ is a model for the
electron density in a unit cell. Combining the Poisson summation formula with

the convolution theorem, we get |p| = %&w - |@|, where I'" := 2nA~TZ3 is
the corresponding reciprocal lattice. This calculation shows, that the intensity
measured at a diffraction peak is essentially the modulus of a Fourier coefficient
of the electron density in a unit cell of the crystal.

The main drawback of X-ray crystallography is the need to crystallize the struc-

tures under consideration. Since proteins, for example, often do not form crystals,
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but aggregate in other highly symmetric assemblies, like rods, sheets, or icosahe-
dral structures, our approach is to design forms of electromagnetic radiation that
reflect the symmetry of the considered class of structures in the same way as plane
waves reflect the symmetry of crystals. This way, we can profit from the intefer-
ence effects while the structures keep their natural form. Mathematically, this is
achieved by finding the eigenfunctions of the group action of the symmetry group
in the space of monochromatic solutions to Maxwell’s equations in vacuum. More
general versions of the Poisson summation formula then imply highly structured
interference similar to the classic case (see [2]).

Unlike in classic X-ray crystallography, where the vectorial nature of the elec-
tromagnetic field can be neglected in most calculations, it needs to be taken into
account for more general radiation than plane waves. When translating a vector
field, the orientation of the field vectors doesn’t change. Instead, when rotating or
reflecting a vector field, the field vectors need to be rotated or reflected accordingly.
This simple and intuitive fact has implications for the reconstruction problem from
non-plane wave diffraction patterns. The classic scalar phase retrieval problem is
generalized to a vectorial phase problem: the information contained in the intensity
measurements is the length of complex vectors that are needed for reconstruction
of the electron density.

In the special case of helical structures like nanotubes or helical viruses — these
are structures that have a discrete symmetry of rotations, translations, and screw
displacements with respect to a fixed axis — the radiation design problem can be
fully solved. We call the resulting electromagnetic fields twisted X-rays, as they
are waves that propagate along helices. The solution spaces are finite dimensional,
with a parametrization that can be interpreted as the polarization of the radiation
(see [3]).

A diffraction experiment of twisted X-rays illuminating an aligned helical struc-
ture is conjectured to produce a highly structured diffraction pattern, with the out-
going field in axial direction forming an exact double peak pattern when viewed as
a function of certain radiation parameters. Moreover, the structure of the sample
can be recovered by solving a variation of the classic phase retrieval problem. In
fact, the above mentioned vectorial phase retrieval problem reduces to a scalar
phase retrieval problem, with the Fourier transform replaced by a Fourier-Hankel
transform.

For general symmetries, the analysis of the solution spaces of the design equa-
tions gets more involved, and can in general not be made as explicit as in the case
of plane or twisted waves. Viewing the design problem from the standpoint of rep-
resentation theory, the space of monochromatic solutions to Maxwell’s equations
in vacuum is decomposed into irreducible components with respect to the action
of the symmetry group. These components need not be finite-dimensional, as is
the case for the translation group or the helical symmetry group.

When trying to calculate the diffraction patterns that result from the illumi-
nation with radiation from an irreducible component with respect to a general
symmetry group, one arrives at the boundary of mathematical research. While
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for abelian and compact groups, there are generalizations of the classic theory, for
non-abelian non-compact groups, there is no suitable generalization of the Poisson
summation formula (see [4] for the mathematical background).

Recent advances in X-ray technology suggest that the proposed experiment, to
illuminate helical structures with twisted X-rays, might be realizable in the near
future. Several groups managed to produce so-called beams carrying orbital an-
gular momentum, which are closely related to twisted X-rays (see, e.g., [1]). They
use helical undulators to force an electron beam from a synchrotrone onto a helical
trajectory. The X-rays that are emitted interfere to form the helical waveform.
While they do not yet reach the energy that is necessary for atomic resolution, a
proof of concepts is within reach. The proposed method has the potential to allow
for structure analysis of previously unaccessible molecules, while the theory is a
nice example for the usefullness of abstract mathematics in applications.
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Synchronization Problems: Geometry Meets Learning
TINGRAN GAO

(joint work with Ingrid Daubechies, Sayan Mukherjee, Doug Boyer, Jacek
Brodzki, Qixing Huang, Chandrajit Bajaj)

Acquiring complex, massive, and often high-dimensional data sets has become
a common practice in many fields of science. Bridging recent developments ap-
plying differential geometry and topology in probability and statistical sciences,
the problem of synchronization arise in a variety of fields in computer vision, sig-
nal processing, combinatorial optimization, and natural sciences (e.g. cryoelectron
microscopy and geometric morphometrics [3, 4]). The data given in a synchroniza-
tion problem include a connected graph that encodes similarity relations within
a collection of objects, and pairwise correspondences—often realized as elements
of a transformation group G——characterizing the nature of the similarity between
a pair of objects linked directly by an edge in the relation graph. The goal is to
adjust the pairwise correspondences, which often suffer from noisy or incomplete
measurements, to obtain a globally consistent characterization of the pairwise rela-
tions for the entire dataset, in the sense that unveiling the transformation between
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a pair of objects far-apart in the relation graph can be done by composing trans-
formations along consecutive edges on a path connecting the two objects, and the
resulting composed transformation is independent of the choice of the path.

We develop a geometric framework in [1] that characterizes the nature of syn-
chronization based on the classical theory of fibre bundles. We first establish the
correspondence between synchronization problems in a topological group G over
a connected graph I' and the moduli space of flat principal G-bundles over I', and
develop a discrete analogy of the renowned theorem of classifying flat principal
bundles with fixed base and structural group using the representation variety. In
particular, we show that prescribing an edge potential on a graph is equivalent to
specifying an equivalence class of flat principal bundles, of which the triviality of
holonomy dictates the synchronizability of the edge potential.

Based on the fibre bundle interpretation of synchronization problems, we de-
velop in [1] a twisted cohomology theory for associated vector bundles of the flat
principal bundle arising from an edge potential, which is a discrete version of the
twisted cohomology in differential geometry. This leads to a twisted Hodge the-
ory, which is a fibre bundle analog of the discrete Hodge theory on graphs. The
lowest-degree Hodge Laplacian of this twisted Hodge theory recovers a geometric
realization of the graph connection Laplacian (GCL), a group-valued graph opera-
tor studied extensively in synchronization problems. Similar intuitions have led to
an extended diffusion geometry framework for datasets with an underlying fibre
bundle structure, referred to as Horizontal Diffusion Maps [2], which models a
dataset with pairwise structural correspondences as a fibre bundle equipped with
a connection; the role of random walk in standard diffusion maps is replaced with
a horizontal random walk on the fibre bundle driven by a random walk on the
base space. This novel diffusion geometry framework demonstrates its advantage
of leveraging more detailed structural information to improve clustering accuracy
in automated geometric morphometrics [5].

The geometric framework established in [1] also motivated us to study the prob-
lem of learning group actions—partitioning a collection of objects based on the
local synchronizability of pairwise correspondence relations. A dual interpreta-
tion is to learn finitely generated subgroups of an ambient transformation group
from noisy observed group elements. An iterative two-step synchronization resid-
ual spectral clustering algorithm is proposed in [1]. More concretely, assuming
the underlying graph consists of multiple clusters, and the transformation groups
within each cluster is more consistent than between clusters, the algorithm per-
forms a synchronization procedure over the entire graph, followed by evaluating
the discrepancy (“edgewise frustration”) between the synchronized and the orig-
inal edge potentials, and then performs a spectral clustering for the graph with
the edgewise frustration as weights; after that, the algorithm runs synchronization
within each cluster, patches the local synchronization solutions together, and re-
peat the steps starting from another global synchronization. This simple algorithm
demonstrates its efficacy on both simulated and real datasets. When the group is
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a permutation group, we established in [6] exact recovery conditions for this iter-
ative synchronization-residual based clustering algorithm under a stochastic block
model nested with inhomogeneous random corruption.

Many exciting problems are still open in this line of research. Notably, a proper
analogy of the Cheeger inequality seems natural but is missing so far in the prin-
cipal bundle framework. Much more about the horizontal diffusion geometry is
unknown either, for instance, whether the eigenfunctions of the horizontal dif-
fusion operator can be manipulated to obtain an embedding of either the total
space or the base space of the fibre bundle. It is also of great interest to gener-
alize the techniques developed in [6] to establish similar results for groups other
than the permutations group, such as orthogonal or special orthogonal groups,
which are commonly encountered in shape alignment and analysis. Last but not
the least, we are excited about the connection between differential geometry and
learning theory implied by our geometric framework, which seems to suggest that
the interchanging of ideas from either field can substantially benefit the other.
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Solving nonlinear equations using convex programming
JUSTIN ROMBERG
(joint work with Sohail Bahmani)

We consider the general problem of recovering an unknown vector x, € RY that
(approximately) satisfies a system of equations

y1 = fi(ze) + €1
Yo = fa(T) + €2

ym = fa(xs) + e,

where the f,, are known, convex functions and the ¢, are unknown perturbations.
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We attack this problem as follows. Setting the perturbations €,, = 0 for now
to ease the explanation, each equation above gives us a different convex feasibility
region for x,, namely the sublevel set {x : f,,(x) < y,}. It is clear &, must lie
in the intersection of these sublevel sets:

M
., e, K= ﬂ {x : fu(®) < Ym}
m=1
In fact, &, must be an extreme point of K. As such, we can attempt to recover
x, by maximizing a linear functional over K. For a given ag, we solve

(1) maximize (x,ap) subject to x € K.
X

It is clear that if ag = @, then x, is the solution (or at least one of the solutions)
to the program above. Our work develops conditions under which there are many
ag such that x, is the unique solution to (1). In particular, we assume that we
have a vector ag that is only roughly correlated with ax,:

<:E*7 a’0>

(2) TP TNTPSRTIY
1. [l2/|@oll2

for some constant §. We call such a ag an anchor vector.
Simply writing down the optimality (KKT) conditions for (1) shows us that if
indeed y,, = fin (@), then x, is a solution to (1) if and only if

(3) ag € cone ({Vfm(zy), m=1,...,M}).

This tells us that whether or not ag will be effective is purely a function of the
behavior of the gradients of the f,, at the solution. Qualitatively, we can see that
the more diverse these gradients are, the larger the cone that they generate is
going to be, and the easier it is to find a suitable ay.

Our main result gives a guarantee on the number of equations we need for (3)
to hold with high probability when the functions are drawn independently and
identically distributed according to some probability law. Under this probability
law, we let 3, be the correlation matrix of the gradients at the solution

3, = E[Vf(z.)Vf(z)T]

> 0>0,

and define the quantities
. %]l
7 = inf E[(Vf(x.),h)s], ve=——,
i BV (@), R+ -
where (-, )1 takes the positive part of the inner product. Then if we have an a
that obeys (2), @, will be the solution to (1) with high probability when
M > Const-v2-N.

When the V f(x,) is approximately “isotropic”, the quantity v, will be a constant,
and the system of equations y,,, = f,(x4) can be solved for M ~ N.

We can also encourage certain types of structure in the solution by adding a
regularizer to (1). For example, it is now well-known that sparsity in the solution
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to a system of equations can be encouraged by penalizing with an ¢; norm. In
general, if Q(x) is a convex regularizer, then we can solve

(4) maximize (x,ag) — Q(x) subject to = € K.

In this case, if y = f,(x4), then x, is the solution to this optimization program
if and only if

ag € cone ({Vfn(xy), m=1,...,M})+ 0Q(x,),

where 0€)(x,) is the subgradient of €(-) at @,. Notice that if x, lies on a “corner”
of the sublevel set {x : Q(x) < Q(x,)}, then 0Q(x,) can be large, allowing for a
more liberal choice of anchor vector ag.

For random f,,, the number of equations we need for x, to be the solution to
(4) again depends on a measure of statistical complexity of the gradients V f (),
but now relative to the ascent cone for the functional in (4). An exact statement
of this result can be found in [2].

REFERENCES

[1] S. Bahmani and J. Romberg, A flexible convex relaxation for phase retrieval, Electronic
Journal of Statistics, vol. 11, no. 2 (2017), 5254-5281.

[2] S. Bahmani and J. Romberg, Solving equations of random convez functions via anchored
regression, Preprint, September 2017, arxiv:1702.05327.

Fast Point Cloud Distances and Multi-Sample Testing
ALEX CLONINGER
(joint work with Xiuyuan Cheng and Ronald R. Coifman)

We consider the question of estimating the total variation between two distribu-
tions in high dimensional space, given only a finite number of samples drawn iid
from each distribution. This talk introduces a new anisotropic kernel-based Maxi-
mum Mean Discrepancy (MMD) statistic for estimating such a distance [1], which
builds upon the Reproducing Kernel Hilbert Space MMD proposed by Gretton,
et al [2]. The new anisotropic kernel scales linearly in the number of points by
establishing landmarks throughout the space that approximate the local geometry
of the union of the two datasets by constructing principle components of local co-
variance matrices. These landmarks can be interpreted as points that, under the
action of a heat kernel on the data, diffuse to the entire space as quickly as pos-
sible. When the distributions are locally low-dimensional, the proposed test can
be made more powerful to distinguish certain alternatives. While the proposed
statistic can be viewed as a special class of Reproducing Kernel Hilbert Space
MMD, the consistency and power of the test is proved, under mild assumptions
of the kernel, as long as ||p — q|| ~ @(n~/2%9) for any 6 > 0, based on a result of
convergence in distribution of the test statistic. We also establish error bounds on
the approximation by landmark points.
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We also consider the k-sample setting in which we measure pairwise distances
between the k different point clouds. This test has complexity by (O)((S)]R\ +
kN|R|d) for N points per cloud with |R| landmarks in d dimensions. This is
opposed to complexity O( (g) N2d) of the naive algorithm of directly computing the
MMD between any two distributions. Applications to flow cytometry detection of
AML and diffusion MRI datasets are demonstrated, which motivate the proposed
approach to compare distributions.
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The Mismatch Principle: An Ignorant Approach to Non-Linear
Compressed Sensing?

MARTIN GENZEL
(joint work with Gitta Kutyniok, Peter Jung)

In many real-world problems, one is given a finite collection of samples

(@1,y1)s- -y (@, Ym) ER" X R

which are drawn independently from a joint random pair (a,y) in R™ x R of
unknown probability distribution. For example, y € R could play the role of an
output variable that one would like to predict from certain input data a € R™.
Very generally speaking, the problem issue is now as follows:

What can we learn from the sample set about the relationship be-
tween the input and the output variables?

Although we do not impose any specific restrictions on the model, it is useful to
think of some (unknown) parameters that determine the underlying observation
rule. Let us consider two prototypical scenarios:

e Single-index models. Let gy € R™ be a structured vector (e.g., sparse) and
assume that

y = f((a,z0))
where f: R — R can be unknown, non-linear, and noisy. The goal is to

estimate the unknown index vector xg.
e Variable selection. Let S = {j1,...,7s} C [n] and assume that

yi:F(ajl,...,ajS)

where F': R® — R can be again unknown, non-linear, and noisy. The goal
is to identify the set of active variables S in a = (a1,...,a,).
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We would like to investigate whether a standard estimator — which does not
require any prior knowledge — can solve those types of estimation problems. One
of the most popular algorithmic approaches is the generalized Lasso,

m
(Pk) aI:IEl%&l’?ll T z;(yl — (a;,x))? subject to x € K,
i=

where K C R" is a convex hypothesis set that enforces certain structural con-
straints on the solution, such as sparsity. The results of [1, 2, 3, 5] show that the
Lasso — although originally designed for linear regression — is surprisingly robust
against non-linear distortions and can in fact deal with much more complicated
observation schemes. Let us state a simplified recovery guarantee:

Theorem 1 (informal, cf. [3, Thm. 6.4]) Using the above notation, assume that
a is an isotropic, mean-zero sub-Gaussian random vector in R™ and y is also
sub-Gaussian. Fiz an arbitrary target vector ' € K C R™. Then, with high
probability, any minimizer & of (Pk) satisfies the following error bound:

wp (K, %)
vm

where wa (K, x%) denotes the conic Gaussian width of K at ' and

pla?) = |[E[((a,2%) — y)al|,

18 called the mismatch covariance.

(1) & — 22 < +p(?),

Remarkably, the above statement holds true for every choice of &’ and there
are no specific assumptions on the output variable y. But in order to turn (1) into
a meaningful error bound, one clearly needs to ensure that the offset term p(a?)
is sufficiently small, since it does not decay with m. If the target vector = can
be chosen in this way, Theorem 1 states that the Lasso (Pk) indeed constitutes
an almost consistent estimator of 2%. With regard to our initial problem issue, we
can now formulate a simplified version of the mismatch principle:

Determine a target vector € K that captures the “parametric”
structure of the observation rule and minimizes the mismatch co-
variance p(x?) at the same time.

For example, we would have to specify a target vector in span{xo} N K for single-
index models and in {x | supp(x) C S} N K for variable selection, respectively.
It is in fact not hard to see that in either case (if a is standard Gaussian) there
exists an appropriate choice of &% such that p(xf) = 0.

In general, the mismatch principle provides a recipe to prove theoretical error
bounds for the Lasso under non-linear observations. Combined with Theorem 1,
it particularly indicates when one can expect reasonable outcomes and when not.
A crucial role is obviously played by the mismatch covariance because it measures
the compatibility between the linear fit of (Px) and the true (parametric) model.
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Apart from that, the mismatch principle even applies to more complicated
situations, e.g., if the components of a are strongly correlated [4] or if the square
loss in (Pg) is replaced by a different convex loss function [1].
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Dictionary learning - from local towards global and adaptive
KARIN SCHNASS

The goal of dictionary learning is to decompose a data matrix Y = (y1,...,yn),
where y, € RY into a dictionary matrix ® = (g1, ..., @), where each column
also referred to as atom is normalised, ||¢k|l2 = 1 and a sparse coefficient matrix
X =(x1,...,2N),

(1) Y ~dX

One way to concretise that the coefficient matrix should be sparse is to choose a
sparsity level S and ask that every coefficient vector z,, should have at most S
non zero entries. Defining D to be the set of all dictionaries with K atoms and
Xs the set of all columnwise S-sparse coefficient matrices the dictionary learning
problem can be formulated as optimisation programme

: 2
(2) pepin_ Y — X
This problem is highly non-convex and as such difficult to solve. However, ran-
domly initialised alternating projection algorithms, which iterate between finding
the best dictionary ¥ based on coefficients X and (trying) to find the best coeffi-
cients X based on a dictionary ¥, such as K-SVD (K Singular Value Decomposi-
tions), [2], and ITKrM (Iterative thresholding and K residual means), [5], tend to
be very successful on synthetic data - usually recovering 90 to 100% of all atoms
- and provide useful dictionaries on image data.
The drawback of these algorithms is that assuming that the data Y is synthesized
from a generating dictionary ® and randomly drawn S- sparse coefficients X is
that they have no (K-SVD) or very weak (ITKrM) recovery guarantees. This is in
sharp contrast to more involved algorithms, which have gobal recovery guarantees
but due to their computational complexity can only be used in toy examples in
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small dimensions, [3, 1, 4].

One interesting exception is an algorithm developed by Sun, Qu and Wright, [7, 8],
which is gradient based with a Newton trust region method to escape saddle points
and proven to recover the generating dictionary if it is a basis. This result together
with several results in machine learning which prove that non-convex problems can
be well behaved, meaning all local minima are global minima, gives rise to hope
that a similar result can be proven for learning overcomplete dictionaries.

In this talk and the accompanying paper, [6], we show that ITKrM has a much
larger contraction radius, when assuming that the current estimate of the gener-
ating dictionary W is incoherent and well conditioned. Assuming additionally that
(after potential rearrangement and sign flip of the atoms) the cross-Gram matrix
U*® is diagonally dominant we further show that ITKrM is a contraction on as
soon as

(3) mI?XHSOk—wk“% <2 —=2[[P|22log K+/S/K,

which is relatively close to the worst case distance maxy, |[or — 9|3 = 2.

We also destroy all hope of proving global convergence by sketching the exis-
tence of stable fixed points, which are not equivalent to the generating dictionary.
However, based on a characterisation of the fixed points and an analysis of the
residuals at these fixed points we consider a replacement procedure for coherent
atoms and develop a strategy for finding good replacement candidates. Decou-
pling the replacement strategy into independent pruning of coherent (as well as
unused) atoms and adding of promising candidates finally leads to an algorithm for

dictionary learning that adaptively chooses the dictionary size K and the sparsity
level S.
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Monte Carlo approximation certificates for k-means clustering
DustiN G. MIXON
(joint work with Soledad Villar)

Geometric clustering is a fundamental problem in data science. At its core, clus-
tering is an optimization problem, and it is natural to analyze the performance of
various clustering routines with popular random data models. The last decade of
research in applied harmonic analysis has demonstrated a fruitful interaction be-
tween optimization and randomness, suggesting that geometric clustering presents
an opportunity for these techniques to contribute to the study of fundamental al-
gorithms in data science. This talk discusses an instance of this opportunity and
sheds light on additional examples that warrant further attention.

Given a finite sequence of data points {x; };er in R™ and a complexity param-
eter k, the k-means problem seeks a partition C7 LI --- U Cy = T that minimizes
the k-means objective:

(T-1P)
1 1 2
minimize ?Z Z xi—Fij subject to CiU---UC, =T.
| |te[k] ieCy | t|j€Ct
While this optimization problem is NP-hard to solve (even in m = 2 dimen-

sions [6]), real-world instances of this problem are frequently solved using Lloyd’s
algorithm, which alternates between computing centroids and reassigning points
to the nearest centroid. A data scientist can perform Lloyd’s algorithm with ran-
dom initializations to produce locally optimal clusterings, but when should he stop
looking for a better clustering?

One popular initialization for Lloyd’s algorithm is k-means++-, which randomly
selects k initial “centroids” from {z;};cr in a way that encourages different cen-
troids to be far apart. Letting W denote the random value of the k-means++
initialization, then the main result of [1] gives that

1
val(T -1P) > Sflogk 1 2) -EW.

While this gives an approximation guarantee for the optimal clustering, it appears
to be quite loose. For example, running several trials of k-means++ on the MNIST
training set of 60,000 handwritten digits [4] with k£ = 10 produces a clustering with
value about 39.22, whereas estimating EW leads to a lower bound of about 2.15.

In pursuit of a better lower bound, one may consider the Peng—Wei SDP relax-
ation:

(T-SDP)

1
minimize ST tr(DX) subject to tr(X)=4k, X1=1, X >0, X = 0.
Here, D denotes the T x T' matrix whose (i, j)th entry is |z; — x;||?, whereas
X > 0 ensures that X is entrywise nonnegative and X > 0 ensures that X is
symmetric and positive semidefinite. For any clustering C; U --- U Cy = T, the
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matrix X = Zte[k e |1Ct1C is feasible in (7-SDP) with SDP value equal to its

IP value, and so val(T'-SDP) is a lower bound for val(7 -IP), as desired. Moreover,
there has been a lot of work recently to establish how good this lower bound is
for various random data models [2, 3, 8, 5]. However, SDPs are notoriously slow
for large problem instances, and so it is infeasible to compute this lower bound for
the MNIST training set (say).

To decrease the complexity of the problem, we can pass to a subset of the data.
For example, pick s < |T'| and then draw S uniformly from all subsets of T" of size
s. Then letting C7 U --- U C; =T denote the (T-IP)-optimal clustering, we have

1 1
Eval(5-SDP) < Eval(5-IP) <E | - > . > |m- Icrns| 2
te[k] lEC*ﬁS jEC:mS

1
<k ‘Z ) m—w—*Zw

te[k]ieCy NS

= val(T -IP).

As such, we can produce a lower bound on val(T'-IP) by estimating E val(S-SDP),
which is computationally feasible when s is small. For example, if we select
s = 200, then Eval(S-SDP) ~ 35 for the MNIST training set, meaning the clus-
tering from k-means++ is within 15 percent of optimal. In [7], we prove that this
approach leads to a 99%-confidence 3-approximation certificate for any mixture
of two spherical Guassians, and furthermore, this certificate can be computed in
sub-linear time.

For follow-on work, it would be helpful to understand the distribution of
val(S -SDP), as this would allow us to use even better test statistics for our certifi-
cate. Also, how does our approximation ratio scale with k7 Can we extrapolate a
near-optimal clustering for 7' from the SDP of S7 Do our techniques transfer to
other SDPs to provide sub-linear bounds? We are very interested to pursue these
directions further.
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