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Abstract

We consider the solution of electromagnetic problems. A mainly orthogonal and locally

barycentric dual mesh is used to discretize the Maxwell’s equations using the Finite Inte-

gration Technique (FIT). The use of weighted duals allows greater flexibility in the location

of dual vertices keeping the primal-dual orthogonality. The construction of the constitutive

matrices is performed using either discrete Hodge stars or microcells.

Hodge-optimized triangulations (HOT) can optimize the dual mesh alone to make it more

self-centered while maintaining the primal-dual orthogonality, e.g., the weights are opti-

mized in order to improve one or more of the discrete Hodge stars.

1 Introduction

We consider the Maxwell’s equations in integral form. Also we define differential forms of various

degrees and identify them with field intensity, flux density, charge density, and scalar potential.

A significant advantage of the calculus of differential forms over traditional methods is that forms

clarify the relationship between field intensity and flux density. A differential form is a quantity

that can be integrated, including differentials (cf. [13]).

From Maxwell’s equations in integral form, we can readily dertermine the degrees of the differ-

ential forms. We obtain in vector notation the following equations:

˛

P

E · dl = − ∂

∂t

¨

A

B · dA (1a)

˛

P

H · dl = ∂

∂t

¨

A

D · dA+

¨

A

J · dA (1b)

‹

S

D · dS =

˚

V

q dV (1c)

‹

S

B · dS = 0 . (1d)

The constitutive relations belonging to them are

D = εE (2a)

B = µH (2b)

J = κE . (2c)
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Here, A is a surface by a path P , V is a volume bounded by a surface S, and q is the volume

charge density. The electric and magnetic field intensities are integrated over paths and become

1-forms. The electric and magnetic flux densities are integrated over surfaces and so are 2-

forms. The electric current density is also a 2-form since it falls under a surface integral. The

volume charge density is a 3-form since it is integrated over a volume. Table 1 summarizes

these forms.

Table 1: Electromagnetic quantities and differential forms.

Quantity Form Degree Unit Vector/Scalar

electric potential ϕ 0-form V φ
electric field intensity E 1-form V/m E

magnetic field intensity H 1-form A/m H

electric flux density D 2-form C/m2 D

magnetic flux density B 2-form Wb/m2 B

electric current density J 2-form A/m2 J

electric charge density ρ 3-form C/m3 q

In Section 2, we first give some background on regular triangulations and power diagrams - the

dual structure of regular triangulations. In Section 3, we discretize the Maxwell’s equations and

the constitutive relations. In Section 4, we introduce Hodge-optimized triangulations (HOT), a

family of primal-dual pairs of complexes. Tests in Section 5 show that optimizing the weights

reduce the number of negative dual edges.

2 Regular triangulation and power diagrams

The regular triangulation is a generalization of well-known Delaunay triangulation. First we start

with the definition of a k-simplex. A k-simplex σk is the convex hull of k + 1 geometrically

independent points x1, . . . ,xk+1 ∈ R
d with d ∈ {0, 1, 2, 3} and 0 ≤ k ≤ d.

σk =

{

z ∈ R
d : z =

k+1∑

i=1

λixi , 0 ≤ λi ≤ 1 ,
k+1∑

i=1

λi = 1

}

(3)

Any simplex spanned by a proper subset of {x1, . . . ,xk+1} is called a face of σk. The union of

the proper faces of σk is called its boundary. The interior of σk is the set difference of σk and its

boundary. The interior of σ0 is σ0. The volume of σk is denoted by |σk|. Define |σ0| = 1 (cf. [7]).

Given a set of points S ⊂ R
d. The triangulation T (S) of this set of points is a set of tetrahedra

such that (cf. [17]):

• A point z ∈ R
d is a vertex of a tetrahedron in T (S) only if z ∈ S.
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• The intersection of two tetrahedra of T (S) is either empty or it is a shared face, a shared

edge or a shared vertex.

• The union of all tetrahedra in T (S) entirely fulfills the convex hull of S.

Each k-simplex is associated with a dual (d − k)-cell, ∗σk, k ∈ {0, 1, 2, 3}. Fig. 1 illustrates

this connection. The top row shows primal mesh with one simplex of dimension 0, 1 ,2, and 3

(green): σ0 is a vertex, σ1 is an edge, σ2 is a face, and σ3 is a tetrahedron. Their corresponding

dual cells ∗σk are shown in red on bottom here restricted to the original primal tetrahedron.

(a) σ0, 0-simplex (b) σ1, 1-simplex (c) σ2, 2-simplex (d) σ3, 3-simplex

(e) ∗σ0, 3-cell (f) ∗σ1, 2-cell (g) ∗σ2, 1-cell (h) ∗σ3, 0-cell

Figure 1: The dual of a triangulation in R
3.

The dual of T forms a cell complexD. A very common dual to a triangulation is the cell complex

which uses the circumcenters of each d-simplex as dual vertices. If the initial triangulation is

Delaunay then this dual is simply the Voronoi diagram of the primal vertices. Thus, we obtain a

primal-dual triangulation (T ,D) with the nice properties of non-self-intersection, convexity, and

orthogonality of the primal-dual elements (cf. [8]). The Delaunay/Voronoi triangulations (T ,D)
don’t allow to change the dual mesh if the primary grid is fixed. This is a restriction. The regular

triangulationRT , also called a weighted Delaunay triangulation, is a generalization of T . Power

diagrams PD, also called Laguerre or weighted Voronoi diagrams, are the dual structure of

regular triangulations. The complex (RT ,PD) provides orthogonal primal-dual triangulations

with much more self-centered simplices σd.

Each point xi ∈ R
d in RT is associated with a real number wi ∈ R. The real number wi is

called a weight and (xi, wi) a weighted point. If the weight wi is non-negative, then (xi, wi)
can be interpreted as a sphere centered at the point xi with a radius

√
wi. The power distance

of a point z ∈ R
d with respect to a weighted point (xi, wi) is defined as

πi(z) = ‖z− xi‖2 − wi , (4)
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where ‖ . ‖ denotes the Euclidian distance. It does not matter whether z is weighted or un-

weighted. The power distance πi(z) can be interpreted as a square of length of a tangent from

the point z to a sphere centered at xi and with radius
√
wi if z lies outside this sphere. Two

weighted points (xi, wi) and (xj, wj) are said to be orthogonal if ‖xj − xi‖2 = wi + wj , i.e.,

πi(xj) = wj . For each weighted point (xi, wi) with xi ∈ S, its power cell is defined by

Ṽi = {z ∈ R
d : πi(z) ≤ πj(z), ∀xj ∈ S} . (5)

Note that in a regular triangulation, a point xi ∈ S may not be used in the triangulation because

its weighted Voronoi cell is empty, i.e., xi is not a vertex ofRT (S) (cf. [8, 17]). There is a close

relation between regular triangulations in Rd and convex hulls in Rd+1. The height hi of a vertex

xi is the (d+ 1)-coordinate of x+
i to which it is lifted by the parabolic map, i.e., x+

i = (xi, hi).
The weights and heights are related by hi = ‖xi‖2 − wi (cf. [11, 17]).

The weighted circumcenter, also called the orthogonal center, of a k-simplex σk is given by the

unique intersection of the mutually-orthogonal affine spaces supporting the primal simplex σk

and its weighted dual ∗σk (cf. [8]). It is denoted c(σk). In other words, c(σk) is an orthogonal

center of σk if c(σk) is orthogonal to the k + 1 points of σk. If xl is any of the vertices of σk,

the weighted circumcenter is computed by

c(σk) = xl +
1

2k!|σk|
∑

xj∈σk

(‖xl − xj‖2 + wl − wj)n̂
k
j (6)

where n̂k
j denotes the inward-pointing normal of the face of σk opposite to xj (cf. [8]). For this,

the orientation of the d-simplex σd, i.e., the orientation of the set of d+ 1 points is important. It

t
v

u

x

x

x

x

i

k

j

l

l
l

l

l

l

l

il

kl
jl

ik

jk

ij 

A A

A

A

j i

k

l

Figure 2: A tetrahedron having positive orientation.

is positive if the points occure in the orientation illustrated in Fig. 2. We can apply a right-hand

rule: orient the right hand with fingers curled to follow the circular sequence jkl. If the thumb

points toward i then σd has a positive orientation. In other words, the vectors t, u, and v, in
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this order, define a positive frame. Using Eq. 6, we obtain for the orthogonal center cijkl the

following expression in R
3 (cf. [11]):

cijkl = xl +
(‖t‖2 + wl − wi)n̂i + (‖u‖2 + wl − wj)n̂j + (‖v‖2 + wl − wk)n̂k

12|Tijkl|
(7)

where |Tijkl| is the volume of the tetrahedron Tijkl spanned by the vertices xi, xj, xk, and xl.

Using t = xi − xl, u = xj − xl, and v = xk − xl, the outward-pointing and inward-pointing

normals are

ni = v × u, n̂i = −ni = u× v,

nj = t× v, n̂j = −nj = v × t,

nk = u× t, n̂k = −nk = t× u, and

nl = (xi − xk)× (xj − xk) .

(8)

An alternative formula for the last vector is nl = n̂i + n̂j + n̂k. A simplex σk is said to be

self-centered if c(σk) lies in the interior of σk.

3 Maxwellian grid equations

Given a set of points S ⊂ R
3 with np points xi = σ0

i , i = 1, . . . , np, and associated weights

wi ∈ R. The regular triangulation RT (S) consists of nr 3-simplices (tetrahedra) σ3
i , i =

1, . . . , nr, nf faces Ai = σ2
i , i = 1, . . . , nf , and ne edges Li = σ1

i , i = 1, . . . , ne. The

power diagram PD consists of nr 0-cells, ∗σ3
i , i.e., the weighted orthogonal centers of σ3

i , of

nf edges L̃i, ∗σ2
i , ne faces Ãi, ∗σ1

i , and np 3-cells, ∗σ0
i .

3.1 Discretization of Maxwell’s equations

In the FIT [14, 15, 3, 4], the electric and magnetic voltages and fluxes over the elemtary objects

of σ3
i and ∗σ0

i are defined as state variables in the following way:

ei =

ˆ

Li

E · dl hj =

ˆ

L̃j

H · dl (9a)

di =

¨

Ãi

D · ndA bj =

¨

Aj

B · ndA (9b)

i = 1, . . . , ne j = 1, . . . , nf

where n is the outward-pointing normal of the faces Aj and Ãi, respectively. The current flux

and the electric charge are defined as

ji =

¨

Ãi

J · ndA qk =

˚

Ṽk

q dV (10)

i = 1, . . . , ne k = 1, . . . , np .
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Using Eqs. (9) and (10), the Maxwell’s equations (cf. (1)) can then discretized for all the compo-

nents [16]. Thus, we obtain a compact matrix-vector form:

C e = − d

dt
b C̃ h =

d

dt
d+ j (11a)

S b = 0 S̃ d = q . (11b)

The matrices C , C := (cij)nf×ne
, and C̃ , C̃ := (c̃ij)ne×nf

, represent the incidence relations

between edges and faces on RT and PD, respectively. Analogously, the matrices S, S :=
(sij)nr×nf

, and S̃, S̃ := (s̃ij)np×ne
, represent the incidence relations between faces and

volumes on RT and PD, respectively. The matrices C , C̃ , S, and S̃ satisfy the important

relations

C̃ = CT , S C = 0, and S̃ C̃ = 0 . (12)

3.2 Discretization of the constitutive relations

To complete the system of equations (11), the quantities defined on the primary grid and the

quantities defined on the dual grid are connected. The usual vector expressions of the constitu-

tive relations (2) involve scalar multiplication. With differential forms, we cannot use these same

relations. An Operator that relates forms of different degrees must be introduced. Using the star

or Hodge star operator, ⋆, the constitutive relations are (cf. [13])

D = ε ⋆ E (13a)

B = µ ⋆ H (13b)

J = κ ⋆ E . (13c)

The Hodge operator depends on a metric. If the metric is taken to be the permittivity, the per-

meability, or the conductivity tensor, the constitutive relations (13) become

D = Mε E (14a)

B = Mµ H (14b)

J = Mκ E . (14c)

Eqs. (13b) and (14b) can be rewritten as

H = ν ⋆ B and H = Mν B (15)

where ν = µ−1 is the reluctivity. The matrices Mε, Mν , and Mκ are generalized material

matrices or discrete Hodge operators. They are material and metric dependent and have to be

symmetric positive definite.

For an arbitrary primal element σ, the diagonal approximation of the Hodge star of a continuous

differential form α is given by the relation

1

| ∗ σ|

ˆ

∗σ

⋆α ≈ 1

|σ|

ˆ

σ

α , (16)
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where |σ| and | ∗σ| are the volumes of these elements (cf. [8, 12]). Let σk
i be the i-th k-simplex

and ∗σk
i the dual (d − k)-cell of the primal-dual triangulation (RT ,PD). Then the discrete

k-th Hodge star is a diagonal matrix (Mk)ii with

(Mk)ii =
| ∗ σk

i |
|σk

i |
, ∀i . (17)

Thus, using (17) we get

(Mε)ii =
ε̄Ãi

Li

, (Mν)ii =
ν̄L̃i

Ai

, and (Mκ)ii =
κ̄Ãi

Li

, (18)

where ε̄ is the face-averaged permittivity, ν̄ the edge-averaged reluctivity, and κ̄ the face-

averaged conductivity. If the weighted circumcenter of the any simplex σd
i is outside the sim-

plex, i.e., σd
i is not self-centered, then the matrices Mε, Mν , and Mκ (cf. (18)) are not positive

definite. This is an important disadvantage.

For each simplex σd
i that is not self-centered we use a locally barycentric dual mesh to make

the matrices Mε, Mν , and Mκ symmetric positive definite. The construction of the constitutive

matrices is performed using the microcell method (cf. [4]). The microcell interpolation scheme

is a general way to build local constitutive matrices. Microcells are elementary cells with hexa-

hedral shape in the 3d cases. Referring Fig. 3, it is easy to see that each primary tetrahedral

cell is divided by the dual edges in four different microcells, one for each of its four nodes. Each

microcell belongs, at the same time, to a primary and dual cell. The interpolation method starts

from the assumption of a homogeneous medium and a constant field in the microcells (cf. [3, 4]).

On every primary element V (≡ Tijkl), the consistency condition (20) is always locally satisfied

if the following equations are valid:

LMV
ε LT = ε|V |

SMV
ν ST = ν|V |

LMV
κ LT = κ|V |







∀V , (19)

s

s

s

x

x

x

x

i

k

k

j

j

l

l

l

l

l

il

ik

ij 

c
c
c

ijkl

ij

ijk

mc

mc

mc

Figure 3: The four microcells of a tetrahedron.
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where MV
ε , MV

ν , and MV
κ are the material matrices on V and |V | is the volume of element V .

L is a matrix whose columns are the three independent components of the vectors belonging

to the primary element V , i.e., 6 in the case of a tetrahedron. S is a matrix whose columns are

the three independent components of the area vectors belonging to the primary element V , i.e.,

4 in the case of a tetrahedron. The discrete electric energy, eV , equals the continuous one, E,

for a field constant in the cell V . Same holds for the magnetic energy, bV und B.

L = [lij lik lil ljk ljl lkl] S = [si sj sk sl]

eV = LTE , E = (Ex, Ey, Ez)
T bV = STB , B = (Bx, By, Bz)

T

(eV )TMV
ε eV = (bV )TMV

ν bV =
ETLMV

ε LTE = ET ε|V |E BTSMV
ν STB = BTν|V |B

(20)

The matrices MV
ε , MV

ν , and MV
κ are assembled out of the following locally defined microcell

matrices

MVi
ε = (LVi)−1ε(LVi)−T |Vi| (21a)

MVi
ν = (SVi)−1ν(SVi)−T |Vi| (21b)

MVi
κ = (LVi)−1κ(LVi)−T |Vi| (21c)

where LVi and SVi are 3× 3 matrices. For the node xi we get

LVi =





lij(x) lik(x) lil(x)
lij(y) lik(y) lil(y)
lij(z) lik(z) lil(z)



 and SVi =





sj(x) sk(x) sl(x)
sj(y) sk(y) sl(y)
sj(z) sk(z) sl(z)



 . (22)

|Vi| is the volume of the microcell with Vi = [xi c
mc
ik cmc

ijk c
mc
ij cmc

il cmc
ikl c

mc
ijkl c

mc
ijl ] and

cmc
ijkl =

{

cijkl if Tijkl is self-centered

barycenter of Tijkl otherwise
(23a)

cmc
ijk =







cijk if Tijkl is self-centered

cijk if Tijkl′ is self-centered

(Tijkl share a face with Tijkl′)

barycenter of triangle tijk otherwise

(23b)

cmc
ij =







cij if Tijkl is self-centered

cij if Tijk′l′ is self-centered

(Tijkl share an edge with Tijk′l′)

barycenter of line lij otherwise .

(23c)

Using (21) and (22), we get

MVi
ε =





mi
ε11 mi

ε12 mi
ε13

mi
ε21 mi

ε22 mi
ε23

mi
ε31 mi

ε32 mi
ε33



 and MVi
ν =





mi
ν11 mi

ν12 mi
ν13

mi
ν21 mi

ν22 mi
ν23

mi
ν31 mi

ν32 mi
ν33



 . (24)
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Keeping on this assembling process also with the nodes j, k, and l, the full primary area material

matrices MV
ε and MV

ν may be calculated as follows:

MV
ε =























mi
ε11+ mi

ε12 mi
ε13 mj

ε12 mj
ε13 0

mj
ε11

mi
ε21 mi

ε22+ mi
ε23 mk

ε12 0 mk
ε13

mk
ε11

mi
ε31 mi

ε32 mi
ε33+ 0 ml

ε12 ml
ε13

ml
ε11

mj
ε21 mk

ε21 0 mj
ε22+ mj

ε23 mk
ε23

mk
ε22

mj
ε31 0 ml

ε21 mj
ε32 mj

ε33+ ml
ε23

ml
ε22

0 mk
ε31 ml

ε31 mk
ε32 ml

ε32 mk
ε33+
ml

ε33























(25)

and

MV
ν =















mj
ν11 +mk

ν11 mk
ν12 +ml

ν12 mj
ν12 +ml

ν13 mj
ν13 +mk

ν13

+ml
ν11

mk
ν21 +ml

ν21 mi
ν11 +mk

ν22 mi
ν12 +ml

ν23 mi
ν13 +mk

ν23

+ml
ν22

mj
ν21 +ml

ν31 mi
ν21 +ml

ν32 mi
ν22 +mj

ν22 mi
ν23 +mj

ν23

+ml
ν33

mj
ν31 +mk

ν31 mi
ν31 +mk

ν32 mi
ν32 +mj

ν32 mi
ν33 +mj

ν33

+mk
ν33















(26)

where mα
εmn = mα

εnm and mα
νmn = mα

νnm for α ∈ {i, j, k, l} and m,n ∈ {1, 2, 3}. The

same applies for the material matrix MV
κ (cf. (25)). The global matrices Mε, Mν , and Mκ can

be assembled from the local natrices MV
ε , MV

ν , and MV
κ .

3.3 Linear algebraic equations in the frequency domain

From Sec. 3.1, the equation for the fast varying transient electromagnetic fields is

CTMνCe+Mκ
d

dt
e+Mε

d2

dt2
e = 0 .

If all field quantities vary sinusoidally with time, with angular frequency ω, the electric field

E(r, t) may be written as:

E(r, t) = E0(r) cos(ωt+ φ(r))

= ℜ
(
E0(r)e

(ωt+φ(r))
)

= ℜ
(
E0(r)e

φ(r)eωt
)

(27)

where E0(r) is the amplitude and φ(r) the phase. The phasor form in frequency domain is

E(r) = E0(r)e
φ(r) ∈ C . (28)
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The electric field E(r, t) is obtained from E(r) by multiplying E(r) with the time-dependent

factor eωt and taking the real part, i.e., E(r, t) = ℜ
(
E(r)eωt

)
.

Using (9) - (12), (14), and (15) we get Maxwell’s equations in phasor form:

Ce = −ωb (29a)

CTMνb = ωMεe+Mκe . (29b)

By use of Eq. (29a) in Eq. (29b) we obtain the eigenvalue problem

CTMνCe+ ωMκe = ω2Mεe (30)

and without lossy materials (Mκ = 0) the problem

CTMνCe = ω2Mεe . (31)

Another notation of Eq. (31) is

(M1/2
ν CM−1/2

ε )T (M1/2
ν CM−1/2

ε )e′ = ω2e′ with e′ = M1/2
ε e . (32)

Using (12), another important property of Eq. (31) is

S̃CT
︸︷︷︸

=0

MνCe = ω2S̃Mεe = ω2S̃d = 0 . (33)

If ω2 6= 0, i.e., S̃d = 0, then from Eqs. (31) and (33) we get

(CTMνC +MεS̃
TD−1

Ṽ
S̃Mε − ω2Mε)e = 0 (34)

where DṼ is the diagonal matrix of dual cell volumes Ṽ , i.e., ∗σ0, and it is (cf. [5])

MεS̃
TD−1

Ṽ
S̃Mεe ≡ 0 .

Using Krylov subspace methods, the boundary value problem (34) can be solved iteratively

(cf. [9, 10]).

4 Hodge-optimized triangulations

It is introduced a family of functionals on pairs of complexes (RT ,PD) that is derived from

bounds on the errors induced by diagonal Hodge stars. The minimizers of these functionals,

called HOT meshes [8], can optimize the dual mesh alone to make it more self-centered. It is

often enough to find a good non-optimal minimum in order to dramatically improve the mesh

quality.

Using Eq. (16) the error density ei on the dual of a k-simplex σi is given as the average differ-

ence between the discrete approximation and the exact Hodge star:

ei =
1

| ∗ σi|

∣
∣
∣
∣

| ∗ σi|
|σi|

ˆ

σi

α−
ˆ

∗σi

⋆α

∣
∣
∣
∣
=

∣
∣
∣
∣

1

|σi|

ˆ

σi

α− 1

| ∗ σi|

ˆ

∗σi

⋆α

∣
∣
∣
∣
. (35)
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Due to the orthogonality of σi and ∗σi, one can write the integrals of (16) as (cf. [8])
ˆ

σi

α =

ˆ

σi

f(x)dµσi
and

ˆ

∗σi

⋆α =

ˆ

∗σi

f(x)dµ∗σi

where f(x) : Rd → R is a scalar function and dµσi
and dµ∗σi

are volume forms of σi and

∗σi, respectively. With these expressions, one can rewrite the error density (35) as

ei =

∣
∣
∣
∣

ˆ

σi

f(x)
dµσi

|σi|
−
ˆ

∗σi

f(x)
dµ∗σi

| ∗ σi|

∣
∣
∣
∣
=

∣
∣
∣
∣

ˆ

Rd

f(x)
(dµσi

|σi|
− dµ∗σi

| ∗ σi|
)
∣
∣
∣
∣

(36)

where
dµσi /|σi| and

dµ∗σi/|∗σi| are probability distributions over σi and ∗σi, respectively.

The q-Wasserstein metric, i.e., a common distance function defined between probability distri-

butions in R
d with bounded support, is defined as

Wq(µ, ν) =

(

inf
γ∈Γ(µ,ν)

ˆ

Rd×Rd

‖x− y‖qdγ(x,y)
)1/q

.

By a direct application of the Hölder inequality we obtain

W1(µ, ν) ≤ W2(µ, ν) . (37)

The following dual representation of W1(µ, ν) is a special case of the duality theorem of Kan-

torovich and Rubinstein when µ and ν have bounded support:

W1(µ, ν) = sup
f :Rd→R

{
1

λ

ˆ

Rd

f(x)d(µ− ν) : Lip(f ) ≤ λ ≤ 1

}

(38)

where Lip(f ) denotes the minimal Lipschitz constant for f . From Eq. (36) and Eq. (38) one

obtains the relationship

ei ≤ λW1(σi, ∗σi) . (39)

This formally establishes a link between optimal transport and approximation error of diagonal

Hodge stars. Note it is only required α to be Lipschitz continuous. Using the L2 integral norm,

one can assemble a total error by summing the error densities ei over local regions, specific to

σi and ∗σi. These regions denoted as ⋄(σi ∪ ∗σi) are the convex hulls of σi and ∗σi. Fig. 4

shows these regions, called as support volumes or diamonds, restricted to the original primal

tetrahedron (cf. Fig. 1). Thus, the total error is

E2(RT ,PD, ⋆k) =
(
∑

σk
i

ˆ

⋄(σk
i ∪∗σ

k
i )

e2i

) 1

2

=

(
∑

σk
i

|σk
i || ∗ σk

i |
(
d
k

) e2i

) 1

2

.

Due to the orthogonality of RT and PD the volume of the diamond ⋄(σk
i ∪ ∗σk

i ) equals

|σk
i || ∗ σk

i |
(
d
k

) . Using Eqs. (39) and (37) a tight bound of the total error is expressed as

E2(RT ,PD, ⋆k)2 ≤
λ2

(
d
k

)

∑

σk
i

|σk
i || ∗ σk

i |W1(σ
k
i , ∗σk

i )
2

≤ 1
(
d
k

)

∑

σk
i

|σk
i || ∗ σk

i |W2(σ
k
i , ∗σk

i )
2 ≡ ⋆k − HOT2,2(RT ,PD) . (40)

11



(a) ⋄(σ0 ∪ ∗σ0) (b) ⋄(σ1 ∪ ∗σ1) (c) ⋄(σ2 ∪ ∗σ2) (d) ⋄(σ3 ∪ ∗σ3)

Figure 4: The support volume of a triangulation in R
3.

4.1 General minimization procedure

A HOT mesh consists of a regular triangulationRT and its associated power diagram PD for

which RT , PD, or both have been optimized in order to reduce one HOT functional. Here, if

one has a given triangulation, vertices could be held fixed while weights are optimized to better

one of the Hodge stars, i.e., Hodge-optimized triangulations can optimize the dual mesh alone.

A pseudocode of a general procedure is given in Table 2. This common minimization procedure

Table 2: Basic pseudocode of HOT mesh optimization.

Input: vertices {xi} with weights w0 = {w0
i } and

0 ≤ k ≤ d
(
type of ⋆k − HOT2,2(RT ,PD)

)

n := 0
Compute (RT ,PD)

repeat

Compute ⋆k − HOT2,2(RT ,PD)
Pick step direction dw for ⋆k − HOT2,2(RT ,PD)
Find β satisfying Wolfe conditions

wn+1 := wn + βdw

n := n+ 1
Update (RT ,PD)

until (convergence criterion met)

works without anything else but an evaluation of a HOT energy and its gradient which will derive

in closed form from direct integration.

In the unconstrained minimization problem, the Wolfe conditions are a set of inequalities for

performing inexact line search. The basic problem is to solve

min
x∈Rn

f(x)

for some smooth f : Rn −→ R. In line search algorithm the sequence {xk} is constructed

iteratively at each step choosing a search direction pk. Thus, the objective function is minimized

along the line in this direction. This reduced the problem to a sequence of one dimensional

12



problems

min
γ∈R

f(xk + γpk)

with the step length γ > 0. A step length γk is said to satisfy the Wolfe conditions if the following

two inequalities hold:

1 f(xk + γkpk) ≤ f(xk) + c1γkp
T
k∇f(xk)

(Armijo rule, sufficient decrease)

2 pT
k∇f(xk + γkpk) ≥ c2p

T
k∇f(xk)

(curvature condition)

with 0 < c1 < c2 < 1 and pk = −∇f(xk). This ensures that pk is a descent direction, i.e.,

pT
k∇f(xk) < 0. The solution of the minimization problem occurs without updating the complex

(RT ,PD).

4.2 HOT22 energies

The HOT2,2 energies can be expressed as a function of signed distances between the weighted

circumcenters of k- and (k + 1)-simplices with 0 ≤ k ≤ d − 1 (cf. Fig. 5). The weighted

c
c

c

x

x

x

x

i

k

j

l

ijkl

ij

ijk

d H

h

j(i) l(ijk)

k(ij)

p

a

b

c

Figure 5: Signed distances between circumcenters.

circumcenter of the k-simplex σk is the orthogonal projection of the weigthted circumcenter of

the (k+1)-simplex σk+1 onto simplex σk. The signed distance from the weighted circumcenter

of σk+1, ck+1, to the weighted circumcenter of σk has a positive distance if the simplices σk+1

and {σk, ck+1} have the same orientation, and negative otherwise.

For both ⋆0 and ⋆d, HOT2,2 energies can be easily computed by splitting d-cells ∗σ0 or primal

d-simplices σd into canonical subsimplices for which closed form integral expressions W (p, T )
are found. T is a tetrahedron spanned by the edges a, b, and c and vertex p is adjacent to edge

13



a (cf. Fig. 5). The other remaining stars are just combinations of transport over edges, areas,

and volumes. So here one can find closed form integral expressions W (a, t) for an edge a and

the triangle t spanned by the edges b and c. Using the squared distance (cf. Eq. (37)), in Eq.

(40) the integral expressions W (p, T ) and W (a, t) are given by:

W (p, T ) =

ˆ a

0

ˆ b
a
x

0

ˆ c
b
y

0

(x2 + y2 + z2)dzdydx

=
1

5

(a3bc

2
+

ab3c

4
+

abc3

12

)

, (41a)

W (a, t) =
1

3

(

bc

2

ˆ a

0

x2dx+ a

ˆ b

0

ˆ c
b
y

0

(y2 + z2)dzdy

)

=
1

3

(a3bc

6
+

ab3c

4
+

abc3

12

)

. (41b)

For the subsimplex given in Fig. 5 we obtain the following relations for the HOT2,2 energies.

⋆0 − HOT2,2 ⋆1 − HOT2,2 ⋆2 − HOT2,2 ⋆3 − HOT2,2

W (p, T ) W (a, t) W (a, t) W (p, T )

p←− xi p←− cijkl

a←− dj(i) a←− Hl(ijk)

b←− hk(ij) b←− hk(ij)

c←− Hl(ijk) c←− dj(i)

Using the integral forms of W (p, T ) (Eq. (41a)) and W (a, t) (Eq. (41b)), all the HOT2,2 ener-

gies for every tetrahedron Tijkl are expressed as a function of the signed distances dj(i), hk(ij),

and Hl(ijk) between circumcenters as follows:

⋆0 −HOT2,2(Tijkl) =

∑

r

∑

s

∑

t

1

5

(
H3

r(stu)hs(tu)dt(u)

12
+

Hr(stu)h
3
s(tu)dt(u)

4
+

Hr(stu)hs(tu)d
3
t(u)

2

)

⋆1 −HOT2,2(Tijkl) =

∑

r

∑

s

∑

t

1

3

(
H3

r(stu)hs(tu)dt(u)

12
+

Hr(stu)h
3
s(tu)dt(u)

4
+

Hr(stu)hs(tu)d
3
t(u)

6

)

⋆2 −HOT2,2(Tijkl) =

∑

r

∑

s

∑

t

1

3

(
H3

r(stu)hs(tu)dt(u)

6
+

Hr(stu)h
3
s(tu)dt(u)

4
+

Hr(stu)hs(tu)d
3
t(u)

12

)
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⋆3 −HOT2,2(Tijkl) =

∑

r

∑

s

∑

t

1

5

(
H3

r(stu)hs(tu)dt(u)

2
+

Hr(stu)h
3
s(tu)dt(u)

4
+

Hr(stu)hs(tu)d
3
t(u)

12

)

where the indices r, s, t, and u are determined by r ∈ {i, j, k, l}, s ∈ {i, j, k, l}\{r},
t ∈ {i, j, k, l}\{r, s}, and u ∈ {i, j, k, l}\{r, s, t}. The arrangement of the indices s, t, and

u of Hr(stu) and t and u of hs(tu), respectively is not of any importance. Every permutation of

{s, t, u} yields the same distance Hr(... ). The same applies to {t, u} and hs(... ).

Thus, the total error (40) is computed by

E2(RT ,PD, ⋆k)2 =
∑

Tijkl

⋆k − HOT2,2(Tijkl) .

Using Eq. (4), we have

d2j(i) − wi = d2i(j) − wj

= (ℓij − dj(i))
2 − wj

= ℓ2ij − 2ℓijdj(i) + d2j(i) − wj

with ℓij = ‖xj − xi‖.
Thus, we get

dj(i) =
ℓ2ij + wi − wj

2ℓij
(42)

for the signed distance between ci (= xi) and cij. Denoting by hk(ij) the signed distance

between cij and cijk in a triangle tijk we get

hk(ij) =
dk(i) − dj(i) cos γi

sin γi

where γi is the angle at xi in triangle tijk (cf. Fig. 6). Applying the traditional Hodge star (⋆1)ij
for a 1-form between vertex i and vertex j in a regular triangulation (cf. [8]), we obtain

hk(ij) =
ℓij cot γk

2
+

wj cot γi + wi cot γj
2ℓij

− wkℓij
4|tijk|

. (43)

Hl(ijk) is the signed distance between cijk and cijkl in tetrahedron Tijkl (cf. Eq. (8)):

Hl(ijk) = (cijk − cijkl) ·
(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖

=

{

‖cijk − cijkl‖ if xl and cijkl lie in the same half-plane ,

−‖cijk − cijkl‖ otherwise .

(44)

The weight optimization of each HOT2,2 energy can easily done using the derivatives of Eq. (42)

∂dj(i)
∂wi

=
1

2ℓij
,

∂dj(i)
∂wj

= − 1

2ℓij
,
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Figure 6: The signed distance between weighted edge and triangle circumcenter.

and the derivatives of Eq. (43)

∂hk(ij)

∂wi

=
cot γj
2ℓij

,
∂hk(ij)

∂wj

=
cot γi
2ℓij

,
∂hk(ij)

∂wk

= − ℓij
4|tijk|

.

The derivative of the weighted circumcenter with respect to the weights can be easily computed.

Using Eq. (6), the derivatives at vertex xl result in

∂cijk
∂wr

=
1

4|tijk|
n2
r ,

∂cijk
∂wl

≡ 0 , and
∂cijkl
∂ws

=
1

12|Tijkl|
n3
s

where r ∈ {i, j, k}, s ∈ {i, j, k, l}, and n2
r and n3

s denote the outward normals of the triangle

tijk and of the tetrahedron Tijkl, respectively. From Eq. (44), we obtain

∂Hl(ijk)

∂ws

= (
∂cijk
∂ws

− ∂cijkl
∂ws

) · (xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖

=







(cijk − cijkl)

‖cijk − cijkl‖
· (∂cijk

∂ws

− ∂cijkl
∂ws

) if xl and cijkl lie in the same half-plane,

− (cijk − cijkl)

‖cijk − cijkl‖
· (∂cijk

∂ws

− ∂cijkl
∂ws

) otherwise .

Because the normal
(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖
is perpendicular to the derivatives

∂cijk
∂ws

, s ∈
{i, j, k, l}, the corresponding scalar products are equal to zero. The same applies for the nor-

mal
(cijk − cijkl)

‖cijk − cijkl‖
.
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Thus we obtain the following formulas:

∂Hl(ijk)

∂wi

= − 1

12|Tijkl|
n3
i ·

(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖
,

∂Hl(ijk)

∂wj

= − 1

12|Tijkl|
n3
j ·

(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖
,

∂Hl(ijk)

∂wk

= − 1

12|Tijkl|
n3
k ·

(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖
,

∂Hl(ijk)

∂wl

= − 1

12|Tijkl|
‖(xi − xk)× (xj − xk)‖ .

The normal
(xi − xk)× (xj − xk)

‖(xi − xk)× (xj − xk)‖
can be replaced by ± (cijk − cijkl)

‖cijk − cijkl‖
, i.e.,

∂Hl(ijk)

∂wi

= ∓ 1

12|Tijkl|
n3
i ·

(cijk − cijkl)

‖cijk − cijkl‖
,

∂Hl(ijk)

∂wj

= ∓ 1

12|Tijkl|
n3
j ·

(cijk − cijkl)

‖cijk − cijkl‖
,

∂Hl(ijk)

∂wk

= ∓ 1

12|Tijkl|
n3
k ·

(cijk − cijkl)

‖cijk − cijkl‖
,

∂Hl(ijk)

∂wl

= ∓ 1

12|Tijkl|
n3
l ·

(cijk − cijkl)

‖cijk − cijkl‖
.

5 Numerical results

We consider two academic examples to demonstrate the generality of the approach. The ability

to optimize weights to improve the dual structure is very useful. The first example has the form

of a crystal (cf. Fig. 7). The second example is a rectangular bar that is crossed by another

bar (cf. Fig. 8). The primal triangular mesh is generated using REGTET, a Fortran program for

computing a regular tetrahedralization for a finite set of weighted points in 3d space (cf. [1, 2]). It

is based on an algorithm by Edelsbrunner and Shah for constructing regular tetrahedralizations

with incremental topological flipping (cf. [6]). The colored areas in the both figures represent

different material parameters.

For the first example (cf. Fig. 7) we define a rectangular regular grid on the surface of a rect-

angular polyhedron that contains the set of input points {x1, . . . ,x8} to become, together with

this set of input points, the set for which a tetrahedralization is to be computed. For nadd ≥ 2
for each facet of the polyhedron a set of nadd × nadd points is generated. This set defines a

rectangular regular grid and contains the four vertices of the facet. The union of the six sets thus

generated define the rectangular grid on the surface of the polyhedron with npol points:

npol = 6(nadd − 2)2 + 12(nadd − 2) + 8 = 6n2
add − 12nadd + 8 .
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1

2

34

5

6

7

8

x

y
z

x1 = ( 0.0, 0.0, 0.0)

x2 = (−1.0, 0.0, 0.0)

x3 = ( 1.0, 0.0, 0.0)

x4 = ( 0.0,−1.0, 0.0)

x5 = ( 0.0, 1.0, 0.0)

x6 = (−0.5,−0.5,−1.0)
x7 = ( 0.0, 0.0, 2.0)

x8 = ( 0.0, 0.0, 1.0)

wi at first wi finished

1 0.00 −0.016097
2 0.00 0.500195
3 0.00 0.752207
4 0.00 0.497853
5 0.00 0.752421
6 0.00 0.730471
7 0.00 1.819437
8 0.00 0.021272

Figure 7: The crystal.

Figure 8: A rectangular bar that is crossed by anaother rectangular bar.
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In Table 3 #tet denotes the number of all tetrahedra and #sctet the number of self-centered

tetrahedra. For the first example in Table 3 the weights of the input points and the weights of

the points on the surface of the rectangular polyhedron are wi = 0.00. The finished weights

for nadd = 0 at the end of the iteration are given in Fig. 7. This set of weights is not unique.

However the number of self-centered tetrahedra has increased significantly.

Table 3: The number of self-centered tetrahedra for ⋆3 − HOT2,2.

nadd (T ,D) (RT ,PD) at first (RT ,PD) finished

#tet #sctet % #tet #sctet % #tet #sctet %

first example

0 12 0 0.00 12 0 0.00 12 10 83.33

2 48 0 0.00 48 0 0.00 46 18 39.13

3 96 14 14.58 96 14 14.58 90 64 71.11

4 170 50 29.41 170 50 29.41 170 117 68.82

5 277 48 17.33 277 48 17.33 278 217 78.06

While the weights of the input points in Table 4 are also wi = 0.00, the weights on the surface

are wi = 1.00. The iterative behavior between wi = 0.00 and wi = 1.00 on the surface of the

polyhedron is different.

Table 4: The number of self-centered tetrahedra for ⋆3 − HOT2,2 in dependence of the weights

on the surface points.

nadd (RT ,PD) at first (RT ,PD) finished

#tet #sctet % #tet #sctet %

first example

0 12 0 0.00 12 10 83.33

2 48 0 0.00 47 19 40.43

3 98 15 15.31 89 67 75.28

4 167 46 27.54 166 117 70.48

5 275 22 8.00 263 199 75.67

For the second example, in Table 5 are shown the numbers of self-centered tetrahedra in de-

pendence of the weights of the input points. The weights of the input points are changed as a

function of the terms

i (mod 8) · 0.100,

i (mod 8) · 0.105,

and i (mod 9) · 0.080
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respectively. Also in this example, the iterative behavior is different in dependence of the weights

of the input points.

Table 5: The number of self-centered tetrahedra for ⋆3 − HOT2,2 in dependence of the weights

of the input points.

(T ,D) (RT ,PD) at first (RT ,PD) finished wi

#tet #sctet % #tet #sctet % #tet #sctet %

second example

144 4 2.78 144 4 2.78 144 109 75.69 0.000
141 48 34.04 142 106 74.65 i (mod 8) · 0.100
141 47 33.33 143 115 80.42 i (mod 8) · 0.105
144 36 25.00 138 93 67.93 i (mod 9) · 0.080

The greater flexibility in the location of dual vertices affects the non-zero pattern of the material

matrices (14) (cf. Sec. 3.2). For the second example, this matrices are shown in Fig. 9 with

no weights of input points. The dimensions of the material matrices Mε and Mµ are denoted

by ne and nf , respectively. The term nnz represents the number of non-zero elements in Mε

and Mµ, respectively. The number of non-zero elements of the material matrices Mε and Mµ

is important reduced. This will affect the calculation of the solution of the systems of linear

algebraic equations.

6 Conclusions

A combination of a mainly orthogonal and locally barycentric mesh is used to discretize the

Maxwell’s equations in integral form using FIT. For this, we define differential forms of various

degrees and identify them with field intensity, flux density, and charge density. The constitu-

tive relations are discretized by using the Hodge star operator. It relates differential forms of

different degrees. The duality between regular triangulations and power diagrams allows a dif-

ferent choice on the dual mesh once the primal mesh is fixed. For each tetrahedron that is not

self-centered we construct the constitutive matrices by using the microcell method. To reduce

the number of non-self-centered tetrahedra we use a mesh based on Hodge-optimized trian-

gulations. This optimization strategy makes more self-centered tetrahedra and thus improved

one or more of the discrete Hodge stars. Due to effiency reasons the set of weights is a non-

optimal minimum. However the number of non-zero elements of the material matrices is impor-

tant reduced. An open problem is the construction of the inverse of the material matrix for the

permittivity in order to solve the systems of linear algebraic equations.
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(a) Mε (at first): ne = 255, nnz = 1829 (b) Mε (finished): ne = 255, nnz = 695

(c) Mν (at first): nf = 340, nnz = 1834 (d) Mν (finished): nf = 340, nnz = 714

Figure 9: The non-zero pattern of matrices Mε and Mν .
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