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ABSTRACT. We study the asymptotic behaviour of families of gradient flows in a general metric setting,
when the metric-dissipation potentials degenerate in the limit to a dissipation with linear growth.

We present a general variational definition of BV solutions to metric evolutions, showing the different
characterization of the solution in the absolutely continuous regime, on the singular Cantor part, and
along the jump transitions. By using tools of metric analysis, BV functions and blow-up by time rescaling,
we show that this variational notion is stable with respect to a wide class of perturbations involving
energies, distances, and dissipation potentials.

As a particular application, we show that BV solutions to rate-independent problems arise naturally
as a limit of p-gradient flows, p > 1, when the exponents p converge to 1.

1. INTRODUCTION

The aim of this paper is to study the asymptotic behaviour of the solutions to a sequence of gradient
flows (in a suitable metric setting), when the governing energies and metric-dissipation potentials give
raise in the limit to a rate-independent evolution or, more generally, to an evolution driven by a dissipation
potential with linear growth.

A finite dimensional example: superlinear dissipation potentials and absolutely continuous gradient

flows. In order to explain the problem, let us start from a simple example in a finite dimensional manifold
X (see e.g. the motivating discussion in [13]). We fix a time interval [0, T ], we denote by Q the prod-
uct space Q = [0, T ] × X , and we consider a sequence of smooth energies Eh : Q → R indexed
by h ∈ N. We are also given a sequence of smooth dissipation potentials Rh : TX → [0,∞) of the
form

Rh(u, u̇) = ψh(‖u̇‖u,h) where ‖ · ‖u,h are norms on the tangent space TuX

smoothly depending on u ∈ X and

ψh : [0,∞) → [0,∞) are C1 convex functions with superlinear growth.

Typical examples are

(1.1) ψh(v) =
1

ph
vph with ph > 1, ψh(v) = v + εh v

p with p > 1, εh > 0.

For given initial data ūh ∈ X we can consider the solutions uh : [0, T ] → X of the Cauchy problem
for the doubly nonlinear differential equations

(1.2) Du̇Rh(uh(t), u̇h(t)) + DuEh(t, uh(t)) = 0 in T∗
X , t ∈ [0, T ]; uh(0) = ūh.

In (1.2) the parameter h ∈ N affects the limit behaviour of the initial data ūh, of the energies Eh in
Q, of the norms ‖ · ‖·,h on TX , and of the dissipation potentials ψh on [0,∞). Assuming that (in a
suitable sense that we will describe later on) ūh → ū, Eh → E, ‖ ·‖u,h → ‖·‖u, ψh → ψ as h→ ∞,
it is then natural to investigate if a limit curve u (possibly up to subsequence) of the solutions (uh)h still
satisfies the corresponding limit equation of (1.2).
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BV solutions to rate-independent evolutions. We want to address here the singular situation when the
limit dissipation potential ψ loses the superlinear growth; let us focus here on the 1-homogeneous case
when

(1.3) lim
h→∞

ψh(v) = ψ(v) := L v, for some L > 0

corresponding e.g. to limh→∞ ph = 1, or limh→∞ εh = 0 in (1.1) (in that cases L = 1). The limit
problem is formally the differential inclusion

(1.4) L ∂u̇R(u(t), u̇(t)) + DuE(t, u(t)) = 0 in T∗
X , t ∈ [0, T ], u(0) = ū,

where the presence of the subdifferential ∂u̇R is motivated by the lack of differentiability of the norm
R(u, u̇) = ‖u̇‖u at u̇ = 0. Since R(u, ·) is 1-positively homogeneous, (1.4) describes a rate-
independent evolution and its solutions exhibit a different behavior with respect to the viscous flows
(1.2). In particular, jumps can occur even for smooth energies E and various kinds of solutions have
been proposed in the literature (we refer to the surveys [11], the overall presentation in [12] and the
references therein). Here we focus on the notion of BV solution, proposed in [13, 14]: for the sake of
simplicity, in this introductory section we consider the simplest case of a piecewise smooth curve u with
a finite number of jump points Ju = {t1, t2, · · · tn} ⊂ [0, T ]; u(ti±) will denote the left and the right
limit of u at each ti (see also [25] for an explicit characterization in a one-dimensional setting)

In this case a BV solution u can be characterized by two conditions:

(BV1) In each interval (ti−1, ti) the velocity vector field u̇ satisfies the differential inclusion (1.4), which
yields in particular the local stability condition

(1.5) F(t, u(t)) ≤ L for every t ∈ [0, T ] \ Ju

and the energy dissipation

(1.6) −
d

dt
E(t, u(t)) + P(t, u(t)) = L ‖u̇(t)‖u(t) in (ti−1, ti), P(t, u) :=

∂

∂t
E(t, u),

where F denotes the dual norm of the (opposite) differential of the energy,

(1.7) F(t, u) := ‖DuE(t, u)‖∗u = sup
{

−〈DuE(t, u), v〉 : ‖v‖u ≤ 1
}

.

It turns out that in the smooth regime (1.5) and (1.6) are equivalent to (1.4).
(BV2) At each jump point ti it is possible to find an optimal transition path ϑi : [ri−, ri+] → X ,

ri− ≤ 0 ≤ ri+, such that ϑi(ri±) = u(ti±), ϑi(0) = u(ti), F(r, ϑi(r)) ≥ L in [ri−, ri+], and

(1.8)

∫ ri+

ri−

F(r, ϑi(r))‖ϑ̇i(r)‖ϑi(r) dr = E(ti, u(ti−)) − E(ti, u(ti+))

= min
{

∫ ri+

ri−

(F(r, θ(r)) ∨ L)‖θ̇(r)‖θ(r) dr : θ(ri±) = u(ti±), θ(0) = u(ti)
}

.

Notice that the choice of the interval [ri−, ri+] is not essential, since the integrals in (1.8) are invariant
with respect to monotone time rescaling. The minimum problem in (1.8) characterizes the minimal
transition cost at each jump point ti to connect in u(ti−) with u(ti+) passing through u(ti). Such a
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cost is influenced both by the norms ‖ · ‖u and by the slope F of the energy: we will denote it by
∆ti(u(ti−), u(ti), u(ti+)).

Energy-dissipation inequalities. It is a remarkable fact, highlighted in [13, 14], that the refined structure
given in (BV1,BV2) can be captured by simply imposing the local stability condition (1.5) and a single
energy-dissipation inequality, namely
(1.9)

E(T, u(T )) +

∫ T

0

‖u̇(t)‖u dt+
n

∑

i=1

∆ti(u(ti−), u(ti), u(ti+)) ≤ E(0, ū) +

∫ T

0

P(t, u(t)) dt.

It turns out that (1.9) is in fact an identity, since the opposite inequality is always satisfied along any

piecewise smooth curve u. If (1.9) holds, then u is forced to satisfy (1.6) along its smooth evolution, and
the optimal transition paths obtained by solving the minimum problem in (1.8) provide the right energy
balance between u(ti±).

The link of (1.9) with the gradient flow (1.2) becomes more transparent if, following [1, 24, 23, 16], one
notices that also (1.2) can be formulated as a energy-dissipation inequality. In fact, setting as before

(1.10) Fh(t, u) := ‖DuEh(t, u)‖
∗
u,h, Ph(t, u) :=

∂

∂t
Eh(t, u),

it is not difficult to check (see the informal discussion in the next section) that a C1 curve uh with
uh(0) = ūh satisfies (1.2) if and only if the ψh energy-dissipation inequality holds
(1.11)

Eh(T, uh(T ))+

∫ T

0

(

ψh

(

‖u̇h(t)‖uh,h

)

+ψ∗
h

(

Fh(t, uh(t))
)

)

dt ≤ Eh(0, ūh)+

∫ T

0

Ph(t, uh(t)) dt,

where ψ∗
h is the Legendre transform of ψh.

A more general formulation in metric spaces. Here we want to show that the metric-variational approach
to gradient flows and rate-independent problems provides a natural framework to study this singular
perturbation problem and suggests a robust and general strategy to pass to the limit in a much more
general setting where

- X is a topological space endowed with a family of complete extended distances dh,
- the terms like ‖u̇h‖uh,h are replaced by the metric velocity induced by dh,
- the functions Fh,Ph can be characterized as an irreversible couple of upper gradients in terms

of the behaviour of the energies Eh along arbitrary absolutely continuous curves with values in
(X , dh), and

- ψ is a general metric dissipation function with linear growth.

Postponing to the next two sections a more precise review of motivations and definitions, we just
remark that whenever sufficiently strong a priori estimates are available to guarantee the pointwise
convergence of uh to some limit function u ∈ BV([0, T ]; (X , d)), then the heart of the problem con-
sists in deriving (1.9) (in a suitably extended form allowing countably many jumps and Cantor-like terms
in the metric velocity), starting from the viscous inequality (1.11). Assuming convergence in energy
of the initial data, i.e. limh→∞ Eh(0, ūh) = E(0, ū), some lower-upper semicontinuity conditions on
(Eh)h and (Ph)h along arbitrary sequences (xh)h with equibounded energy and converging to x in a
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fixed reference topology σ of X are naturally suggested by the structure of the main inequalities (1.11)
and (1.9):

(1.12) lim inf
h→∞

Eh(t, xh) ≥ E(t, x), lim sup
h→∞

Ph(t, xh) ≤ P(t, x) whenever xh
σ
→ x in X .

The most challenging point is provided by the limit behaviour of the integral term

(1.13)

∫ T

0

(

ψh

(

‖u̇h(t)‖uh,h

)

+ ψ∗
h

(

Fh(t, uh(t))
)

)

dt,

which has been typically studied by a clever re-parametrization technique, introduced by [10] and then
extended in various directions by [13, 18, 14]. This approach leads to the notion of the so-called
parametrized solutions to the rate-independent evolution and the crucial assumption concerns the va-
lidity of the Γ-lim inf space-time estimate for the slopes

(1.14) lim inf
h→∞

Fh(th, xh) ≥ F(t, x) whenever th → t, xh
σ
→ x.

In the present paper we propose a different technique, which avoids parametrized solutions and thus
allows for more general non-homogenous dissipation potentials like

(1.15) ψ(v) :=

∫ v

0

(r ∧ L) dr =

{

1
2
v2 if 0 ≤ v ≤ L,

L v − 1
2
L2 if v ≥ L,

ψ(v) := (1 + v2)1/2.

Our approach involves weak convergence of measures to deal with concentrations of the time derivative
and blow-up around jump points of the limit solution to recover the variational structure of the transition.
In this way, an easier rescaling is sufficient to construct the optimal transition paths (see (1.8)) from the
converging family (uh)h and to obtain the BV energy-dissipation inequality (1.9).

Particular cases. Let us remark that various particular cases of the present setting are interesting by
themselves and have been considered from many different points of view.

(i) A first important case for applications is when X is a Hilbert space, ψh(v) = 1
2
v2, and the

norms ‖ · ‖u,h are independent of h and coincide with the norm ‖ · ‖ of X . In this case we are
dealing with the convergence of gradient flows and a typical situation arises when Eh(t, u) =
Eh(u)− 〈ℓ(t), u〉. It is well known, since the pioneering contributions of [28, 29, 9], that convexity
(or λ-convexity for some λ ∈ R independent of h) of the energies makes it possible to reduce
(1.14) to the simpler Mosco-convergence [19] of Eh (see e.g. [4] or [5] for the connection with the
graph-convergence of the differential operators). The link between Γ-convergence of the energies
and convergence of the gradient flows in a metric setting has been considered in [1, 2, 8].

(ii) Another relevant situation is when both the energies and the distances depend on h: in the qua-
dratic case a convergence result can be deduced by a joint Γ-convergence, see e.g. [26, 22, 21].
The role of the Γ-lim inf condition on the slopes as in (1.14) in general non-convex setting has
been clarified in [20, 27]. A very general stability result has been given in [16]. An interesting exam-
ple where the limit of gradient flows gives raise to a singular limit in a new geometry is discussed
in [3].

(iii) The particular case when the h-dependence affects only the dissipation potential ψ and gives
raise to a rate-independent problem in the limit has been studied in [13, 14, 15]. The Γ-limit of
rate-independent evolutions, in the framework of energetic solutions, has been studied in [17].
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Plan of the paper. In the next section we give more details on the simple finite-dimensional example
we introduced before, in order to motivate the abstract metric approach, whose setting is explained in
Section 3.

Section 4 contains our main results, concerning compactness (Theorem 4.1) and convergence (The-
orem 4.2) of gradient flows in a general setting. A few examples are briefly presented at the end of the
paper.

2. THE METRIC FORMULATION OF GRADIENT FLOWS IN A SMOOTH SETTING

Let X be the finite-dimensional differentiable manifold discussed in the Introduction.

Length and metric derivative. Let us first recall that the Finsler structure ‖ · ‖u,h on TX allows us to
define the length of a smooth curve u ∈ C1([r0, r1]; X ) by

(2.1) Lengthh[u] :=

∫ r1

r0

‖u̇(r)‖u(r),h dr

and a distance

(2.2) dh(u0, u1) := inf
{

Lengthh[u] : u ∈ C1([r0, r1]; X ), u(ri) = ui

}

,

which still retains the information of the norms ‖ · ‖u,h, since

(2.3) ‖u̇(r)‖u(r),h = lim
s→r

dh(u(s), u(r))

|s− r|
for every u ∈ C1([r0, r1]; X ).

The limit in (2.3) can be extended to the general setting of absolutely continuous curves in metric
spaces: it is denoted by |u̇|dh

(r) and it is called metric derivative of the curve u, see Definition 3.1.

Chain rule and irreversible upper gradients. A second crucial quantity is the dual norm of the opposite
differential of the energy

(2.4) ‖DuEh(t, u)‖
∗
u,h = sup

{

−〈DuEh(t, u), v〉 : ‖v‖u,h ≤ 1
}

.

Observe that the quantity in (2.4) also has a nice characterization in terms of curves, since the function
(t, u) 7→ ‖DuEh(t, u)‖

∗
u,h is minimal among the functions Fh : Q → [0,∞) satisfying the chain-rule

inequality

(2.5) −
∂

∂r
Eh(t, u(r)) ≤ Fh(t, u(r))|u̇|dh

(r)

along arbitrary curves u ∈ C1([r0, r1]; X ). If one wants to allow for time variation of the energy, it is
natural to introduce the partial time derivative ∂

∂t
Eh(t, u), so that (2.5) is in fact equivalent to

(2.6) −
d

dr
Eh(t(r), u(r)) +

∂

∂t
Eh(t(r), u(r))ṫ(r) ≤ Fh(t(r), u(r))|u̇|dh

(r)

along arbitrary regular curves r 7→ (t(r), u(r)) ∈ Q. If we only consider nondecreasing time parametriza-
tions r 7→ t(r), and we integrate (2.6) along arbitrary intervals [r0, r1], we see that the map (t, u) 7→
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∂
∂t

E(t, u) is maximal among all the functions Ph : Q → R satisfying
(2.7)

Eh(t(r0), u(r0)) +

∫ r1

r0

Ph(t(r), u(r))ṫ(r) dr ≤ Eh(t(r1), u(r1)) +

∫ r1

r0

Fh(t(r), u(r))|u̇|dh
(r) dr.

In fact, let us suppose that Fh,Ph are continuous functions satisfying (2.7) along arbitrary regular
curves with ṫ(r) ≥ 0: it would not be difficult to check that this property is equivalent to

(2.8) Ph(t, u) ≤
∂

∂t
E(t, u), Fh(t, u) ≥ ‖DuEh(t, u)‖

∗
u,h for every (t, u) ∈ Q.

If (2.8) holds, we say that the couple (Fh,Ph) is an irreversible upper gradient for the energy Eh with
respect to the distance dh, see Definition 3.2, and (X , dh,Eh,Fh,Ph) is an upper-gradient evolution
system.

This definition is the natural adaptation to time-dependent functionals of the well-known notion of
upper-gradient in the frame of analysis in metric spaces (see [7, 1]); the interesting fact is that (2.7) only
involves the notion of absolutely continuous curves in (X , dh).

ψ-gradient flows and energy-dissipation inequality. The distinguished role of gradient flows with respect
to (2.6) can be easily seen by recalling the Fenchel duality

(2.9) −DvRh(u, v) = f ⇔ −〈f, v〉 = ‖v‖u,h‖f‖
∗
u,h = ψh(‖v‖u,h) + ψ∗

h(‖f‖
∗
u,h),

where ψ∗ is the Legendre transform of ψ:

(2.10) ψ∗(f) = sup
v≥0

(

f v − ψ(v)
)

.

A crucial feature of Fenchel duality is that for every couple (v, f) ∈ TuX × T∗
uX one has the

inequality

(2.11) −〈f, v〉 ≤ ‖v‖u,h‖f‖
∗
u,h ≤ ψh(‖v‖u,h) + ψ∗

h(‖f‖
∗
u,h),

so that in order to check the identity −DvRh(u, v) = f it is sufficient to prove the opposite inequality,
i.e.

(2.12) −〈f, v〉 ≥ ψh(‖v‖u,h) + ψ∗
h(‖f‖

∗
u,h) ⇒ −DvRh(u, v) = f.

Taking into account these remarks and observing that we have the chain rule

−〈DuEh(t, uh(t)), u̇h(t)〉 = −
d

dt
Eh(t, uh(t)) +

∂

∂t
Eh(t, uh(t)),

we deduce that uh solves (1.2) if and only if

(2.13) −
d

dt
Eh(t, uh(t)) +

∂

∂t
Eh(t, uh(t)) ≥ ψh

(

‖u̇h(t)‖uh,h

)

+ ψ∗
h

(

‖DuEh(t, uh(t))‖
∗
uh,h

)

.
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Since, as we already noticed in (2.11), the opposite inequality is always true, we immediately see that
it is sufficient to impose the integrated version of (2.13) in (0, T ):

(2.14)

Eh(T, uh(T )) +

∫ T

0

(

ψh

(

‖u̇h(t)‖uh,h

)

+ ψ∗
h

(

‖DuEh(t, uh(t))‖
∗
uh,h

)

)

dt

≤ Eh(0, ūh) +

∫ T

0

∂

∂t
Eh(t, uh(t)) dt.

Now we can make the last step: instead of looking for curves satisfying (2.14), we reinforce it by re-
placing ∂tEh and ‖DuEh‖

∗
uh,h with a couple Ph,Fh of irreversible upper gradients satisfying (2.7).

Since ψ and ψ∗ are nondecreasing maps and (2.8) holds, it is immediate to see that if a curve
u ∈ C1([0, T ]; X ) satisfies the ψ-ψ∗ energy-dissipation inequality
(2.15)

Eh(T, uh(T )) +

∫ T

0

(

ψh

(

|u̇h|dh
(t)

)

+ ψ∗
h

(

Fh(t, uh(t))
)

)

dt ≤ Eh(0, ūh) +

∫ T

0

Ph(t, uh(t)) dt

(see also the next Definition 3.3), then it also satisfies (2.14) and by the argument above it satisfies
(1.2); moreover, along the curve we find a posteriori

‖DuEh(t, uh(t))‖
∗
uh,h = Fh(t, uh(t)),

∂

∂t
Eh(t, uh(t)) = Ph(t, uh(t)) t ∈ [0, T ].

We thus have seen that (2.15) for a couple (Fh,Ph) of irreversible upper gradients provides a natural
metric definition of ψ-gradient flow, which can be immediately extended to a metric framework.

Marginal functionals and conditional time derivative of the energy. In order to motivate the even more
general definition of evolution system considered in Section 3.2, where the power functional P can also

depend on a further variable F satisfying the constraint F(t) ≥ F(t, u(t)), let us consider a non smooth
situation, where E is a marginal functional : it means that E results from a minimization of the form

(2.16) E(t, u) := min
η

{

I(t, u, η) : η ∈ K
}

,

where K is a compact topological space and I : Q × K → R is a continuous function such that
I(·, ·, η) ∈ C1(Q) for every η ∈ K with uniformly continuous derivatives.

Even if each single functional I(·, η) is regular, E is not C1 in general. Referring to [16] for a more
detailed discussion, we recall here that setting

(2.17) M(t, u) := argmin I(t, u, ·) =
{

η ∈ K : I(t, u, η) = E(t, u)
}

it is natural to replace the smooth differential equation (1.2) with the differential inclusion

(2.18) Du̇Rh(uh(t), u̇h(t)) + Dm

uE(t, uh(t)) ∋ 0 in T∗
X , t ∈ [0, T ], uh(0) = ūh,

where, just for the purposes of this section, DmE denotes the so-called marginal differential of Eh, i.e.

Dm
E(t, u) :=

{

(p,w) ∈ R × T∗
uX : p = ∂tI(t, u, η), w = DuI(t, u, η) for some η ∈M(t, u)

}

and Dm

uE is its projection onto the second component,

(2.19) Dm

uE(t, u) :=
{

w ∈ T∗
uX : w = DuI(t, u, η) for some η ∈M(t, u)

}

.
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If we want to differentiate the energy along a regular curve r 7→ (t(r), u(r)) as in (2.6) we get for a.a.
r

(2.20) −
d

dt
E(t(r), u(r)) + p(r) ṫ(r) = −〈w(r), u̇(r)〉 ≤ ‖w(r)‖∗

u,h |u̇|dh
(r),

where (p(r),w(r)) is an arbitrary selection in DmE(t(r), u(r)). Setting

Fh(t, u) :=min
{

‖w‖u,h : w ∈ Dm

u (t, u)
}

,(2.21)

Ph(t, u, f) :=max
{

p : (p,w) ∈ Dm
E(t, u), ‖w‖u,h ≤ f

}

,(2.22)

it is easy to check that for every F(r) ≥ Fh(t(r), u(r)) we have

(2.23) −
d

dt
E(t(r), u(r)) + Ph(t(r), u(r), F(r))ṫ(r) ≤ F(r) |u̇|dh

(r).

Conversely, if a curve [0, T ] ∋ t 7→ uh satisfies the ψh energy-dissipation inequality

(2.24) −
d

dt
E(t, u(t)) + Ph(t, u(t), Fh(t)) ≥ ψh

(

|u̇|dh
(t)

)

+ ψ∗
h

(

Fh(t)
)

for a.a. t ∈ (0, T )

for some Fh(t) ≥ Fh(t, uh(t)), we get by (2.20) and (2.23)

−〈w, u̇h(t)〉−p+Ph(t, u(t), Fh(t)) ≥ ψh

(

|u̇|dh
(t)

)

+ψ∗
h

(

Fh(t)
)

for every (p,w) ∈ Dm
E(t, uh(t)).

Choosing in particular a couple (p̄, w̄) attaining the maximum in (2.22) for f := Fh(t) we obtain

−〈w̄, u̇h(t)〉 ≥ ψh

(

|u̇|dh
(t)

)

+ ψ∗
h

(

Fh(t)
)

≥ ψh

(

|u̇|dh
(t)

)

+ ψ∗
h

(

w̄
)

,

which eventually yields by (2.9)

−Du̇Rh(uh(t), u̇h(t)) = w̄ ∈ Dm

uE(t, uh(t)), Fh(t) = ‖w̄‖uh,h,

so that uh solves (2.18).

Towards a general form of chain rule and energy-dissipation inequalities. Notice that we were able to
formulate the non-smooth differential inclusion (2.18) in a metric variational form by looking for a chain-
rule inequality with the more general structure given by (2.23): this will be reflected in the definition 3.2
of irreversible upper gradients.

The differential inclusion is then characterized by the ψh energy-dissipation inequality (2.24): it metric
metric formulation will be considered in Definition 3.3 in the superlinear case and in Definition 3.6 in the
case of a metric dissipation ψ with linear growth.

It is then natural to investigate the stability of inequality (2.14) with respect to perturbations of the
parameter h. One of the most difficult points is to guess how to state (2.15) when the metric dissipation
functional ψ has only a linear growth, and therefore one expects a solution in BV([0, T ]; (X , d)). We
have already discussed in the introduction the case of a piecewise smooth curve, but a robust theory
should allow for general BV curves, possibly exhibiting countably many jumps and a metric derivative
with a singular Cantor part. The correct treatment of this case will be discussed in the next section.
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3. THE METRIC SETTING AND PRELIMINARY RESULTS

Complete extended distances. Let X be a given set; an extended distance on X is a map d :
X × X → [0,∞] satisfying

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x) for every x, y ∈ X ,

d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X .

We say that (X , d) is an extended metric space. Most of the definitions concerning metric spaces
generalize verbatim to extended metric spaces, in particular it makes perfectly sense to speak about a
complete extended metric space.

3.1. BV, absolutely continuous curves, and metric derivative. Let (X , d) be an extended metric
space.

Definition 3.1 (Absolutely continuous curves and metric derivatives). We say that a curve u : [a, b] →
X is absolutely continuous (a.c. for short) and belongs to AC(a, b; (X , d)) if there exists m ∈
L1(a, b) such that

(3.1) d(u(s), u(t)) ≤

∫ t

s

m(r) dr for every a ≤ s < t ≤ b.

If u ∈ AC(a, b; (X , d)) then the limit

(3.2) |u̇|d(t) := lim
τ↓0

d(u(t+ τ), u(t))

|τ |
exists for L

1
-a.a. t ∈ (a, b),

it satisfies |u̇|d ≤ m L 1-a.e. in (a, b), belongs to L1(a, b), and it is called metric derivative of u; |u̇|d
provides the minimal function m such that (3.1) holds.

The (pointwise) d-variation of u : [a, b] → X in an interval [α, β] ⊂ [a, b] is defined by

(3.3) Vard(u; [α, β]) := sup
{

n
∑

j=1

d(u(tj), u(tj−1)) : α = t0 < t1 < · · · < tn−1 < tn = b
}

.

We say that u ∈ BV([a, b]; (X , d)) if Vard(u; [a, b]) < ∞ and u takes values in a complete subset
of (X , d); in this case, u admits left and right limits (denoted by u(t−) and u(t+)) at every point of
[a, b] and we adopt the convention to extend u to R \ [a, b] by setting

(3.4) u(t) :=

{

u(a) if t < a,

u(b) if t > b,
so that u(a−) := u(a), u(b+) := u(b).

The pointwise jump set of u is
(3.5)

Ju :=
{

t ∈ [a, b] : u(t) 6= u(t−) or u(t) 6= u(t+)
}

⊃ ess-Ju :=
{

t ∈ [a, b] : u(t−) 6= u(t+)
}

.
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If u ∈ BV([a, b]; (X , d)) we denote by Vu : R → [0,∞) the bounded monotone function

(3.6) Vu(t) :=











0 if t < a,

Vard(u; [a, t]) if t ∈ [a, b],

Vard(u; [a, b]) if t > b,

and by |du|d its distributional derivative: |du|d is a finite measure in R supported in [a, b], and we can
decompose it as the sum of a diffuse part and a jump part

(3.7) |du|d = |u′|d + |Ju|d, |Ju|d = |du|d Ju, |u′|d({t}) = 0 for every t ∈ R,

where denotes the restriction of a measure to a Borel set; thus |Ju|d is concentrated on the (at most)
countable jump set Ju and

(3.8) |Ju|d({t}) = d(u(t−), u(t)) + d(u(t), u(t+)) for every y ∈ Ju.

The Lebesgue decomposition of the diffuse part |u′|d can be written as

(3.9) |u′|d = |u̇|d L
1 + |Cu|d, with |u̇|d given by (3.2) and the Cantor part |Cu|d ⊥ L

1.

We obtain

Vard(u; [α, β]) =

∫ β

α

d |u′|d + Jmpd(u; [α, β])(3.10)

=

∫ β

α

|u̇|d(t) dt+

∫ β

α

d |Cu|d + Jmpd(u; [α, β])(3.11)

where for every subinterval [α, β] ⊂ [a, b]

(3.12) Jmpd(u; [α, β]) := d(u(α−), u(α)) +
∑

t∈Ju∩(a,b)

|Ju|d({t}) + d(u(β−), u(β)).

3.2. Metric evolution systems, irreversible upper gradients and ψ-gradient flows. Let (X , d) be
a complete extended metric space and [0, T ] a fixed time interval of R. We denote by Q the product
space [0, T ] × X and we say that an a.c. curve q = (t, u) : [α, β] → Q is time-ordered if t is non
decreasing.

If I is some interval of R, B+(I) (resp. M+(I)) will denote the collections of Borel (resp. L 1-
measurable) maps defined in I with values in [0,+∞]. We say that a mapG : Q → R = R∪{±∞}
is measurable along time-ordered a.c. curves if for every time-ordered a.c. curve q in Q the composition
G ◦ q is Lebesgue measurable. We denote by M(Q) the collection of all such a functions.

An evolution system (X , d,E,F,P) consists of

1 a complete extended metric space (X , d),
2 an energy functional E : Q → R ∪ {+∞} in M(Q),
3 a slope functional F : Q → [0,∞] in M(Q),
4 a power functional P : Q × [0,∞] → R such that for every (q, f) ∈ Q × [0,∞) the map

P(·, f) belongs to M(Q) and the map P(q, ·) is nondecreasing and upper semicontinuous.
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Notice that if q = (t, u) : [α, β] → Q is an time-ordered a.c. curve and F ∈ M+([α, β]), the
composition s 7→ P(q(s), F(s)) is measurable.

The essential feature of this structure is captured by the following definition:

Definition 3.2 (Irreversible upper gradients for time-dependent functionals). We

say that (X , d,E,F,P) is an (irreversible) upper gradient system if for every time-ordered a.c. curve

[α, β] ∋ s 7→ q(s) = (t(s), u(s)) ∈ Q and every F ∈ M+([α, β]) satisfying

(3.13) E(t(α), u(α)) <∞, F ≥ F ◦ q in [α, β],

∫ β

α

[

P(q(s), F(s))
]

−
ṫ(s) ds <∞

there holds

(3.14) E(q(α)) +

∫ β

α

P(q(s), F(s))ṫ(s) ds ≤ E(q(β)) +

∫ β

α

F(s) |u̇|(s) ds.

A metric dissipation function is a

(3.15) convex function ψ : [0,∞) → [0,∞) with ψ(0) = 0, L = lim
v→+∞

ψ(v)

v
> 0.

We say that ψ has L-linear growth if L < +∞ and that ψ is superlinear if L = +∞. Its dual ψ∗ :
[0,∞) → [0,∞] is defined as

(3.16) ψ∗(f) = sup
v≥0

(

f v − ψ(v)
)

,

and it is a convex and superlinear function with ψ∗(0) = 0 as well, satisfying the Fenchel duality

(3.17)
ψ(v) + ψ∗(f) ≥ f v for every v, f ∈ [0,∞);

ψ(v) + ψ∗(f) = f v ⇔ f ∈ ∂ψ(v) ⇔ ψ′(v−) ≤ f ≤ ψ′(v+)

where ∂ψ(v) = [ψ′(v−), ψ′(v+)] denotes the convex subdifferential of ψ. Notice that at v = 0 we
have

∂ψ(0) = [0, ψ′(0+)]

so that ∂ψ(0) is single valued only when the right derivative of ψ at 0 vanishes.

The proper domain D(ψ∗) := {f ∈ [0,∞) : ψ∗(f) <∞} is related to L by the relation

(3.18) L = sup{f : ψ∗(f) <∞},

so that ψ∗ is finite in [0,∞) if and only if ψ is superlinear. The typical examples are

(3.19) ψ(v) =
1

p
vp, ψ∗(f) =

1

p∗
f p∗, ∂ψ(v) = vp−1; p > 1,

1

p
+

1

p∗
= 1;

(3.20) ψ(v) = Lv, ψ∗(f) =

{

0 if f ≤ L,

+∞ if f > L.

The ψ-gradient flows associated with an evolution system can be characterized by a simple family of
dissipation inequalities:
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Definition 3.3 (Energy-dissipation inequality). Let (X , d,E,F,P) an evolution system and let ψ be a

metric dissipation function. A curve u ∈ AC([0, T ]; (X , d)) with E(0, u(0)) < ∞ satisfies the ψ-ψ∗

energy-dissipation inequality if there exists a measurable map F ∈ M+([0, T ]) satisfying

(3.21) F(t) ≥ F(t, u(t)) in [0, T ],

∫ T

0

[

P(t, u(t), F(t))
]

+
dt <∞,

and for every t ∈ [0, T ]

(3.22) E(t, u(t)) +

∫ t

0

(

ψ
(

|u̇|d(r)
)

+ ψ∗
(

F(r)
)

)

dr ≤ E(0, u(0)) +

∫ t

0

P(r, u(r), F(r)) dr.

It is immediate to see that if (X , d,E,F,P) is an upper gradient evolution system, then by (3.14)
and (3.17) the integral characterization (3.22) is equivalent to the following two properties:

t 7→ E(t, u(t)) is absolutely continuous in [0, T ], F(t) ≥ F(t, u(t)) a.a. t in (0, T ),(3.23)

−
d

dt
E(t, u(t)) + P(t, u(t), F(t)) = |u̇|d(t) F(t)

= ψ
(

|u̇|d(t)
)

+ ψ∗
(

F(t)
)

for a.e. t ∈ (0, T ).(3.24)

Notice that (3.24) and (3.17) yields the velocity-slope relation

(3.25) F(t) ∈ ∂ψ
(

|u̇|d(t)
)

for a.a. t ∈ (0, T ),

and, by (3.14), F(t) realizes the minimal selection property

(3.26) |u̇|d(t) F(t) − P(t, u(t), F(t)) = min
{

f ≥ F(t, u(t)) : |u̇|d(t) f − P(t, u(t), f)
}

for a.a. t ∈ (0, T ). In particular, (3.26) yields

(3.27) F(t) = F(t, u(t)) |u̇|d L
1-a.e. in (0, T ) when P is independent of F,

and (3.27) holds L 1-a.e. when ψ′(0+) = 0.

Definition 3.4 (ψ-gradient flows). Let (X , d,E,F,P) be an upper gradient evolution system, and let

ψ a metric dissipation function as in (3.15). A curve u ∈ AC(a, b; (X , d)) is a ψ-gradient flow of the

system if it satisfies (3.21) and (3.22) at t = T , or, equivalently, (3.23) and (3.24).

3.3. BV solutions to evolution systems. Let us now consider the case of a dissipation potential ψ
with linear growth, corresponding to L < ∞ in (3.15). In this case, absolutely continuous solutions
to (3.23), (3.24) often do not exist, even in the smooth and finite-dimensional setting of Section and
therefore we have to extend the previous definitions to the BV setting.

As before, we fix the time interval [0, T ] and we denote by Q the product space [0, T ] × X and
we consider a function f : Q → [0,∞] measurable along absolutely continuous curves. Relevant
examples will be f := F and

(3.28) f(q) := F(q) ∨ L for every q ∈ Q.
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We interpret f(t, ·) as a conformal factor that induces a modified geometry in X : the corresponding
length of a curve ϑ ∈ AC(r0, r1; (X , d)) (notice that the curve is parametrized by a different variable
r, and t remains fixed) is

(3.29) Lengthd;f,t[ϑ] :=

∫ r1

r0

f(t, ϑ(r)) |ϑ̇(r)|d dr

and the cost of a transition from u0 to u1 in X at the time t ∈ [0, T ] is then defined by

(3.30) ∆d;f,t(u0, u1) = inf
{

Lengthd,f,t[ϑ] : ϑ ∈ AC(r0, r1; (X , d)), ϑ(ri) = ui

}

.

We also set

∆d,f,t(u0, u, u1) := ∆d,f,t(u0, u) + ∆d,f,t(u, u1)

(3.31)

= inf
{

Lengthd,f,t[ϑ] : ϑ ∈ AC(r0, r1; (X , d)), ϑ(ri) = ui, ϑ(r) = u for some r ∈ [r0, r1]
}

.

We can thus consider a modified Jump functional
(3.32)

Jmpd,f(u; [α, β]) = ∆d,f,α(u(α), u(α+)) +
∑

t∈Ju

∆d,f,t(u(t−), u(t), u(t+)) + ∆d,f,β(u(β−), u(β)).

The previous quantities will be quite useful to extend the chain-rule inequality (3.14) to the BV setting.
Notice that we are assuming that F is a Borel map (instead of Lebesgue measurable as in Definition
3.2), since an integration with respect to the possibly singular measure |u′|d occurs in (3.34).

Proposition 3.5. Let (X , d,E,F,P) be an upper gradient evolution system, f := F ∨ L for some

L > 0, and let u ∈ BV([0, T ]; (X , d)) satisfy

E(0, u(0)) <∞,

∫ T

0

(P(t, u(t), F(t)))− dt <∞, Jmpd,f(u; [0, T ]) <∞,(3.33)

for some Borel map F ∈ B+([0, T ]) with F(t) ≥ F(t, u(t)) in [0, T ]. Then

(3.34) E(0, u(0)) +

∫ t

0

P(r, u(r), F(r)) dr ≤ E(t, u(t)) +

∫ t

0

F(r) d|u′|d + Jmpd,F(u; [0, t]).

Proof. It is not restrictive to assume t = T . Let us denote by (tn)n the jump set Ju of u and let us first
set

(3.35)
s(t) := t+ Vu(t), S := T + Vu(T ), In := (s(tn−), s(tn +)), I := ∪nIn,

D := [0, S] \ I, t := s−1 : D → [0, T ], u := u ◦ t : D → X .

Since Jmpd,f(u; [0, T ]) < ∞ it is not difficult to check that t, u are Lipschitz maps (if we only know
Jmpd,F(u; [0, T ]) < ∞, it would not clear how to derive a uniform upper bound on the total variation
of the functionu). We easily extend t to [0, S] by setting

(3.36) t(s) ≡ tn if s ∈ In.
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In order to extend u, we fix ε > 0 and for every interval In we consider two curves ϑn, ζn : [s(tn−), s(tn +)] →
X satisfying ϑn(s(tn±)) = ζn(s(tn±)) = u(tn±), taking the value u(tn) at some point in In, and
fulfilling

(3.37)

∫

In

F(tn, ϑn(s))|ϑ̇n|d(s) ds ≤ ∆d,F,tn(u(tn−), u(tn), u(tn+)) + ε2−n,

∫

In

f(tn, ζn(s))|ζ̇n|d(s) ds ≤ ∆d,f,tn(u(tn−), u(tn), u(tn+)) + ε2−n.

For N ∈ N we define

(3.38) uN(s) :=











u(s) if s ∈ [0, S] \ I,

ϑn(s) if s ∈ In, n ≤ N,

ζn(s) if s ∈ In, n > N.

It is not difficult to check that uN is absolutely continuous, so that (3.14) yields (see [23, Lemma 4.1])

E(0, u(0)) +

∫ T

0

P(t, u(t), F(t)) dt = E(t(0), uN(0)) +

∫

S

0

P(t(s), u(s), F(t(s))) ṫ(s) ds

≤ E(t(S), uN(S)) +

∫

S

0

F(t(s))|u̇N |d(s) ds

= E(T, u(T )) +

∫

D

F(t(s))|u̇N |d(s) ds

+

N
∑

n=1

∫

In

F(tn, ϑn(s))|ϑ̇n|d(s) ds+
∑

n>N

∫

In

f(tn, ζn(s))|ζ̇n|d(s) ds

≤ E(T, u(T )) +

∫ T

0

F(t) d|u′|

+ ε+

N
∑

n=1

∆d,F,tn(u(tn−), u(tn), u(tn+)) +
∑

n>N

∆d,f,tn(u(tn−), u(tn), u(tn+)).

Passing first to the limit asN ↑ ∞ (notice that the last term vanishes asN ↑ ∞ since Jmpd,f(u; [0, T ])
is finite) and then as ε ↓ 0 we obtain (3.34). �

Definition 3.6 (Energy-dissipation inequality for BV functions). Let (X , d,E,F,P) be an evolution

system in the time interval [0, T ], let ψ be a metric dissipation function with L-linear growth, and let

f := F ∨ L. A curve u ∈ BV([0, T ]; (X , d)) with E(0, u(0)) < ∞ satisfies the ψ-ψ∗ energy

dissipation inequality if there exists a Borel map F ∈ M+([0, T ]) satisfying (3.21),

(3.39) F(t) ≥ F(t, u(t)) in [0, T ],

∫ T

0

[

P(t, u(t), F(t))
]

+
dt <∞,

the stability condition on the Cantor part

(3.40) F(t) ≤ L for |Cu|d-a.a. t ∈ [0, T ]
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and

(ED)

E(t, u(t)) +

∫ t

0

(

ψ
(

|u̇|d(r)
)

+ ψ∗
(

F(r)
)

)

dr + L

∫ t

0

d|Cu|d + Jmpd,f(u; [0, t])

≤ E(0, u(0)) +

∫ t

0

P(r, u(r), F(r)) dr for every t ∈ [0, T ].

Since ψ∗(f) = ∞ if f > L, (ED) yields in fact a stronger version of the local stability condition

(Sloc) F(t) ≤ L for (L 1 + |Cu|d)-a.a. t ∈ [0, T ].

In the rate-independent case ψ(v) = Lv, (3.40) and (ED) are thus equivalent to (Sloc) and

(EDRI) E(t, u(t)) + L

∫ t

0

d |u′|d + Jmpd,f(u; [0, t]) ≤ E(0, u(0)) +

∫ t

0

P(r, u(r), F(r)) dr

for every t ∈ [0, T ].

Definition 3.7 (BV solutions to evolution systems and rate-independent flows). Let (X , d,E,F,P)
be an upper gradient system in the time interval [0, T ], let ψ be a metric dissipation function with L-

linear growth, and let f := F ∨ L.

A curve u ∈ BV([0, T ]; (X , d)) with E(0, u(0)) <∞ is a BV solution of the corresponding evolution

if there exists F ∈ B+([0, T ]) satisfying (3.39), the local stability condition (Sloc) and the energy
balance

(EB)

E(t, u(t2)) +

∫ t2

t1

(

ψ
(

|u̇|d(r)
)

+ ψ∗
(

F(r)
)

)

dr + L

∫ t2

t1

d|Cu|d + Jmpd,f(u; [t1, t2])

= E(t1, u(t1)) +

∫ t2

t1

P(r, u(r), F(r)) dr for every [t1, t2] ⊂ [0, T ],

Notice that (EB) holds if and only if the curve t 7→ e(t) := E(t, u(t)) (extended to R as in (3.4)) is
of bounded variation, Je = Ju, and its distributional time derivative d

dt
e satisfies

(3.41) −
d

dt
e+ P(·, u, F) =

(

ψ
(

|u̇|d
)

+ ψ∗
(

F
)

)

L
1 + L|Cu|d − Je in R,

where at each jump point t ∈ Ju we have e(t±) = E(t, u(t±)) and the jump part Je is
(3.42)

−Je({t}) = E(t, u(t−)) − E(t, u(t+)),

{

E(t, u(t−)) − E(t, u(t)) = ∆d,f(u(t−), u(t)),

E(t, u(t)) − E(t, u(t+)) = ∆d,f(u(t), u(t+)).

As for gradient flows, thanks to Proposition 3.5 it is immediate to see that whenever (3.40) holds the
energy balance (EB) is equivalent to the energy-dissipation inequality (ED) at the final point t = T .
Moreover, a BV solution u satisfies

F(t) ∈ ∂ψ
(

|u̇|d(t)
)

for L
1-a.a. t ∈ (0, T ),(3.43)

F(t) = F(t, u(t)) = L for |Cu|d-a.a. t ∈ (0, T ),(3.44)



16

and the minimal selection principle

(3.45) |u̇|d(t) F(t) − P(t, u(t), F(t)) = min
{

f ≥ F(t, u(t)) : |u̇|d(t) f − P(t, u(t), f)
}

for L 1-a.a. t ∈ (0, T ). In the rate-independent case ψ(v) = Lv, a BV solution is equivalently charac-
terized by the local stability (Sloc) and the energy balance

(EBRI) E(t2, u(t2)) + L

∫ t2

t1

d |u′|d + Jmpd,f(u; [t1, t2]) = E(t1, u(t1)) +

∫ t2

t1

P(r, u(r), F(r)) dr

for every 0 ≤ t1 ≤ t2 ≤ T .

4. COMPACTNESS AND CONVERGENCE FOR FAMILIES OF GRADIENT FLOWS

In this section we will state and prove our main results. For the sake of clarity, we distinguish between
the compactness (Theorem 4.1) and the stability (Theorem 4.2) issues.

We also take care to highlight the role of the energy-dissipation inequality for general metric-evolution
systems (X , dh,Eh,Fh,Ph), even if they do not satisfy the irreversible upper gradient condition 3.2.
Therefore, compactness and stability of the energy-dissipation inequality always hold whenever suitable
topological properties (see the next (C1,2,3,4) assumptions) are satisfied.

In order to recover a ψ-gradient flow or a BV solution in the limit, we will ask that (X, d,E,F,P) is
an upper gradient system.

We also notice that our theorems can also be extremely useful to prove existence results for solutions
to the limit evolution system: in this case one could think that (X , dh,Eh,Fh,Ph) is a family of suitably
regularized problems (e.g. with smooth superlinear dissipations and better energies) for which existence
is already known (see [16]).

Let (X , σ) be a topological space, and let Q = [0, T ] × X with the standard product topology,
which we will denote by π. We consider a family of evolution systems (X , dh,Eh,Fh,Ph) in the time
interval [0, T ] indexed by the parameter h ∈ N, a sequence ūh of initial points, and metric dissipation
functions ψh, ψ such that

(4.1) lim
h→∞

ψh(v) = ψ(v) for every v ∈ [0,∞),

Since each function ψh is monotone, (4.1) is equivalent to

(4.2) Γ- lim
h→∞

ψh(v) = ψ(v) for every v ∈ [0,∞),

and also to the following property, valid for arbitrary sequences (wh)h ⊂ [0,∞):

(4.3) wh → w ⇒ lim inf
h→∞

ψh(wh) ≥ ψ(w), lim inf
h→∞

ψ∗
h(wh) ≥ ψ∗(w)

Typical examples are given in (1.1) and (1.3). We want to study the limit of absolutely continuous ψh-
gradient flows uh ∈ AC(0, T ; (X , dh)) of the systems (X , dh,Eh,Fh,Ph) with uh(0) = ūh as
h → ∞, assuming that they “converge” (in a variational sense that we are going to make precise) to
a limit system (X , d,E,F,P). The most interesting case is when ψ has L-linear growth, so that we
expect a function of bounded variation in the limit.



17

Here and in the following we identify diverging subsequences in N with subsets H ⊂ N with
supH = ∞ and we write limh∈H for limh→∞,h∈H.

We will assume that:

(C1) There exist constants a < L, b ≥ 0 such that

(4.4) Ẽh(t, u) := Eh(t, u) + adh(u, ūh) + b ≥ 0 for every (t, u) ∈ Q.

(C2) The energies (Ẽh)h∈N are equi-coercive in Q: for every sequence (qh)h∈H ⊂ Q with suph∈H Ẽh(qh) <
∞ there exists a subsequence H ′ ⊂ H such that limh∈H′ qh = q in the π-topology.

(C3) If two sequences qi
h = (tih, x

i
h) ⊂ Q, h ∈ H , i = 1, 2, satisfy suph∈H Ẽh(q

i
h) < ∞ and

π-converge to qi, then we have

(4.5) lim inf
h∈H

dh(x
1
h, x

2
h) ≥ d(x1, x2)

where d(·, ·) is a complete extended distance on X .

Theorem 4.1 (A priori bounds and compactness). Let us suppose that (C1) holds and let uh ∈
AC(0, T ; (X , dh)), Fh ∈ B+([0, T ]) be sequence of curves satisfying uh(0) = ūh and the cor-

responding energy-dissipation inequalities (3.21) and (3.22) for every h ∈ N, namely

(4.6) Fh(t) ≥ Fh(t, u(t)) in [0, T ],

∫ T

0

[

Ph(t, u(t), F(t))
]

+
dt <∞,

and

(4.7)

Eh(t, uh(t)) +

∫ t

0

(

ψh

(

|u̇h|dh
(r)

)

+ ψ∗
h

(

Fh(r)
)

)

dr ≤ Eh(0, ūh) +

∫ t

0

Ph(r, uh(r), Fh(r)) dr

for every t ∈ [0, T ]. If there exists a constant A ≥ 0 such that

(4.8) Eh(0, ūh) +

∫ t

0

Ph

(

r, uh(r), Fh(r)
)

dr ≤ A for every h ∈ N, t ∈ [0, T ],

then there exists a constant C > 0 such that for every t ∈ [0, T ] and h ∈ N

(4.9) Eh(t, uh(t)) ≤ C,

∫ T

0

(

ψh

(

|u̇h|dh
(r)

)

dr + ψ∗
h

(

Fh(r)
)

)

dr ≤ C,

so that

(4.10) lim
h→∞

L
1{t ∈ (0, T ) : Fh(t) ≥ f} = 0 for every f > L.

If moreover (C2,3) hold, then for every subsequence H ⊂ N there exists a further subsequence

H ′ ⊂ H such that

(4.11) lim
h∈H′

uh(t) = u(t) in (X , σ) for every t ∈ [0, T ], with u ∈ BV([0, T ]; (X , d)),

(4.12) lim
h∈H′

uh(th) = u(t) for every (th)h ⊂ [0, T ] converging to t ∈ [0, T ] \ Ju,
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and, for every interval [t1, t2] ⊂ [0, T ],

(4.13) lim inf
h∈H′

∫ t2

t1

ψh

(

|u̇h|dh
(r)

)

dr ≥

∫ t2

t1

ψ
(

|u̇|d(r)
)

dr + L|Cu|d([α, β])

Proof. Let us first prove (4.9) and (4.10).
First of all we show that dh(uh(t), ūh) is uniformly bounded, we choose ā ∈ (a, L), and we observe
that (4.3), the monotonicity of ψh, and the continuity of ψ∗ in [0, L) yield limh→∞ ψ∗

h(ā) = ψ∗(ā) <∞
so that c := suph ψ

∗
h(ā) <∞. It follows that

ψh(v) ≥ ā v − c for every v ≥ 0, h ∈ N,

and therefore (4.7) and (4.4) yield

ā dh(uh(t), ūh) ≤ ā

∫ t

0

|u̇h|dh
(r) dr ≤

∫ t

0

ψh

(

|u̇h|dh
(r)

)

dr + c ≤ A− Eh(t, uh(t)) + c

≤ A+ b + adh(uh(t), ūh) + c

so that

(4.14) dh(uh(t), ūh) ≤ (ā − a)−1
(

A + b + c
)

for every t ∈ [0, T ], h ∈ N.

Combining (C1), (4.8) and (4.14) we conclude that there exists a constant B ≥ 0 such that

(4.15) −B ≤ Eh(t, uh(t)) ≤ A for every t ∈ [0, T ], h ∈ N.

Therefore (4.15) and (4.7) yield

(4.16)

∫ T

0

ψh

(

|u̇h|dh
(t)

)

dt ≤ A+B,

∫ T

0

ψ∗
h

(

Fh(t)
)

dt ≤ A +B.

We eventually obtain (4.10), since by the monotonicity of ψ∗
h we get from the second of (4.16)

ψ∗
h(f) L

1{t ∈ (0, T ) : Fh(t, uh(t)) ≥ f} ≤ A+B for every f ≥ 0,

and limh→∞ ψ∗
h(f) = ∞ when f > L by (4.3) and (3.18).

The proof of (4.11) and (4.12) can be easily obtained by adapting the argument of the extended
Ascoli-Arzelà-Helly type result [1, Proposition 3.3.1].

By (C2) and the bound (4.9), for every t ∈ [0, T ] the sequence (uh(t))h∈H admits a σ-converging
subsequence (possibly depending on t). For every f ∈ [0, L) and 0 ≤ t0 < t1 ≤ T we recall the
bound

(4.17) fd(uh(t1), uh(t0)) ≤

∫ t1

t0

f |u̇h|dh
dt ≤

∫ t1

t0

(

ψh

(

|u̇h|dh

)

+ ψ∗
h(f)

)

dt.

We consider the nonnegative finite measures on [0, T ]

(4.18) νh,f :=
(

ψh

(

|u̇h|dh

)

+ ψ∗
h(f)

)

L
1, f ∈ [0, L)
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on [0, T ]; up to extracting a suitable subsequence, we can suppose that they weakly∗ converge to a
finite measure νf = ν0 + ψ∗(f)L 1 in the duality with continuous function on [0, T ], so that

(4.19) f lim sup
h→∞

dh(uh(t1), uh(t2)) ≤ lim sup
h→∞

νh,f([t1, t2]) ≤ νf([t1, t2])

for every 0 ≤ t1 ≤ t2 ≤ T . Denoting by J := {t ∈ [0, T ] : ν0({t}) > 0} and considering a
countable set I ⊃ J dense in [0, T ], by a standard diagonal argument we can find a subsequence

H ′ ⊂ H such that uh(t)
σ
→ u(t) for every t ∈ I as h→ ∞, h ∈ H ′. By (C3) we have

(4.20) f d(u(t1), u(t2)) ≤ νf ([t1, t2]) for every t1, t2 ∈ I.

Since (X , d) is complete, the curve I ∋ t 7→ u(t) can be uniquely extended to a continuous curve
in [0, T ] \ J , which we still denote by u. In order to prove (4.12) we argue by contradiction and we
find a sequence H ′′ ⊂ H ′, points th → t ∈ [0, T ] \ J and a σ-neighborhood U of u(t) such that
(uh(th)) 6∈ U for every h ∈ H ′′. Up to extracting a further subsequence (still denoted by H ′′) we can

assume that uh(th)
σ
→ ũ 6= u(t) so that by (C3)

fd(u(t), ũ) ≤ lim inf
h∈H′′

fdh(uh(t), uh(th)) ≤ lim sup
h∈H′′

νh,f([t, th]) = νf ({t}) = 0.

This yields in particular that uh(t) converges pointwise to u(t) as h → ∞, h ∈ H ′; (4.20) then holds
for every t1, t2 ∈ [0, T ] and shows that u ∈ BV([0, T ]; (X , d)).

Since for an arbitrary subdivision t0 = α < t1 < · · · < tn−1 < tn = β there holds

(4.21)

n
∑

i=1

dh(uh(ti), uh(ti−1)) ≤

∫ β

α

|u̇h|dh
(r) dr

it is easy to check that

(4.22) f

n
∑

i=1

d(u(ti), u(ti−1)) ≤ lim sup
h∈H′′

∫ β

α

|u̇h|dh
(r) dr ≤ ν0([α, β]) + ψ∗(f)(β − α),

so that

(4.23) fVard(u; [α, β]) ≤ ν0([α, β]) + ψ∗(f)(β − α).

Therefore, the duality formula ψ(v) = sup0<f<L

(

fv − ψ∗(f)
)

yields

(4.24) ψ
(

(β − α)−1Vard(u; [α, β])
)

≤ (β − α)−1ν0([α, β]).

From (4.23) we immediately get

(4.25) f
(

|Cu|d + |Ju|d
)

≤ ν0 + ψ∗(f)L 1 for every f < L.

Since |Cu|d and |Ju|d are concentrated in a L
1-negligible set, we deduce

(4.26) L
(

|Cu|d + |Ju|d
)

≤ ν0,

When ψ is superlinear we conclude that u is absolutely continuous, since in this case L = ∞ and
(4.26) yields |Cu|=0, |Ju|=0.
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Let us eventually prove (4.13).
(4.24) and the monotonicity of ψ yield, for α = t and β = t+ ε

(4.27) ψ
(1

ε

∫ t+ε

t

|u̇|d(r) dr
)

≤ ε−1 ν0([t, t+ ε]).

Integrating this inequality from t0 to t1 − ε with respect to t we obtain
∫ t1−ε

t0

ψ
(

ε−1

∫ t+ε

t

|u̇|d(r) dr
)

dt ≤ ε−1

∫ t1−ε

t0

ν0([t, t+ ε]) dt

≤ ε−1(L 1 × ν0)({(t, s) ∈ [t0, t1]
2 : t ≤ s ≤ t+ ε})

≤ ε−1

∫ t1

t0

L
1([s− ε, s]) dν0(s) = ν0([t0, t1])

so that, passing to the limit as ε ↓ 0 in the above inequality and applying Fatou’s Lemma and Lebesgue’s
differentiation Theorem we get

(4.28)

∫ t1

t0

ψ
(

|u̇|d(r)
)

dr dt ≤ ν0([t0, t1]).

Since t0 and t1 are arbitrary, we conclude that ν0 ≥ ψ
(

|u̇|d
)

L 1. Since L 1 is singular with respect to
|Cu|d and |Ju|d we eventually get

(4.29) ν0 ≥ ψ
(

|u̇|d
)

L
1 + L

(

|Cu|d + |Ju|d
)

,

which in particular yields (4.13), since

lim inf
h∈H′

∫ t2

t1

ψh

(

|u̇h|dh
(r)

)

dr = lim inf
h∈H′′

νh,0

(

(t1, t2)
)

≥ ν0

(

(t1, t2)
)

and L 1 and |Cu|d are diffuse. �

We want to study now the properties of the limit function u; we will suppose that the following lower
semicontinuity properties hold:

(C4) If a sequence (uh)h∈H ⊂ X σ-converges to u with suph∈H Ẽ(t, uh) < ∞ for some t ∈ [0, T ]
then

(C4E) lim inf
h∈H

Eh(t, uh) ≥ E(t, u),

(C4FP ) fh ≥ Fh(t, uh), fh → f ⇒ f ≥ F(t, u), lim sup
h∈H

Ph(t, uh, fh) ≤ P(t, u, f),

(C4F ) if lim
h∈H

th = t, sup
h∈H

E(th, uh) <∞ then lim inf
h∈H

Fh(th, uh) ≥ F(t, u).

Notice that in (C4F ) we allow for an h-dependence of t in the Γ-lim inf inequality for F, whereas t is
independent of h in (C4FP ). (C4F ) will not be required for the convergence result in the superlinear
case, see Theorem 4.4.
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The next statement is the main result of our paper: it states that the energy-dissipation inequality is
preserved in the limit for arbitrary evolution systems fulfilling (C1,2,3,4). When the limit (X , d,E,F,P)
is also an upper gradient evolution system, then we recover a BV solution.

Theorem 4.2 (Stability of the energy-dissipation inequality and convergence). Let us assume that ψ

has L-linear growth and for h ∈ N let (X , dh,Eh,Fh,Ph) be a family of evolution systems satisfying

(C1,2,3,4) with respect to a sequence ūh ∈ X σ-converging to ū. Let uh ∈ AC(0, T ; (X , dh)),

Fh ∈ B+([0, T ]), h ∈ H , be sequences of curves satisfying the ψh-energy dissipation inequality (4.7)
pointwise converging to u in (X , σ), with uh(0) = ūh, and satisfying

(4.30) lim
h∈H

Eh(0, ūh) = E(0, ū), r 7→
[

Ph(r, uh(r), Fh(r))
]

+
are equi-integrable in (0, T ).

Then u ∈ BV([0, T ]; (X , d)) satisfies the the local stability condition

(4.31) F(t, u(t)) ≤ L for every t ∈ [0, T ] \ Ju.

If

(4.32)

∫ T

0

P(t, u(t), L) dt <∞

then u satisfies the BV energy-dissipation inequality in the formulation of (ED), (Sloc) for some F ∈
B+([0, T ]).

In particular, if (X , d,E,F,P) is an upper gradient evolution system, then u satisfies (4.32) and

therefore is a BV-solution of the corresponding rate-independent evolution and we have

lim
h∈H

Eh(t, uh(t)) = E(t, u(t)) for every t ∈ [0, T ].(4.33)

Proof. We denote by I the set [0, T ] \ Ju.

Let us first notice that (4.30) implies (4.8), so that (4.9), (4.10) and (4.12) holds.

Fatou’s Lemma yields that

(4.34) lim inf
h∈H

Fh(t) ≤ L.

By a diagonal argument, combining the convergence (4.12) and the l.s.c. property (C4F ) we obtain

(4.35) F̃(t) = inf
{

lim inf
h∈H

Fh(th) : th → t
}

≤ L F(t, u(t)) ≤ F̃(t) for every t ∈ I,

hence we get (4.31).

Let us now assume (4.32) and let us prove the BV-dissipation inequality (ED); it is not restrictive to
prove the inequality for t = T .

We consider the function A : I × [0, L] → R ∪ {∞}

(4.36) A(t, f) := ψ∗(f) − P(t, u(t), f) ≥ −P(t, u(t), L).

Denoting by L the Lebesgue-measurable subsets of I and by B the Borel sets of R
2, it is easy to check

thatA is L⊗B-measurable, thanks to the monotonicity and upper semicontinuity of f 7→ P(t, u(t), f).



22

By (4.32), it is the immediate to see that for a.a. t ∈ I

(4.37) a(t) := min
{

A(t, f) : F(t, u(t)) ≤ f ≤ L
}

> −∞

Applying [6, Lemma III.39] we find a Lebesgue measurable map F → R such that

(4.38) F(t, u(t)) ≤ F(t) ≤ L, ψ∗(F(t)) − P(t, u(t), F(t)) = a(t) for L
1-a.a. t ∈ I.

and, up to a modification of F in a negligible set, it is not restrictive to assume F Borel and F(t) = L on
a Borel set containing Ju and where |Cu|d is concentrated.

Setting ah(t) := ψ∗
h(Fh(t)) − Ph(t, uh(t), Fh(t)), by (C4FP ) is immediate to see that

(4.39) lim inf
h∈H

ah(t) ≥ a(t).

Since (4.7) and (C1) also yield

(4.40) sup
h

∫ T

0

(

Ph(t, uh(t), Fh(t))
)

−
dt <∞,

Fatou’s lemma and (4.39) imply

(4.41)

∫ T

0

(

a(t)
)

+
dt ≤ lim inf

h∈H

∫ T

0

(

ah(t)
)

+
dt <∞,

and the inequality a(t) ≥ −P(t, u(t), L) shows that a ∈ L1(0, T ). (4.30) and Fatou’s Lemma then
yield

(4.42) lim inf
h∈H

∫ T

0

(

ψ∗
h(Fh(t))− Ph(t, u(t), Fh(t))

)

dt ≥

∫ T

0

(

ψ∗(F(t))− P(t, u(t), F(t))
)

dt.

Recalling (4.18), we consider now the measures

(4.43)
ηh :=

(

ψ∗
h

(

Fh

)

− Ph(·, uh, Fh)
)

L
1,

µh :=
(

ψh

(

|u̇h|dh

)

+ ψ∗
h

(

Fh

)

− Ph(·, uh, Fh)
)

L
1 = νh,0 + ηh;

up to extracting a further subsequence, it is not restrictive to assume that ηh ⇀
∗ η, µh ⇀

∗ µ ≥ ν0 +η

in the duality with continuous functions. Fatou’s Lemma and the previous arguments easily imply

(4.44) η ≥
(

ψ∗
(

F
)

− P
(

·, u, F
)

)

L
1.

Since limh∈H µh([0, T ]) = µ([0, T ]), combining (C4E) and (4.42) inequality (ED) for t = T follows if
we show that

(4.45) µ([0, T ]) ≥

∫ T

0

(

ψ
(

|u̇|d(r)
)

+ψ∗
(

F)
)

−P(·, u, F)
)

dr+L

∫ T

0

d|Cu|d+Jmpd,f(u; [0, T ]).

Now, (4.29) and (4.44) imply that

(4.46) µ ≥ ν0 + η ≥
(

ψ
(

|u̇|d
)

+ ψ∗
(

F
)

− P(·, u, F)
)

L
1 + L|Cu|d.
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Since the atomic and the diffuse part of a measure are mutually singular, (4.45) ensues if for every
t ∈ [0, T ] with µ({t}) > 0 we have

(4.47) µ({t}) ≥ ∆d,f,t(u(t−), u(t), u(t+)).

In order to prove (4.47) we just take two sequence r−h < t < r+
h , h ∈ N, converging monotonically to

t such that

(4.48) uh(r
−
h )

σ
→ u(t−), uh(r

+
h )

σ
→ u(t+),

and we set

(4.49) sh(r) := r +

∫ r

t

(

ψh

(

|u̇h|dh
(τ)

)

+ ψ∗
h

(

Fh(τ, uh(τ))
)

)

dτ, s±h := sh(r
±
h ).

Since Fh(τ, uh(τ)) ≤ Fh(τ) and

(4.50) lim sup
h∈H

∫ th +

th −

Ph(t, uh(t), Fh(t)) dt = 0

by (4.30), taking into account the definition (4.43) of µh we obtain

lim sup
h∈H′′

(s+h − s−h ) ≤ lim sup
h∈H′′

µh([t
−
h , t

+
h ]) ≤ µ({t}),

and up to extracting a suitable subsequence we can assume that s±h → s± as h → ∞. We denote by
rh := s−1

h the inverse map of sh: rh is 1-Lipschitz, monotone, and maps [s−h , s
+
h ] onto [r−h , r

+
h ]. We also

set

(4.51) ϑh(s) :=











uh(rh(s)) if s ∈ [s−h , s
+
h ],

uh(r
+
h ) if s ≥ s+h ,

uh(r
−
h ) if s ≤ s−h ,

so that, in particular, we have

ϑh(s
±
h ) = uh(r

±
h ), ϑh(t) = uh(t).

We observe that Ẽh(rh(s), ϑh(s)) ≤ C and that the functions ϑh are uniformly dh-Lipschitz: to show
this fact, we choose f ∈ [0, L) in such a way that suph ψ

∗
h(f) ≤ 1; the inequalityψh(v) ≥ fv−ψ∗

h(f)
yields

ṡh(r) ≥ 1 + ψh(|u̇h|dh
(r)) ≥ 1 + f |u̇h|dh

(r) − ψ∗
h(f) ≥ f |u̇h|dh

(r)

so that

fdh(ϑh(α), ϑh(β)) = fdh(uh(rh(α)), uh(rh(β)) ≤

∫

rh(β)

rh(α)

f |u̇h|dh
(r) dr

≤

∫

rh(β)

rh(α)

ṡh(r) dr ≤ sh(rh(β)) − sh(rh(α)) = β − α,(4.52)

whence the uniform dh-Lipschitz continuity of ϑh.
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By arguing as in the proof of Theorem 4.1, we can find a compact interval I containing all the intervals
[s−h , s

+
h ] and a further subsequence such that ϑh(s) → ϑ(s) for every s ∈ I : it follows from (4.52) that

ϑ is f−1-Lipschitz with respect to d, ϑ(s±) = u(t±), ϑ(t) = u(t), and

(4.53) |ϑ̇h|dh
⇀∗ m in L∞(I) with m ≥ |ϑ̇|d.

Moreover, by using the elementary inequality

(4.54) ψh(v) + ψ∗
h(f) ≥ (f ∨ a)v − ψ∗

h(a) for every a ∈ [0, L),

and recalling that r+
h − r−h → 0, ψ∗

h(a) → ψ∗(a) <∞, and (4.50), we have

µ({t}) ≥ lim sup
h→∞

µh([r
−
h , r

+
h ])

(4.50)
= lim sup

h∈H

∫ r+

h

r−
h

(

ψh

(

|u̇h|dh
(τ)

)

+ ψ∗
h

(

Fh(τ, uh(τ))
)

)

dτ

(4.54)

≥ lim inf
h∈H

∫ r+

h

r−
h

(

(Fh(τ, uh(τ)) ∨ a)|u̇h|dh
(τ) − ψ∗

h(a)
)

dτ

≥ lim inf
h∈H

∫

s
+

h

s
−

h

(

(Fh(rh(s), ϑh(s)) ∨ a)|ϑ̇h|dh
(s)

)

ds− (r+
h − r−h )ψ∗

h(a)

≥ lim inf
h∈H

∫

I

(

(Fh(rh(s), ϑh(s)) ∨ a)|ϑ̇h|dh
(s)

)

ds

≥

∫

I

(

(F(t, ϑ(s)) ∨ a)m(s)
)

ds(4.55)

≥

∫

s+

s−

(

(F(t, ϑ(s)) ∨ a)|ϑ̇|d(s)
)

ds ≥ ∆d,f,t(u(t−), u(t), u(t+)),

viz. the desired (4.47). For the last lim inf inequality in (4.55) we used a result proved in the next
lemma. �

Lemma 4.3. Let I be a bounded interval in R, F,m, Fh, mh : I → [0,∞), h ∈ N, be measurable

functions satisfying

(4.56) lim inf
h→∞

Fh(s) ≥ F (s) for L
1
-a.a. s ∈ I, mh ⇀ m in L1(I).

Then

(4.57) lim inf
h→∞

∫

I

Fh(s)mh(s) ds ≥

∫

I

F (s)m(s) ds

Proof. Let us set Gk(s) := infh≥k Fh(s) ∧ k, k ∈ N. Since Gk(s) ≤ Fh(s) for every h ≥ k and
Gk ∈ L∞(I) we have for every k ∈ N

lim inf
h→∞

∫

I

Fh(s)mh(s) ds ≥ lim inf
h→∞

∫

I

Gk(s)mh(s) ds =

∫

I

Gk(s)m(s) ds.
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On the other hand, for L 1-a.a. s ∈ I , k 7→ Gk(s) is a nondecreasing sequence converging to
lim infh→∞ Fh(s), so that by monotone convergence

lim
k→∞

∫

I

Gk(s)m(s) ds ≥

∫

I

F (s)m(s) ds.

�

In the case of a limit metric dissipation function ψ with superlinear growth we have a completely
analogous result, which can be compared with [16, Theorem 4.8]. We omit the similar proof: it can be
carried out without assuming (C4F ), which has been used only to characterize the contribution of jump
part in the energy dissipation inequality (ED).

Theorem 4.4 (Convergence in the superlinear case). Let us assume thatψ is superlinear and for h ∈ N

let (X , dh,Eh,Fh,Ph) be a family of evolution systems satisfying (C1,2,3) and (C4E,FP ) with respect

to a sequence ūh ∈ X σ-converging to ū and let (X , d,E,F,P) be an upper gradient evolution

system.

Let uh ∈ AC(0, T ; (X , dh)), Fh ∈ B+([0, T ]), h ∈ H , be sequences of curves satisfying the

ψh-energy dissipation inequality (4.7), pointwise converging to u in (X , σ), with uh(0) = ūh, and

satisfying (4.30). Then u ∈ AC(0, T ; (X , d)) is a ψ-gradient flow of the limit system and

lim
h∈H

Eh(t, uh(t)) = E(t, u(t)) for every t ∈ [0, T ].(4.58)

Examples.

λ-convex energies. Let (Xh, ‖ · ‖h), (X , ‖ · ‖) be a family of Banach spaces such that X0 ⊂ Xh ⊂
X with continuous and dense inclusions. Setting ‖u‖h = ∞ if u ∈ X \ Xh we suppose that
Γ(X )- limh→∞ ‖ · ‖h = ‖ · ‖. Let E : X0 → (−∞,+∞] be a proper, λ-convex functional, i.e.
satisfying for every u0, u1 ∈ X0

E((1 − θ)u0 + θu1) ≤ (1 − θ)E(u0) + θE(u1) −
λ

2
θ(1 − θ)‖u1 − u0‖ for every θ ∈ [0, 1].

We consider a family ℓ ∈ C1([0, T ]; X ′
0 ), we suppose that E(t, u) := E(u) − 〈ℓ(t), u〉 has compact

sublevels on X0, and we extend it to X by setting E(t, u) = ∞ if u ∈ X \ X0.

We set P(t, u) = ∂tE(t, u) = 〈ℓ′(t), u〉 and

Fh(t, u) := min
{

‖ξ − ℓ(t)‖∗h : ξ ∈ ∂hE(u)
}

where ∂h is the Frechét subdifferential of the restriction of E in Xh. Notice that ∂hE ⊂ X ′
0 and it

is not difficult to check (see [23, 16]) that (X , dh,E,Fh,P) and (X , d,E,F,P) are upper gradient
evolution systems and all the assumptions (C1,2,3,4) are satisfied.

Dirichlet energy and double-well potentials. Here is a concrete example of the above setting. Consider
a bounded open set Ω ⊂ R

d, a function W ∈ C2(R) with infR W > −∞, infR W
′′ > −∞, and
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ℓ ∈ C1([0, T ];L2(Ω)). In the space X := L2(Ω) endowed with the strong L2-topology we set

E(t, u) :=

∫

Ω

(1

2
|∇u|2 +W (u) − ℓ(t) u

)

dx if u ∈ H1
0 (Ω), W ◦ u ∈ L1(Ω),

E(t, u) := + ∞ otherwise.

We choose a sequence of exponents ph > 1 converging to 1 as h→ ∞, and initial data ūh ∈ H1
0 (Ω)

with E(0, ūh) <∞ strongly converging to ū in H1
0 (Ω) with W ◦ uh →W ◦ u in L1(Ω).

We let dh be the distance induced by the Lph(Ω) norm, d the L1(Ω)-distance, ψh(v) := 1
ph
vph ,

and

(4.59) Fh(t, u) := ‖ − ∆u+W ′(u) − ℓ(t)‖
L

p∗
h(Ω)

, P(t, u) =

∫

Ω

ℓ′(t) u dx,

with Fh(t, u) = +∞ if −∆u+W ′(u)− ℓ(t) 6∈ Lph(Ω); F has the analogous expression in L∞(Ω).

Applying the results of [23, §7.2] we see that (X , dh,E,Fh,P) and (X , d,E,F,P) are upper
gradient evolution systems and for every h ∈ N there exists a solution uh of the ψh-gradient flow. It
is also easy to check that all the assumptions (C1,2,3,4) are satisfied so that, up to subsequences,
uh(t, ·) converge to u(t, ·) in L2(Ω) at every time t with convergence of the energies E(t, ·) and u is
a BV solution of the rate-independent evolution governed by (X , d,E,F,P).

Marginal functionals. In the finite dimensional setting described in Section 2 (here we also assume that
the norms ‖ · ‖u are independent of h), let us consider the marginal functional (2.16) and the couple
(F,P) given by (2.21) and (2.22).

It is not difficult to see that (X , d,E,F,P) is an upper gradient evolution system. ψh-gradient flows
in the superlinear case can be obtained by applying the results of [16]: they in particular solve the
differential inclusions (2.18). Existence of a BV solution and convergence of the ψh gradient flows can
thus be obtained by applying Theorems 4.1 and 4.2.

REFERENCES

[1] L. AMBROSIO, N. GIGLI, AND G. SAVARÉ, Gradient flows in metric spaces and in the space of probability measures,
Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008.

[2] L. AMBROSIO, G. SAVARÉ, AND L. ZAMBOTTI, Existence and stability for Fokker-Planck equations with log-concave

reference measure., Probab. Theory Relat. Fields, 145 (2009), pp. 517–564.
[3] S. ARNRICH, A. MIELKE, M. A. PELETIER, G. SAVARÉ, AND M. VENERONI, Passing to the limit in a wasserstein

gradient flow: From diffusion to reaction, To appear on Calc. Var. Partial Differential Equations, (2011), pp. 1–28.
[4] H. ATTOUCH, Variational convergence for functions and operators, Pitman (Advanced Publishing Program), Boston,

MA, 1984.
[5] H. BRÉZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-

Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
[6] C. CASTAING AND M. VALADIER, Convex analysis and measurable multifunctions, Springer-Verlag, Berlin, 1977. Lec-

ture Notes in Mathematics, Vol. 580.
[7] J. CHEEGER, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428–

517.
[8] S. DANERI AND G. SAVARÉ, Lecture notes on gradient flows and optimal transport, To appear on Seminaires et Con-

gres, SMF, (2010).



27

[9] E. DE GIORGI AND S. SPAGNOLO, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo

ordine, Boll. Un. Mat. Ital. (4), 8 (1973), pp. 391–411.
[10] M. EFENDIEV AND A. MIELKE, On the rate–independent limit of systems with dry friction and small viscosity, J. Convex

Analysis, 13 (2006), pp. 151–167.
[11] A. MIELKE, Evolution in rate-independent systems (Ch. 6), in Handbook of Differential Equations, Evolutionary Equa-

tions, vol. 2, C. Dafermos and E. Feireisl, eds., Elsevier B.V., Amsterdam, 2005, pp. 461–559.
[12] , Differential, energetic and metric formulations for rate-independent processes (Ch. 3), in Nonlinear PDEs and

Applications. C.I.M.E. Summer School, Cetraro, Italy 2008, L. Ambrosio and G. Savaré, eds., Springer, Heidelberg,
2011, p. ???

[13] A. MIELKE, R. ROSSI, AND G. SAVARÉ, Modeling solutions with jumps for rate-independent systems on metric spaces,
Discrete and Continuous Dynamical Systems A, 25 (2009).

[14] A. MIELKE, R. ROSSI, AND G. SAVARÉ, BV solutions and viscosity approximations of rate- independent systems,
ESAIM Control Optim. Calc. Var., 18 (2012), pp. 36–80.

[15] , BV solutions to infinite-dimensional rate-independent systems, in preparation, (2012).
[16] , Nonsmooth analysis of doubly nonlinear equations, Calc. Var. Partial Differential Equations, (2012). DOI:

10.1007/s00526-011-0482-z. In press. Published online since January 2012. WIAS preprint 1613.
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