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A B S T R A C T   

When researchers analyze data, it typically requires significant effort in data preparation to make the data 
analysis ready. This often involves cleaning, pre-processing, harmonizing, or integrating data from one or 
multiple sources and placing them into a computational environment in a form suitable for analysis. Research 
infrastructures and their data repositories host data and make them available to researchers, but rarely offer a 
computational environment for data analysis. Published data are often persistently identified, but such identifiers 
resolve onto landing pages that must be (manually) navigated to identify how data are accessed. This navigation 
is typically challenging or impossible for machines. 

This paper surveys existing approaches for improving environmental data access to facilitate more rapid data 
analyses in computational environments, and thus contribute to a more seamless integration of data and analysis. 
By analysing current state-of-the-art approaches and solutions being implemented by world‑leading environ
mental research infrastructures, we highlight the existing practices to interface data repositories with compu
tational environments and the challenges moving forward. 

We found that while the level of standardization has improved during recent years, it still is challenging for 
machines to discover and access data based on persistent identifiers. This is problematic in regard to the 
emerging requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data, in general, and 
problematic for seamless integration of data and analysis, in particular. There are a number of promising ap
proaches that would improve the state-of-the-art. A key approach presented here involves software libraries that 
streamline reading data and metadata into computational environments. We describe this approach in detail for 
two research infrastructures. We argue that the development and maintenance of specialized libraries for each RI 
and a range of programming languages used in data analysis does not scale well. 
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Based on this observation, we propose a set of established standards and web practices that, if implemented by 
environmental research infrastructures, will enable the development of RI and programming language inde
pendent software libraries with much reduced effort required for library implementation and maintenance as 
well as considerably lower learning requirements on users. To catalyse such advancement, we propose a roadmap 
and key action points for technology harmonization among RIs that we argue will build the foundation for 
efficient and effective integration of data and analysis.   

1. Introduction 

One of the great challenges of data-driven research is that data rarely 
come in a form that is immediately ready for analysis. Across industry 
and academia it is estimated that in a data-driven project 80% of the 
effort is spent on data preparation (Press, 2016; Wickham, 2014). As a 
consequence, a relatively small amount of time is spent on the actual 
analysis through which the primary value can be realised, and some 
research may not even be attempted because the necessary data prep
aration would be too time consuming. 

Technological advances over the past decade have provided us with 
an unprecedented increase in compute resources for research, ushering 
in a new way of doing science (Hey et al., 2009). However, we will not 
be able to reap the dividend for research from these developments if we 
cannot reverse the unfavourable ratio of time spent on data preparation 
versus data analysis, thus allowing more resources to be shifted towards 
activities that allow us to extract knowledge from data. 

The increasing need for long term, systematic, standardised moni
toring required to understand the environment has led to the develop
ment of Research Infrastructures (RI). At the same time, technology 
advancements in storage and compute has provided an opportunity to 
make any data collected readily available for reuse. RIs are platforms 
that acquire, curate and publish continuous observation data for 
research and policy making. Important for RIs is that their data holdings 
and compute services are accessible and reusable not only for human 
users but also for machines (Weigel et al., 2020). Preparing the data for 
machine access paves the way for data reuse in computational envi
ronments for data analysis, e.g., in Jupyter Notebooks and High Per
formance Computing, and thus more actively supports the automated 
transformation of published data into analysis-ready data. 

We conducted a survey of state-of-the-art approaches for integrating 
data and analysis implemented by world‑leading RI in the Earth System 
and Environmental Sciences. Major RI advances in Earth System and 
Environmental Sciences studying global challenges such as climate 
change, geohazards or biodiversity loss have led to an enormous in
crease in the amount of data available in these domains. This trend was 
further fueled in recent years by the commissioning of large RIs that 
enable the permanent observation of the Earth System. The resulting 
research data managed by these infrastructures collected by individual 
researchers, groups, or projects are not only voluminous but also 
extremely heterogeneous, which reflects the multidisciplinarity as well 
as the large range of methods and technologies used in data acquisition 
and processing. 

Within this scope, we studied automated approaches that improve 
access to research data published by repositories and facilitate auto
mated transformation of published data into analysis-ready data in 
computational environments to enable a seamless integration of data 
and analysis. In our study, we paid particular attention to observational 
time series and whether such data can be efficiently (i.e., automatically) 
loaded into data structures for data analysis with Python as program
ming language and using Jupyter as a commonly used computational 
environment. 

By analysing current approaches and solutions being implemented 
by world‑leading RIs, we highlight the existing practices to interface 
data repositories with computational environments, underscore the 
challenges faced at this interface, and identify technology gaps in ap
proaches by individual RIs. The survey also highlights the heterogeneity 

of existing practices and shows that there is enormous potential for 
practice harmonization. 

A continuing challenge is the significant effort required to develop 
technologies that match the requirements of the many distinct appli
cation programming interfaces (APIs) implemented by data repositories 
with the many programming languages used by researchers for data 
analysis. We show that in practice this heterogeneity means that each 
data repository needs to develop, publish and maintain individual 
technologies for each (major) programming language used by re
searchers for data analysis (e.g., R, Python, Julia, Go, MATLAB, just to 
name a few). Such development and maintenance is inefficient and for 
many RIs untenable. 

Building on this observation, we propose a roadmap for future co
ordinated development among RIs in the Earth and Environmental 
Sciences, and potentially in other disciplines, that will see a harmoni
zation in approaches for seamless integration of data and analysis, and 
inevitably lead to increased efficiency, reduced development and 
maintenance costs, and lower learning curves for users. 

The paper is structured as follows: Section 2 (Survey) presents the 
conducted survey, with a short description of the surveyed RIs and a 
description of the activities conducted to understand if and how the RIs 
support machine discovery of data access, given an identifier (e.g., 
digital object identifier (DOI)). Building on the survey, sections 3 (So
lutions) and 4 (Discussion) present and discuss state-of-the-art solutions. 
In Section 5 (Roadmap), we suggest that the solutions can inspire a 
concerted technology harmonization among RIs that would enable the 
development and maintenance of RI and programming language inde
pendent solutions for data-analysis integration. Section 6 (Conclusions) 
closes this work with final remarks. 

2. Survey 

This section summarizes a systematic review of the approaches 
implemented by world‑leading RIs in Earth System and Environmental 
Sciences to enable data and metadata access for both humans and ma
chines. We first present the RIs included in the survey. We then detail the 
survey design and the conducted activities. Finally, we present our 
findings in a survey evaluation. 

2.1. Selected research infrastructures 

This section briefly introduces selected RIs and their data and in
formation systems. 

PANGAEA (www.pangaea.de) is a data publisher in Earth & Envi
ronmental Science, jointly managed by the Alfred Wegener Institute 
Helmholtz Centre for Polar and Marine Research (AWI) and the Centre 
for Marine Environmental Sciences (MARUM) at the University of Bre
men. PANGAEA is a trustworthy repository (World Data System, Core
TrustSeal) which provides continued access and long term preservation 
of more than 400,000 datasets from various sub-disciplines of Envi
ronmental Sciences. These datasets have been collected through 
research infrastructures, projects and programs, and also includes long 
tail data collected or created by individual researchers. Access to these 
datasets is enabled through support for numerous community-specific as 
well as cross-domain standards. All published datasets are also tagged 
with a persistent identifier (DOI). 

The Terrestrial Ecosystem Research Network (TERN, https://www.ter 
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n.org.au/) collects, curates and publishes data on temporal and spatial 
changes in Australia’s terrestrial ecosystems. Established in 2009 with 
Australian government NCRIS (National Collaborative Research Infra
structure Strategy) grant funding, TERN’s Data Discovery Portal gives 
open access to over 2500 open data collections. TERN’s data collections 
are derived from continental-scale gridded remote sensing, soil and 
landscape products, plot-based soil and vegetation surveillance moni
toring sites, calibration and validation campaigns for remote sensing, 
and sensors such as phenocams, acoustic monitors and eddy-covariance 
flux towers. TERN develops standardised ecological monitoring pro
tocols and systems for data collection, storage and management. 

AuScope (https://www.auscope.org.au/) is an NCRIS-funded 
Australian research infrastructure that develops and delivers practical 
tools to enhance accessibility of geoscience datasets. The AuScope Vir
tual Research Environment (AVRE) provides a unifying platform for all 
AuScope Programs’ data and analytical needs (Wyborn et al., 2018). Its 
Scientific Software Solutions Centre (SSSC) provides an environment 
where scientific software can be published, discovered, shared with 
collaborators, and described for automated execution (Squire et al., 
2018). The process of registering software at the SSSC captures 
description, license, versioning, and citation relevant information, as 
well as a machine-readable description of the software environment 
required to run it. With these elements, software from the SSSC can be 
chained together into workflows in virtual laboratories. This includes 
automated data preparation by client applications and management of 
output data. The elements are identified by persistent and versioned 
Uniform Resource Identifiers (URI). 

The Commonwealth Scientific and Industrial Research Organization 
(CSIRO, https://www.csiro.au) is Australia’s national research agency, 
covering a broad spectrum of science, engineering and medical research 
domains. Many datasets that originated from CSIRO research are made 
available through the CSIRO Data Access Portal (DAP, https://data. 
csiro.au). The repository serves both as a general data repository and 
as an institutional data archive. The CSIRO DAP was among the first data 
repositories to offer its metadata for harvesting using Schema.org (Noy 
and Brickley, 2017) in its user interface to make data landing pages 
machine readable. 

The National Ecological Observatory Network (NEON, https://www. 
neonscience.org) is a Research Infrastructure (RI) established by the 
US National Science Foundation, with the mission to ‘enable ecological 
forecasting of ecosystem function’s response to natural and human- 
induced forcings such as climate, land use and invasive species across 
a range of spatial and temporal scales’ (Schimel et al., 2011). It is a 
distributed site-based RI of ecological measurements and observations 
designed to scale from the site to the region-and-continent over the next 
30 years. The observatory includes 81 field sites (including terrestrial 
and aquatic), airborne remote sensing, and a cyber-infrastructure for 
data acquisition, storage, analyses, and dissemination. NEON has 181 
quality-controlled, open-source data products across a range of biotic 
and abiotic ecological processes and drivers, that include; biodiversity, 
biogeochemistry, climate, ecohydrology, invasive species and land use. 

The Chinese Ecosystem Research Network (CERN, http://www.cern.ac. 
cn/) was established in 1988 by the Chinese Academy of Sciences, to 
obtain scientific data of ecosystem changes and to study the changes in 
structure, functions and processes of different ecosystems in China (Fu 
et al., 2010). Over the past 30 years, CERN has developed into a national 
innovative scientific and technological facility, including a synthesis 
center, a data center, five disciplinary sub-centers, and 44 networking 
stations. CERN’s monitoring and experimental activities produce 
various data that are processed, integrated, and accessed through 
ecological stations, sub-centers, data centers, and the synthesis center 
under standardised procedure. CERN conducts network observation and 
experimentation across China’s diverse ecosystems on a long-term basis, 
serves as a nexus for national ecological research, promotes data 
sharing, and creates an educational center and collaborative base for 
ecological researchers. 

The Integrated European Long-Term Ecosystem, Critical Zone & Socio- 
Ecological Research Infrastructure (eLTER RI https://www.lter-europe. 
net/elter-esfri) comprises a wide range of highly instrumented Euro
pean sites focusing on terrestrial, fresh- and transitional water ecosys
tems and also addressing socio-ecological interactions. Currently in the 
phase of preparing its operational implementation, it enables the in-situ 
and co-located acquisition and long-term preservation of ecosystem 
characteristics and Essential Variables ranging from biogeochemistry to 
biodiversity as well as socio-ecological characteristics. The RI provides 
and develops e-infrastructure for data managers, developers and scien
tists, including the Dynamic Ecological Information Management Sys
tem - Site and Dataset Registry (DEIMS-SDR) (https://deims.org/), the 
vocabulary service EnvThes (http://vocabs.lter-europe.net/EnvThes/), 
the eLTER Data Integration Portal (DIP) (http://dip.lter-europe.net) and 
Central Data Node (CDN) (https://cdn.lter-europe.net/). 

The Integrated Carbon Observation System (ICOS, https://www.icos-cp 
.eu/) is a European-wide greenhouse gas research infrastructure. ICOS 
produces standardised data on greenhouse gas concentrations in the 
atmosphere, as well as on carbon fluxes between the atmosphere, the 
earth and oceans. ICOS provides long term, high quality observations 
that follow the global standards for the best possible quality data on the 
atmospheric composition for greenhouse gases (GHG), greenhouse gas 
exchange fluxes measured by eddy covariance and CO2 partial pressure 
at water surfaces. ICOS data is based on the measurements from over 
140 stations across 12 European countries and is available at the ICOS 
data portal (https://data.icos-cp.eu/) with open access to data and 
metadata for download and instant graphical preview. A virtual research 
environment is provided as well with Jupyter Notebooks to the public, 
for collaborative research groups and education with direct access to the 
data. 

The European Network for Earth System Modeling Climate Data Infra
structure (ENES CDI, https://is.enes.org/) is a Research Infrastructure 
which aligns and pools national services and resources to support the 
European climate research community. It is closely integrated into the 
worldwide Earth System Grid Federation (ESGF, https://esgf.llnl.gov/). 
Core services, such as data ingestion, hosting and access for climate 
simulations in the multi-PByte range, are complemented by persistent 
identifier (PID) services that enable data versioning, data replication, 
collection building and annotation with external information. High- 
level collections are associated with DOIs whose persistence is guaran
teed by the World Data Centre for Climate (WDCC). Processing services 
close to the data are stepwise integrated into the infrastructure. This 
includes JupyterHub installations as well as web service interfaces based 
on OGC WPS (Open Geospatial Consortium Web Processing Service) 
standard.ENES provides standardised and quality-controlled, open data 
collections from various climate modeling activities. Most prominent 
examples are the collections from Coupled Model Intercomparison 
Projects (CMIP) and the Coordinated Regional Climate Downscaling 
Experiments (CORDEX). 

NCI Australia (National Computational Infrastructure) (https://nci.org. 
au/) hosts data collections that are co-located with high-performance 
supercomputer infrastructure and cloud systems that generate data, 
process data streams or analyze data. The vast majority of this data has 
been from the climate, weather, geophysics and environmental sciences. 
As well as available through filesystem access and vast co-located soft
ware library, NCI publicly delivers the geospatial data through inter
operable protocols wherever possible, including ISO (International 
Organization for Standardization) geospatial standards, OGC, and 
OpenDAP (Open-source Project for a Network Data Access Protocol), 
plus global federations such as the ESGF NCI has delivered these through 
a mixture of servers including GeoNetwork (https://geonetwork.nci. 
org.au) as a data discovery service. While NCI delivers large amounts 
of data through services such as THREDDS, it has developed its own 
scalable data services, e.g., through GSKY (https://gsky.nci.org.au). 
These services increasingly ensure that the computational processing of 
the data is handled on the server-side (Evans et al., 2015). Each 
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community on the system can also augment their computational 
ecosystem on the common data. 

2.2. Design 

To obtain a state-of-the-art overview of the current practices on data 
access offered by the selected RIs, we asked participating infrastructure 
representatives to fill a questionnaire on technical details and imple
mented standards of their data infrastructure. Specifically, we asked for 
persistent identifiers used, the metadata and data formats and standards 
offered as well as the implemented access protocols and interfaces. 
Furthermore, we asked the participants to provide example links to both 
data and metadata resources as well as the required authentication 
protocols. Finally, we asked the respondents to gather practices and 
thoughts on the following questions: Describe how a data scientist can 
write a script (any language) that based on a DOI/PID loads the identified 
(meta)data into a data frame (native data structure in your language of 
choice). Do you or third parties offer special libraries for data access? If a 
DOI/PID is not sufficient, what information does the data scientist need to 
load the data of your RI into a data frame? 

Of primary interest are cross-domain practices based on widely used 
and easily implementable web standards suitable for both human and 
machine access and processing. We focused on two approaches for 
disseminating meta(data): embedding metadata within a web page and 
using content negotiation. 

2.2.1. Embedded metadata 
A very common method to expose machine readable metadata is to 

embed metadata in the HTML (Hypertext Markup Language) code of the 
landing page a PID/DOI resolves to. Traditionally, in the scholarly 
context this has been achieved using Dublin Core (Weibel and Koch, 
2000) within META tags (e.g., title, date, creator, identifier) as recom
mended by the Dublin Core initiative (Kunze, 1999). 

Links (Uniform Resource Locators - URLs) to data objects can be 
embedded in a landing page’s HTML or in the response header following 
the typed links convention (RFC8228, Nottingham, 2010) which in the 
scholarly context has been refined by Van de Sompel and Nelson (2015) 
in their signposting initiative. 

During recent years, the use of JSON-LD (JavaScript Object Notation 
for Linked Data; Sporny et al., 2020) encoded Schema.org metadata, e. 
g., in the HEAD section of an HTML document, has gained popularity in 
research related web pages. The use of Schema.org offers two important 
advantages and therefore has been implemented by a large number of 
data providers. First, it allows us to describe data sets in detail using the 
Schema.org/Dataset type. Second, its use improves search engine har
vesting and thus visibility and discoverability of described data sets. In 
Schema.org/Dataset, links (URLs) to data objects can easily be captured 
using the Schema.org/distribution property. 

2.2.2. Content negotiation 
To offer web based content in different formats, content negotiation 

is a common approach to enable access to metadata optimized for both 
humans and machines. This is done by a client application sending HTTP 
(Hypertext Transfer Protocol) header requests in which the expected 
response format is specified using a valid MIME (Multipurpose Internet 
Mail Extensions) type within the Accept header field. This enables the 
server to deliver the metadata in the form requested by the client. JSON- 
LD encoded metadata can be requested using the application/ld + json 
MIME type, as shown in the following example: 

GET doi:10.1594/PANGAEA.80968 HTTP/1.1 

Accept: application/ld+json 

Assuming the MIME type is supported, content negotiation could also 
be used to offer direct access to downloadable data objects such as 
NetCDF (Network Common Data Form format) files. This mechanism is 

thus particularly useful if data is offered to users in various alternative 
formats (Lóscio et al., 2017). 

To discover links (URLs) to data objects within the served content 
generally requires domain knowledge. For example, XML (Extensible 
Markup Language) encoded ISO19139 (Geographic MetaData XML) uses 
the ‘CI_OnlineResource’ element while in XML encoded EML (Environ
mental Markup Language) this is done using the ‘distribution’ element. 
As described above, if Schema.org/Dataset encoded content is accessed 
through content negotiation, data object links can be discovered via the 
Schema.org/distribution property. This heterogeneity complicates the 
discovery for machines of links to data objects in metadata. 

Both methods are currently widely used by RIs. Content negotiation 
is a W3C (World Wide Web Consortium) recommended practice for 
providing data on the web (Lóscio et al., 2017) and currently gains 
momentum in particular within the Open Data community through the 
emerging ‘content negotiation by profile’ approach (Svensson et al., 
2019). JSON (JavaScript Object Notation) encoded metadata, in 
particular following the schema.org/Dataset specification, has been 
strongly promoted by major search engines (Guha et al., 2015) and is 
recommended by Google’s dataset search, one of the largest and fastest 
growing search engines for research data (Brickley et al., 2019). 

2.3. Evaluation 

To determine if the described technologies are in use by the 
participating RIs, we tested direct machine access to data given a DOI or 
another (persistent) identifier used by the RI. The diagram in Fig. 1 
shows the overall approach. We used F-UJI (Devaraju and Huber, 2020, 
https://github.com/pangaea-data-publisher/fuji) - a tool which allows 
RIs to estimate the FAIR level of a given data set - to perform metadata 
retrieval from a landing page as well as to test content negotiation for 
each data set. F-UJI also reports if the links to data objects are listed in 
metadata. Additionally, we manually inspected each landing page 
HTML source code in order to validate F-UJI’s results. (See Tables 1 and 
2.) 

Our survey showed that all RIs offer a number of standardised ex
change protocols and associated services to enable machine access to 
their metadata catalogues. However, no common agreement or main
stream practice exists regarding the choice of offered metadata schemas 
and associated exchange interfaces. The mainstream standards Cata
logue Service for the Web (CSW) of the Open Geospatial Consortium 
(OGC) and the Open Archives Initiative Protocol for Metadata Har
vesting (OAI-PMH) were mentioned by all RIs except NEON and ICOS, 
which offer a GraphQL (query language for APIs) API and a SPARQL 
(SPARQL Protocol And RDF Query Language) endpoint, respectively. 
Except ICOS, all RIs offer community accepted standard metadata for
mats, among which ISO19115 (Geographic Information - Metadata), 
ISO19139, and EML are most frequent. Most RIs offer Schema.org 
metadata as JSON-LD in order to improve search engine discover
ability. Similarly, the choice of data formats is not harmonized among 
the RIs, which is partly due to the large number of offered data types 
ranging from time series data to multimedia objects. However, for time 
series data, the common choice of available formats is limited to text 
formats, in particular CSV (comma-separated values) and TSV (tab- 
separated values), or NetCDF, which are offered by all RIs. Besides data 
set based access, RIs have also started to offer data via APIs such as OGC 
SOS (Sensor Observation Service) or WFS (Web Feature Service) 
allowing to retrieve customized data sets whose extent is determined via 
query parameters. Similarly, OpenDAP is used as query based data in
terfaces by some of the investigated RIs. 

Persistent identifiers are especially important for reusing data, since 
they serve as reference in scientific citations. Therefore, they usually are 
the only available information for finding corresponding metadata and 
to identify and download the data objects, e.g., data files or data 
streams. All examined RIs routinely identify all their data sets or select 
data sets with PIDs. DOIs and Handles are the predominantly used 
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persistent identifiers. 
Some of the above-mentioned mainstream protocols (e.g., OAI-PMH 

or CSW) provide standard methods to access data sets using identifiers. 
However, the identifiers listed by these catalogue services often differ in 
design from persistent identifiers. For example, OAI-PMH identifiers 
must follow a URI syntax different from RFC2396 (Berners-Lee, 1998), 
which effectively excludes DOIs in OAI-PMH metadata. This is a chal
lenge for FAIR (meta)data because the principles prescribe the use of 
persistent identifiers. The same can be said for systems using OpenDAP 
or OGC data exchange standards, such as SOS or WFS, which do not 
allow data retrieval by persistent identifier. More important, however, is 
the fact that no standard or common (and machine actionable) agree
ment exists for how links to data objects shall be included in metadata. 
Consequently, none of the investigated RIs provides machine-actionable 
links to data objects on their landing pages or within provided metadata. 
As a result, an information gap exists between identifiers and data ac
cess. For machines this gap is particularly challenging since they fail to 
automatically identify the link. 

As we highlighted, some of the above-mentioned protocols do not 
allow retrieval of data based on persistent identifiers. As illustrated in 
Fig. 1, we, thus, focus on access methods based on the HTTP protocol 
and evaluate how RIs address the gap between identifiers and data, and 
which possibilities and practices exist to make data accessible for 
machine-based data analysis environments using persistent identifiers as 
an entry point. 

PANGAEA and IS-ENES provide metadata embedded in their landing 
page’s HTML expressed as Dublin Core META tags. PANGAEA, CERN 
and IS-ENES offer their metadata encoded as JSON-LD, following the 
Schema.org/Dataset convention, embedded in the HTML of their land
ing pages. Additionally, PANGAEA, TERN, CSIRO, IS-ENES, ICOS and 
NCI offer JSON encoded metadata via content negotiation. Except ICOS 
which offers a proprietary JSON encoding, all RIs offer this JSON met
adata encoded as standardised Schema.org/Dataset style JSON-LD. 
NEON also provides JSON-LD schema.org/Dataset encoded metadata 
embedded in the HTML of its landing page. However, in NEON this 
HTML is dynamically generated using JavaScript and access to metadata 
thus relies on a client that interprets JavaScript. 

Except PANGAEA, none of the investigated RIs serves JSON meta
data containing a standard compliant link to a downloadable data ob
ject. ICOS’ custom JSON and XML metadata formats do contain data file 
name and access URL, but are not machine actionable due to a license 
agreement which needs to be manually accepted. PANGAEA and NEON 
include sufficient metadata about data objects such as actionable links to 
data files and encoding information (MIME type) in their Schema.or 
g/Dataset encoded JSON-LD metadata. However, only PANGAEA uses 
this data object metadata (namely its MIME type) to enable direct 
download of data files using content negotiation, for example: 

GET doi:10.1594/PANGAEA.80968 HTTP/1.1 

Accept: text/tab-separated-values 

To summarize, we found that despite the comparably high stan
dardization level among RIs attained during the past years, it still seems 
to be a challenge to provide the same level of information to both ma
chines and humans. When using a DOI or URL as starting point, a human 
user is immediately directed to a landing page. From there, for humans it 
is generally straightforward to discover rich metadata and download the 
corresponding data. In contrast, it is surprisingly difficult for machines 
to find interpretable metadata with links to data objects using a DOI as a 
starting point. Although content negotiation is supported by some RIs, 
links to downloadable data objects are rarely included in this metadata. 
Also, these links are rarely embedded in machine-readable form in the 
HTML code of the landing pages. 

Fig. 1. A schematic overview of HTTP based methods to expose metadata in a machine as well a human friendly manner offering various routes for machine based 
discovery of links to downloadable data. 

Table 1 
Overview of most frequently used standards and interfaces for metadata and 
data access offered by investigated RIs.  

RI PID Metadata 
access 

Data formats Data access 

PANGAEA DOI OAI-PMH, 
HTTP 

HTML, TSV HTTP 

TERN DOI, PID OAI-PMH, CSW NetCDF, CSV, 
GeoTIFF 

HTTP, 
OpenDAP, 
WFS, WMS 

NEON DOI, UUID REST API, 
GraphQL, 
HTTP 

CSV, HDF5, 
GeoTIFF 

HTTP, REST 
API 

CERN DOI HTTP XLS, CSV, TIFF, 
SHP, NetCDF 

HTTP 

eLTER DOI 
(external) 

REST API, OAI- 
PMH, CSW 

CSV, XLS, 
NetCDF, 
GeoTIFF, SHP 

HTTP, SOS 

ICOS DOI, 
handle 

HTTP, SPARQL JSON, CSV, 
XML, TSV 

HTTP 

IS-ENES/ 
ESGF 

DOI, 
handle 

HTTP, OAI- 
PMH 

NetCF, GRIB HTTP, 
OpenDAP 

NCI DOI CSW, 
OpenSearch 

NetCDF, HDF5, 
GeoTIFF, CSV 

HTTP, 
OpenDAP, 
WMS, WCS 

AuScope 
AVRE 

DOI 
(external) 

CSW XML HTTP, WMS, 
WFS 

Acronyms used in this table not explained elsewhere in this document: WMS: 
Web Map Service; WCS: Web Coverage Service; WFS: Web Feature Service; 
HDF5: Hierarchical Data Format; GeoTIFF: Geographic Tagged Image File 
Format; UUID: Universally Unique Identifier; SHP: Shapefile format; GRIB: 
General Regularly-distributed Information in Binary form format. 
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3. Solutions 

The above described approaches can be used to automate ingesting 
data and metadata into computational environments. Some of the 
investigated RIs have proposed solutions by developing specialized 
software libraries that automate such ingestion. For example, PANGAEA 
has recently published the Python library pangaeapy (Huber et al., 
2020) (https://pypi.org/project/pangaeapy/), which allows reading 
data sets into a native Python object given a DOI. The library leverages 
PANGAEA’s web services to retrieve rich metadata and load the asso
ciated tabular data into a Python (pandas) data frame object (McKin
ney, 2012). The data frame data structure is commonly used in the wide 
range of statistical and data visualisation libraries, e.g., scipy or 
matplotlib. The direct availability of data in this data structure 
streamlines data processing for data scientists. Pangeapy’s data struc
tures for metadata follow the PANGAEA data model (Diepenbroek et al., 
2017), which is centered around the Dataset class structure containing 
several supportive classes such Event and Parameter for information 
about the geographical and methodological context and the observed 
property, respectively, as well as the Data themselves, for the individual 
measurements and observations. To represent PANGAEA specific met
adata, pangaeapy implements the PanDataSet class, which provides 
attributes to hold objects for, among other, PanEvent and PanParam 
classes. Individual metadata values can be accessed through their cor
responding object attributes. The tabular data of a data set is stored in 
the data attribute of PanDataSet, which holds a data frame object. In 
some cases, PANGAEA’s tabular data does not contain temporal or 
geographical information (e.g., latitude and longitude) as this infor
mation is instead in the metadata of a PANGAEA data set, e.g., in an 
associated Event. In such cases, pangaeapy adds additional data col
umns to the data frame to hold these data. 

Within a Python based data analysis environment such as Jupyter, 
PANGAEA data and metadata can be loaded with the following 
statement: 

pandata = PanDataSet(’doi:10.1594/PANGAEA.889516’) 

Similarly to PANGAEA, ICOS provides a Python library (icoscp) 
(https://pypi.org/project/icoscp/) to provide users high-level, 

performant and easy access to tabular data. In ICOS, persistent identi
fication of digital data objects resolves to a human friendly landing page. 
The provided metadata includes a filename needed to conventionally 
download the file. With a single instruction, the icoscp library loads 
this metadata and data into a Python data frame. The following state
ments can be used to load ICOS data into a data frame by either (1) the 
local identifier, (2) the Handle, or (3) the landing page URL: 

icosdata = Dobj(’XA_Ifq7BKqS0tkQd4dGVEFnM’) 
icosdata = Dobj(’https://hdl.handle.net/11676/ 
XA_Ifq7BKqS0tkQd4dGVEFnM’) 
icosdata = Dobj(’https://meta.icos-cp.eu/objects/ 
XA_Ifq7BKqS0tkQd4dGVEFnM’) 

As with pangaeapy, the returned Python object contains a standard 
pandas data frame and attributes describing the data columns. A col
umn description contains for example: type = “gross primary CO2 
production”, unit = “μmol m-2 s-1”, kind = “particle flux”, whereas the 
metadata for the data set itself contains the citation string, among other 
information. Currently, icoscp is limited to loading time series data 
(CSV). As a rule of thumb: data sets that can be previewed in the data 
portal are accessible through the library. Overall, the pangaeapy and 
icoscp libraries considerably streamline loading data into computa
tional environments and, thus, support making data analysis ready. This 
concerns in particular the reading of data into suitable data analysis 
formats as well as data harmonization and cleansing. 

Having data available in data frames is an important first step in 
overall data processing and analysis. As a showcase for PANGAEA and 
ICOS data processing and analysis, we used pangaeapy and icoscp to 
synthesise data from both RIs in a common computational environment, 
for which we used Jupyter. We chose two complementary data sets 
(Diverres et al., 2020; Knust and Rohardt, 2018) with data collected 
during ship-based physical oceanography and carbon dioxide measure
ments (Pfeil et al., 2013). Together, the data represent two close tran
sects across the Atlantic ocean, measured during two ship expeditions 
that occurred within a 2 months’ time frame. 

With the libraries, we load the data sets directly into data frames 
using the respective persistent identifier as follows: 

Table 2 
Evaluation results performed on selected datasets from investigated RIs using the HTTP based methods illustrated in Fig. 1 for machine based discovery of links to 
downloadable data.   

Evaluated PID PIDs 
available 

Data link on 
landing page 

Metadata 
embedded 

Content 
negotiation JSON 

Content 
negotiation XML 

Data link 
in JSON 

Data link 
in XML 

PANGAEA https://doi.pangaea.de/10.1594/PA 
NGAEA.896543 

Y Y Ya,b Y N Y – 

TERN https://doi.org/10.4227/05/5344 
F1159A1A9 

Y N – Ya N N N 

CSIRO doi:https://doi.org/10.4225/08 
/563869A931CFE 

Y – – Ya N N – 

NEON https://data.neonscience.org/ 
data-products/DP1.00001.001 

Ye Yc Ya,b,c N N Yc – 

CERN https://dx.doi.org/10.11922/scie 
ncedb.293 

Y N Ya N N – – 

eLTER https://deims.org/dataset/75a7f93 
8-7c77-11e3-8832-005056ab003f 

Ye N N N N – – 

ICOS https://hdl.handle.net/11 
676/8YwZj8CQEj87IuI9P6QkZiKX 

Y N N Yd Yd Yd N 

IS-ENES/ 
ESGF 

doi:10.22033/ESGF/CMIP6.4397 Y N Ya,b Ya N N – 

NCI doi:10.25914/5eaa30de53244 Y Y N Ya N N – 

Footnotes: 
a Schema.org. 
b Dublin Core. 
c Content generated by JavaScript. 
d Proprietary or custom format. 
e Partly implemented. 

R. Huber et al.                                                                                                                                                                                                                                   

https://pypi.org/project/pangaeapy/
https://pypi.org/project/icoscp/
https://doi.pangaea.de/10.1594/PANGAEA.896543
https://doi.pangaea.de/10.1594/PANGAEA.896543
https://doi.org/10.4227/05/5344F1159A1A9
https://doi.org/10.4227/05/5344F1159A1A9
https://doi.org/10.4225/08/563869A931CFE
https://doi.org/10.4225/08/563869A931CFE
https://data.neonscience.org/data-products/DP1.00001.001
https://data.neonscience.org/data-products/DP1.00001.001
https://dx.doi.org/10.11922/sciencedb.293
https://dx.doi.org/10.11922/sciencedb.293
https://deims.org/dataset/75a7f938-7c77-11e3-8832-005056ab003f
https://deims.org/dataset/75a7f938-7c77-11e3-8832-005056ab003f
https://hdl.handle.net/11676/8YwZj8CQEj87IuI9P6QkZiKX
https://hdl.handle.net/11676/8YwZj8CQEj87IuI9P6QkZiKX
https://doi.org/10.22033/ESGF/CMIP6.4397
https://doi.org/10.25914/5eaa30de53244


Ecological Informatics 61 (2021) 101245

7

icosdata = Dobj(’https://hdl.handle.net/11676/ 
xgu4rfCmqvXb4w1wGGD6mYsB’) 
icosdata_frame = icosdata.get() 

pandata = PanDataSet(’https://doi.org/10.1594/PANGAEA. 
889516’) 
pandata_frame = pandata.data 

We used the pandas built-in plot method and matplotlib to plot 
the sea surface temperature data against their measurement timestamp 
of both data sets. As Fig. 2 shows, the data sets are temporally closely 
connected. 

The showcase highlights (code in Fig. 2) that only the data are uni
form while metadata remains heterogeneous, with RI-specific syntax 
and semantics. Indeed, the columns of interest are labelled Temp and 
Temp [degC] in PANGAEA and ICOS data, respectively. Both are water 
temperature observations in degree Celsius. This can be inferred from 
the metadata, but is implicit and not (easily) correctly interpreted by 
machines. The depth (sensor depth in the water) for the measurement is 
unknown, which highlights a lack of harmonized annotation practices 
for accurately describing observable properties. Unfortunately, 
resolving this requires manual intervention. In the future, this semantic 
problem must be addressed more systematically, e.g. with a unified 
parameter nomenclature or a semantic interoperability framework 
(Magagna et al., 2020). 

We used the cartopy (Met Office, 2020) Python module to show the 
geographical variation of measured temperatures along both transects. 
The module provides advanced cartographical plotting features to add a 
geographical context to matplotlib plotting results using a variety of 
geographical projections. The plotted map (Fig. 3) nicely shows the 
geographical complementarity of both datasets as well as the expected 
longitudinal variation of observed sea surface temperatures. 

In addition to data analytics, both libraries support proper data 
citation, the citation property in each data structure, which prints the 
data citation including the preferred persistent identifier (Fig. 4). (See 
Fig. 4.) 

The presented chart and map plotting examples nicely show the 
advantage of libraries that streamline the data ingestion and harmoni
zation tasks and thus contribute to ensuring that data scientists can focus 
more on data analysis. Although the example given here is very Python- 

centric, we note that the proposed approach can be implemented using 
other languages. For example, the R library pangaear (Chamberlain 
et al., 2016) offers functionality comparable to pangaeapy. 

4. Discussion 

The implementation by RIs of harmonized and standardised access to 
data and metadata described here shows some clear trends. For example, 
we observe that cross-community metadata standards are gaining mo
mentum in environmental RIs. Here, embedding metadata in landing 
pages following the Schema.org convention for structured data on the 
web (JSON-LD) plays a very important role. This is an interesting 
development, since the main focus in recent years has been on com
munity specific formats. For example, there is a remarkable diversifi
cation of OGC and ISO standards in the numerous community profiles 
and extensions to the ISO19115 metadata standard (see, e.g., Brodeur 
et al., 2019). These are highly specialized formats in contrast to the 
generic and easy to implement Schema.org. 

An analysis of Google Trends shows a decreasing interest in 
ISO19115 after about 2011, and at the same time an increasing interest 
in Schema.org (Fig. 4). In 2013, the Schema.org/Dataset type was 
included, which enabled data providers to richly describe their data 
assets and major search engines to harvest them. 

Three years later, Wilkinson et al. (2016) published the FAIR data 
principles, which describe “concise, domain-independent, high-level 
principles that can be applied to a wide range of scholarly outputs” while 
recognizing the importance of discipline specific requirements. Since 
then, the FAIR principles have had overwhelming success within the 
scientific community and are endorsed by major scientific stakeholders 
including publishers, funders and policy makers (see, e.g., Stall et al. 
(2019) for initiatives in Earth and environmental sciences). 

Both the FAIR data principles as well as search engine optimisation 
(SEO) approaches have similar requirements for domain agnostic pro
vision of metadata and have a comparably high standard with respect to 
detail and completeness. As Schema.org serves two purposes (SEO and 
FAIR), it is now used by a rapidly increasing number of data providers to 
enable FAIR metadata and data provision. 

The use of persistent identifiers is another prerequisite for FAIR data, 
and their advantages have been described in detail by Philipson (2019). 

Fig. 2. Time series of water temperature in degree Celsius for two ships crossing the Atlantic ocean. On the left in orange, the data set published by PANGAEA, with 
observations from Europe to South America. On the right in blue, the data set published by ICOS, with data collected from Europe to Brazil. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The environmental domain, in particular, has been using PIDs for a 
variety of data resources and products. In recent years, the reliability of 
PID systems has been a cause for concern, resulting in DOIs becoming 
the tool of choice in most communities, as this system has proven to be 
the most trusted and consistent (Klump and Huber, 2017), a trend we 
also observe among RIs investigated in this study. Persistent identifiers 
assigned by trustworthy data archives are essential to make data citable 
and thus enable the data-based reproducibility of research results. They 
represent the link between analysis results, published research data and 
publications based on them and are thus the bridge between publishers, 
data and computational environments. 

While being frequently used by the investigated RIs, some of the 
above mentioned catalogue services, namely OAI-PMH and CSW, un
fortunately have significant disadvantages with respect to the above 
described FAIR data practises. As they often require using internal 

identifiers, OAI-PMH, CSW and other catalogue services are less useful 
for metadata retrieval within interdisciplinary data science applications. 
Furthermore, the use of these protocols requires additional knowledge 
such as the web location of the individual service endpoint. Except for 
OpenSearch, no standard and widely accepted method exists to expose 
machine readable links to metadata search or catalogue services within 
a data set web page. We therefore recommend to offer domain-agnostic 
machine readable metadata, preferrably Schema.org/Dataset JSON-LD, 
in closest connection with a human readable data set web page. As 
discussed above, this can be achieved by implementing commonly used 
web technologies such as HTTP based content negotiation or embedding 
metadata within the HTML code of the landing page. Both methods 
already are used by investigated RIs. 

In principle, the harmonized use of persistent identifiers and com
mon approaches for exposing cross-disciplinary metadata should enable 

Fig. 3. The PANGAEA and ICOS data sets plotted with geolocation and colour gradients (dark blue, minimum, to yellow, maximum) to represent the sampled water 
temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Example of how to obtain the citation strings for both data sets.  
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data to be transferred to computational environments using a uniform 
approach (Weigel et al., 2020). The technology components required to 
directly access data given a DOI and negotiate content between data 
provider and consumer does exist. While necessary for a solution, these 
components are not sufficient for our ultimate goal of having the data in 
a native data structure of the computational environment. Essential is 
also the explicit linking of data in metadata (FAIR sub principle F3: 
“Metadata clearly and explicitly include the identifier of the data they 
describe”) and we observed that such links are often not available or not 
identifiable by machines. Moreover, data are available in many different 
formats, which considerably complicates a unified approach since 
loading data into computational environments relies on additional in
formation. Such additional information needs to be encoded in pro
gramming code. A solution is presented by specialized software libraries 
such as pangaeapy or icoscp. Specifically for an RI and programming 
language, implement the required software logic and with this simplify 
the steps from download to the transformation of metadata and data into 
a uniform data structure for analysis. 

Although the approach to use specialized libraries is promising, our 
use case revealed some open issues. For example, it takes time to get 
familiar with multiple libraries. It would therefore be desirable if the 
libraries (interface) were uniformly designed. Although icoscp and 
pangaeapy are very similar, a common library framework for accessing 
and ingesting data from a variety of RIs would be very helpful and would 
improve the overall accessibility and reusability of their data sets. 
Furthermore, a common data access and ingestion framework would 
ease adoption and development of comparable libraries and tools for 
other RIs. Another open issue is that the libraries presented here are 
made available for only one programming language, i.e., Python, and 
therefore cannot support the large number of data scientists using 
alternative languages such as Julia or R. A common framework should - 
to the extent this is possible - be defined independent from programming 
languages. 

We therefore favour and propose a more standards based solution, 
which builds on standardization and best practices we discussed in this 
study. As mentioned above, a distinct trend towards the use of Schema. 
org JSON-LD encoded metadata in combination with persistent identi
fiers can be observed among all investigated RIs. A common strategy of 
FAIR implementation in RIs should build on the high level of stan
dardization we observed but include the definition of some common best 
practises for, e.g., Schema.org implementations, agreement on the link 
used to point to data in metadata, and a minimum set of metadata 

elements required by data scientists. These best practises should build on 
accepted FAIR principles for data objects, including the FAIR sub prin
ciple F3. Inclusion of data identifier in the metadata of data to enable its 
machine based access is also recommended by existing work on the 
definition of FAIR metrics in the EOSC (European Open Science Cloud) 
context (Genova et al., 2020) such as the Research Data Alliance (RDA) 
FAIR data maturity model (RDA FAIR Data Maturity Model Working 
Group, 2020) or the FAIRsFAIR project (Devaraju et al., 2020). FAIR 
assessment tools such as F-UJI can help during the journey towards FAIR 
compliance by testing the inclusion of data identifiers in metadata. 

While the technologies and approaches would allow for harmonized 
access to metadata for use within data analytics, access to data still is 
problematic due to the rather low degree of standardization and the lack 
of agreements on data syntax and semantics among the RIs. Additional 
efforts are therefore necessary to reach such agreement. Since RIs cover 
a wide range of scientific disciplines, interdisciplinary formats are the 
most promising. Candidate formats include established scientific binary 
formats such as NetCDF, HDF or the emerging interdisciplinary text 
based formats ‘CSV on the Web’ (Tennison, 2016) or ‘frictionless data’ 
(Fowler et al., 2018). The latter two are especially interesting for data 
scientists as they are based on flat, two dimensional comma separated 
tables that are particularly easy to load using languages such as Python 
or R. In contrast, the handling of multidimensional data in NetCDF or 
HDF requires considerable knowledge about the dimensional structure 
of the contained data. In summary, the choice of suitable data formats is 
relatively small and need not be limited to a single format. 

As mentioned earlier, another important aspect is dynamic data 
retrieval APIs such as OGC SOS, which represent an alternative to of
fering data-access via machine-actionable persistent identifiers. SOS has 
for example been used as data infrastructure for national air quality data 
provisions to the European Environment Agency (Kotsev et al., 2015) 
and as a platform to provide public real-time access and harvesting of 
marine data to be archived in PANGAEA (Huber et al., 2012). It is used 
by RIs such as eLTER to publish site-based environmental observation 
and measurement data and has also been extended or used as a basis for 
additional services in diverse application scenarios such as data quality 
assurance (Devaraju et al., 2015; Goldfarb et al., 2020). Open Source 
libraries such as the R-package sos4R (https://github.com/52North/so 
s4R) allow programmatic access to data comparable to the above 
described PANGAEA and ICOS libraries, with the difference that for 
sos4R an API endpoint and the correct parameters must be provided 
instead of a persistent identifier. Publishing data only via API and not via 

Fig. 4. Google trend analysis, showing in red increased interest in ‘Schema.org’ and in blue a decrease for ISO19115. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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regular file-based persistently identified snapshots raises concerns 
regarding, in particular, reproducibility, since dynamic data can change. 
Pioneering initiatives such as the RDA Working Group on Dynamic Data 
Citation (WGDC) (Rauber et al., 2016) have provided detailed guide
lines how this gap can be addressed, primarily by assigning PIDs to the 
queries used to retrieve data sets. 

Though not in the scope of this work, we emphasize that integrating 
data and analysis must also encompass semantic harmonization of terms 
used in (meta)data. This should allow for less ambiguous and machine- 
actionable descriptions of complex observable properties beyond what is 
currently possible or practiced with, e.g., Schema.org/measuredPrope 
rty. The RDA InteroperAble Descriptions of Observable Property Ter
minology (I-ADOPT) Working Group (WG) addresses this problem and is 
developing a semantic interoperability framework (Magagna et al., 
2020). 

The last two decades have seen a remarkable change in the use of 
computational environments. In the early days, community-tailored 
Virtual Research Environments (VREs, also termed Virtual Research 
Laboratories or Science Gateways; see, e.g., Barker et al., 2019), pro
vided pre-canned workflows for scientific analysis required by a 
research community. However, VREs proved to be inflexible as they rely 
on adaptation to meet the frequently changing requirements (Voss and 
Procter, 2009). Moreover, custom systems generally require consider
able maintenance effort, which consequently results in sustainability 
challenges for many VREs and broader adoption beyond the community 
that built them for their specific needs (particularly those that tightly 
coupled data sets to specific tools, e.g., Candela et al., 2013). In recent 
years, however, generic, domain-agnostic solutions have become more 
common. They rely more on programmable data handling and analysis. 
In this context, the rapid spread of computational notebooks, especially 
Jupyter, has created an incredible dynamic in the context of data sci
ences (Perkel, 2018). For example, AuScope has expanded its VREs to 
enable users with varying skills to specifically target their needs and 
either access a range of online data and software services to now create 
their own workflows in their own environment. Both data and software 
are accessible via standardised interfaces and are being utilised by in
dividual researchers who commonly use computational notebooks to 
mix and match data, software and tools to create their own exploratory 
workflows (Wyborn et al., 2018). 

For users who utilize analysis tools, be it advanced community spe
cific VREs or desktop based Jupyter notebooks, a common RI approach 
to expose metadata and data as described above would be very advan
tageous. Environmental RIs play a major role worldwide for a large 
number of users from research, industry and policy. The growing 
number of such facilities and the increasing quality of the measurement 
methods used have led to a sharp increase in the amount of available 
research data. This explains the increasing importance of data science, 
specifically also in environmental sciences (Raban and Gordon, 2020). 
Both growing data and advanced analytics are essential elements in the 
production of knowledge required to address urgent societal problems 
such as climate change, loss of biodiversity or natural disasters. 
Addressing the problem discussed here is an important responsibility of 
the e-infrastructures managing the data. These infrastructures must 
support efficient and effective data-driven, interdisciplinary research. 
Streamlining data flow into the analysis tools used is an important sub 
task, towards which this work contributes important insight. 

5. Roadmap 

The discussed approaches for data and metadata provision would 
enable a significant fraction of RI-collected data to be more easily in
tegrated into a computational platform of choice. However, the state-of- 
the-art of creating, publishing and maintaining software libraries 
specialized for each RI and programming language popular in data 
analysis does not scale well, is inefficient and ultimately not sustainable. 

We argue for a concerted technology harmonization effort among the 

RIs so that their data assets can be seamlessly integrated into arbitrary 
computational platforms and programming languages with minimum 
effort required for development and maintenance of libraries. The 
requirement of minimum effort relies on developing generic approaches 
and implementing these in generic libraries, which itself relies on 
technology harmonization among RIs for which we need a concerted 
effort. 

We thus suggest a roadmap and actions that the RIs involved here 
now intend to implement and others could follow as well. The plan in
volves the following measures, which we categorize into immediate (I), 
short (S) and medium term (M):  

• Persistently identify data sets  
• Adopt open and globally implementable communication protocols to 

exchange data and metadata, where possible HTTP  
• Resolve persistent identifiers to landing pages that are human and 

machine readable, where possible HTTP-based resolution  
• (S) Offer metadata in a domain-agnostic format, preferably JSON-LD 

following the schema.org/Dataset specification  
• (M) Harmonize RI-relevant metadata (e.g., observed properties, 

methods, etc.).  
• (S) Ensure that data set metadata include an explicit (i.e., machine 

actionable) link to the corresponding data object so that given a 
persistent identifier machines can access data without human 
intervention  

• (M) Ensure that accessed data are offered in a web and data science 
friendly data format to (e.g., ‘CSV on the Web’ or ‘frictionless data’)  

• (M) Offer metadata and data through content negotiation. 

Although the presented work focuses on RIs, we note that the pro
posed solutions and roadmap are applicable also to environmental data 
infrastructures not directly associated with RIs. The proposed measures 
are relatively straightforward to implement and, if widely applied, could 
contribute to significantly improving the reusability, and thus FAIRness, 
of environmental data. 

6. Conclusions 

We presented how some of the world’s largest environmental 
research infrastructures (RIs) make their data available to the scientific 
community. We found that while access to persistently identified data 
and metadata is generally straightforward for humans, this is not true for 
machines. For most RIs, it is thus still a challenge to make analysis-ready 
data available in computational environments. Moreover, in recent 
years the FAIR principles have defined further requirements for data 
providers, including reproducibility and citation of data used in analysis. 
We argue that it is important to address these challenges in order to 
efficiently and effectively support data-intensive research in popular 
modern data analysis languages such as Python and R. We present and 
discuss current approaches implemented by RIs to address the challenge 
of seamless integration of data and analysis. Our analysis shows that the 
state-of-the-art approach is for the RI to provide specialized software 
libraries in a data analysis language of choice that streamline loading 
persistently identified data and metadata into a data structure native to 
the language. This relies on established domain-independent standards 
and web-based practices that in principle allow for the design of uni
form, programming language and RI independent approaches, which 
could enable seamless integration of arbitrary data and analysis con
ducted in virtual research environments. For this to become viable in 
practice, we need a concerted technology harmonization effort among 
the RIs, for which we proposed a roadmap that the RIs involved here 
now intend to implement. 
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