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Abstract

We extend the Landauer-Büttiker formalism in order to accommodate both unitary and self-adjoint operators
which are not bounded from below. We also prove that the pure point and singular continuous subspaces of the
decoupled Hamiltonian do not contribute to the steady current. One of the physical applications is a stationary
charge current formula for a system with four pseudo-relativistic semi-infinite leads and with an inner sample
which is described by a Schrödinger operator defined on a bounded interval with dissipative boundary conditions.
Another application is a current formula for electrons described by a one dimensional Dirac operator; here the
system consists of two semi-infinite leads coupled through a point interaction at zero.

1 Introduction

Considering a problem in quantum statistical mechanics and solid state physics Lifshits [21] found that there is a
unique real-valued function ξ(·) ∈ L1(R, dλ) such that the formula

tr(Φ(H0 + V )− Φ(H0)) =
∫

R
ξ(λ)Φ′(λ)dλ (1)

is valid for a suitable class of functions Φ(·) guaranteeing that Φ(H0 + V ) − Φ(H0) is a trace class operator.
Here H0 is a self-adjoint operator and V is a finite dimensional self-adjoint operator. Formula (1) and function ξ(·)
are known in the literature as trace formula and spectral shift function, respectively.

Inspired by the work of Lifshits the trace formula was carefully investigated and generalized by Krein, cf. [17]. In a
first step Krein has shown that Lifshits’ result remains true if V is a self-adjoint trace class operator. Later on he
generalized the result to pairs of self-adjoint operators S = {H,H0} such that their resolvent difference is a trace
class operator, cf. [18]. In the following we call those pairs trace class scattering systems. For trace class scattering
systems there exists a real-valued function ξ(·) ∈ L1(R, dλ

1+λ2 ) called also the spectral shift function such that

tr (Φ(H)− Φ(H0)) =
∫

R
ξ(λ)Φ′(λ)dλ (2)

is valid for a suitable class of functions Φ(·). In particular, the formula

tr
(
(H − z)−1 − (H0 − z)−1

)
= −

∫
R

ξ(λ)
(λ− z)2

dλ, z ∈ C \ R,

holds. In contrast to the spectral shift function defined by (2), the function ξ(·) defined by the last equation is now
not unique and is only determined up to a real constant. To verify (2) Krein firstly proved a trace formula (1) for a
pair U = {U,U0} of unitary operators for which U − U0 is a trace class operator, cf. [18]. Regarding U and U0

as the Cayley transforms of H and H0, respectively, Krein was able to establish (2).

If S = {H,H0} is a trace class scattering system, then the wave operators

W±(H,H0) = s- lim
t→±∞

eitHe−itH0P ac(H0) (3)

exist and are complete where P ac(H0) is the projection onto the absolutely continuous subspace of H0, see [3].
Let Π(Hac

0 ) be a spectral representation of the absolutely continuous partHac
0 ofH0, cf. Appendix C. Further, let

{S(λ)}λ∈R be the scattering matrix of the trace class scattering system S with respect to Π(Hac
0 ). It turns out

that there is a suitable chosen spectral shift function ξ(·) such that the so-called Birman-Krein formula

det(S(λ)) = e−2πiξ(λ).
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holds for a.e. λ ∈ R.

The quantity T (λ) := 1
2πi (Ih(λ) − S(λ)), λ ∈ R, is usually called the transition matrix, see (99), where Ih(λ)

denotes the fiber identity operator of the spectral representation Π(Hac
0 ). In [23] Radulescu has shown that the

transition matrix {T (λ)}λ∈R, the unperturbed operator H0 and the perturbation V are related in a certain way.
Indeed, if H0 is bounded and V is trace class, then the formula

tr(Hn
0 W+(H,H0)V ) =

∫
R
λn tr(T (λ))dλ, n = 0, 1, 2, . . . ,

is valid.

It turns out that the so-called Landauer-Büttiker formula is a further interesting example in this circle of relations
linking scattering matrix, unperturbed operator and perturbation. From the physical point of view the Landauer-
Büttiker formula gives the steady state charge current flowing trough a non-relativistic quantum device where the
carriers are not self-interacting. It goes back to Landauer and Büttiker, cf. [20] and [6], and was initially derived by
them using phenomenological arguments.

The physical setting is as follows: there is a small sample (the inner system) and at least two leads (for simplicity we
only discuss the two lead case). At negative times, the leads are not coupled to the inner system. Each subsystem is
in a state of thermal equilibrium. In particular, one assumes that in the leads the electrons are distributed according
to the Fermi-Dirac distribution function. More precisely, if µj are the chemical potentials of the left and right leads,
j ∈ {l, r}, then the energy distribution of lead j is fj(λ) = fFD(λ− µj) where:

fFD(λ) =
1

1 + eβλ
, λ ∈ R, β > 0. (4)

At time zero the leads are suddenly attached to the inner system and a current can flow from one lead to the other
through the inner system. Landauer found by heuristic arguments (later refined by Büttiker) that the stationary
current J of non-relativistic particles flowing through the system should be given by

J =
e

2π

∫
R
dλ |σ(λ)|2(λ)

(
fFD(λ− µl)− fFD(λ− µr)

)
(5)

where σ(λ) is the so-called transmission coefficient between the leads, a cross-section arising from an appropriate
scattering system, and e > 0 is the magnitude of the elementary charge. The current is directed from left to right
if J > 0 and from right to left if J < 0. If µl > µr , then a straightforward computation shows that J > 0 which
shows that the charge current is directed from the higher chemical potential to the lower one.

Several works have already been published in which this approach has been made rigorous, cf. [12, 1, 8, 22, 10,
9, 11]. One assumes that at negative times the system is described by (a decoupled) Hamiltonian H0, while for
positive times by (a coupled Hamiltonian)H . Until now it was always assumed that both Hamiltonians are bounded
from below and that the difference between their resolvents raised to some integer power is trace class.

Since our paper only deals with operator theoretical aspects of quantum transport of quasi-free particles, some
of the terminology used in quantum statistical mechanics will be strictly adapted to our limited needs. For us, a
density operator is just any non-negative bounded operator. A density operator ρ is an equilibrium state of H0 if it
is a positive function of H0. A density operator ρ is called a steady state of H0 if ρ commutes with H0. Note that
with our definition, equilibrium states are steady states. IfH0 is a decoupled direct sum of several operators

⊕
hj ,

then a direct sum of individual equilibrium states
⊕
Fj(hj) would provide us with a special class of steady states

of H0.

A charge is any bounded self-adjoint operatorQ commuting withH0. Following [1], the steady current JSρ,Q related
to a charge Q and a given initial steady state ρ of H0 is proved to be given by

JSρ,Q := −itr(W−(H,H0)ρW−(H,H0)∗[H,Q]) (6)

provided the commutator [H,Q] is well defined and H has no singular continuous spectrum. Following [1] the
current is directed from the leads to the sample. If the commutator is not well defined, a regularization procedure
was proposed in [1]. It consists in replacing the operators H and H0 by bounded self-adjoint operators

H(η) := H(I + ηH)−N and H0(η) := H0(I + ηH0)−N , η > 0, (7)
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for some large enough N , where for simplicity it is assumed that both operators are non-negative. Of course,

S(η) = {H(η), H0(η)} is also a trace class scattering system for which the current JS(η)
ρ,Q is well defined.

Finally, one sets

JSρ,Q := lim
η→+0

J
S(η)
ρ,Q . (8)

We note that the absolutely continuous subspace Hac(H0) reduces the initial steady state and the charge operator.
Let

ρac := ρ � Hac(H0) and Qac := Q � Hac(H0) (9)

The restrictions ρac and Qac commute with the absolutely continuous component Hac
0 of H0.

Let Π(Hac
0 ) be a spectral representation of the absolutely continuous part Hac

0 of H0, cf. Appendix C. Since the
components ρac and Qac commute with Hac

0 , they are unitarily equivalent to multiplication operators induced by
some density and charge fiber matrices {ρac(λ)}λ∈R and {Qac(λ)}λ∈R in Π(Hac

0 ), respectively. In [1] it was
proved that the current JSρ,Q admits the representation

JSρ,Q =
1

2π

∫
R
dλ tr {ρac(λ) (Qac(λ)− S(λ)∗Qac(λ)S(λ))} . (10)

The formula (10) can be called the abstract Landauer-Büttiker formula. The formula (10) is not identical with the
traditional Landauer and Büttiker formula (5). However, it was shown in [1] that formula (5) follows from (10).

The aim of the present paper is to extend the representation (10) to situations where the operators H and H0

might not be bounded from below. Using the intertwining property of the wave operator and the trace cyclicity, one
can rewrite the current JSρ,Q in the following form:

JSρ,Q := −itr(W−(H,H0)(I +H2
0 )ρW−(H,H0)∗(H − i)−1[H,Q](H + i)−1). (11)

It turns out that (11) can be expressed in a different form using the Cayley transforms

U = (i−H)(i+H)−1 = e2i arctan(H) and U0 = (i−H0)(i+H0)−1 = e2i arctan(H0)

of H and H0, respectively. Under the condition that V := U − U0 = 2i((i + H)−1 − (i + H0)−1) is a trace
class operator we have

Ω±(U,U0) := s- lim
n→±∞

UnU−n0 P ac(U0) =

W±(2 arctan(H), 2 arctan(H0)) = W±(H,H0),

where in the last equality we used the invariance principle of wave operators. Moreover, using the identity

− i
2
U∗[U − U0, Q] = (H − i)−1[H,Q](H + i)−1

the current can be rewritten as

JUρ̃,Q := −1
2

tr(Ω−(U,U0)ρ̃U∗0 Ω−(U,U0)∗[V,Q]), V := U − U0, ρ̃ := (1 +H2
0 )ρ, (12)

where everything only depends on the unitary scattering system U := {U,U0}. Following Birman and Krein
[18, 3] we start with the abstract unitary scattering system U := {U,U0} where V = U − U0 is trace class
operator, ρ̃ is an initial steady state and Q a charge both commuting with U0. Their restrictions to the absolutely
continuous subspace of U0 are denoted by ρ̃ac and Qac, respectively. Using a spectral representation of U0,
we denote by {S̃(ζ)}ζ∈T, {ρ̃ac(ζ)}ζ∈T and {Q̃ac(ζ)}ζ∈T the scattering, density and charge fiber matrices of
S = Ω+(U,U0)∗Ω−(U,U0), ρ̃ac andQac, respectively. We also suppose that the singular continuous spectrum
σsc(U) of U is empty (note that we allow σsc(U0) 6= ∅). Then it will be proven in Theorem 3.7 and in Corollary
3.8 that the current in (12) admits the representation

JUρ̃,Q =
1

4π

∫
T

tr
{
ρ̃ac(ζ)

(
Q̃ac(ζ)− S̃(ζ)∗Q̃ac(ζ)S̃(ζ)

)}
dν(ζ)

=
1

4π

∫
T

tr
{(
ρ̃ac(ζ)− S̃(ζ)ρ̃ac(ζ)S̃(ζ)∗

)
Q̃ac

}
dν(ζ),

(13)
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where ν is the Haar measure with ν(T) = 2π.

More importantly, from the second formula above we see that if ρ̃ is an equilibrium state, i.e. some non-negative
function f̃(U0), then it is a scalar multiplication with f̃(ζ) on each fiber h̃(λ) and thus commutes with S̃(ζ) almost
everywhere. This shows that the current is zero at equilibrium. Moreover, we can use this to renormalize the current
by subtracting zero in the following way:

JUρ̃,Q =
1

4π

∫
T

tr
{(
ρ̃ac(ζ)− f̃(ζ)Ih̃(ζ)

) (
Q̃ac(ζ)− S̃(ζ)∗Q̃ac(ζ)S̃(ζ)

)}
dν(ζ). (14)

Going back to the self-adjoint case via the Cayley transform, we have to change the torus with the real line by the
transformation ζ = e2i arctan(λ). Hence, replacing ρ̃(e2i arctan(λ)) by (1 + λ2)ρ(λ) and introducing Qac(λ) :=
Q̃ac(e2i arctan(λ)) and S(λ) := S̃(e2i arctan(λ)) we obtain

JSρ,Q =
1

2π

∫
R
dλ tr

{(
ρac(λ)− f(λ)Ih(λ)

)
(Qac(λ)− S(λ)∗Qac(λ)S(λ))

}
. (15)

This formula is very useful in the relativistic situation when ρac(λ) can loose its decay in λ at −∞, as it happens
with the Fermi-Dirac distribution. In that case we see that ρac(λ) − fFD(λ)Ih(λ) still decays exponentially at
±∞ and the current will be finite.

Let us make the following remarks:

� Our main technical result is formula (13), proved in Theorem 3.7. It can be seen as an abstract Landauer-
Büttiker formula for unitary scattering systems.

� Formula (10) is proved in Theorem 3.9, which is an extension of the result in [22], where V := H −H0 ∈
L1(H) was assumed.

� Another result related to Theorem 3.9 was proven in [1] where the current was defined through a regulariza-
tion procedure. There the operators H and H0 were replaced by H(1 + ηH)−N and H0(1 + ηH0)−N ,
respectively, and the limit η → +0 was taken outside the trace. Using our approach via the Cayley trans-
forms one gets a definition of the current (see (12) or (11)) which avoids any regularization. Since the Cayley
transform does not require H0 and H to be bounded from below, it allows us to derive Landauer-Büttiker
type formulas for self-adjoint dilations of maximal dissipative Schrödinger operators and Dirac operators with
point interactions at zero, see Section 4.

� Our result is stronger than that one of [1]. At first glance it seems to be that the condition (H + θ)−N −
(H0 + θ)−N ∈ L1(H) assumed in [1] for some N ∈ N and θ > 0 is weaker than our condition (i +
H)−1 − (i + H0)−1 ∈ L1(H). Nevertheless, the result of [1] follows from Theorem 3.9. Indeed, let us
assume for simplicity that H ≥ I and H0 ≥ I as well as θ = 0. A straightforward computation shows that
the representation

JSρ,Q = − i

N
tr
(
W−(H,H0)

I +H2N
0

HN−1
0

ρW−(H,H0)∗(HN − i)−1[HN , Q](HN + i)−1

)
(16)

is valid provide (I + HN+1
0 )ρ is a bounded operator. Therefore, considering the trace class scattering

system Ŝ =
{
HN , HN

0

}
, we find

JSρ,Q =
1
N

J
bSbρ ,Q, ρ̂ := H

−(N−1)
0 ρ,

where the invariance principle for wave operators was taken into account. Finally, applying Theorem 3.9

to J
bSbρ ,Q we get a Landauer-Büttiker formula for the scattering system Ŝ =

{
HN , HN

0

}
with respect

to a spectral representation of (HN
0 )ac. However, from the spectral representation of (HN

0 )ac one easily
obtains a spectral representation of Hac

0 which immediately implies the result of [1].
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� We can extend Theorem 3.9 to some situations where H and H0 are not bounded from below and (H +
i)−1 − (H0 + i)−1 is not trace class. Namely, if 0 belongs to the resolvent set of both H and H0, and if
there exists an odd integer N such that H−N −H−N0 is trace class, then the invariance principle can still
be applied and formula (1.16) (see also (1.12)) still makes sense. The general case remains open.

The paper is organized as follows. In Section 2 we review some well known results related to non equilibrium steady
states and currents, and extend them to the case of non-semibounded self-adjoint operators H0 and H . The main
goal is to rigorously justify formula (12).

Section 3 is devoted to the proof of the abstract Landauer-Büttiker formula (13), at first for unitary operators, cf.
Section 3.1, and then for self-adjoint operators, cf. Section 3.2.

In Section 4 we give several examples. Finally, in order to make the paper self-contained we have added Appen-
dices A and B, C on spectral representations of unitary operators, and Appendix D on the scattering matrix of
unitary operators.

Notation: By Hac(U) we denote the absolutely continuous subspace of a unitary operator U defined on H. The
projection from H onto hac(U) is denoted by P ac(U). The corresponding absolutely continuous restriction of U
is denoted by Uac := U � Hac(U). The singular subspace of a unitary operator U is defined by Hs(U) :=
H 	 Hac(U), the corresponding singular part by Us := U � Hs(U). A similar notation is used for self-adjoint
operators.

Furthermore the real axis and the unit circle are denoted by R, and T respectively. The open unit disc is denoted
by D := {ζ ∈ C : |ζ| < 1}.

2 Steady states and currents

Let H0 be a self-adjoint operator and let ρ be a steady state for H0. Furthermore, let us assume that at t < 0
the system is described by the Hamiltonian H0 and the steady state ρ. At t = 0 we switch on a coupling such
that the system is now described by the Hamiltonian H . The state ρ(t) evolves according to the quantum Liouville
equation

i
dρ

dt
= [H, ρ(t)], t > 0, ρ(0) = ρ,

which has the weak solution
ρ(t) = e−itHρeitH , t ≥ 0.

The operator ρ(t) is a density operator, but not a steady state for H . However, one can produce a steady state
by taking an ergodic limit as in [1]. It turns out that Theorem 3.2 of [1] remains true even if H and H0 are not
semibounded; for completeness we formulate and prove below the result.

Proposition 2.1. Let H0 be a self-adjoint operator and let ρ be a steady state of H0. If H is another self-adjoint
operator such that (H + i)−1 − (H0 + i)−1 is a trace class operator and σsc(H) = ∅, then the limit

ρ+ := s- lim
T→∞

1
T

∫ T

0

ρ(t)dt (17)

exists and is given by

ρ+ = W−(H,H0)ρW−(H,H0)∗ +
∑

λk∈σp(H)

EH({λk})ρEH({λk}) (18)

where EH(·) is the spectral measure of H and σp(H) denotes the point spectrum of H , cf [1, Theorem 3.2].
Moreover, ρ+ is a steady state of H .

Proof. We use the representation

ρ(t) = e−itHeitH0ρe−itH0eitHP ac(H) + e−itHρeitHP p(H), t ≥ 0,
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where P p(H) denotes the projection onto the subspace spanned by the eigenvectors ofH . Notice that P p(H) =
P s(H) where P s(H) is the projection onto the singular subspace of H . Since the resolvent difference is a trace
class operator one gets

s- lim
T→∞

1
T

∫ T

0

e−itHeitH0ρe−itH0eitHP ac(H)dt = W−(H,H0)ρW−(H,H0)∗.

Let λk ∈ σp(H). We find

e−itHρeitHEH({λk}) = e−it(H−λk)ρEH({λk}), t ≥ 0.

If f = (H − λk)g, g ∈ dom(H), then

1
T

∫ T

0

e−it(H−λk)fdt =
e−iT (H−λk) − I

−iT
g

which yields

lim
T→∞

1
T

∫ T

0

e−it(H−λk)fdt = 0

Since ran(H − λk) is dense in EH(R \ {λk})H we verify that

lim
T→∞

1
T

∫ T

0

e−it(H−λk)EH(R \ {λk})dt = 0

Finally, using the decomposition

e−itHρeitHEH({λk}) = e−it(H−λk)EH(R \ {λk})ρEH({λk})+
EH({λk})ρEH({λk}), t ≥ 0,

which proves

s- lim
T→∞

1
T

∫ T

0

e−itHρeitHEH({λk})dt = EH({λk})ρEH({λk}).

Using that we immediately prove (18).

Formally, the current JSρ,Q is defined by

JSρ,Q = −Eρ+(i[H,Q]) = −itr(ρ+[H,Q]),

where Eρ+(·) is the expectation value of an observable with respect to ρ+. In general, the definition might be not
correct because either the commutator [H,Q] is not well-defined or the product ρ+i[H,Q] is not a trace class
operator. To avoid such difficulties we set

JSρ,Q(δ) := −Eρ+(iEH(δ)[H,Q]EH(δ)) = −itr(ρ+EH(δ)[H,Q]EH(δ)) (19)

where δ is any bounded Borel set of R. Furthermore, EH(δ)[H,Q]EH(δ) is a well defined trace class operator
for any bounded Borel set δ. Indeed, using the representation

EH(δ)[H,Q]EH(δ) = (H − i)EH(δ)KEH(δ)(H + i) (20)

where

K :=(H − i)−1[H,Q](H + i)−1 = (H + i)(H − i)−1[(H + i)−1, Q] (21)

=(I + 2i(H − i)−1)[(H + i)−1 − (H0 + i)−1, Q]

is trace class. We get that EH(δ)[H,Q]EH(δ) is a trace class operator for every bounded Borel set δ. We set

JSρ,Q := lim
δ→R

JSρ,Q(δ)

provided the limit exists. We show this now.

6



Proposition 2.2. Let H0 be a self-adjoint operator and let ρ be a steady state for H0 and let H be a self-
adjoint operator. Further, let Q be a charge for H0. If the resolvent difference of H and H0 is a trace class
operator, σsc(H) = ∅ and (I + H2

0 )ρ is a bounded operator, then the current JSρ,Q is well-defined and admits
the representation (11).

Proof. Inserting (20) into (19) we get

JSρ,Q(δ) := itr(ρ+(H − i)EH(δ)KEH(δ)(H + i))

where K is a trace class operator defined by (21). Using (18) we get

JSρ,Q(δ) = −itr(W−(H,H0)ρW−(H,H0)∗(H − i)EH(δ)KEH(δ)(H + i))

− i
∑

λk∈σp(H)∩δ
tr(ρEH({λk})(H − i)K(H + i)EH({λk})).

Since EH({λk})KEH({λk}) = 0 we find

JSρ,Q(δ) = −itr(W−(H,H0)(H2
0 + I)ρW−(H,H0)∗EH(δ)KEH(δ)),

where we have used that (H2
0 + I)ρ is a bounded operator. Then the limit in (2) exists and equals:

JSρ,Q = −itr(W−(H,H0)(H2
0 + I)ρW−(H,H0)∗K).

Note that (21) coincides with (11).

3 Landauer-Büttiker formula for unitary scattering systems

3.1 Unitary operators

Let us recall that we consider two unitary operators U and U0 such that U − U0 is trace class, and a bounded
self-adjoint operator Q commuting with U0 is called a charge. Thus any charge Q is reduced by Hac(U0) and
Hs(U0). In other words, Q admits the decomposition Q = Qac ⊕ Qs where Qac := Q � Hac(U0) and
Qs := Q � Hs(U0). Notice that the restrictions Qac and Qs might not be identical with the absolutely continuous
and singular components Qac and Qs, respectively.

Let Π(Uac0 ) = {L2(T, dν(ζ), h(ζ)),M,Φ} be a spectral representation of Uac0 , cf. Appendix A. Since Qac
commutes with Uac0 there is a measurable family {Qac(ζ)}ζ∈T of bounded self-adjoint operators acting on h(ζ)
such that

ν − sup
ζ∈T
‖Qac(ζ)‖B(h(ζ)) = ‖Qac‖B(H)

and Qac = Φ−1MQacΦ where MQac is the multiplication operator induced by {Qac(ζ)}ζ∈T in
L2(T, dν(ζ), h(ζ)).

A non-negative bounded self-adjoint operator ρ commuting with U0 is also called a density operator and admits
the decomposition ρ = ρac ⊕ ρs. The part ρac is unitarily equivalent to the multiplication operator Mρac in-
duced by a measurable family {ρac(ζ)}ζ∈T of non-negative bounded operators acting on h(ζ) and satisfying
ν − supζ∈T ‖ρac(ζ)‖h(ζ) = ‖ρac‖H in L2(T, dν(ζ), h(ζ)).

Let S = {U,U0} be an L1-scattering system. Further, let Q be a charge and let ρ be a density operator. In this
case we define the current J for S by

J := −1
2

tr(Ω−ρU∗0 Ω∗−[V,Q]) (22)

where V = U −U0 is trace class and [V,Q] = V Q−QV . The main result of this section (see Proposition 3.5)
will show that only the absolutely continuous restriction of Q contributes to the current:

J = Jac := −1
2

tr(Ω−ρU∗0 Ω∗−[V,Qac]). (23)

Before that, we need a series of lemmata.
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Lemma 3.1. LetU0 be a unitary operator on H and letQ be a charge. Then H admits an orthogonal decomposition

H =
⊕
k∈NHk

reducing U0 and Q such that Uk := U0 � Hk, k ∈ N, has a constant spectral multiplicity function and Qk :=
Q � Hk commutes with Uk, k ∈ N.

Proof. Let Π(U0) = {L2(T, dµ(ζ), k(ζ)),M,Ψ} be a spectral representation of U0, cf Appendix A, and let
Mult(ζ) := dim(k(ζ)) be the spectral multiplicity function of U0. We set ∆1 := {ζ ∈ T : Mult(ζ) = ∞}
and ∆k := {ζ ∈ T : Mult(ζ) = k − 1} if k ≥ 2. Let E0(·) be the spectral measure of U0. We set
Hk := E0(∆k)H. Obviously, each subspace Hk reduces U0 and Q. Moreover, the unitary operators Uk defined
on Hk are of constant spectral multiplicity.

Next we are going to show that Q can be approximated by a sequence of self-adjoint operators with pure point
spectrum.

Lemma 3.2. Let U0 be a unitary operator on H of constant spectral multiplicity and let Q be a charge. Then there
is a sequence {Qm}m∈N of charges with pure point spectrum satisfying s-limm→∞Qm = Q and ‖Qm‖H ≤
‖Q‖H + 1.

Proof. Since U0 is of constant spectral multiplicity U0 admits the spectral representation Π(U0) :=
{L2(T, dµ(ζ), k),M,Ψ} where k is independent from ζ ∈ T. If Q is a charge, then there is a measurable
family {Q(ζ)}ζ∈T of bounded self-adjoint operators satisfying µ− supζ∈T‖Q(ζ)‖k = ‖Q‖H such that Q is
unitarily equivalent to the multiplication operator MQ in L2(T, µ(ζ), k).

Since {Q(ζ)}ζ∈T is a measurable family of self-adjoint operators there is a sequence {Q̃m(ζ)}ζ∈T of simple
functions such that

s- lim
m→∞

Q̃m(ζ) = Q(ζ) (24)

for a.e. ζ ∈ T with respect to µ. We recall that Q̃m(·) is simple if it admits the representation

Q̃m(ζ) =
∑
l

χδml(ζ)Q̃ml, ζ ∈ T, Q̃ml = Q̃∗ml ∈ B(k),

where {δml} are disjoint Borel subsets of T satisfying
⋃
l δml = T for eachm ∈ N and

∑
l is finite. Without loss

of generality we can assume that the condition

‖Q̃m(ζ)‖k ≤ µ− sup
η∈T
‖Q̃m(η)‖k

is satisfied for each m ∈ N.

By the v. Neumann theorem [15, Theorem X.2.1] for each self-adjoint operator Q̃ml there is a self-adjoint Hilbert-
Schmidt operator Dml such that ‖Dml‖L2 ≤ 1

m and Qml := Q̃ml +Dml is pure point. Setting

Qm(ζ) =
∑
l

χδml(ζ)Qml, ζ ∈ T, Qml = Q∗ml ∈ B(k),

one easily verifies that
s- lim
m→∞

Qm(ζ) = Q(ζ)

for a.e. ζ ∈ T with respect to µ. We note that s-limm→∞MQm = MQ. Moreover, the spectrum ofMQm is pure
point for each m ∈ N. Setting Qm := Ψ−1MQmΨ we find that s-limm→∞Qm = Q. Moreover, each operator
Qm commutes with U0.

Lemma 3.3. Let U0 be a purely singular unitary operator (i.e. the absolutely continuous component is absent) on
the separable Hilbert space H. Then there is a sequence {Un}n∈N of unitary operators with pure point spectrum
such that U0 − Un ∈ L1(H), n ∈ N, and limn→∞ ‖U0 − Un‖L1 = 0.
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Proof. Let us assume that ker(U0 + I) = {0}. We introduce the self-adjoint operator

H0 = i(I − U0)(I + U0)−1.

Since U0 is singular the self-adjoint operator H0 is also singular. By Lemma 2 of [7] for each n ∈ N there is a
self-adjoint trace class operatorDn satisfying ‖Dn‖L1 <

1
n such that H̃n := H0 +Dn is pure point. Hence, the

unitary operators
Un := (i− H̃n)(i+ H̃n)−1, n ∈ N,

have pure point spectrum. Since

U0 − Un = 2i(i+ H̃n)−1Dn(i+H0)−1, n ∈ N,

we get

‖U0 − Un‖L1 ≤ 2‖Dn‖L1 <
2
n
, n ∈ N,

which yields s-limn→∞ ‖U0 − Un‖L1 = 0.

If the condition ker(I+U0) = 0 is not satisfied, then the unitary operator admits the decompositionU0 = U ′0⊕U ′′0
where U ′0 = U0 � H′, H′ := ker(I + U0)⊥, and U ′′0 = U0 � H′′ = −IH′′ , H′′ := ker(I + U0). One easily
verifies that ker(I + U ′0) = {0}. Hence the construction above can be applied. That means, there is a sequence
{U ′n}n∈N of unitary operators with simple pure point spectrum on H′ such that U ′0 − U ′n ∈ L1(H′), n ∈ N, and
limn→∞ ‖U ′0 − U ′n‖L1 = 0.

On the Hilbert space H′′ we choose U ′′n = −I , n ∈ N. Setting Un := U ′n ⊕ U ′′n , n ∈ N, we complete the
proof.

Proposition 3.4. Let U0 be a purely singular unitary operator and let Q be a charge, both acting on the separable
Hilbert space H. Then there is a sequence of unitary operators {Ũm}m∈N and a sequence of bounded self-adjoint

operators {Qm}m∈N both with pure point spectrum such that [Qm, Ũm] = 0 and U0 − Ũm ∈ L1 for all m ∈ N
satisfying

lim
m→∞

‖U0 − Ũm‖L1 = 0 and Q = s- lim
m→∞

Q̃m.

Proof. By Lemma 3.1 we find a decomposition

U0 =
⊕
k∈N

Uk and Q =
⊕
k∈N

Qk

where Uk is of constant spectral multiplicity and Qk are bounded self-adjoint operators commuting with Uk such
that supk∈N ‖Qk‖Hk = ‖Q‖H.

By Lemma 3.2 for each k ∈ N there is a sequence {Qkm}m∈N of bounded self-adjoint operators with pure point
spectrum commuting with Uk such that ‖Qkm‖Hk ≤ ‖Qk‖H + 1 for each m ∈ N and Qk = s-limm→∞Qkm.
The operators Qkm admit the representation

Qkm =
∑
l∈N

λkmlPkml

where Pkml are eigenprojections of Qkml in Hk. Since Uk commutes with Qkm the eigenprojections Pkml
commute with Uk. We set Ukml := Uk � Hkml where Hkml := PkmlHk. Notice that

Ukm =
⊕
l∈N

Ukml.

The unitary operators Ukml are singular but their spectral multiplicity might be not constant.

By Lemma 3.2 for each k,m, l ∈ N there is a unitary operator Ũkml on Hkml such that the spectrum of Ukml is
pure point, Ukml − Ũkml ∈ L1(Hkml) and

‖Ukml − Ũkml‖ ≤
1

(k +m+ l)3
.

9



Obviously, Ũkml commutes with Pkml. Setting

Ũkm :=
⊕
l∈N

Ũkml

we get a unitary operator on Hk with pure point spectrum which commutes with Qkm. Moreover, we have

‖Ukm − Ũkm‖L1 ≤
∑
l∈N

1
(k +m+ l)3

.

Finally, setting

Ũm :=
⊕
k∈N

Ũkm and Qm :=
⊕
k∈N

Qkm

we define a unitary and a self-adjoint operator on H. Obviously, Ũm and Qm commute for each m ∈ N and they
are pure point. Since

‖U0 − Ũm‖L1 ≤
∑
k∈N

∑
l∈N

1
(m+ k + l)3

we haveU0−Ũm ∈ L1(H) for eachm ∈ N and limm→∞ ‖U0−Ũm‖L1 = 0. We recall that s-limm→∞Qm =
Q by Lemma 3.1.

Proposition 3.5. Let S = {U,U0} be a L1-scattering system. Further, let Q be a charge and ρ be a density
operator. If U − U0 is trace class, then J = Jac (see (23)), i.e. the pure point and singular continuous spectral
subspaces of U0 do not contribute to the steady current.

Proof. Using the decompositions U0 = Uac0 ⊕ Us0 and Q = Qac ⊕Qs we have:

J = −1
2

tr(Ω−ρU∗0 Ω∗−[V,Qac])−
1
2

tr(Ω−ρU∗0 Ω∗−[V,Qs]).

We are going to show that Js := − 1
2 tr(Ω−ρU∗0 Ω∗−[V,Qs]) = 0.

Let us first assume that the spectra of Us0 and Qs are pure point. Hence Us0 and Qs admit the representations

Us0 =
∑
n∈N

ζnPn and Qs =
∑
l∈N

qlQl

where ζn ∈ T, ql ∈ R and Pn, Ql are eigenprojections of Us0 and Qs, respectively. Since Us0 and Qs commute,
then their eigenprojections Pn and Ql also commute. We set Qnl := PnQl, which define some orthogonal
projections. We have the representation

Us =
∑
n,l∈N

ζnlQnl and Qs =
∑
n,l∈N

qnlQnl

where ζnl ∈ T and qnl ∈ R. Notice that
∑
n,l∈N Qnl = P s(U0). Without loss of generality we can assume that

Qnl are one dimensional orthogonal projections. Because the series
∑
n,l∈N ζnlQnl[V,Qnl] converges in the

trace class norm to [V,Qs], we can write:

Js = −1
2

∑
n,l∈N

qnltr(Ω−ρU∗0 Ω∗−[V,Qnl]).

Now we can undo each commutator and write:

tr(Ω−ρΩ∗−[V,Qnl]) = tr(Ω−ρU∗0 Ω∗−UQnl)− tr(Ω−ρU∗0 Ω∗−QnlU).

Using trace cyclicity we have tr(Ω−ρU∗0 Ω∗−QnlU) = tr(UΩ−ρU∗0 Ω∗−Qnl), and then because U commutes
with Ω−ρU∗0 Ω∗− due to the intertwining property of the wave operator, we can put U at the left of Qnl. Hence
Js = 0.
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If Us and Qs are not pure point, then in accordance with Proposition 3.4 there is a sequence {Usm}m∈N of pure
point unitary operators acting on Hs(U0) and a sequence {Qs,m}m∈N of bounded self-adjoint operators with
pure point spectrum acting on Hs(U0) such that [Usm, Qs,m] = 0 and Us0 − Usn ∈ L1(Hs(U0)) for m ∈ N as
well as limm→∞ ‖Us0 − Usm‖L1 = 0 and s-limm→∞Qm = Qs.

We set
Um := Uac0 ⊕ Usm and Qm := Qac ⊕Qs,m, m ∈ N.

We have [Um, Qm] = 0 and U0 − Um ∈ L1(H) for m ∈ N as well as limm→∞ ‖U0 − Um‖L1 = 0 and
s-limm→∞Qm = Q. Since U − Um = U − U0 + U0 − Um ∈ L1(H) the wave operators

Ω±(U,Um) = s- lim
n→±∞

UnU−nm P ac(Um)

exist for each m ∈ N. However, we have Ω± = Ω±(U,Um) for each m ∈ N since Uacm = Uac0 . Let

Jm := −1
2

tr(Ω−(U,Um)ρacU∗0 Ω−(U,Um)∗[Vm, Qm]), m ∈ N,

where Vm := U − Um. We note that Jm = (Jm)ac + (Jm)s where

(Jm)ac := −1
2

tr(Ω−(U,Um)ρacU∗0 Ω±(U,Um)∗[Vm, Qac])

(Jm)s := −1
2

tr(Ω−(U,Um)ρacU∗0 Ω±(U,Um)∗[Vm, Qs,m]).

Since Usm and Qs,m are pure point we get by the considerations above that (Jm)s = 0 for each m ∈ N. Hence
Jm = (Jm)ac, m ∈ N.

Furthermore, using Ω± = Ω±(U,Um) and Uac0 = Uacm we find

Jm = (Jm)ac = −1
2

tr(Ω−ρacU∗0 Ω∗−[Vm, Qac]), m ∈ N.

Since limm→∞ ‖U0 − Um‖L1 = 0 and s-limm→∞Qm = Q we find limm→∞ Jm = J and
limm→∞(Jm)ac = Jac which yields J = Jac.

Lemma 3.6. Let {U,U0} be a L1-scattering system. With the notation introduced in (91), let

J(r) := −1
2

tr(Ω−(r)ρU∗0 Ω−(r)∗[V,Qac]), r ∈ [0, 1).

If σs(U) = ∅, then J = limr↑1 J(r).

Proof. We set

Jac(r) := −1
2

tr(Ω−(r)ρU∗0 Ω−(r)∗P ac(U)[V,Qac])

and

Js(r) := −1
2

tr(Ω−(r)ρU∗0 Ω−(r)∗P s(U)[V,Qac]).

Since Ω∗− = s-limr↑1 Ω−(r)∗P ac(U) one easily verifies that J = limr↑ J
ac(r).

Let us show that limr↑1 J
s(r) = 0. To this end we verify that

s-lim
r↑1

Ω−(r)∗P s(U) = 0.

Let ϕk, ‖ϕk‖ = 1, be an eigenvector of U corresponding to the eigenvalue ξk ∈ T. One gets

Ω−(r)∗ϕk = (1− r)P ac0

∑
n∈N

rkU−n0 Unϕk = (1− r)P ac0

∑
n∈N

rkU−n0 ξnkϕk.
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Hence

Ω−(r)∗ϕk = P ac0

1− r
I − U∗0 ξk

ϕk = (1− r)
∫

T

1
1− rζξ

dEac0 (ζ)ϕk.

We introduce the Borel subset ∆N
k of T defined by

∆N
k :=

{
ζ ∈ T :

d(Eac0 (ζ)ϕk, ϕk)
dν(ζ)

≤ N
}
. (25)

It is not hard to see that s-limN→∞Eac0 (T \∆N
k ) = 0. By the decomposition

Ω−(r)∗ϕk = (1− r)
∫

∆N
k

1
1− rζξk

dEac0 (ζ)ϕk +

(1− r)
∫

T\∆N
k

1
1− rζξ

dEac0 (ζ)ϕk

we find

‖Ω−(r)∗ϕk‖2 =
1− r
1 + r

∫
∆N
k

1− r2

|1− rζξk|2
d(Eac0 (ζ)ϕk, ϕk)

dν(ζ)
+

(1− r)2

∫
N\∆N

k

1
|1− rζξk|2

d(Eac0 (ζ)ϕk, ϕk)
dν(ζ)

.

Taking into account (25) we find the estimate

‖Ω−(r)∗ϕk‖2 ≤ 2πN
1− r
1 + r

+ (1− r)2

∫
N\∆N

k

1
|1− rζξk|2

d(Eac0 (ζ)ϕk, ϕk)
dν(ζ)

.

Using (1−r)2

|1−rζξk|2
≤ 1 we get

‖Ω−(r)∗ϕk‖2 ≤ 2πN
1− r
1 + r

+ (Eac0 (T \∆N
k )ϕk, ϕk).

For each ε > 0 there is N0 such that (Eac0 (T \∆N
k )ϕk, ϕk) < ε

2 for N > N0. Fixing such a N there is r0 < 1
such that for r ∈ (r0, 1) one has 2πN 1−r

1+r <
ε
2 .

‖Ω−(r)∗ϕk‖2 ≤ ε.

Hence limr↑1 ‖Ω−(r)∗ϕk‖2 = 0. From the above considerations we get limr↑1 Ω∗−(r)f = 0 provided f =∑
k ckfk, ck ∈ C, is a finite sum of eigenvectors of U . However, the set of finite sums of eigenvectors of U is

dense in Hs(U) which yields s-limr↑1 Ω∗−(r)P s(U) = 0. Using s-limr↑1 Ω−(r) = Ω− and the compactness
of V we immediately get that limr↑1 J

s(r) = 0.

Using the results above we are now going to prove a Landauer-Büttiker formula for unitary operators

Theorem 3.7. Let S = {U,U0} be a L1-scattering system. Further let Q0 be a charge and let ρ be a density
operator. If σsc(U) = ∅, then

J =
1

4π

∫
T

tr {ρac(ζ)[Qac(ζ)− S(ζ)∗Qac(ζ)S(ζ)]} dν(ζ) (26)

where S(ζ) is the scattering matrix of the scattering system S .

Proof. Let us introduce the approximate current by

J(r, ε) := −1
2

tr(Ω−(r)ρεacU
∗
0 Ω−(r)∗[V,Qac]), 0 ≤ r < 1,
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where
ρεac := Eac0 (∆∗(ε))ρ, ε ≥ 0, (27)

and ∆∗(ε) ⊆ T satisfying ν(∆∗(ε)) < ε and (112). Notice that ρεac is also a density operator. By Lemma 3.6 we
immediately get that limr↑1 J(r, ε) = J(ε) where

J(ε) := −1
2

tr(Ω−ρεacU
∗
0 Ω∗−[V,Qac]).

Furthermore, we note that
J = lim

ε→+0
J(ε) = lim

ε→+0
lim
r↑1

J(r, ε) (28)

where J is given by (22). We set

J1(ε) := tr(ρεacΩ
∗
−V QacΩ−U

∗
0 ),

J2(ε) := tr(ρεacU
∗
0 Ω∗−QacV Ω−)

and
J1(r, ε) := tr(ρεacΩ−(r)∗V QacΩ−(r)U∗0 ),

J2(r, ε) := tr(ρεacΩ−(r)∗QacU0V Ω−(r)),
0 ≤ r < 1.

Notice that
−2J(ε) = J1(ε)− J2(ε)

−2J(r, ε) = J1(r, ε)− J2(r, ε),
(29)

0 ≤ r < 1. Setting K(r) := Ω−(r)∗V , 0 ≤ r < 1, we get

J1(r, ε) = tr(ρεacK(r)QacΩ−U∗0 ),

Using V = −U0V
∗U we obtain which yields

J2(r, ε) := −tr(ρεacΩ−(r)∗QacU0K(r)∗). (30)

At first, we are going to calculate K(r)QacΩ−(r)U∗0 . From (93) we get

K(r)QacΩ−(r)U∗0 = K(r)Qac

{
P ac0 + r

∫
T

1
I − rζU∗

V ∗U0dE
ac
0 (ζ)

}
U∗0

where we have used U∗V = −V ∗U0 which leads to

K(r)QacΩ−(r)U∗0 = K(r)Qac

{
U∗0P

ac
0 + r

∫
T

1
I − rζU∗

V ∗dEac0 (ζ)
}
.

Setting

Ξ(r) := r

∫
T

1
I − rζU∗

V ∗dEac0 (ζ) (31)

we get
K(r)QacΩ−(r)U∗0 = K(r)QacU∗0P

ac
0 +K(r)QacΞ(r)

and
J1(r, ε) = tr(ρεacK(r)QacU∗0 ) + tr(ρεacK(r)QacΞ(r)).

Using the unitary operator Φ and (107) we find

(ΦK(r)QacU∗0 Φ−1 f̂ )(ζ) =
∫

T
K(r; ζ, ζ ′)Qac(ζ ′)ζ ′ f̂ (ζ ′)dν(ζ ′),

f̂ ∈ L2(T, dν(ζ), h(ζ)). By the resolvent formula one has the identity

(I − ξU∗)−1 = (I − ξU∗0 )−1
{
I + ζV ∗(I − ξU∗)−1

}
, ξ ∈ D.
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Multiplying on the right by V ∗ we get

(I − ξU∗)−1V ∗ = (I − ξU∗0 )−1
{
V ∗ + ξV ∗(I − ξU∗)−1V ∗

}
, ξ ∈ D,

which yields
(I − ξU∗)−1V ∗ = (I − ξU∗0 )−1CZ(ξ)C, ξ ∈ D.

Using that we obtain

Ξ(r) = r

∫
T
(I − rζ ′U∗0 )−1CZ(rζ ′)CdEac0 (ζ ′)

which yields

Ξ(r) = r

∫
T
Eac0 (dξ)C

∫
T
(I − rζ ′ξ)−1Z(rζ ′)CdEac0 (ζ ′). (32)

Applying the map Φ one gets

(ΦΞ(r)Φ−1 f̂ )(ξ) = r
√
Y (ξ)

∫
T
(I − rζ ′ξ)−1Z(rζ ′)

√
Y (ζ ′) f̂ (ζ ′)dν(ζ ′).

or

(ΦΞ(r)Φ−1 f̂ )(ξ) = r

∫
T
(I − rζ ′ξ)−1K(r; ζ ′, ξ)∗ f̂ (ζ ′)dν(ζ ′),

f̂ ∈ L2(T, dν(ζ), h(ζ)). Using

(ΦK(r)QacΞ(r)Φ−1 f̂ )(ξ) = (ΦK(r)Φ−1ΦQacΦ−1ΦΞ(r)Φ−1 f̂ )(ξ)

and (107) we find

(ΦK(r)QacΞ(r)Φ−1 f̂ )(ζ) =

r

∫
T
dν(ξ)K(r; ζ, ξ)Qac(ξ)

∫
T
dν(ζ ′)(I − rζ ′ξ)−1K(r; ζ ′, ξ)∗ f̂ (ζ ′).

Setting

M(r; ζ, ξ, ζ ′) := K(r; ζ, ξ)Qac(ξ)K(r; ζ ′, ξ)∗ (33)

=
√
Y (ζ)Z(rζ)∗

√
Y (ξ)Qac(ξ)

√
Y (ξ)Z(rζ ′)

√
Y (ζ ′)

= X∗(r; ζ)
√
Y (ξ)Qac(ξ)

√
Y (ξ)X∗(r; ζ ′)∗

we find

(ΦK(r)QacΞ(r)Φ−1 f̂ )(ζ) = r

∫
T
dν(ξ)

∫
T
dν(ζ ′)

M(r; ζ, ξ, ζ ′)
I − rζ ′ξ

f̂ (ζ ′)

where X∗(r; ζ) is defined by (111). Notice that

M(r; ζ, ξ, ζ ′)∗ = M(r; ζ ′, ξ, ζ).

Summing up we obtain

J1(r, ε) =
∫

T
dν(ζ)ζtr(ρεac(ζ)K(r; ζ, ζ)Qac(ζ))+

r

∫
T2
dν(ζ)dν(ξ)tr

(
ρεac(ζ)

M(r; ζ, ξ, ζ)
I − rζξ

)
.

(34)

We are going to calculate J2(r, ε). From (96) we get

Ω−(r)∗QacU0K(r)∗ =
{
P ac0 + r

∫
R
dEac0 (ζ)V

ζ

I − rζU

}
QacU0K(r)∗
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or

Ω−(r)∗QacU0K(r)∗ = QacU0K(r)∗ + r

∫
R
dEac0 (ζ)V

ζ

I − rζU
QacU0K(r)∗

which yields

Ω−(r)∗QacU0K(r)∗ = QacU0K(r)∗ + rU∗0

∫
R
dEac0 (ζ)V

1
I − rζU

QacU0K(r)∗.

Using the notation (31) we obtain

Ω−(r)∗QacU0K(r)∗ = QacU0K(r)∗ + rU∗0 Ξ(r)∗QacU0K(r)∗. (35)

Obviously we have

(ΦQacU0K(r)∗Φ−1 f̂ )(ζ) = Qac(ζ)ζ
∫

T
K(r; ξ, ζ)∗ f̂ (ξ)dν(ξ), (36)

f̂ ∈ L2(T, dν(ζ), h(ζ)). Using (32) we find

U∗0 Ξ(r)∗QacU0K(r)∗ = rU∗0

∫
T
dEac0 (ζ)CZ(rζ)∗

∫
T
CdEac0 (ξ)(1− rζξ)−1QacU0K(r)∗

which yields

(ΦU∗0 Ξ(r)∗QacU0K(r)∗Φ−1 f̂ )(ζ)

= r

(
ΦU∗0

∫
T
dEac0 (ζ)CZ(rζ)∗Φ−1Φ

∫
T
CdEac0 (ξ)(1− rζξ)−1Φ−1ΦQacU0K(r)∗Φ−1 f̂

)
(ζ),

Hence

(ΦU∗0 Ξ(r)∗QacU0K(r)∗Φ−1 f̂ )(ζ)

= rζ
√
Y (ζ)Z(rζ)∗

∫
T
dν(ξ)

√
Y (ξ)(1− rζξ)−1Qac(ξ)ξ

∫
T
dν(ζ ′)K(r; ζ ′, ξ)∗ f̂ (ζ ′).

Since K(r; ζ, ξ) :=
√
Y (ζ)Z(rζ)∗

√
Y (ξ) by definition we get

(ΦU∗0 Ξ(r)∗QacU0K(r)∗Φ−1 f̂ )(ζ) =

r

∫
T
dν(ξ)

ζξK(r; ζ, ξ)
1− rζξ

Qac(ξ)
∫

T
dν(ζ ′)K(r; ζ ′, ξ)∗ f̂ (ζ ′),

Finally, by definition (33) we find

(ΦU∗0 Ξ(r)∗QacU0K(r)∗Φ−1 f̂ )(ζ) =
∫

T
dν(ξ)

∫
T
dν(ζ ′)

ζξM(r; ζ, ξ, ζ ′)
1− rζξ

f̂ (ζ ′). (37)

From (30) and (35) it follows

J2(r, ε) = −tr(ρεacQacU0K(r)∗)− rtr(ρεacU∗0 Ξ(r)∗QacU0K(r)∗).

Taking into account (36) and (37) we obtain

J2(r, ε) = −
∫

T
dν(ζ)ζtr(ρεac(ζ)Qac(ζ)K(r; ζ, ζ)∗) (38)

− r

∫
T

∫
T
dν(ζ)dν(ξ)

ζξ

1− rζξ
tr(ρεac(ζ)M(r; ζ, ξ, ζ)).
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From (29), (34) and (38) we get

−2J(r, ε) =
∫

T
dν(ζ)ζtr (ρεac(ζ)K(r; ζ, ζ)Qac(ζ))

+
∫

T
dν(ζ)ζtr (ρεac(ζ)Qac(ζ)K(r; ζ, ζ)∗)

+ r

∫
T
dν(ζ)

∫
T
dν(ξ)

{
1

I − rζξ
+

ζξ

1− rζξ

}
tr (ρεac(ζ)M(r; ζ, ξ, ζ))

which yields

−2J(r, ε) =
∫

T
dν(ζ)ζtr (ρεac(ζ)K(r; ζ, ζ)Qac(ζ))

+
∫

T
dν(ζ)ζtr (ρεac(ζ)Qac(ζ)K(r; ζ, ζ)∗)

+ 2π
r

1 + r

1− r2

2π

∫
T
dν(ζ)

∫
T
dν(ξ)

1 + ζξ

|I − rζξ|2
tr (ρεac(ζ)M(r; ζ, ξ, ζ)) .

By (27) we get

−2J(r, ε) =
∫

T\∆∗(ε)
dν(ζ)ζtr (ρac(ζ)K(r; ζ, ζ)Qac(ζ))

+
∫

T\∆∗(ε)
dν(ζ)ζtr (ρac(ζ)Qac(ζ)K(r; ζ, ζ)∗)

+ 2π
r

1 + r

1− r2

2π

∫
T\∆∗(ε)

dν(ζ)
∫

T
dν(ξ)

1 + ζξ

|I − rζξ|2
tr (ρac(ζ)M(r; ζ, ξ, ζ)) .

Using the representation K(r; ζ, ζ) = X∗(r; ζ)
√
Y (ζ) and taking into account (112) we find that

lim
r↑1

∫
T\∆∗(ε)

dν(ζ)ζtr (ρac(ζ)K(r; ζ, ζ)Qac(ζ)) =
∫

T\∆∗(ε)
dν(ζ)ζtr (ρac(ζ)K(ζ, ζ)Qac(ζ))

and

lim
r↑1

∫
T
dν(ζ)ζtr (ρac(ζ)Qac(ζ)K(r; ζ, ζ)∗) =

∫
T\∆∗(ε)

dν(ζ)ζtr (ρac(ζ)Qac(ζ)K(ζ, ζ)∗) .

Furthermore, using (33) we find that

1− r2

2π

∫
T\∆∗(ε)

dν(ζ)
∫

T
dν(ξ)

1 + ζξ

|I − rζξ|2
tr (ρac(ζ)M(r; ζ, ξ, ζ))

=
∫

T
dν(ξ)

1− r2

2π

∫
T
dν(ζ)

1 + ζξ

|I − rζξ|2
F (r; ζ, ξ)χT\∆(ε)(ζ)

where
F (r; ζ, ξ) := tr

(
ρac(ζ)X∗(r; ζ)

√
Y (ξ)Qac(ξ)

√
Y (ξ)X∗(r; ζ)∗

)
ζ ∈ T \∆∗(ε), ξ ∈ T and 0 ≤ r < 1. By (112) we get the estimate

|F (r; ζ, ξ)| ≤ CX∗(ε)2‖ρac‖‖Qac‖tr(Y (ξ)), ζ ∈ T \∆∗(ε)), 0 ≤ r < 1, ξ ∈ T.

Hence ∣∣∣∣∣1− r2

2π

∫
T\∆∗(ε)

dν(ζ)
1 + ζξ

|I − rζξ|2
F (r; ζ, ξ)

∣∣∣∣∣ ≤
2

1− r2

2π

∫
T\∆∗(ε)

dν(ζ)
1

|I − rζξ|2
|F (r; ζ, ξ)| ≤ 2CX∗(ε)

2‖ρac‖‖Qac‖tr(Y (ξ))
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where tr(Y (ξ)) ∈ L1(T, dν(ξ)). Applying the Lebesgue dominated convergence theorem we obtain

1− r2

2π

∫
T\∆∗(ε)

dν(ζ)
∫

T
dν(ξ)

1 + ζξ

|I − rζξ|2
tr (ρac(ζ)M(r; ζ, ξ, ζ))

=
∫

T
dν(ξ)F (ξ, ξ)χT\∆(ε)(ξ) =

∫
T\∆∗(ε)

dν(ξ)F (ξ, ξ)

where
F (ξ, ξ) := tr

(
ρac(ξ)X∗(ξ)

√
Y (ξ)Qac(ξ)

√
Y (ξ)X∗(ξ)∗

)
= tr(ρac(ξ)M(ξ, ξ, ξ))

and M(ζ, ζ, ζ) = L1 − limr↑1M(r; ζ, ζ, ζ) for a.e. ξ ∈ T. Summing up we obtain

−2J(ε) := 2 lim
r↑1

J(r, ε) =
∫

T\∆∗(ε)
dν(ζ)ζtr (ρac(ζ)K(ζ, ζ)Qac(ζ))

+
∫

T\∆∗(ε)
dν(ζ)ζtr (ρac(ζ)Qac(ζ)K(ζ, ζ)∗)

+ 2π
∫

T\∆∗(ε)
dν(ζ)tr (ρac(ζ)M(r; ζ, ζ, ζ)) .

By Corollary D.3 we verify that

−2J(ε) = i

∫
T\∆∗(ε)

dν(ζ)tr (ρac(ζ)T (ζ)∗Qac(ζ))

− i
∫

T\∆∗(ε)
dν(ζ)tr (ρac(ζ)Qac(ζ)T (ζ)) + 2π

∫
T\∆∗(ε)

dν(ζ)tr (ρac(ζ)M(ζ, ζ, ζ)) .

Since M(ζ, ζ, ζ) = K(ζ, ζ)Qac(ζ)K(ζ, ζ)∗ one gets M(ζ, ζ, ζ) = T (ζ)∗QacT (ζ). Therefore

2J(ε) =
∫

T\∆∗(ε)
dν(ζ)tr (ρac(ζ)Σ(ζ))

where
Σ(ζ) := −iT (ζ)∗Qac(ζ) + iQac(ζ)T (ζ)− 2πT (ζ)∗Qac(ζ)T (ζ), ζ ∈ T. (39)

Using (109) we obtain ‖Σ‖L1 ∈ L1(T, dν(ζ)). Moreover, from (101) we get

T (ζ) =
Ih(λ) − S(ζ)

2πi
and T (ζ)∗ = −

Ih(λ) − S(ζ)∗

2πi
. (40)

Inserting (40) into (39) we find

Σ(ζ) :=
Ih(ζ) − S(ζ)∗

2π
Qac(ζ) +Qac(ζ)

Ih(ζ) − S(ζ)
2π

+

2π
Ih(λ) − S(ζ)∗

2πi
Qac(ζ)

Ih(λ) − S(ζ)
2πi

which yields

Σ(ζ) =
1

2π
{Qac(ζ)− S(ζ)∗Qac(ζ)S(ζ)} .

which proves

J(ε) =
1

4π

∫
T\∆∗(ε)

tr (ρac(ζ)(Qac(ζ)− S(ζ)∗Qac(ζ)S(ζ)) dν(ζ)

Using ‖Σ(ζ)‖L1 ∈ L1(T, dν(ζ)) and (28) we immediately prove (26).

Corollary 3.8. If the assumptions of Theorem 3.7 are satisfied, then

J =
1

4π

∫
T

tr ((ρac(ζ)− S(ζ)ρac(ζ)S(ζ)∗)Qac(ζ)) . (41)

Further, let φ : T −→ [0,∞) be Borel measurable and bounded. If ρ = φ(U0), then J = 0.
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Proof. Using the fact that S(ζ)− Ih(ζ) ∈ L1(h(ζ)) for a.e ζ ∈ T with respect to ν one immediately shows that
(41) follows from (26).

If ρ = φ(U0), then ρac = φ(Uac0 ) which yields ρac(ζ) = φ(ζ)Ih(ζ) for a.e. ζ ∈ T with respect to ν. Inserting
ρac(ζ) = φ(ζ)Ih(ζ) into (41) we prove J = 0.

3.2 Self-adjoint operators

Let H0 and H be self-adjoint operators on the separable Hilbert space H. If the condition

(H + i)−1 − (H0 + i)−1 ∈ L1(H) (42)

is satisfied, then the pair S ′ = {H,H0} is called a L1-scattering system. If S ′ = {H,H0} is a L1-scattering
system, then the wave operators

W± := s- lim
t→±∞

eitHe−itH0P ac(H0)

exist and are complete. The scattering operator is defined by S′ := W ∗+W−.

A bounded self-adjoint operator Q commuting with H0 is called a charge for S ′. A non-negative bounded operator
ρ commuting withH0 is called a density operator for S ′. To define the current J ′ for S ′ we assume that (I+H2

0 )ρ
is a bounded operator. Under this assumption the current J ′ is defined by

J ′ := −itr
(
W−(I +H2

0 )ρW ∗−(H − i)−1[H,Q](H + i)−1
)
. (43)

Using (21) we have that (H − i)−1[H,Q′](H + i)−1 ∈ L1(H) which shows that the current is well defined. The
definition (43) is in accordance with [1]. Indeed, from definition (43) we formally get J ′ = −itr(W−ρW ∗−[H,Q]).

Theorem 3.9. Let S ′ = {H,H0} be a L1-scattering system. Further, let Q be a charge and let ρ be a density
operator for S ′ such that (I +H2

0 )ρ is a bounded operator. Further, let Π(Hac
0 ) a spectral representation of Hac

0

such that Qac and ρac are represented by multiplication operators MQ′ac
and Mρ′ac

induced by the measurable
families {Q′ac(λ)}λ∈R and {ρ′ac(λ)}λ∈R, respectively. If σsc(H) = ∅, then

J ′ =
1

2π

∫
R

tr (ρ′ac(λ)(Q′ac(λ)− S′(λ)∗Q′ac(λ)S′(λ))) dλ (44)

where {S′(λ)}λ∈R is the scattering matrix with respect to the spectral representation Π(Hac
0 ).

Proof. Let us introduce the Cayley transforms

U := (i−H)(i+H)−1 and U0 := (i−H0)(i+H0)−1.

The pair S = {U,U0} is a L1-scattering system if and only if S ′ is L1-scattering system. By the invariance
principle for wave operators one verifies that W± = Ω± which yields S = S′. Obviously, Q is a charge for S and
ρ is a density operator for S . A straightforward computation (compare with (12)) shows that

J ′ = −1
2

tr(Ω−ρU∗0 Ω∗−[V,Q]) = −itr
(
W−ρW

∗
−(H − i)−1[H,Q](H + i)−1

)
. (45)

Let Π(Uac0 ) be the spectral representation of Appendix B. Assume that the operators Qac, ρac and S = Ω∗+Ω−
are represented in Π(Uac0 ) by the multiplication operators MQac , Mρac and MS induced by the measurable
families {Qac(ζ)}ζ∈T, {ρac(ζ)}ζ∈T and {S(ζ)}ζ∈T, respectively.

Using the spectral representation Π(Hac
0 ) = {L2(R, dλ, h′(λ)),M,Φ′} of Appendix C one gets that Qac, ρac

and S are presented in Π(Hac
0 ) by multiplication operators MQ′ac

, Mρ′ac
and MS′ induced by the measurable

families {Q′ac(λ)}λ∈R, {ρ′ac(λ)}λ∈R and {S′(λ)}λ∈R, respectively. Notice that both families are related by

Q′ac(λ) = Qac(e2i arctan(λ)), λ ∈ R,
ρ′ac(λ) = ρac(e2i arctan(λ)), λ ∈ R,
S′(λ) = S(e2i arctan(λ)), λ ∈ R.
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Taking into account Theorem 3.7 we get

−1
2

tr(Ω−ρU∗0 Ω∗−[V,Q])) =
1

2π

∫
R

tr (ρ′ac(λ)(Q′ac(λ)− S′(λ)∗Q′ac(λ)S′(λ)))
dλ

1 + λ2
. (46)

Finally, replacing ρ by (I +H2
0 )ρ we obtain (44) from (46).

Corollary 3.10. If the assumptions of Theorem 3.9 are satisfied, then

J ′ =
1

2π

∫
R

tr ((ρ′ac(λ)− S′(λ)ρ′ac(λ)S′(λ)∗)Q′ac(λ)) dλ.

Further, let φ : R −→ [0,∞) be Borel measurable and bounded. If (1 + λ2)φ(λ), λ ∈ R, is bounded and
ρ′ = φ(H0) , then J ′ = 0.

The proof of Corollary 3.10 follows from Corollary 3.8.

The charge Q was defined as a bounded self-adjoint operator. However, this definition is usually not sufficient in
applications, cf. below. In [1, Definition 3.3] the notion of tempered charge was introduced. An unbounded self-
adjoint operator Q is called a tempered charge if Q commutes with H0 and for any bounded Borel set Λ of R the
truncated charge QΛ := QE0(Λ) is bounded where E0(·) is the spectral measure of H0. For tempered charges
we set

J ′Λ := −itr(W−(I +H2
0 )ρW ∗−(H − i)−1[H,QΛ](H + i)−1), QΛ := QE0(Λ).

Since [Q,H0] = 0, we can decompose Q′ = Qac ⊕ Qs. Let Π(Hac
0 ) = {L2(T, dλ, h′(λ)),M ′,Φ′} be a

spectral representation of Hac
0 . Then there is a measurable family {Q′ac(λ)}λ∈R of bounded operators such that

Qac is unitarily equivalent to the multiplication operator MQ′ac
where

(MQ′ac
f̂ ′ )(λ) := Q′ac(λ) f̂ ′ (λ), f̂ ′ ∈ dom(MQ′ac

), λ ∈ R,

dom(MQ′ac
) := { f̂ ′ ∈ L2(R, dλ, h′(λ) : Q′ac(λ) f̂ ′ (λ) ∈ L2(R, dλ, h′(λ)}.

Obviously, one gets Q′Λ,ac(λ) = Q′ac(λ)χΛ(λ), λ ∈ R. If Q is a tempered charge, then Qac is a tempered
charge for Hac

0 , that is ‖QacEac0 (Λ)‖H <∞. Therefore, for a tempered charge one has

sup
Λ∈Bb(R)

ess-supλ∈Λ‖Q′ac(λ)‖h′(λ) <∞ (47)

where ess-sup means the essential spectrum with respect to the Lebesgue measure on R. In the following we
denote the set of all bounded Borel sets of R by Bb(R).

Corollary 3.11. Let S ′ = {H,H0} be a L1-scattering system. Further, let Q be a tempered charge and let ρ be
a density operator. If

sup
Λ∈Bb(R)

‖QE0(Λ)‖H‖(I +H2
0 )ρE0(Λ)‖H <∞ (48)

then the limit J ′ := limL→∞ J ′(−L,L) exists and the formula (44) is valid.

Proof. Applying Theorem 3.9 we find

J ′Λ =
1

2π

∫
Λ

tr(ρ′ac(λ)(Q′ac(λ)− S′(λ)∗Q′ac(λ)S′(λ)))dλ, Λ ∈ Bb(R).

From (48) which yields
sup

Λ∈Bb(R)

‖QacE0(Λ)‖H‖(I +H2
0 )ρacE0(Λ)‖H <∞

which yields

‖QacE0(Λ)‖H‖(I +H2
0 )ρacE0(Λ)‖H =

ess-supλ∈Λ‖Q′ac(λ)‖h′(λ)ess-supλ∈Λ(1 + λ2)‖ρ′ac(λ)‖h′(λ).
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Hence

sup
Λ∈Bb(R)

‖QacE0(Λ)‖H‖(I +H2
0 )ρacE0(Λ)‖H =

sup
Λ∈Bb(R)

{
ess-supλ∈Λ‖Q′ac(λ)‖h′(λ)ess-supλ∈Λ(1 + λ2)‖ρ′ac(λ)‖h′(λ)

}
.

This gives
sup

Λ∈Bb(R)

ess-supλ∈Λ

{
(1 + λ2)‖Q′ac(λ)‖h′(λ)‖ρ′ac(λ)‖h′(λ)

}
<∞.

In particular, we have

sup
L>0

ess-supλ∈(−L,L)

{
(1 + λ2)‖Q′ac(λ)‖h′(λ)‖ρ′ac(λ)‖h′(λ)

}
<∞. (49)

Using the definition T ′(λ) := 1
2π (Ih′(λ) − S′(λ)), λ ∈ R, we find the relation T ′(λ) = T (e2i arctan(λ)) for a.e.

λ ∈ R. Taking into account (109) we get the estimate∫
R
‖T ′(λ)‖L1

dλ

1 + λ2
≤ 2‖(H + i)−1 − (H0 + i)−1‖L1 . (50)

Since

Q′ac(λ)− S′(λ)Q′acS
′(λ) =

2πi {T ′(λ)Q′ac(λ) +Qac(λ)T ′(λ)− 2πiT ′(λ)Qac(λ)T ′(λ)}

for a.e. λ ∈ R we find

‖ρ′ac(λ)(Q′ac (λ)− S′(λ)Q′acS
′(λ))‖L1

≤(
2 + 1

π

)
‖ρ′ac(λ)‖h′(λ)‖Q′ac(λ)‖h′(λ)‖T ′(λ)‖L1

for a.e. λ ∈ T where we have used that ‖T ′(λ)‖h′(λ) ≤ 1
π . Using (49) and (50) we verify that the integral

J ′R :=
∫

R
tr(ρ′ac(λ)(Q′ac(λ)− S′(λ)∗Q′ac(λ)S′(λ)))dλ

exists and is finite. Hence

lim
L→∞

J ′(−L,L) = lim
L→∞

1
2π

∫ L

−L
tr(ρ′ac(λ)(Q′ac(λ)− S′(λ)∗Q′ac(λ)S′(λ)))dλ = J ′R

which completes the proof.

4 Examples

Let us consider examples where it is important that the Hamiltonian is not semibounded from below.

4.1 Landauer-Büttiker formula for dissipative operators

We consider the Schrödinger-type operator K in the Hilbert space K = L2((a, b)) defined by

dom(K) :=

g ∈W 1,2((a, b)) :

1
m(x)g

′(x) ∈W 1,2((a, b))(
1

2mg
′) (a) = −κag(a)(

1
2mg

′) (b) = κbg(b)


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and
(Kg)(x) = l(g)(x), g ∈ dom(K),

where

l(g)(x) = − d

dx

1
2m(x)

d

dx
g(x) + V (x)g(x), x ∈ (a, b),

V ∈ L∞((a, b)) and m(x) > 0 is real function such that m ∈ L∞((a, b)) and 1
m ∈ L

∞((a, b)). Furthermore,
we assume κa, κb ∈ C+ = {z ∈ C : =m(z) > 0}. The operator K is maximal dissipative and completely
non-self-adjoint. Its spectrum consists of non-real isolated eigenvalues in C− which accumulate at infinity.

To analyze the operator K it is useful to introduce the elementary solutions va(x, z) and vb(x, z),

l(va(x, z))− zva(x, z) = 0, va(a, z) = 1,
1

2m(a)
v′a(a, z) = −κa, (51)

l(vb(x, z))− zvb(x, z) = 0, vb(b, z) = 1,
1

2m(b)
v′b(b, z) = κb, (52)

x ∈ [a, b], z ∈ C, which always exist. The Wronskian of va(x, z) and vb(x, z) is defined by W (z), i.e.

W (z) = va(x, z)
1

2m(x)
v′b(x, z)− vb(x, z)

1
2m(x)

v′a(x, z). (53)

We note that the Wronskian does not depend on x. Obviously, the functions v∗a(x, z) and v∗b(x, z),

v∗a(x, z) := va(x, z) and v∗b(x, z) := vb(x, z), z ∈ C. (54)

x ∈ [a, b], z ∈ C, are also elementary solutions of

l(v∗a(x, z))− zv∗a(x, z) = 0, v∗a(a, z) = 1,
1

2m(a)
v′∗a(a, z) = −κa, (55)

l(v∗b(x, z))− zv∗b(x, z) = 0, v∗b(b, z) = 1,
1

2m(b)
v′∗b(b, z) = κb, (56)

x ∈ [a, b]. The Wronskian of v∗a(x, z) and v∗b(x, z) is denoted byW∗(z) and is also independent from x. Using
the elementary solutions one gets the representation

((H − z)−1f)(x) = (57)

−vb(x, z)
W (z)

∫ x

a

dy va(y, z)f(y)− va(x, z)
W (z)

∫ b

x

dy vb(y, z)f(y),

for z ∈ %(H) and f ∈ L2([a, b]) and

((H∗ − z)−1f)(x) = (58)

−v∗b(x, z)
W∗(z)

∫ x

a

dy v∗a(y, z)f(y)− v∗a(x, z)
W∗(z)

∫ b

x

dy v∗b(y, z)f(y),

for z ∈ %(H∗) and f ∈ L2([a, b]), see [13].

Since H is completely non-self-adjoint the maximal dissipative operator H can be completely characterized by
its characteristic function θK(z), z ∈ %(H) ∩ %(H∗). The definition of the characteristic function relies on the
so-called boundary operators T (z) : K −→ C2, z ∈ %(H) and T∗(z) : K −→ C2, z ∈ %(H∗), which are
defined in [13]. Introducing representations

κa = qa +
i

2
α2
a and κb = qb +

i

2
α2
b , αa, αb > 0, (59)

the boundary operators are defined by

T (z)f :=
(

αb((H − z)−1f)(b)
−αa((H − z)−1)f(a)

)
(60)
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and

T∗(z)f :=
(

αb((H∗ − z)−1f)(b)
−αa((H∗ − z)−1f)(a)

)
, (61)

f ∈ L2([a, b]). Using the resolvent representations (57) and (58) we obtain

T (z)f =
1

W (z)

(
−αb

∫ b
a
dy va(y, z)f(y)

αa
∫ b
a
dy vb(y, z)f(y)

)
(62)

and

T∗(z)f =
1

W∗(z)

(
−αb

∫ b
a
dy v∗a(y, z)f(y)

αb
∫ b
a
dy v∗b(y, z)f(y)

)
, (63)

f ∈ L2([a, b]). The adjoint operators are given by

(T (z)∗ξ) (x) =
1

W (z)

(
−αbva(x, z), αavb(x, z)

)
ξ (64)

=
1

W∗(z)
(−αbv∗a(x, z), αav∗b(x, z)) ξ,

and

(T∗(z)∗ξ) (x) =
1

W∗(z)

(
−αbv∗a(x, z), αav∗b(x, z)

)
ξ (65)

=
1

W (z)
(−αbva(x, z), αavb(x, z)) ξ,

where

ξ =
(
ξb

ξa

)
∈ C2. (66)

The characteristic function ΘK(·) of the maximal dissipative operator H is a two-by-two matrix-valued function
which satisfies the relation

ΘK(z)T (z)f = T∗(z)f, z ∈ %(H) ∩ %(H∗), αa, αb > 0, (67)

f ∈ L2([a, b]). It depends meromorphically on z ∈ %(H) ∩ %(H∗) and is contractive in C−, i.e.

‖ΘK(z)‖ ≤ 1 for z ∈ C−. (68)

Using the elementary solutions the characteristic function ΘK(·) takes the form

ΘK(z) = IC2 + i
1

W∗(z)

(
α2
bv∗a(b, z) −αbαa
−αbαa α2

av∗b(a, z)

)
. (69)

for z ∈ %(H) ∩ %(H∗), cf. [13]

Since the operator K is maximal dissipative there is a larger Hilbert space H and a self-adjoint operator H such
that K is embed in H and the relation

PH
K (H − z)−1 � K = (K − z)−1, z ∈ C+,

is satisfied. The self-adjoint operator H is called a self-adjoint dilation of K . If the condition

clospan{(H − z)−1K : z ∈ C \ R} = H

is satisfied, then H is called a minimal self-adjoint dilation K of H . Minimal self-adjoint dilations of maximal
dissipative operators are determined up to a certain isomorphism, in particular, all minimal self-adjoint dilations are
unitarily equivalent.
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In the present case the minimal self-adjoint dilation of the maximal dissipative operator H can be constructed in
an explicit manner. In accordance with [13] we introduce the larger Hilbert space

H = D− ⊕ K⊕D+ (70)

where D± := L2(R±,C2). Introducing the graph Ω,

R− R+

R− R+

[a, b]

one can write the Hilbert space H as L2(Ω̂). Further, we define

~g := g− ⊕ g ⊕ g+ (71)

where

g−(x) :=
(
gb−(x)
ga−(x)

)
and g+(x) :=

(
gb+(x)
ga+(x)

)
(72)

for x ∈ R− and x ∈ R+, respectively. Let us introduce the matrices Ka
± and Kb

± which are defined by

Ka
− :=

(
0 0
1 κa

)
and Ka

+ :=
(

0 0
1 κa

)
(73)

as well as

Kb
− :=

(
1 −κb
0 0

)
and Kb

+ :=
(

1 −κb
0 0

)
. (74)

Further we set

Λ :=
(
αb 0
0 αb

)
Using these notations the self-adjoint dilation K is defined by

dom(H) :=

~g ∈ H :

g± ∈W 1,2(R±,C2),
g, 1

mg
′ ∈W 1,2([a, b]),

Ka
−ga +Kb

−gb = Λg−(0),
Ka

+ga +Kb
+gb = Λg+(0)

 (75)

and

H~g := −i d
dx
g− ⊕ l(g)⊕−i d

dx
g+, ~g ∈ dom(H), (76)

where,

ga =
( 1

2m(a)g
′(a)

g(a)

)
and gb =

( 1
2m(b)g

′(b)
g(b)

)
, (77)

With respect to a graph picture the operator H looks like

)

αbg
b
−(0) = 1

2m(b)g
′(b)− κbg(b)

−i ddxg
b
−

(

1
2m(b)g

′(b)− κbg(b) = αbg
b
+(0)

−i ddxg
b
+

)

αag
a
−(0) = 1

2m(a)g
′(a) + κag(a)

−i ddxg
a
−

(

1
2m(a)g

′(a) + κag(a) = αag
a
+(0)

−i ddxg
a
+

l(g)

23



We define another self-adjoint operator H0 by setting αb = αa = 0. In this case we get

dom(H0) :=

~g ∈ H :

g± ∈W 1,2(R±,C2),
g, 1

mg
′ ∈W 1,2((a, b)),

Ka
−ga +Kb

−gb = 0,
Ka

+ga +Kb
+gb = 0,

g−(0) = g+(0)


and

H0~g := −i d
dx
g− ⊕ l(g)⊕−i d

dx
g+, ~g ∈ dom(H0),

Setting D = D− ⊕D+ = L2(R,C2) we obtain

H = D⊕ K

and
H0 = T ⊕K0

where T is the momentum operator given by dom(T ) := W 1,2(R,C2)

(Tf)(x) := −i d
dx
f(x), f ∈ dom(T ),

and K0 is defined by

dom(K0) :=

~g ∈ H :

1
mg
′ ∈W 1,2((a, b))

( 1
2mg)(b) = qbg(b)

( 1
2mg)(a) = −qag(a)


Since the operator K0 is discrete one gets Hac

0 = T and Hac(H0) = L2(R,C2). One easily checks that the
resolvent difference is a trace class operator. This is due to the fact that both operators H and H0 are self-adjoint
extensions of the symmetric operator H̃ ,

dom(H̃) :=

~g ∈ H :

g± ∈W 1,2(R±,C2)
g, 1

mg
′ ∈W 1,2((a, b))
ga = gb = 0
g±(0) = 0

 ,

which has finite deficiency indices. Hence S = {H,H0} is trace class scattering system. In particular, the wave
operators W±(H,H0) exist and are complete.

One easily checks that Π(Hac
0 ) = {L2(R, dλ,C2),M,F} where M is the multiplication operator induced by

the independent variable λ and F denotes the Fourier transform

(Ff)(λ) =
1

2π

∫
R
e−iλxf(x)dx, f ∈ L2(R, dx,C2).

It is known that the scattering operator S(H,H0) = W+(H,H0)∗W−(H,H0) is unitarily equivalent to the
multiplication operator MΘ∗ induced by the measurable family {Θ(λ)∗}λ∈R in L2(R, dλ,C2) where

Θ(λ) = lim
η→+0

Θ(λ− iη) =
(

1 0
0 1

)
+ i

1
W∗(λ)

(
α2
bv∗a(b, λ) −αbαa
−αbαa α2

av∗b(a, λ)

)
which exist and is contractive for λ ∈ R. Setting

θb(λ) := W (λ)− iα2
bva(b, λ) and θa(λ) := W (λ)− iα2

avb(a, λ),

λ ∈ R, we find the representation

Θ(λ) =
1

W (λ)

(
θb(λ) −iαbαa
−iαbαa θa(λ)

)
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and

Θ(λ)∗ =
1

W (λ)

(
θb(λ) iαbαa
iαbαa θa(λ)

)
. (78)

Since Θ(λ)∗Θ(λ) = IC2 for λ ∈ R we obtain

1 = |θb(λ)|2 + α2
bα

2
a = |θa(λ)|2 + α2

bα
2
a and θa(λ) = θb(λ) (79)

for λ ∈ R.

Let ρ be a steady state for H0. Obviously, the steady state is unitarily equivalent to the multiplication Mρ induced
by a measurable family {ρ(λ)}λ∈R of non-negative bounded self-adjoint operators acting in C2. We use the
representation

ρ(λ) =
(
ρb(λ) τ(λ)
τ(λ) ρa(λ)

)
≥ 0, λ ∈ R. (80)

Notice that ρ(λ) ≥ 0 if and only if the conditions ρb(λ) ≥ 0, ρa(λ) ≥ 0 and

|τ(λ)|2 ≤ ρb(λ)ρa(λ)

is satisfied for a.e. λ ∈ R. Moreover, ρ and (I +H2
0 )ρ are bounded operators if and only the conditions

ess-supλ∈R {ρb(λ) + ρa(λ) + |τ(λ)|} <∞.

and
ess-supλ∈R(1 + λ2) {ρb(λ) + ρa(λ) + |τ(λ)|} <∞. (81)

are satisfied, respectively.

In [14] the current related to the self-adjoint operator H was calculated in accordance with [19]. To this end the
generalized incoming eigenfunctions ψ(x, λ, a) and ψ(x, λ, b), x ∈ Ω, γ ∈ {a, b}, λ ∈ R of H were computed
and the current jρ(x, λ) was defined by

jρ(x, λ) :=µb(λ)=m
(

1
m(x)

ψ(x, λ, b)m(x)ψ′(x, λ, b)
)

+

µa(λ)=m
(

1
m(x)

ψ(x, λ, a)m(x)ψ′(x, λ, a)
)

for x ∈ Ω, λ ∈ R, where µb(λ) and µa(λ) are the eigenvalues of ρ(λ). It turns out that jρ(x, λ) is independent
from x, that is jρ(λ) := jρ(x, λ), and admits the representation

jρ(λ) = tr(ρ(λ)C(λ)), λ ∈ R

where

C(λ) := − 1
2πi

αbαa

W (λ)
EΘ(λ)∗, λ ∈ R,

and

E :=
(

0 1
−1 0

)
,

cf. Proposition 4.1 of [14]. If tr(ρ(λ)) ∈ L1(R, dλ), then the full current jρ is given by

jρ =
∫

R
jρ(λ)dλ

cf. Proposition 4.1 of [14]. Using (78) and (80) we find

jρ =
1

2π

∫
R

−α2
bα

2
a(ρb(λ)− ρa(λ)) + iαbαb(τ(λ)θa(λ)− τ(λ)θb(λ))

|W (λ)|2
dλ. (82)
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Let us calculate the current in accordance with Theorem 3.9. To define charges we note that D admits the decom-
position

D =
Db

⊕
Da

.

By Qb and Qa we denote the projections form D onto Db and Da, respectively. The operators Qb and Qa
commute with H0 and can be regarded as charges. The charge matrices are given

Qb(λ) =
(

1 0
0 0

)
and Qa(λ) =

(
0 0
0 1

)
, λ ∈ R.

Applying Theorem 3.9 we find

JSρ,Qa =
1

2π

∫
R

tr (ρ(λ) (Qa(λ)−Θ(λ)Qa(λ)Θ(λ)∗)) dλ.

A straightforward computation shows that

Qa(λ)−Θ(λ)Qa(λ)Θ(λ)∗ =
1

|W (λ)|2

(
−α2

bα
2
a iαbαaθa(λ)

−iαbαaθa(λ) α2
bα

2
a

)
.

Taking into account (80) we obtain

tr(ρ(λ)(Qa(λ)−Θ(λ)Qa(λ)Θ(λ)∗)) =
1

|W (λ)|2
(
−α2

bα
2
a(ρb(λ)− ρa(λ)) + iαaαb(τ(λ)θa(λ)− τ(λ) θa(λ))

)
which yields

JSρ,Qa =
1

2π

∫
R

−α2
bα

2
a(ρb(λ)− ρa(λ)) + iαaαb(τ(λ)θa(λ)− τ(λ) θa(λ))

|W (λ)|2
dλ.

Using (79) we immediately get from (82) that JSρ,Qa = jρ. Comparing with [14] the proof is much shorter. Moreover,
from Proposition 4.1 of [14] we get that

|JSρ,Qa | ≤
1

2π

∫
R

tr(ρ(λ)) dλ =
1

2π

∫
R
(ρb(λ) + ρa(λ)) dλ

By (81) the last integral exists.

4.2 Landauer-Büttiker formula for a pseudo-relativistic system

We consider the Hilbert space L2(R,C2) and the symmetric Dirac operator

(A~f)(x) =
(

0 −1
1 0

)
d

dx
~f(x) +

(
a 0
0 −a

)
~f(x), ~f ∈ dom(A), x ∈ R,

where a > 0 and
dom(A) := {~f ∈W 1,2(R,C2) : ~f(0) = 0}

and
~f =

(
f1

f2

)
, f1, f2 ∈ L2(R, dx).

The deficiency indices n±(A) are equal two. The operator A is completely non-self-adjoint. The domain of the
adjoint operator is given by

dom(A∗) = W 1,2(R−,C2)⊕W 1,2(R+,C2).
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Its Weyl function M(z) was calculated in [5]. One has

M(z) =

(
i
√
z+a√
z−a 0

0 i
√
z−a√
z+a

)
, z ∈ C+,

where the cut of the square root
√
· is fixed along the non-negative real axis. We define a self-adjoint extension

H0 of A by H0 = A∗ � dom(H0),

dom(H0) = {~f ∈ dom(A∗) : f2(−0) = 0, f1(+0) = 0}.

The operator H0 is self-adjoint and absolutely continuous. Its spectrum is given by σ(H0) = σac(H0) = R \
(−a, a). It is not hard to see that the H0 has the form

H0 = H− ⊕H+

where H± are are self-adjoint operators in L2(R±,C2), respectively. A straightforward computation shows that
the operator H− and H+ are unitarily equivalent to the operator K−,

(K−f)(x) := i
d

dx
f(x)− af(−x), f ∈ dom(K−), (83)

dom(K−) := {W 1,2(R−)⊕W 1,2(R+) : f(−0) = −f(+0)}, (84)

and K+,

(K+f)(x) := i
d

dx
f(x)− af(−x), f ∈ dom(K+) := W 1,2(R),

defined in L2(R), respectively.

The limit M(λ) := limy→+0M(λ+ iy) exist for every point λ ∈ R \ {−a, a}. One has

M(λ) =

(
i
√
λ+a√
λ−a 0

0 i
√
λ−a√
λ+a

)
, λ ∈ R \ {−a, a}.

Hence

=m(M(λ)) =

√λ+a
λ−a 0

0
√

λ−a
λ+a

 , λ ∈ R \ [−a, a],

and =m(M(λ)) = 0 for λ ∈ (−a, a). We set h(λ) := ran(=m(M(λ))), λ ∈ R \ {−a, a}. Obviously, we get

h(λ) =

{
C2 λ ∈ R \ [−a, a]
0 λ ∈ (−a, a).

We consider the direct integral L2(R, dλ, h(λ)). I turns out that there is an isometry Φ acting from H onto
L2(R, dλ, h(λ)) such that the triplet Π(H0) = {L2(R, dλ, h(λ)),M,Φ} is a spectral representation of H0.

Another self-adjoint extension H of A is defined by choosing a self-adjoint operator B,

B =
(
b− r
r b+

)
, b−, b+ ∈ R, r ∈ C,

acting on C2 and setting

dom(H) :=
{
~f ∈ dom(A∗) :

f1(−0) = b−f2(−0) + rf1(+0)
f2(+0) = rf2(−0) + b+f1(+0)

}
The self-adjoint extension H can be regarded as the Hamiltonian of some point interaction at zero. Since the
deficiency indices of A are finite the resolvent difference of H and H0 is trace class operator.
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We consider the trace class scattering system S = {H,H0}. Following [2] the scattering matrix {S(λ)}λ∈R
admits the representation

S(λ) = Ih(λ) + 2i
√
=m(M(λ))(B −M(λ))−1

√
=m(M(λ)),

λ ∈ R \ [−a, a]. We find

(B −M(λ))−1 =
1

det(B −M(λ))

(
b+ − i

√
λ−a√
λ+a

−r
−r b− − i

√
λ+a√
λ−a

)
for λ ∈ R \ [−a, a]. The transition matrix {T (λ)}λ∈R is defined T (λ) := S(λ)− Ih(λ), λ ∈ R \ [−a, a], which
yields

T (λ) = 2i
√
=m(M(λ))(B −M(λ))−1

√
=m(M(λ)), λ ∈ R \ [−a, a].

Using the representation

T (λ) =
(
t−−(λ) t−+(λ)
t+−(λ) t++(λ)

)
we find

t−−(λ) =
2i

det(B −M(λ))

(
b+

√
λ+ a√
λ− a

− i
)

t−+(λ) = −r 2i
det(B −M(λ))

t+−(λ) = −r 2i
det(B −M(λ))

t++(λ) =
2i

det(B −M(λ))

(
b−

√
λ− a√
λ+ a

− i
)

We set

σ(λ) := |t−+(λ)|2 = |t+−(λ)|2 =
4|r|2

|det(B −M(λ))|2
, λ ∈ R \ [−a, a],

which is the cross section between the left- and right-hand scattering channels. Since ‖T (λ)‖B(C2) ≤ 2, λ ∈
R \ [−a, a], we find σ(λ) ≤ 2, λ ∈ R \ [−a, a], which yields

2|r|2

|det(B −M(λ))|2
≤ 1, λ ∈ R \ [−a, a].

Let Q± be the orthogonal projection from L2(R,C2) onto L2(R±,C2). Obviously, Q± commute with H0. With
respect to the spectral representation the charges Q± correspond to

Q−(λ) =
(

1 0
0 0

)
and Q+(λ) =

(
0 0
0 1

)
, λ ∈ R \ [−a, a].

If the steady state ρ is chosen as
ρ = ρ− ⊕ ρ+,

then the corresponding charge matrices are given by

ρ(λ) =
(
ρ−(λ) 0

0 ρ+(λ)

)
, λ ∈ R \ [−a, a].

where ρ±(λ) are non-negative bounded Borel functions on R \ [−a, a]. The operator (I + H2
0 )ρ is bounded if

and only if ess-supλ∈R\[−a,a](1 + λ2)ρ±(λ) <∞. Applying Theorem 3.9 we find that the current JSρ,Q−(|r|) is
given by

JSρ,Q−(|r|) =
1

2π

∫
R\[−a,a]

(ρ−(λ)− ρ+(λ))σ(λ)dλ

=
2|r|2

π

∫
R\[−a,a]

ρ−(λ)− ρ+(λ)
|det(B −M(λ))|2

dλ
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A very simple case arises if we set b± = 0. In this case we have

JSρ,Q−(|r|) =
2|r|2

(1 + |r|2)2π

∫
R\[−a,a]

(ρ−(λ)− ρ+(λ))dλ.

The magnitude of the current becomes maximal in this case if |r| = 1, that is, if

JSρ,Q−(1) =
1

2π

∫
R\[−a,a]

(ρ−(λ)− ρ+(λ))dλ.

Since σ(λ) ≤ 2 we find the estimate

|JSρ,Q−(|r|)| ≤ 1
π

∫
R\[−a,a]

(ρ+(λ) + ρ−(λ))dλ.

Obviously JSρ,Q−(0) = 0 which is natural. In this case the self-adjoint operatorH decomposes into a left and right

hand side extension which have nothing to do with each other. However, one also has lim|r|→∞ JSρ,Q−(|r|) = 0.

For electrons one has to choose
ρ±(λ) := ρFD(λ− µ±), λ ∈ R,

where µ± is the so-called Fermi energy and ρFD(λ) is the Fermi-Dirac distribution

ρFD(λ) = (1 + eβλ)−1, λ ∈ R, β > 0.

Obviously, the condition ess-sup R\[−a,a](1 + λ2)ρ±(λ) <∞ is not satisfied. However, it turns out that

ρ−(λ)− ρ+(λ) = eβλ(e−βµ+ − e−βµ−)ρ−(λ)ρ+(λ), λ ∈ R.

satisfies ess-sup R\[−a,a](1 + λ2)|ρ−(λ)− ρ+(λ)| <∞ which shows that the current JSρ,Q− is well defined.

Appendix: Spectral representations

A Spectral representation for unitary operators

Let k be a separable Hilbert space and let µ a Borel measure on the unit circle T. We consider the Hilbert space
L2(T, dµ, k) and the multiplication operator Z defined by

(Z f̂ )(ζ) = ζ f̂ (ζ), f̂ ∈ L2(T, dµ, k).

Let {P (ζ)}ζ∈T be a measurable family of orthogonal projections in k. Setting

(P f̂ )(ζ) = P (ζ) f̂ (ζ), f̂ ∈ L2(T, dµ, k), (85)

one defines orthogonal projection on L2(T, dµ, k). The subspace PL2(T, dµ, k) is denoted by
L2(T, dµ(ζ), k(ζ)) where k(ζ) := P (ζ)k in the following and is called a direct integral of Hilbert spaces
{k(ζ)}ζ∈T, cf.[4]. We recall if an orthogonal projection on L2(T, dµ, k) commutes withZ , then there is a measur-
able family {P (ζ)}ζ∈T of orthogonal projections such that P is given by (85).

For any unitary operatorU there is a separable Hilbert space k and a Borel measure µ on T such that U is unitarily
equivalent to a part of Z . That means, there is an isometry Ψ : H −→ L2(T, dµ, k) such that

ΨU = ZΨ.

The operator P = ΨΨ∗ is an orthogonal projection on L2(T, dµ, k) commuting with Z . Hence there is a family
of measurable orthogonal projections {P (ζ)}ζ∈T such that P is given by (85). Notice that Ψ is an isometry acting
from H onto L2(T, dµ, k). The multiplication operator M := Z � L2(T, dµ(ζ), k(ζ)),

(Mf)(ζ) = ζf(ζ), f ∈ L2(T, dµ(ζ), k(ζ)),
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is unitarily equivalent to U . The triplet Π(U) = {L2(T, dµ(ζ), k(ζ)),M,Ψ} is called a spectral representation
of U .

The existence of a spectral representation can be proved as follows. Let µ(·) be a scalar measure defined on
B(T) such that the spectral measure E(·) of U ,

U =
∫

T
ζdE(ζ),

is absolutely continuous with respect to µ(·). Such a measure µ always exists. Indeed, let C = C∗ be a Hilbert-
Schmidt operator such that H = HC(U) := clospan{E(δ)ran(C) : δ ∈ B(T)} where E(·) is the spectral
measure of U . We set

µ(δ) := tr(CE(δ)C), δ ∈ B(T).

Obviously, the spectral measure E(·) is absolutely continuous with respect to µ(·). In fact, both measures are
equivalent.

Moreover, the operator-valued measure Σ(δ) := CE(δ)C , δ ∈ B(T), is absolutely continuous with respect to
µ(·) and takes values in L1(H). Since L1(H) has the Radon-Nikodym property Σ(·) admits a Radon-Nikodym
derivative Υ(·) of Σ(·) exists with respect to µ(·), belongs to Υ(ζ) ∈ L1(H) for a.e. ζ ∈ T and satisfies
Υ(ζ) ≥ 0 for a.e. ζ ∈ T with respect to µ. Hence we have

Σ(δ) =
∫
δ

Υ(ζ)dµ(ζ)

for any Borel set δ ∈ B(T). We set k(ζ) := ran(Υ(ζ)) ⊆ k, ζ ∈ T, which defines a measurable family of
subspaces of k := ran(C). That means, the corresponding family of orthogonal projections from k onto k(ζ) is
measurable with respect to µ(·).

Lemma A.1. Let L2(T, dµ(ζ), k(ζ)) and Υ(ζ) be as above. Further, let Ψ be the linear extension of the mapping(
ΨE(δ)Cf

)
(ζ) = χδ(ζ)

√
Υ(ζ)f, ζ ∈ T, f ∈ H.

If H = HC(U), then Π(U) = {L2(T, dµ(ζ), k(ζ)),M,Ψ} is a spectral representation of U .

Proof. Obviously, we have

‖ΨE(δ)Cf‖2L2(T,dµ(ζ),k) =
∫
δ

‖
√

Υ(ζ)f‖2kdµ(ζ) = (Σ(δ)f, f), f ∈ H.

Hence Ψ is an isometry action from HC(U) into L2(T, dµ(ζ), k) with range L2(T, dµ(ζ), k(ζ)). Since H =
HC(U) one gets an isometry acting from H onto L2(T, dµ(ζ), k(ζ)). Moreover, by

(Ψ
∫

T
UdE(ζ)Cf)(ζ) = ζ

√
Υ(ζ)f, ζ ∈ T, f ∈ H,

we get ΨU = ZΨ.

The integer function NU : T −→ N0 := {0, 1, 2, . . . ,∞}, NU (ζ) := dim(k(ζ)), is called the spectral
multiplicity function of U . We note that the family {k(ζ)}ζ∈T and the spectral multiplicity function NU are defined
only a.e. with respect to µ. Furthermore, it can happen that k(ζ) = {0} for ζ ∈ T which yields NU (ζ) = 0. We
set supp (NU ) := {ζ ∈ T : NU (ζ) > 0} and introduce the measure µU := χsupp (NU )µ which is absolutely
continuous with respect to µ.

Let U and Ũ be unitary operators and let Π(U) = {L2(T, dµ, k(ζ)),M,Ψ} and Π̃(Ũ) =
{L2(T, dµ̃(ζ), k̃(ζ)), M̃ , Ψ̃} be spectral representations, respectively. The operators Ũ and U are unitary equiv-
alent if and only if µ̃eU and µU are equivalent and NeU (ζ) = NU (ζ) a.e. with respect to µU . The unitary operator

U is called of constant spectral multiplicity k ∈ N := {1, 2, . . . ,∞} if NU (ζ) = k a.e. with respect to µU .
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B Spectral representation for Uac

In the paper we mainly need a spectral representation of the absolutely continuous part Uac of a unitary operator
U . In this case we choose µ = ν where ν is the Haar measure on T. In this case the construction above simplifies
as follows:

As above, let C = C∗ ∈ L2(H) be a Hilbert-Schmidt operator on H. Since C ∈ L2(H) we define by Σac :=
CEac

0 (·)C a L1–valued measure on T which is absolutely continuous with respect to the Haar measure ν on T.
Its Radon-Nikodym derivative is denoted by Y (·).

Let us define a measurable family of subspaces by h(ζ) by setting h(ζ) := clo
{

ran
(
Y (ζ)

)}
⊆ h in h =

clo(ran(C)). With this family we associate the direct integral L2(T, dν(ζ), h(ζ)).

Lemma B.1. Let L2(T, dν(ζ), h(ζ)) and Y (ζ) as above. Further let Φ be the linear extension of the mapping(
ΦEac(ζ)Cf

)
(ζ) = χδ(ζ)

√
Y (ζ)f, ζ ∈ T, f ∈ H.

If the condition Hac(U) = HacC := clospan{Eac(δ)ran(C) : δ ∈ B(T)} is satisfied, then Π(Uac) :=
{L2(T, dν(ζ), h(ζ)),M,Φ} defines a spectral representation of Uac.

The proof is similar to that one of Lemma A.1. If the condition HacC = Hac(U) is not satisfied, then Π(Uac) =
{L2(T, dν(ζ), h(ζ)),M,Φ} is not a spectral representation of Uac but of UacC := U � HacC . Notice that HacC ⊆
Hac(U) reduces Uac.

The following Lemma describes the action of the transformation Φ and is also valid for this extension of the spectral
representation of Lemma B.1.

Lemma B.2. Let X : T→ B(H) be strongly continuous. If the operator spectral integral

Lf =
∫

T
dEac(ζ)CX(ζ)f, f ∈ H,

exists, then
(ΦLf)(ζ) =

√
Y (ζ)X(ζ)f, ζ ∈ T, f ∈ H, (86)

holds. Furthermore,

L∗f :=
∫

T
X∗(ζ)CdEac

0 (ζ)f

and

L∗Φ∗f̂ =
∫

T
dλX∗(ζ)

√
Y (ζ)f̂(ζ), f = Φ∗f̂ ∈ Hac. (87)

Proof. Let Jε, ε > 0, be a family of partitions of T such that sup
Ξ∈Jε

|Ξ| = ε. Let further ζε : Jε → T satisfy

ζε(Ξ) ∈ Ξ for all Ξ ∈ Jε. Then for

Lf :=
∫

T
dEac(ζ)CX(ζ)f, f ∈ H,

we have
Lf = lim

ε→0

∑
Ξ∈Jε

Eac(Ξ)CX(ζε(Ξ))f.

by definition. Since Φ0 is continuous and ran(L) ⊂ H(C), we have

(ΦLf)(λ) = lim
ε→0

∑
Ξ∈Jε

(
ΦEac(Ξ)CX(λε(Ξ))f

)
(λ)

= lim
ε→0

∑
Ξ∈Jε

χΞ(λ)
√
Y (λ)X(λε(Ξ))f
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for a.e. ζ ∈ T. Now let Ξε(λ) be the unique element in Jε for which λ ∈ Ξε(λ). SinceX is continuous, we obtain

(ΦLf)(λ) = lim
ε→0

√
Y (λ)X(λε(Ξε(λ)))f =

√
Y (λ)X(λ)f.

The adjoint relation (87) follows easily from〈
g,

∫
T
X(ζ)CdEac(ζ)f

〉
=
〈∫

T
dEac(ζ)CX∗(ζ)g, f

〉
= ∫

T
dλ
〈√

Y (ζ)X∗(ζ)g, (Φf)(ζ)
〉

=
〈
g,

∫
T

dζX(ζ)
√
Y (ζ)(Φf)(ζ)

〉
for all g ∈ H.

C Spectral representation for Hac

Let H be a self-adjoint operator on the separable Hilbert space H. We introduce its Cayley transform

U := (i−H)(i+H)−1.

Obviously, we have

EU (δ) = EH(δ′), δ ∈ B(T), δ′ = {λ ∈ R : e2i arctan(λ) ∈ δ}.

Let Π(Uac) = {L2(T, dν(ζ), h(ζ)),M,Φ}. Let us introduce the direct integral L2(R, dλ, h′(λ)) where dλ is
the Lebesgue measure on R, and h′(λ) := h(e2i arctan(λ)). A straightforward computation shows that the linear
map F : L2(T, dν(ζ), h(ζ)) −→ L2(R, dλ, h′(λ)),

f̂ ′ (λ) := (F f̂ )(λ) :=

√
2

1 + λ2
f̂ (e2i arctan(λ)), λ ∈ R,

f̂ ∈ L2(R, dλ, h′(λ)), defines an isometry acting from L2(T, dν(ζ), h(ζ)) onto L2(R, dλ, h′(λ)). Let
{Q(ζ)}ζ∈T be a measurable operator-valued function which defines a multiplication operator MQ in the direct
integral L2(T, dν(ζ), h(ζ)). Setting

Q′(λ) = Q(e2i arctan(λ)), λ ∈ R,

one easily defines a multiplication operator in MQ′ in L2(R, dλ, h′(λ)). It turns out that MQ′ = FMQF
−1. In

particular, one gets that

FMχδF
−1 = Mχ′δ

, δ ∈ B(T), δ′ = {λ ∈ R : e2i arctan(λ) ∈ δ}.

the last relation immediately shows that Π(Hac) := {L2(R, dλ, h′(λ)),M,Φ′}, Φ′ := FΦ, defines a spectral
representation of the absolutely continuous part Hac of H .

D Scattering matrix for unitary operators

Let H be a separable Hilbert space and let U and U0 be unitary operators such that

V := U − U0 ∈ L1(H). (88)

where L1(·) denotes the set of trace class operators in H. In the following we call the pair S = {U,U0} of unitary
operators satisfying (88) a L1-scattering system.

If S = {U,U0} is a L1 scattering system, then the wave operators

Ω± := Ω±(U,U0) := s- lim
n→±∞

UnU−n0 P ac(U0)
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exist and are complete. Completeness means that ran(Ω±) = Hac(U) where Hac(U). The scattering operator
S of the scattering system S is defined by

S := S(U,U0) := Ω∗+Ω−.

In fact, the scattering operator acts only on Hac(U0) and is unitary there. Moreover, it commutes with U0.

Let Π(Uac0 ) = {L2(T, dν(ζ), h(ζ)),M,Φ) be a spectral representation of the absolutely continuous part Uac0

of U0, cf. Appendix B. Since the scattering operator S is unitary on Hac(U0) and commutes with Uac0 there is a
measurable family {S(ζ)}ζ∈T of unitary operator on h(ζ) such that S is unitary equivalent to MS ,

(MSf)(ζ) = S(ζ)f(ζ), f ∈ L2(T, dν(ζ), h(ζ)),

that is S = Φ−1MSΦ. The family S(ζ) of unitary operators is called the scattering matrix of the scattering system
S .

At first we prove a technical lemma.

Lemma D.1. Let S = {U,U0} be L1-scattering system. Then there is a bounded self-adjoint Hilbert-Schmidt
operator C and a bounded operator G such that the representation

V := U − U0 = CGC (89)

is valid.

Proof. Let V = VR + iVI where where VR := 1
2 (V + V ∗) and VI := 1

2i (V
∗ − V ∗). Obviously, one has

VR := V ∗R ∈ L1(H). and VI = V ∗I ∈ L1(H). Let CR := |VR|1/2 and CI := |VI |1/2. Then

VR = CRGRCR and VI = CIGICI (90)

where GR := sign(VR) and GI := sign(VI). We set

C := (|VR|+ |VI |)1/2.

Obviously, we have

‖CRf‖2 = (|VR|f, f) ≤ ((|VR|+ |VI |)f, f) = ‖Cf ||2, f ∈ H.

Hence there is a contraction ΓR such that CR = ΓRC and CR = CΓ∗R. Similarly, there is a contraction ΓI such
that CI = ΓICI and CI = CIΓ∗I . From (90) we find

V = C(Γ∗RGRΓR + iΓ∗IGIΓI)C.

Setting G := Γ∗RGRΓR + iΓ∗IGIΓI we prove (89).

We define the Abel pre-wave operators by

Ω+(r) := (1− r)
∑∞
n=0 r

nUnU−n0 P ac0 ,

Ω−(r) := (1− r)
∑∞
n=0 r

nU−nUn0 P
ac
0 ,

(91)

r ∈ [0, 1), where we have used the abbreviation P ac0 := P ac(U0). It holds

Ω± = s-lim
r↑1

Ω±(r).

Let E0(·) be spectral measure of U0 defined on the Borel subsets of T. We set Eac0 (·) := P ac(U0)E0(·). A
straightforward computation gives

Ω+(r) := P ac0 + r

∫
T

ζ

I − rζU
V dEac0 (ζ), (92)

Ω−(r) := P ac0 − r
∫

T

U∗

I − rζU∗
V dEac0 (ζ). (93)
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Using U∗V = −V ∗U0 we find

Ω−(r) := P ac0 + r

∫
T

ζ

I − rζU∗
V ∗dEac0 (ζ). (94)

Furthermore, from (92) and (94) we get

Ω+(r)∗ = P ac0 + r

∫
T
dEac0 (ζ)V ∗

ζ

I − rζU∗
(95)

Ω−(r)∗ = P ac0 + r

∫
T
dEac0 (ζ)V

ζ

I − rζU
(96)

Notice that w-limr↑1 Ω+(r)∗ = Ω∗+. Similarly, we find the representations

Ω+(r) = P ac0 + r

∫
T
dE(ζ)V

U∗0
I − rζU∗0

P ac0

Ω−(r) = P ac0 − r
∫

T
dE(ζ)V

ζ

I − rζU0

P ac0 .

Using again U∗V = −V ∗U0 we get

Ω+(r) = P ac0 − r
∫

T
dE(ζ)V ∗

ζ

(I − rζU∗0 )
P ac0 (97)

Ω−(r) = P ac0 + r

∫
T
dE(ζ)V ∗

U0

I − rζU0

P ac0 . (98)

We consider the transition operator T := 1
2iπ (P ac0 − S). Notice that

S = P ac(U0)− 2πiT.

In fact the operator T acts only on Hac(U0). Since the scattering operator S commutes with U0 the
transition operator T also commutes with U0. With respect to the spectral representation Π(Uac0 ) =
{L2(T, dν(ζ), h(ζ)),M,Φ} the transition operator T takes the form of a multiplication operator MT induced
by a measurable family {T (ζ)}ζ∈T of bounded operators. Obviously, we have

S(λ) = Ih(ζ) − 2πiT (ζ) (99)

for a.e. ζ ∈ T. The family T (ζ) of bounded operators is called the transition matrix of the scattering system S .
We are going to compute the measurable family {T (ζ)}ζ∈T.

Theorem D.2. Let S = {U,U0} be a L1-scattering system. With respect to the spectral representation
Π(Uac0 ) = {L2(T, dν(ζ), h(ζ)),M,Φ} of Uac0 , cf. Appendix B, the family of transition matrices {T (ζ)}ζ∈T
admits the representation

T (ζ) = iζ
√
Y (ζ)Z(ζ)

√
Y (ζ) (100)

for a.e. ζ ∈ T with respect to ν where Z(ζ) := o-limr↑1 Z(rζ) and

Z(ξ) := G∗ +G∗C
ξ

I − ξU∗
CG∗, ξ ∈ D := {z ∈ C : |ξ| < 1}. (101)

Proof. Obviously we have

T =
1

2iπ
Ω∗+(Ω+ − Ω−).

We set

T (r) =
1

2iπ
Ω∗+(Ω+(r)− Ω−(r)).
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Notice that T = s-limr↑1 T (r). Using the representations (97) and (98) we get

T (r) = i
r

2π
Ω∗+

{∫
T
dE(ξ)V ∗

ξ

I − rξU∗0
+
∫

T
dE(ξ)V ∗

U0

I − rξU0

}
P ac0

which yields

T (r) = i
r

2π(1 + r)
(1− r2)

∫
T
dEac0 (ξ)Ω∗+V

∗ U0 + ξ

|I − rξU∗0 |2
P ac0 .

Let us introduce the notation

T (r, s) := i
r

1 + r

1− r2

2π

∫
T
dEac0 (ξ)Ω∗+(s)V ∗

U0 + ξ

|I − rξU∗0 |2
P ac0 , 0 ≤ r, s < 1. (102)

Since w-lims↑1 Ω∗+(s) = Ω∗+ it seems natural to expect that w-lims↑1 T (r, s) = T (r) for 0 ≤ r < 1. Indeed,
integrating by parts we get∫

T
dEac0 (ξ)Ω∗+V

∗ U0 + ξ

|I − rξU∗0 |2
P ac0 =

Ω∗+V
∗ U0 − 1
|I + rU∗0 |2

P ac0 −
∫

T
Eac0 (ξ)Ω∗+V

∗ ∂

∂ξ

U0 + ξ

|I − rξU∗0 |2
P ac0 dν(ξ)

and ∫
T
dEac0 (ξ)Ω∗+(s)V ∗

U0 + ξ

|I − rξU∗0 |2
P ac0 =

Ω∗+(s)V ∗
U0 − 1
|I + rU∗0 |2

P ac0 −
∫

T
Eac0 (ξ)Ω∗+(s)V ∗

∂

∂ξ

U0 + ξ

|I − rξU∗0 |2
P ac0 dν(ξ).

Because ∂
∂ξ

U0+ξ
|I−rξU∗0 |2

is bounded for r ∈ [0, 1) we find that

w-lim
s↑1

∫
T
dEac0 (ξ)Ω∗+(s)V ∗

U0 + ξ

|I − rξU∗0 |2
P ac0 =

Ω∗+V
∗ U0 − 1
|I + rU∗0 |2

P ac0 −
∫

T
Eac0 (ξ)Ω∗+V

∗ ∂

∂ξ

U0 + ξ

|I − rξU∗0 |2
P ac0 dν(ξ)

which proves w-lims↑1 T (r, s) = T (r) for 0 ≤ r < 1. From (95) we get

Ω+(s)∗ =
∫

T
dEac0 (ζ)

{
I + s V ∗

ζ

I − sζU∗

}
. (103)

Inserting (103) into (102) we obtain

T (r, s) = i
r

1 + r

1− r2

2π

∫
T
dEac0 (ζ)

{
I + s V ∗

ζ

I − s ζU∗

}
V ∗

U0 + ζ

|I − rζU∗0 |2
P ac0

where ζ ∈ T. Using (89) and the notation (101) we get

T (r, s) = i
r

1 + r

1− r2

2π

∫
T
dEac0 (ζ)CZ(sζ)C

U0 + ζ

|I − rζU∗0 |2
P ac0 . (104)

Inserting the representation
U0 + ζ

|I − rζU∗0 |2
P ac0 =

∫
T

ξ + ζ

|1− rζξ|2
dEac0 (ξ)

into (104) we find

T (r, s) = i
r

1 + r

∫
T
dEac0 (ζ)CZ(sζ)

1− r2

2π

∫
T

ξ + ζ

|1− rζξ|2
CdEac0 (ξ)
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which leads to

T (r, s) = i
r

1 + r

∫
T
dEac0 (ζ)CZ(sζ)ζ

1− r2

2π

∫
T

ξζ + 1
|1− rζξ|2

CdEac0 (ξ).

Applying the map Φ : Hac(U0) −→ L2(T, dν(ζ), h(ζ)) we obtain

(ΦT (r, s)Φ−1 f̂ )(ζ) =

i
r

1 + r

√
Y (ζ)Z(sζ)ζ

1− r2

2π

∫
T

ξζ + 1
|1− rζξ|2

√
Y (ξ) f̂ (ξ)dν(ξ)

where f̂ ∈ L2(T, dν(ζ), h(ζ)). We set

X(s; ζ) :=
√
Y (ζ)Z(sζ), ζ ∈ T, 0 ≤ s < 1. (105)

Notice that X(s; ζ) ∈ L2(H) for a.e. ζ ∈ T. Since X(s) := L2 − lims↑1X(s; ζ) =
√
Y (s)Z(s) exists for

a.e. ζ ∈ T there is a Borel subset ∆(ε) ⊆ T for every ε > 0 such that ν(∆(ε)) < ε and

CX(ε) := sup {‖X(s; ζ)‖L2 : ζ ∈ T \∆(ε), 0 ≤ s < 1} <∞ (106)

is valid. We note the existence of the set ∆(ε) follows from Egorov’s theorem.

Using that observation we get

(ΦEac0 (T \∆(ε))T (r)Φ−1 f̂ )(ζ) = w-lim
s↑1

(ΦEac0 (T \∆)(ε))T (r, s)Φ−1 f̂ )(ζ)

= iζ
r

1 + r
χT\∆(ε)(ζ)

√
Y (ζ)Z(ζ)

1− r2

2π

∫
T

ξζ + 1
|1− rζξ|2

√
Y (ξ) f̂ (ξ)dν(ξ)

for a.e. ζ ∈ T with respect to ν and f̂ ∈ L2(T, dν(ζ), h(ζ)). Finally, taking the limit r ↑ 1 we get

(ΦEac0 (T \∆(ε))TΦ−1 f̂ )(ζ) =

lim
r↑1

ΦEac0 (T \∆(ε))T (r)Φ−1 f̂ )(ζ) = iζχT\∆(ε)(ζ)
√
Y (ζ)Z(ζ)

√
Y (ζ) f̂ (ζ)

for a.e. ζ ∈ T with respect to ν and f̂ ∈ L2(T, dν(ζ), h(ζ)) where it was used that

ĝ (ζ) =
1
2

lim
r↑1

1− r2

2π

∫
T

ξζ + 1
|1− rζξ|2

ĝ (ξ)dν(ξ), ĝ ∈ L2(T, dν(ζ), h(ζ)),

in the L2-sense, see [16, Section I.D.2]. If f̂ (ζ) ∈ L∞(T, dν(ζ), h(ζ)), then
√
Y (ζ) f̂ (ζ) ∈

L2(T, dν(ζ), h(ζ)). Hence we find that

(T (ζ) f̂ )(ζ) = iζ
√
Y (ζ)Z(ζ)

√
Y (ζ) f̂ (ζ),

for a.e. ζ ∈ T \ ∆(ε) and f ∈ L∞(T, dν(ζ), h(ζ)) which yields (100) for a.e. ζ ∈ T \ ∆(ε). Since ε can be
chosen arbitrary small we we prove (100).

From (99) and (100) we get that the scattering matrix admits the representation

S(ζ) = Ih(ζ) + 2πζ
√
Y (ζ)Z(ζ)

√
Y (ζ)

for a.e. ζ ∈ T. Since ‖S(ζ)‖h(ζ) = 1 for a.e. ζ ∈ T we get ‖S(ζ)− Ih(ζ)‖h(ζ) ≤ 2 for a.e ζ ∈ T which yields

‖
√
Y (ζ)Z(ζ)

√
Y (ζ)‖h(ζ) ≤

1
π

for a.e. ζ ∈ T. In fact, this estimate can be proved directly.
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Corollary D.3. Let the assumptions of Theorem D.2 be satisfied. Then the following holds:

(i) For f̂ ∈ L2(T, dν(ζ), h(ζ)) we have

(ΦΩ∗−(r)V P ac(U0)Φ−1 f̂ )(ζ) =
∫

T
K(r; ζ, ξ) f̂ (ξ)dν(ξ), r ∈ [0, 1), (107)

for a.e. ζ ∈ T with respect to ν where K(r; ζ, ξ) :=
√
Y (ζ)Z(rζ)∗

√
Y (ξ), ζ, ξ ∈ T.

(ii) For f̂ ∈ L2(T, dν(ζ), h(ζ)) we have

(ΦΩ∗−V P
ac(U0)Φ−1 f̂ )(ζ) =

∫
T
K(ζ, ξ) f̂ (ξ)dν(ξ). (108)

for a.e. ζ ∈ T with respect to ν where K(ζ, ξ) :=
√
Y (ζ)Z(ζ)∗

√
Y (ξ), ζ, ξ ∈ T.

(iii) For a.e. ζ ∈ T with respect to ν one has the representation T (ζ) = iζ K(ζ, ζ)∗. Moreover, T (ζ) ∈
L1(h(λ)) for a.e ζ ∈ T with respect to ν, ‖T (ζ)‖S1 ∈ L1(T, dν(ζ)) and∫

T
‖T (ζ)‖L1dν(ζ) ≤ ‖V ‖L1 . (109)

In addition one has

tr(Ω∗−V ) =
∫

T
tr(K(ζ, ζ))dν(ζ) = i

∫
T
ζ tr(T (ζ)∗)dν(ζ). (110)

Proof. (i) Let K(r) := Ω∗−(r)V . Using (96) we get

K(r)P ac0 =
{
P ac0 + r

∫
T
dEac0 (ζ)V

ζ

I − rζU

}
V P ac0

which leads to

K(r)P ac0 =
∫

T
dEac0 (ζ)C

{
G+ rGC

ζ

I − rζU
CG

}∫
T
CdEac0 (ξ).

From (101) we get

Z(rζ)∗ = G+ rGC
ζ

I − rζU
CG

which yields

K(r)P ac0 =
∫

T
dEac0 (ζ)CZ(rζ)∗

∫
T
CdEac0 (ξ).

Thus

(ΦK(r)P ac0 Φ−1 f̂ )(ζ) =
√
Y (ζ)Z(rζ)∗

∫
T

√
Y (ξ) f̂ (ξ)dν(ξ),

f̂ ∈ L2(T, dν(ζ), h(ζ)) which verifies (107).

(ii) Following the proof of Theorem D.2 we set

X∗(r; ζ) :=
√
Y (ζ)Z(rζ)∗, ζ ∈ T, 0 ≤ r < 1. (111)

As above, using the existence ofX∗(ζ) := L2− limr↑1X(r; ζ) =
√
Y (ζ)Z(ζ)∗ for a.e. ζ ∈ T with respect to

ν we find that for each ε > 0 there is a Borel subset ∆∗(ε) ⊆ T satisfying ν(∆∗(ε)) < ε such that the condition

CX∗(ε) := sup {‖X∗(s; ζ)‖L2 : ζ ∈ T \∆∗(ε), 0 ≤ s < 1} <∞. (112)
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Using K := w-limr↑1K(r) = Ω∗−V we get

(ΦEac(T \∆∗(ε))Ω∗−V P
ac
0 Φ−1 f̂ )(ζ) =

w-lim
r↑1

(ΦEac(T \∆∗(ε))Ω∗−(r)V P ac0 Φ−1 f̂ )(ζ) =

χT\∆∗(ε)(ζ)
√
Y (ζ)Z(ζ)∗

∫
T

√
Y (ξ) f̂ (ξ)dν(ξ),

f̂ ∈ L2(T, dν(ζ), h(ζ)), which proves (108) for a.e. ζ ∈ T \∆∗(ε) with respect to ν. Since ε is arbitrary (108)
holds for a.e. ζ ∈ T.

(iii) By [24, Proposition 7.5.2] we find that ‖K(ζ, ζ)‖L1 ∈ L1(T, dν(ζ)) and∫
T
‖K(ζ, ζ)‖L1dν(ζ) ≤ ‖K‖L1 .

From (100) we get that T (ζ) = iζK(ζ, ζ) for a.e. ζ ∈ T with respect to ν. Thus ‖T (ζ)‖H1 ∈ L1(T, dν(ζ))
and (109) is valid. Using again [24, Proposition 7.5.2] we find

tr(Ω∗−V ) = tr(K) =
∫

T
tr(K(ζ, ζ))dν(ζ).

By T (ζ) = iζK(ζ, ζ) we prove (110).

Acknowledgments

The first author acknowledges partial support from the Danish FNU grant Mathematical Analysis of Many-Body
Quantum Systems. The second and third author thank the Aalborg University and the Centre de Physique
Théorique in Marseille for hospitality and financial support.

References

[1] W. Aschbacher, V. Jaksic, Y. Pautrat, and C.-A. Pillet. Transport properties of quasi-free fermions. J. Math.
Phys., 48:032101, 2007.

[2] J. Behrndt, M. M. Malamud, and H. Neidhardt. Scattering matrices and Weyl functions. Proc. Lond. Math.
Soc. (3), 97(3):568–598, 2008.

[3] M. S. Birman and M. G. Krein. The theory of wave operators and scattering operators. Dokl. Akad. Nauk
SSSR, 144:475–478, 1962.

[4] M. Sh. Birman and M. Z. Solomjak. Spectral theory of selfadjoint operators in Hilbert space. Mathematics
and its Applications (Soviet Series).

[5] J. F. Brasche, M. Malamud, and H. Neidhardt. Weyl function and spectral properties of self-adjoint extensions.
Integral Equations Operator Theory, 43(3):264–289, 2002.

[6] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas. Generalized many-channel conductance formula with appli-
cation to small rings. Phys. Rev. B, 31(10):6207–6215, 1985.

[7] R. W. Carey and J. D. Pincus. Unitary equivalence modulo the trace class for self-adjoint operators. Amer. J.
Math., 98(2):481–514, 1976.

[8] H. D. Cornean, A. Jensen, and V. Moldoveanu. The Landauer-Büttiker formula and resonant quantum trans-
port. In Joachim Asch and Alain Joye, editors, Mathematical Physics of Quantum Mechanics, volume 690 of
Lecture Notes in Physics, pages 45–53. Springer Berlin / Heidelberg, 2006.

38



[9] H. D. Cornean, H. Neidhardt, and V. A. Zagrebnov. The effect of time-dependent coupling on non-equilibrium
steady states. Ann. Henri Poincaré, 10(1):61–93, 2009.

[10] H. D. Cornean, P. Duclos, G. Nenciu, and R. Purice. Adiabatically switched-on electrical bias and the
Landauer-Büttiker formula. J. Math. Phys., 49:102106, 2008.

[11] H. D. Cornean, P. Duclos, and R. Purice. Adiabatic non-equilibrium steady states in the partition free approach.
Ann. Henri Poincaré, 13(4):827–856, 2012.

[12] H. D. Cornean, A. Jensen, and V. Moldoveanu. A rigorous proof of the Landauer-Büttiker formula. J. Math.
Phys., 46:042106, 2005.

[13] H.-Chr. Kaiser, H. Neidhardt, and J. Rehberg. On 1-dimensional dissipative Schrödinger-type operators their
dilations and eigenfunction expansions. Math. Nachr., 252:51–69, 2003.

[14] H.-Chr. Kaiser, H. Neidhardt, and J. Rehberg. Density and current of a dissipative Schrödinger operator. J.
Math. Phys., 43(11):5325–5350, 2002.

[15] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin, 1995.

[16] P. Koosis. Introduction to Hp spaces. Cambridge University Press, Cambridge, 1980.

[17] M. G. Kreı̆n. On the trace formula in perturbation theory. Mat. Sbornik N.S., 33(75):597–626, 1953.

[18] M. G. Kreı̆n. On perturbation determinants and a trace formula for unitary and self-adjoint operators. Dokl.
Akad. Nauk SSSR, 144:268–271, 1962.

[19] L. D. Landau and E. M. Lifshitz. Quantum Mechanics: Non-relativistic theory, volume 3 of Course of Theoret-
ical Physics. Pergamon Press, Oxford; New York, 1989.

[20] R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J.
Res. Develop., 1(3):223–231, 1957.

[21] I. M. Lifshits. On a problem of the theory of perturbations connected with quantum statistics. Uspekhi Mat.
Nauk., 7(1):171–180, 1952.

[22] G. Nenciu. Independent electron model for open quantum systems: Landauer-Büttiker formula and strict
positivity of the entropy production. J. Math. Phys., 48(3):033302, 2007.
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