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Abstract

We extend the Landauer-Blttiker formalism in order to accommodate both unitary and self-adjoint operators
which are not bounded from below. We also prove that the pure point and singular continuous subspaces of the
decoupled Hamiltonian do not contribute to the steady current. One of the physical applications is a stationary
charge current formula for a system with four pseudo-relativistic semi-infinite leads and with an inner sample
which is described by a Schrédinger operator defined on a bounded interval with dissipative boundary conditions.
Another application is a current formula for electrons described by a one dimensional Dirac operator; here the
system consists of two semi-infinite leads coupled through a point interaction at zero.

1 Introduction

Considering a problem in quantum statistical mechanics and solid state physics Lifshits [21] found that there is a
unique real-valued function £(-) € L'(R, d\) such that the formula

tr(®(Ho + V) — ®(Hyp)) = /Rﬁ()\)@'()\)d)\ (1)

is valid for a suitable class of functions ®(-) guaranteeing that ®(Hy + V) — ®(H)) is a trace class operator.
Here H) is a self-adjoint operator and V' is a finite dimensional self-adjoint operator. Formula (1) and function &(+)
are known in the literature as trace formula and spectral shift function, respectively.

Inspired by the work of Lifshits the trace formula was carefully investigated and generalized by Krein, cf. [17]. In a
first step Krein has shown that Lifshits’ result remains true if V' is a self-adjoint trace class operator. Later on he
generalized the result to pairs of self-adjoint operators S = {H, HO} such that their resolvent difference is a trace
class operator, cf. [18]. In the following we call those pairs trace class scattering systems. For trace class scattering
systems there exists a real-valued function £(-) € L (R, %) called also the spectral shift function such that

tr (B(H) — B(Ho) = [ €T (A @
R
is valid for a suitable class of functions ®(-). In particular, the formula
_ - §(A
tr((H—2)"" = (Ho—2)7") :_/R()\i)2d)\, z € C\R,

holds. In contrast to the spectral shift function defined by (2), the function £(-) defined by the last equation is now
not unique and is only determined up to a real constant. To verify (2) Krein firstly proved a trace formula (1) for a
pair U = {U, Up} of unitary operators for which U — Uy is a trace class operator, cf. [18]. Regarding U and U
as the Cayley transforms of H and Hy, respectively, Krein was able to establish (2).

If S = {H, Hy} is a trace class scattering system, then the wave operators

Wi (H, Hy) = s-, lim et g=itHo pac( ) ®3)

exist and are complete where P%“(H) is the projection onto the absolutely continuous subspace of Hy, see [3].
Let II(H§°) be a spectral representation of the absolutely continuous part H§¢ of Hy, cf. Appendix C. Further, let
{S(N\)}rer be the scattering matrix of the trace class scattering system S with respect to II( H§€). It turns out
that there is a suitable chosen spectral shift function £(-) such that the so-called Birman-Krein formula

det(S(\)) = e~ ™€),



holds for a.e. A € R.

The quantity T(\) := 55 (Iy(n) — S(A)), A € R, is usually called the transition matrix, see (99), where Ij(y)
denotes the fiber identity operator of the spectral representation II( H§). In [23] Radulescu has shown that the
transition matrix {7(\) } xer, the unperturbed operator Hyy and the perturbation V' are related in a certain way.
Indeed, if Hy is bounded and V is trace class, then the formula

tr(HgW+(H,HO)V):/A”tr(T(A))dA, n=012,...,
R

is valid.

It turns out that the so-called Landauer-Blttiker formula is a further interesting example in this circle of relations
linking scattering matrix, unperturbed operator and perturbation. From the physical point of view the Landauer-
Buttiker formula gives the steady state charge current flowing trough a non-relativistic quantum device where the
carriers are not self-interacting. It goes back to Landauer and Bdttiker, cf. [20] and [6], and was initially derived by
them using phenomenological arguments.

The physical setting is as follows: there is a small sample (the inner system) and at least two leads (for simplicity we
only discuss the two lead case). At negative times, the leads are not coupled to the inner system. Each subsystem is
in a state of thermal equilibrium. In particular, one assumes that in the leads the electrons are distributed according
to the Fermi-Dirac distribution function. More precisely, if 11; are the chemical potentials of the left and right leads,
J € {l,r}, then the energy distribution of lead j is f;(\) = frp(A — ;) where:

1
Tro) =10

At time zero the leads are suddenly attached to the inner system and a current can flow from one lead to the other
through the inner system. Landauer found by heuristic arguments (later refined by Buttiker) that the stationary
current J of non-relativistic particles flowing through the system should be given by

J= 5 / X oV PO (frp = ) = frp (A = pr)) ®)
™ Jr

AER, [>0. (4)

where o () is the so-called transmission coefficient between the leads, a cross-section arising from an appropriate
scattering system, and ¢ > 0 is the magnitude of the elementary charge. The current is directed from left to right
if J > 0 and from right to left if J < 0. If y4; > .-, then a straightforward computation shows that J > 0 which
shows that the charge current is directed from the higher chemical potential to the lower one.

Several works have already been published in which this approach has been made rigorous, cf. [12, 1, 8, 22, 10,
9, 11]. One assumes that at negative times the system is described by (a decoupled) Hamiltonian Hy, while for
positive times by (a coupled Hamiltonian) H. Until now it was always assumed that both Hamiltonians are bounded
from below and that the difference between their resolvents raised to some integer power is trace class.

Since our paper only deals with operator theoretical aspects of quantum transport of quasi-free particles, some
of the terminology used in quantum statistical mechanics will be strictly adapted to our limited needs. For us, a
density operator is just any non-negative bounded operator. A density operator p is an equilibrium state of Hy if it
is a positive function of Hy. A density operator p is called a steady state of H if p commutes with H. Note that
with our definition, equilibrium states are steady states. If Hy is a decoupled direct sum of several operators €9 hj,
then a direct sum of individual equilibrium states @ F; (hj) would provide us with a special class of steady states
of Ho.

A charge is any bounded self-adjoint operator () commuting with H. Following [1], the steady current J;EQ related
to a charge () and a given initial steady state p of H is proved to be given by

JS o = —itr(W_(H, Ho)pW_(H, Ho)*[H, Q) ®)

provided the commutator [H, ()] is well defined and H has no singular continuous spectrum. Following [1] the
current is directed from the leads to the sample. If the commutator is not well defined, a regularization procedure
was proposed in [1]. It consists in replacing the operators H and H by bounded self-adjoint operators

H(n):=HI +nH)™" and Hy(n) = Ho(I +nHo)™N, n>0, (7)



for some large enough N, where for simplicity it is assumed that both operators are non-negative. Of course,
S(n) = {H(n),Ho(n)} is also a trace class scattering system for which the current Jig) is well defined.

Finally, one sets

S _ 1 S(n)
Joo = nl_l)IEO JpﬁQ . (8)

We note that the absolutely continuous subspace $%¢(Hj) reduces the initial steady state and the charge operator.
Let

Pac = p [ H°(Ho) and Quc:=Q [ H*“(Ho) 9)
The restrictions p,. and Q. commute with the absolutely continuous component H¢ of Hy.

Let ITI( H§®) be a spectral representation of the absolutely continuous part H§¢ of Hy, cf. Appendix C. Since the
components p,. and (), commute with H§°, they are unitarily equivalent to multiplication operators induced by
some density and charge fiber matrices {pac(A) Faer and {Qac(A) faer in II(HG®), respectively. In [1] it was
proved that the current .J ;i Q admits the representation

1
T =5 [ ANt (pac) @uelh) — SOV Que NS (1)
JR
The formula (10) can be called the abstract Landauer-Bittiker formula. The formula (10) is not identical with the
traditional Landauer and Biittiker formula (5). However, it was shown in [1] that formula (5) follows from (10).

The aim of the present paper is to extend the representation (10) to situations where the operators H and H
might not be bounded from below. Using the intertwining property of the wave operator and the trace cyclicity, one
can rewrite the current JgQ in the following form:

JS o = —itr(W_(H, Ho)(I + H§)pW_(H, Ho)*(H — i) '[H,Q](H + i) "). (11)
It turns out that (11) can be expressed in a different form using the Cayley transforms
U= (Z _ H)(Z +H)71 — e?iarctan(H) and UO — (’L _ Ho)(iﬁ*Hg)il _ 62ia1rctan(H0)

of H and H, respectively. Under the condition that V := U — Uy = 2i((i + H)™! — (i + Hp) ') is a trace
class operator we have

QL (U, Up) := s- hrf UnU, "P*(Uy) =
Wy (2arctan(H), 2 arctan(Hy)) = W (H, Hyp),

where in the last equality we used the invariance principle of wave operators. Moreover, using the identity
UV~ U, Q] = (H — i)™ [H, QY(H +1)"
the current can be rewritten as
T = *%tr(Q—(Uv Uo)pUs Q- (U, Up)*[V,Q)), V:=U—Uo, p:=(1+Hj)p, (12)

where everything only depends on the unitary scattering system U := {U, Uy}. Following Birman and Krein
[18, 3] we start with the abstract unitary scattering system U := {U,Up} where V. = U — Uj is trace class
operator, p is an initial steady state and () a charge both commuting with Uy. Their restrictions to the absolutely
continuous subspace of Uy are denoted by p,. and Q., respectively. Using a spectral representation of Uy,
we denote by {S(¢)}cers {fac(Q)}eer and {Qac(C)}cer the scattering, density and charge fiber matrices of
S =Q.(U,Up)*Q_(U,Up), pac and Q. respectively. We also suppose that the singular continuous spectrum
0sc(U) of U is empty (note that we allow o5.(Up) # (). Then it will be proven in Theorem 3.7 and in Corollary
3.8 that the current in (12) admits the representation



where v is the Haar measure with v(T) = 2.

More importantly, from the second formula above we see that if p is an equilibrium state, i.e. some non-negative
function f(Uy), then it is a scalar multiplication with f(¢) on each fiber h(\) and thus commutes with S(¢) almost
everywhere. This shows that the current is zero at equilibrium. Moreover, we can use this to renormalize the current
by subtracting zero in the following way:

- % /T“{(ﬁac(@ ~ F(OT5¢)) (Quel€) = S(0)*Que(OS(Q)) } aw(€). (14)

Going back to the self-adjoint case via the Cayley transfqrm, we have to change the torus with the real line by the
transformation ¢ = e2*arctan(A), Hence, replacing j(e?’ arctan(A)) py (1 + A2?)p(\) and introducing Q.(\) :=
Qa ( 2i drctdn(k)) and S(}\) = 5(621 arctan(A)) we obtain

SQ = % /]Rd/\ tr{(pac()‘) - f( )Ih()\ ) (Qa(( ) - S()‘)*Qac(/\)s()‘))} (15)

This formula is very useful in the relativistic situation when p,.(\) can loose its decay in A at —oco, as it happens
with the Fermi-Dirac distribution. In that case we see that pac(A) — frp(A)Ig(») still decays exponentially at
400 and the current will be finite.

Let us make the following remarks:

B Our main technical result is formula (13), proved in Theorem 3.7. It can be seen as an abstract Landauer-
Bittiker formula for unitary scattering systems.

B Formula (10) is proved in Theorem 3.9, which is an extension of the result in [22], where V' := H — Hj €
£1(9) was assumed.

B Another result related to Theorem 3.9 was proven in [1] where the current was defined through a regulariza-
tion procedure. There the operators H and Hy were replaced by H (1 +nH)~" and Ho(1 + nHy) ",
respectively, and the limit 7 — +0 was taken outside the trace. Using our approach via the Cayley trans-
forms one gets a definition of the current (see (12) or (11)) which avoids any regularization. Since the Cayley
transform does not require Hy and H to be bounded from below, it allows us to derive Landauer-Buttiker
type formulas for self-adjoint dilations of maximal dissipative Schrédinger operators and Dirac operators with
point interactions at zero, see Section 4.

B Our result is stronger than that one of [1]. At first glance it seems to be that the condition (H + 6)_N —
(Ho + 60)~N € £,($) assumed in [1] for some N € N and 6 > 0 is weaker than our condition (i +
H) ' — (i + Ho)™t € £1(). Nevertheless, the result of [1] follows from Theorem 3.9. Indeed, let us
assume for simplicity that H > I and Hy > I as well as # = 0. A straightforward computation shows that
the representation

S i I+ HgN % 7N A—1[gN N | -1
Jog = —Ntr <W(H» HO)WPW*(I_L Ho)"(H™ —4)" " [H,QI(H" +1) ) (16)

is valid provide (I + HéVH)p is a bounded operator. Therefore, considering the trace class scattering
system S = {HY H{'}, we find

N —(N-1
JgQ = Jp Q p = H, ( )Pa

where the invariance principle for wave operators was taken into account. Finally, applying Theorem 3.9
to JA (o We get a Landauer-Bittiker formula for the scattering system S = = {HN,H{"} with respect

to a spectral representation of (H0 )*¢. However, from the spectral representation of (H0 )¢ one easily
obtains a spectral representation of H ¢ which immediately implies the result of [1].



B We can extend Theorem 3.9 to some situations where H and H are not bounded from below and (H +
i)‘l —(Hg + i)‘l is not trace class. Namely, if O belongs to the resolvent set of both H and Hj, and if
there exists an odd integer N such that H—V — HO_N is trace class, then the invariance principle can still
be applied and formula (1.16) (see also (1.12)) still makes sense. The general case remains open.

The paper is organized as follows. In Section 2 we review some well known results related to non equilibrium steady
states and currents, and extend them to the case of non-semibounded self-adjoint operators Hy and H. The main
goal is to rigorously justify formula (12).

Section 3 is devoted to the proof of the abstract Landauer-Buttiker formula (13), at first for unitary operators, cf.
Section 3.1, and then for self-adjoint operators, cf. Section 3.2.

In Section 4 we give several examples. Finally, in order to make the paper self-contained we have added Appen-
dices A and B, C on spectral representations of unitary operators, and Appendix D on the scattering matrix of
unitary operators.

Notation: By $%°(U) we denote the absolutely continuous subspace of a unitary operator U defined on ). The
projection from $) onto h%¢(U) is denoted by P*¢(U ). The corresponding absolutely continuous restriction of U
is denoted by U¢ := U | $H*¢(U). The singular subspace of a unitary operator U is defined by H°(U) :=
5 S H%(U), the corresponding singular part by U® := U | $H*(U). A similar notation is used for self-adjoint
operators.

Furthermore the real axis and the unit circle are denoted by IR, and T respectively. The open unit disc is denoted
byD:={CeC:|¢| <1}

2 Steady states and currents

Let Hy be a self-adjoint operator and let p be a steady state for Hy. Furthermore, let us assume that at ¢ < 0
the system is described by the Hamiltonian Hj and the steady state p. At ¢ = 0 we switch on a coupling such
that the system is now described by the Hamiltonian H. The state p(t) evolves according to the quantum Liouville
equation

dp

ZE =[H,p)], t>0, p(0)=np,
which has the weak solution

p(t) _ e—itheiz‘,H7 t>0.

The operator p(t) is a density operator, but not a steady state for H. However, one can produce a steady state
by taking an ergodic limit as in [1]. It turns out that Theorem 3.2 of [1] remains true even if H and Hy are not
semibounded; for completeness we formulate and prove below the result.

Proposition 2.1. Let H, be a self-adjoint operator and let p be a steady state of Hy. If H is another self-adjoint
operator such that (H + i) =% — (Ho + i)~ ! is a trace class operator and o.(H) = (), then the limit

1 /T
Py = STIE%oT/O p(t)dt (17)
exists and is given by
pr=W_(H Ho)pW_(H,Ho)*+ Y En({\})pEn({\+}) (18)
/\kEO'p(H)

where E(-) is the spectral measure of H and o,,(H ) denotes the point spectrum of H, cf [1, Theorem 3.2].
Moreover, p. is a steady state of H.

Proof. We use the representation

p(t) _ e—itHeitHope—itHoeitHPac(H) + e_itheitHPp(H), t Z O7



where PP ( H ) denotes the projection onto the subspace spanned by the eigenvectors of H. Notice that PP (H ) =
P#*(H) where P*(H) is the projection onto the singular subspace of H. Since the resolvent difference is a trace
class operator one gets

S , ,
s Jim / et gitHo po—itHo gith pac( mryqy — W_(H, Hy)pW_ (H, Hy)*.
— 00 0

Let A\, € 0,(H). We find
e—itheitHEH({/\k}) _ e—it(H—)\k)pEH({/\k}), t>0.

If f=(H— Ag)g, g € dom(H), then

1 [T it e
- —it(H—A\g) di =
T /0 ¢ f —iT

—iT(H—X\) _ T
g

which yields
1t
lim f/ e HH=A) £ =0

T—oo T 0
Since ran(H — ) is dense in Ex (R \ {Ax})$ we verify that

1 /T

Finally, using the decomposition

e o™ B ({Ar}) = e "W By (R\ A} pEr ({Ak})+
Ex({MeH)pEa({A}), t>0,

which proves
1 [T ,
s- lim T/ e " o™ B (I D dt = Eg ({0 ) pEr ({e}).
0

Using that we immediately prove (18). O

Formally, the current J};S,Q is defined by

IS0 = —E,., (i[H,Q]) = —itr(p4[H,Q]),

where IEP+ (+) is the expectation value of an observable with respect to p.;. In general, the definition might be not
correct because either the commutator [H, @] is not well-defined or the product pi[H, Q] is not a trace class
operator. To avoid such difficulties we set

IS0 (8) == —E, (iBy(0)[H,QIEy(5)) = —itr(p+ Ex (6)[H, Q| Ex (5)) (19)

where § is any bounded Borel set of R. Furthermore, E (8)[H, Q] Er (0) is a well defined trace class operator
for any bounded Borel set §. Indeed, using the representation

En(6)[H,QIEn(0) = (H —i)En () KEn(6)(H + i) (20)
where
K =(H — i) ' H,QH +i)~" = (H+i)(H — i) ' [(H +1)71,Q] (21)
=(I+2i(H —i) D[(H+4)~" = (Ho+ i), Q]
is trace class. We get that E (0)[H, Q] Ex (9) is a trace class operator for every bounded Borel set §. We set
T = m 7o)

provided the limit exists. We show this now.



Proposition 2.2. Let H\ be a self-adjoint operator and let p be a steady state for Hy and let H be a self-
adjoint operator. Further, let (Q be a charge for Hy. If the resolvent difference of H and Hy is a trace class
operator, o,.(H) = 0 and (I + HE)p is a bounded operator, then the current .J i o s well-defined and admits
the representation (11).

Proof. Inserting (20) into (19) we get
IS o(6) = ite(py (H — ) B (8)K Egg (8)(H + 1))
where K is a trace class operator defined by (21). Using (18) we get
T8 o(8) = —ite(W_(H, Ho)pW_ (H, Ho)*(H — i)Eg(6)K Egr (8)(H + 1))
0D o OB NN H — K (H +0)En ().
Since EH({/\k})KEH({)\k}) = 0 we find
JS 0 (8) = —itr(W_(H, Ho)(H§ + I)pW_(H, Ho)* E (6) K B (9)),
where we have used that (Hg + I)p is a bounded operator. Then the limit in (2) exists and equals:
JS o = —itr(W_(H, Ho)(H§ + I)pW_(H, Ho)*K).

Note that (21) coincides with (11). O

3 Landauer-Bittiker formula for unitary scattering systems

3.1 Unitary operators

Let us recall that we consider two unitary operators U and Uy such that U — Uy is trace class, and a bounded
self-adjoint operator () commuting with Uy is called a charge. Thus any charge @ is reduced by $“(Up) and
$%(Up). In other words, ) admits the decomposition @@ = Q.. ® Qs where Qqc = Q | H%¢(Up) and
Qs :=Q | H9°(Up). Notice that the restrictions Q.. and (s might not be identical with the absolutely continuous
and singular components Q¢ and QQ°, respectively.

Let II(U§C) = {L*(T,dv(¢),h(C)), M, ®} be a spectral representation of U§®, cf. Appendix A. Since Q.
commutes with U§° there is a measurable family {Qq.(¢) }¢ceT of bounded self-adjoint operators acting on h(()
such that

v —sup |Qac(O)Beoc)) = l|QacllBs)
CeT

and Qqc = ® Mg, ® where Mg, is the multiplication operator induced by {Qac(¢)}cer in
L*(T, dv(C), b(¢))-

A non-negative bounded self-adjoint operator p commuting with Uy is also called a density operator and admits
the decomposition p = p,. @ ps. The part pg. is unitarily equivalent to the multiplication operator M, in-
duced by a measurable family {pq.({)}¢cer of non-negative bounded operators acting on h(¢) and satisfying

v —supcer [[pac(O)llne) = lPaclls in L*(T, dv(C), b(C)).

Let S = {U, Uy} be an £;-scattering system. Further, let () be a charge and let p be a density operator. In this
case we define the current J for S by

J = —%tr(Q,pUg;Q*,[V, Q)) (22)

where V = U — Uy is trace class and [V, Q] = VQ — QV. The main result of this section (see Proposition 3.5)
will show that only the absolutely continuous restriction of ) contributes to the current:

1
J=Jae = —?cr(prU{fQ*_[V, Qac))- (23)

Before that, we need a series of lemmata.



Lemma 3.1. Let Uy be a unitary operator on $) and let () be a charge. Then $) admits an orthogonal decomposition

5- @

kENSH

reducing Uy and QQ such that Uy, := Uy | Hi, k € N, has a constant spectral multiplicity function and Q. :=
Q | 9 commutes with Uy, k € N,

Proof. Let II(Uy) = {L*(T,du(¢),t(C)), M, ¥} be a spectral representation of Uy, cf Appendix A, and let
Mult(¢) := dim(¥(¢)) be the spectral multiplicity function of Up. We set Ay := {¢ € T : Mult(¢) = oo}
and Ag := {¢ € T : Mult({) = k — 1} if k > 2. Let Eyp(-) be the spectral measure of Uy. We set
i := Eo(Ag)$. Obviously, each subspace $); reduces Uy and Q. Moreover, the unitary operators Uy, defined
on £, are of constant spectral multiplicity. O

Next we are going to show that () can be approximated by a sequence of self-adjoint operators with pure point
spectrum.

Lemma 3.2. Let Uy be a unitary operator on $) of constant spectral multiplicity and let () be a charge. Then there
is a sequence {Qm }men of charges with pure point spectrum satisfying s-limy;, 0o Qm = Q and ||Qml|s <
1Qlls + 1.

Proof. Since Uy is of constant spectral multiplicity Uy admits the spectral representation II(Up) :=
{L*(T,du(¢),t), M, ¥} where £ is independent from ¢ € T. If Q is a charge, then there is a measurable
family {Q(()}¢er of bounded self-adjoint operators satisfying 1z — supcp||Q(¢)[le = [|Q]|5 such that @ is
unitarily equivalent to the multiplication operator M¢ in L(T, 1(¢), ®).

Since {Q({)}cer is a measurable family of self-adjoint operators there is a sequence {@m(C)}CET of simple
functions such that

s-lim Qm(¢) = Q) (24)

m—0o0

for a.e. ¢ € T with respect to ;. We recall that @m() is simple if it admits the representation

= X6 (Q)Qmi» CET, Qui=Qhy € B(Y),
I

where {0,,;} are disjoint Borel subsets of T satisfying | J; d,,; = T for each m € N-and ), is finite. Without loss
of generality we can assume that the condition

1Qm()lle < 1= sup Q)]
neT

is satisfied for each m € N.

By the v. Neumann theorem [15, Theorem X.2. 1] for each self-adjoint operator @ml there is a self-adjoint Hilbert-
Schmidt operator D,,; such that || Dyylle, < 2 and Q. = le + D,,.; is pure point. Setting

—_— m

= X6, (O)Qmi: CET, Qumi=Qjy € B(),
l

one easily verifies that
s lim_Qun(¢) = Q(C)

fora.e. ¢ € T with respect to . We note that s-lim,,,—.oc Mq,, = Mg. Moreover, the spectrum of Mg, is pure
point for each m € N. Setting Q,,, := \IlflMQm\I! we find that s-lim,,, . @, = Q. Moreover, each operator
Q. commutes with Uj. O

Lemma 3.3. Let Uy be a purely singular unitary operator (i.e. the absolutely continuous component is absent) on
the separable Hilbert space $). Then there is a sequence {Un}neN of unitary operators with pure point spectrum
such thatUy — U,, € £1(9), n € N, andlim,,, ||Up — Uy |le, = 0.



Proof. Let us assume that ker(Uy + I) = {0}. We introduce the self-adjoint operator
Hy =i(I —Uo)(I +Up)~".

Since Uy is singular the self-adjoint operator H, is also singular. By Lemma 2 of [7] for each n € N there is a
self-adjoint trace class operator D, satisfying || Dy ||¢, < % such that H,, := Hy + D,, is pure point. Hence, the
unitary operators

U,:=(i—H,)G+H,™ ', neN,

have pure point spectrum. Since
Up— U, =2i(i + Hy) ' D, (i + Hy)~', neN,

we get

2
100 = Unlle, <2 Dnlle, < -, neN,

which yields s-lim,, .« [|[Up — Uy ||, = 0.

If the condition ker (I+Uy) = 0 is not satisfied, then the unitary operator admits the decomposition Uy = Ujd U/
where Uy = Uy | $/, 9 == ker(I + Up)*,and U = Uy | " = —Ign, " := ker(I + Up). One easily
verifies that ker(I + Uj) = {0}. Hence the construction above can be applied. That means, there is a sequence

{U], }nen of unitary operators with simple pure point spectrum on $)’ such that U, — U,, € £,(%’), n € N, and
limy, o0 |Uf — Ul |2, = 0.

On the Hilbert space $” we choose U] = —I, n € N. Setting U,, := U], ® U}/, n € N, we complete the
proof. O

Proposition 3.4. Let U be a purely singular unitary operator and let Q be a charge, both acting on the separable
Hilbert space $). Then there is a sequence of unitary operators {Um}meN and a sequence of bounded self-adjoint

operators {Qm } men both with pure point spectrum such that [Q,, U] = 0 and Uy — U,, € & forallm N
satisfying _ _
lim Uy —Upllg, =0 and Q= s- lim Q.
m— 00 m— 00

Proof. By Lemma 3.1 we find a decomposition
UO:@Uk and Q:@Qk
keN keN

where Uy, is of constant spectral multiplicity and )y, are bounded self-adjoint operators commuting with Uy, such
that supgey |Qklls. = [[Qlls-

By Lemma 3.2 for each k € N there is a sequence {Qgm }men of bounded self-adjoint operators with pure point
spectrum commuting with Uy, such that | Qrm || g, < [|Qk|ls + 1 foreachm € Nand Qi = sdimy,—o0 Qrm.
The operators (g, admit the representation

Qkm = Y Nt Pemi
leN

where Py, are eigenprojections of Qg in Hy. Since Up commutes with Q.. the eigenprojections Py,
commute with Uy. We set Ugp; := Ui | Hrmi Where Ogmi := Prmi$H k. Notice that

Ukm = @ Ukmi-
leN
The unitary operators Uy,,,; are singular but their spectral multiplicity might be not constant.

By Lemma 3.2 for each k,m,l € N there is a unitary operator fjkml on Hxm; such that the spectrum of Uy, is
pure point, Ukmi — Ukmi € £1(Hkmi) and
1

Ui — Unt]| € ———————.
H kml kml” (k+m+l)3



Obviously, fjkml commutes with Pj,,,;. Setting
Ukm = @ Ukmi
leN
we get a unitary operator on §); with pure point spectrum which commutes with (Q,,,. Moreover, we have

1

HUkm - ﬁkm”& < Z m

leN

Finally, setting

fjm = @ﬁkm and Qm = @ka

keN keN

we define a unitary and a self-adjoint operator on §). Obviously, ﬁm and Q.,, commute for each m € N and they
are pure point. Since

_ 1
U0 = Unllg, < ZZm

keN leN

we have Uo—(}m € £1(9) foreachm € Nand lim,, ||U0—ﬁm||gl = 0. We recall that s-lim,,, oo @y, =
Q by Lemma 3.1. O

Proposition 3.5. Let S = {U, Uy} be a £1-scattering system. Further, let () be a charge and p be a density
operator. If U — Uy is trace class, then J = J,. (see (23)), i.e. the pure point and singular continuous spectral
subspaces of Uy do not contribute to the steady current.

Proof. Using the decompositions Uy = U§° @ U5 and Q = Q4 P Qs we have:
1 * * 1 * *
J= —§tr(Q,pU0 Q" [V,Quc)) — 5‘51"((2,/)U0§27[V7 Qs))-

We are going to show that .J, := —1tr(Q_pUs Q* [V, Q]) = 0.
Let us first assume that the spectra of Uj and @) are pure point. Hence U§ and () admit the representations
Us =) (uPo and Q= aQ
neN leN

where ¢, € T, ¢; € Rand P,,, Q; are eigenprojections of Uz and (), respectively. Since Uj and ()5 commute,
then their eigenprojections P,, and ; also commute. We set Q,,; := P,,();, which define some orthogonal
projections. We have the representation

Us = Z Clenl and QS = Z inin

n,lEN n,lEN

where (,; € T and g1 € R. Notice that ) ;s Qni = P*(Up). Without loss of generality we can assume that
.y are one dimensional orthogonal projections. Because the series Zn leN Cr1Qni [V, in} converges in the
trace class norm to [V, Qs], we can write:

S 1 * () *
J® = _5 Z intr(Q*on Qfﬁ/’ in])
n,leN
Now we can undo each commutator and write:
tr(Q_ pQ [V, Quil) = tr(QpUs Q" UQr) — tr(Q_pUs Q" QuiU).

Using trace cyclicity we have tr(Q_pUiQ* Q, U) = tr(UQ_pUsQ* Q1) and then because U commutes
with Q_ pUs Q™ due to the intertwining property of the wave operator, we can put U at the left of (),,;. Hence
Js = 0.
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If U® and @) are not pure point, then in accordance with Proposition 3.4 there is a sequence {U;}meN of pure
point unitary operators acting on $*(Up) and a sequence {Qs.m }men of bounded self-adjoint operators with
pure point spectrum acting on $°(Uy) such that [US,, Qs.m] = 0 and U§ — U € £1(H°(Up)) for m € N as
well as lim,, o0 |U5 — UZ,|le, = 0and sdimy, 00 Qm = Qs.

We set
Up = éw 2] U:n and Qm = Qac @QS,T’“ m e N.

We have [Up,, @] = 0and Uy — Uy, € £1(9) for m € N as well as lim, o0 |Up — Unm|le, = 0 and
sdimy, o0 Qe = Q. Since U — Uy, = U — Uy + Uy — U, € £1(5) the wave operators

QL (U, Up) = s lim U™U,"P*(U,,)

n—=+oo

exist for each m € N. However, we have Q1 = Q4 (U, U,,) for each m € N since U3¢ = U§°. Let
T 5= =50 (U, Un)pacl Q2 (U, Un) Vi, Q) € N,
where V,,, := U — U,,. We note that J,;, = (Jm)ac + (Jm)s Where
(Umdac 3= =58V, Un)pacU§ 2 (U, U ) [Vins Quc)
(U)o 5= =500 (U, U )pacg Qi (U, U ) Vi, Qo)

Since U}, and Qs ., are pure point we get by the considerations above that (Jm)s = 0 for each m € N. Hence
Im = (Jm)ae, m € N

Furthermore, using Q.+ = Q4 (U, U,,,) and U§® = US° we find

1
T = (Jm)ae = — =~tr(Q pacUs O [Vin, Que]), m € N.

=73
Since limy, oo [|[Up — Unlle, = 0 and slimpy, 0o @ = @ we find limy, oo J, = J and
lim,,— 00 (Jim )ae = Jac Which yields J = Jy. O

Lemma 3.6. Let {U, Uy} be a £, -scattering system. With the notation introduced in (91), let
1 * *
J(r) = =S te(Q-(1)pUs Q- (r)' [V, Qucl), 7 € [0,1).
lfos(U) =0, then J = lim,11 J(r).

Proof. We set 1
T (r) = =5 tx(Q- (r) pUs 2 (1) P*(U)[V. Quc))

and
T(r) 1= (@ (U (1) POV, Qucl).

Since Q* = sdim,11 Q_(r)*P*°(U) one easily verifies that J = lim,; J*°().

Let us show that lim,1; J*(r) = 0. To this end we verify that
slim Q_(r)*P*(U) = 0.
rTl
Let v, ||okl| = 1, be an eigenvector of U corresponding to the eigenvalue & € T. One gets

Q_(r)vr=(1-r)B§ Z rkUO_"U"gak =(1-r)Py° Z rka_”fﬁgok.
neN neN
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Hence
r

* __ pac 1- _ _ 1 ac
Q)" = R e = (1) [ T dB

We introduce the Borel subset Affv of T defined by

Aﬁ:{geT:WSN}. (25)

It is not hard to see that slimy_,c EG¢(T \ AY) = 0. By the decomposition

1
e = (1-n) [ o dB Qe+
| 1 ac
) [ T

we find

1_7«/ 1—r2 d(ESC(C)Wk,Wk)+

L+7 Jay |1 —rC&|? dv(¢)

1 d(EG°(¢)er, ¢r)
1—r)? — . :
(=7 /N\AfkV |1 —rC&? dv(Q)

12— () il =

Taking into account (25) we find the estimate

* 2 i a2 1 d(EgC(C)‘pkvwk)
[€2-(r)"pxll” < 2N+ (1—7) /N\AkN TEETAE 00 .

2
Using |1(17'r') < 1 we get

—rC&k|?
. 1—r ac
12-(r) @rll” < 2Nt (E§°(T\ AY) @, k)-

For each e > 0 there is Ny such that (EG°(T \ AY )¢k, pr) < £ for N > Nj. Fixing such a N thereis ro < 1

such that for 7 € (rg, 1) one has 27 N }I_: < 3.

12— (r) eull* <e.

Hence lim,11 [|2— (7)*¢x||> = 0. From the above considerations we get lim,.11 Q* (r)f = 0 provided f =
Zk ek fr, e € C, is a finite sum of eigenvectors of U. However, the set of finite sums of eigenvectors of U is
dense in H°(U) which yields slim,; Q* (r)P*(U) = 0. Using slim,1; Q_(r) = Q_ and the compactness
of V' we immediately get that lim,.11 J*(r) = 0. O

Using the results above we are now going to prove a Landauer-Buttiker formula for unitary operators

Theorem 3.7. LetS = {U, Uy} be a £, -scattering system. Further let Qo be a charge and let p be a density
operator. If 55.(U) = (0, then

/= f / tr {Pac()[Qac(¢) = S(Q)* Que(Q)S(O)]} dv(¢) (26)
T

™
where S (C ) is the scattering matrix of the scattering system S.

Proof. Let us introduce the approximate current by

T(r,6) = — 5t (UG (1) IV, Quel), 0 <7 <1,

12



where
Pre = ES(Au(2)p, 220, (27)

and A, (e) C T satisfying (A (g)) < € and (112). Notice that pZ . is also a density operator. By Lemma 3.6 we
immediately get that lim,.1; J(r, &) = J(¢) where

J(e) = _%tr(Q_pZCUS‘Q’i[V, Qacl)-

Furthermore, we note that
J = lim J(¢) = lim limJ(r,¢) (28)
e—+0 e—40r71

where J is given by (22). We set

Jl (5) = tr(chQiVQacngg)a
Ja(e) = t(pEUiQ QuV L)

and

Ji(r;e) tr(pGc 2 (r)"VQac—(r)Us),

0<r<l.
Ja(re) = tr(pz.02- (1) QacloVQ_(r)),

Notice that
-2J() = J1(e) — Ja(e)
72‘](73 5) - Jl(h 5) - JQ(Ta 5)7
0 <r < 1.Setting K(r) :=Q_(r)*V,0 < r < 1, we get

Ji (7‘, 5) = tr(picK(T)QaCQ—UO*)7

Using V' = —UpV*U we obtain which yields

JQ(T7€): (pac ( ) QacUO ( ) ) (30)

At first, we are going to calculate K (1) Q42— (r)Ug. From (93) we get

1
K(T)QGCQ_(T)US = K(T)Qac {P(l)lc +7"A I_TC.[]*V*UOdEgC(C)} Ug

where we have used U*V = —V*U, which leads to

1
K(T‘)QGCQ_(T)US K(T)Qac{U5P86+T/EWV*dEgc(C)}

Setting
— e 1 * ac
=(r) = T/T TV B 31)
we get
K(r)Qu—(r)U; = K(r)QaUi PS¢ + K(r)QacE(r)
and

Ji(r,€) = tr(pg K (r)QaclUs) + tr(pg K (r)QacE(r)).-
Using the unitary operator ® and (107) we find

(BK (1) QuelUgd F)(C) = / K(r:¢,¢)Que(¢)T F (¢ (),

f € L2(T, dv(¢), §(C)). By the resolvent formula one has the identity

(I—€&U") ' =T —¢Us) " {I+¢v (I —¢U")™ '}, ¢eD.
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Multiplying on the right by V* we get
(I—&U) 'V = (I —¢Ug) Vv + eV I — €U 'V}, €eD,

which yields
(I €UV = (I -€U)~'CZ(€)C, £eD.

Using that we obtain
=)= [ (1= 1¢'0§) 20 ) CAE(C)
T
which yields

=(r) =+ / B (d€)C / (I — r¢'8) Z(r¢ Y CAES(C). @2

Applying the map ® one gets

(@=(®! F)(€) = r/Y (@) / (I — 18 Z(rC )WY F(Cav(()):

or

@2 e =1 [(1= 97 K d' e T,
f € L(T, dv(¢), h(¢)). Using
(@K (1 QuEM® F)(E) = (DK (101 0Q,. 0 0510~ F)(¢)
and (107) we find
(DK (r)QacZ(r)®~" F)(C) =
[ HOK G OQue) [ anO)T = r¢O K (3¢9 F(C)

Setting
M(r;i¢,6¢) = K(ri¢,6)Que(§)K(r: ¢, &) (33)
= VY(OZ(rO) VY (©)Que(OVY O Z(r )WY (O
= X.(50VY(€)Que(OVY ()X (r; )
we find M( Cf(’)
2P )OO =7 [ dv () )
@KIQuEME )0 =r [ ) [ av¢) S F(o)

where X, (r; () is defined by (111). Notice that
M(r;¢,€,¢')" = M(r; (', €, Q).
Summing up we obtain

Ji(re) = / Ot (p (O K (11 €. O)Que () +

M(T;Q&C))
I—r(E ’

(34)

r [ Qi (420
T
We are going to calculate J(r, 5). From (96) we get

Q_(r)"QacUo K (r)" = {P{)’c +r /R dEgC(C)VI —C’I“CU } QacUoK(1)"
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or _
L762110 UO ( )

O (1) Quelo K (1) = QueloK(r) + 1 [ dBge( OV =

which yields

Q_(r)*"QacUo K (r)" = QacUo K (r)* +rU§/RdEgC(()V —17“CUQGCUO (r)*.

Using the notation (31) we obtain

Q_ (1) QuacUo K (r)" = QucUoK(r)* + rUSZ(r)* QucUo K (r)". (35)

Obviously we have
(@OQuls K ()8 Q) = Quel0)6 [ K(ric. 0 Fle)ine) 3
fe L2(T, dv(¢), h(¢)). Using (32) we find

U320 Qulh K (1) = U5 [ A5 (OC2(0)" [ CABgE(©)(1 =)™ QuelioK 1)
which yields

(PUSE(r) QuclUo K (r)* @~ F)(¢)

—r (@Ua‘ [ 4B 00260 070 [ cdrgr @0 - 1700 0@tk ()8! 7 ) (©),
Hence

(BUSE(r)* Queln K (1) F)(0)
= TYQZ(r0)" / (€)Y (1 — 1) Quel / (VK (ri¢6) F(E).

Since K (r;¢, &) := /Y () Z(r¢)*\/Y (§) by definition we get
(PUGE(r)* QaelUo K (r)* @' £)(¢) =

r CfK(TCf) (! re! x ol
oS e [ a7 (@),

Finally, by definition (33) we find

(PUFE(r)* QacUo K /dv / Wf((’). (37)

From (30) and (35) it follows

Jo(r,€) = —tr(pg,QaclUo K (r)") — rtr(py UgE(r)* QacUo K (r)").

Taking into account (36) and (37) we obtain

hire) = - / Ot (O)Que K (15 ¢, O)F) (39

- [ M 6.0
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From (29), (34) and (38) we get
—2J(r¢) = / AA(O)Ttr (P QK (75 €, ) QuelC)
+ / AAQCtr (PEe () Que (K (13 6, O)F)
T

1 ¢¢ . .
v o a0 [ave {7z + S ion .0
which yields

2](r¢) = / AAC)Ttr (P (K (7€, ) QuclC))
+ / Ot (2O Que K (156, O)F)
T

r 1—r2 14 ¢ . .
v o [0 [ e i OM 6.0,

By (27) we get
2(re) = / ATt (Pacl OV (1€, O)Que(C))
T\A. ()

+/ A (O)CHE (Pac(Q) QuelO)K (3¢, €)*)
T\A.(g)

r1—r2 1+C¢ .
oot [0 [ S puOM s 6.0,

Using the representation K (r; ¢, () = X.(r;()+/Y ({) and taking into account (112) we find that

lim AT (Pae QK (75, () Que(C)) = / o O (el DK (6 OQuel0)

LT\ A, (e)

and

11 Jr

lim | dv(C)Ctr (pac(C)Qac(¢)K (r; ¢, ¢)7) = /T\A ( )dV(C)Ctr (Pac(€)Qac(O) K (¢, Q)") -

Furthermore, using (33) we find that

s 1436
dv dv — I (Pae M :CLE,
2m /]I‘\A*(s) <<)/1r (5)‘17%5'2’5 (Pac(Q)M (3¢, €, Q)

- 1—r? 1+ C¢ '
= [ 5 [ a0 G F G Oxman )

where
F(r:¢.€) = tr (pac Q)X (13 OVY () Que VY (O X (r30)")
CeT\ Aile), £ € Tand 0 < r < 1. By (112) we get the estimate
IF(r;¢, )] < Cx. () pacll|Qaclltr(Y(€)), ¢ € T\ Au(e)), 0<r <1, (€T,

Hence

1—r? 14 (¢
d =—F(r;(,€)| <
2 /H‘\A*(e) U(C)lf—TCE\Q (r(é)’<

L O P 61 20k, (el | el (¥ (€)
2w T\A., (¢) | —r(El? B )
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where tr(Y (€)) € LY(T, dv(€)). Applying the Lebesgue dominated convergence theorem we obtain

Sl 143
dV dy > r e M (€,
2m /]T\A*(s) <O/Tr (5)|I7T§§|2t (Pac(Q)M (73 ¢, €, Q)

- / V(&) F (€. ) xm age) (€) = / dv(E)F(€,€)
T

T\A.(g)

where

F(6,6) = tr (pucl© X (VT O Quel ) VITOX.(E)") = tr(pac(©M(£,£,6))
and M (¢, ¢,¢) = £1 — lim,q1 M(r; ¢, ¢, Q) fora.e. € € T. Summing up we obtain

~2J(e) = 2lim I () = / ATt (Pac(Q)E (¢, O)Qacl0))
r1l T\A.(¢)

+ / O (PaclO)Que(OK(C,O))
T\A., ()

n gﬂ/ dv(O)tr (pac(QM(r5¢,¢,C)) -
T\ AL (e)

By Corollary D.3 we verify that
20O =i [ Ot (pue€)T(€) Quel))
T\A.(e)

—i / )t (pac(O)Quc OT(C)) + 2 / Q)T (pae(OM(C.C, )
T\ A, (e) T\ A (¢)

Since M (C, ¢, ¢) = K(¢, ¢)Qac(C) K (¢, ¢)* one gets M((, ¢, () = T(¢)*QacT'(C). Therefore
2J(c) = / d(C)tr (pac(O)S(0))
T\A.(g)

where
5(C) i= —iT(€)" Qac(C) +iQac(Q)T(¢) = 27T(()* Qac(()T(C), ¢ €T. (39)
Using (109) we obtain ||3||¢, € L(T,dv(¢)). Moreover, from (101) we get
Iy — SQ) . Aoy = SO
T(() = 2= and T(¢)" = (40)
Inserting (40) into (39) we find
I - S(¢)* 1 -5
E(C) = MQ(JC(C) =+ Qac(C)M_F
T ™
Iy — S(Q)” Iy — S(0)
o Qe
which yields )
2(¢) = 5-{Qac(¢) = S()" Quc(C)S(C)} -
which proves )
I == [ 0 0l0)(Quel) ~ S0 Quel €IS vlc)
T\A. (¢)
Using ||2(¢)|le, € LY(T,dr(¢)) and (28) we immediately prove (26). O
Corollary 3.8. If the assumptions of Theorem 3.7 are satisfied, then
1
J=—— [ tr((pac(C) = 5(€)Pac(€)S(¢)") Qac(C)) - (41)

47TT

Further, let ¢ : T — [0, c0) be Borel measurable and bounded. If p = ¢(Uy), then J = 0.
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Proof. Using the fact that S({) — Ip(¢) € £1(h(C)) for a.e ¢ € T with respect to v one immediately shows that
(41) follows from (26).

If p = ¢(Up), then pa. = ¢(UgGe) which yields pa.(¢) = ¢(¢)Ip(c) for a.e. ¢ € T with respect to v. Inserting
Pac(C) = @({)Iy(¢) into (41) we prove J = 0. |

3.2 Self-adjoint operators

Let Hy and H be self-adjoint operators on the separable Hilbert space $). If the condition
(H+i)"' = (Hy+14)7 € £(9) (42)

is satisfied, then the pair S’ = {H, Hy} is called a £;-scattering system. If S’ = {H, Hy} is a £;-scattering
system, then the wave operators

Wy = s lim e"*HeitHo pac(py
+ 0
t—+oo

exist and are complete. The scattering operator is defined by S” := Wi W_.

A bounded self-adjoint operator () commuting with H| is called a charge for S’. A non-negative bounded operator
p commuting with Hy is called a density operator for S’. To define the current J’ for S’ we assume that (1 + Hg)p
is a bounded operator. Under this assumption the current J’ is defined by

J' = —itr (W_(I+ H2)pW* (H — )" [H,Q](H +1)"). (43)

Using (21) we have that (H — ) ~[H, Q'](H +1i)~! € £1($) which shows that the current is well defined. The
definition (43) is in accordance with [1]. Indeed, from definition (43) we formally get J' = —itr(W_pW*[H, Q)).

Theorem 3.9. LetS’ = {H, Hy} be a £, -scattering system. Further, let () be a charge and let p be a density
operator for S’ such that (I + HZ)p is a bounded operator. Further, let [L( H3¢) a spectral representation of H3*
such that Q.. and p.. are represented by multiplication operators MQ; . and M o, induced by the measurable
families {Q",.(\) }xer and {p,.(\) } xer, respectively. If os.(H) = (), then

I = o [ ()@ (Y) — 8O0 QNS (V) d m

:27TR

where {S"(\) }acr is the scattering matrix with respect to the spectral representation II(HG°).

Proof. Let us introduce the Cayley transforms
U:=(G—-H)(i+H)™ and Uy:= (i — Hy)(i+ Ho) "

The pair S = {U, Uy} is a £4-scattering system if and only if S is £;-scattering system. By the invariance
principle for wave operators one verifies that W = )4 which yields S = S’. Obviously, @ is a charge for S and
p is a density operator for S. A straightforward computation (compare with (12)) shows that

T = (O pURQLV, Q) = —ite (W oW (H — i) [H, QI(H +1) ™). (45)

Let II(U§*) be the spectral representation of Appendix B. Assume that the operators Qqc, pac and S = Q5 Q_
are represented in ILI(U§°) by the multiplication operators Mg, ., M,,. and Mg induced by the measurable

families {Qac(¢) }cet, {Pac(() }cer and {S(C) }eer, respectively.

Using the spectral representation II( H§¢) = {L*(R, d\, ’'()\)), M, ®'} of Appendix C one gets that Q ¢, Pac
and S are presented in ITI(H{¢) by multiplication operators Mg, , M, and Mg induced by the measurable
families {Q%,.(A) }raer, {0l (M) }aer and {S’(N) }aer, respectively. Notice that both families are related by

Q:zc()‘) _ Qac(e% arctan()\))’ = R7
Poc(N) = PaC(eziarCtan(A))a AER,
S/()\) _ 5(621' amtan()\))7 A <R,

18



Taking into account Theorem 3.7 we get

d\

1 * ()% _ i / / A2V T2 /
7§tr(Q—pU0 Q—[V7 Q])) - o1 /]Rtr (pac(/\)(Qac()‘) S (A) Qac(A)S (A))) 1+ )\2' (46)
Finally, replacing p by (I 4+ HZ)p we obtain (44) from (46). O

Corollary 3.10. If the assumptions of Theorem 3.9 are satisfied, then

1

J =
2 R

tr ((Phc(A) = 5" (N)pac (NS (A)) Que(N)) dA.
Further, let  : R — [0,00) be Borel measurable and bounded. If (1 + A\2)$(A\), X € R, is bounded and
o' = &(Ho) , then J = 0.

The proof of Corollary 3.10 follows from Corollary 3.8.

The charge () was defined as a bounded self-adjoint operator. However, this definition is usually not sufficient in
applications, cf. below. In [1, Definition 3.3] the notion of tempered charge was introduced. An unbounded self-
adjoint operator (Q is called a tempered charge if Q commutes with H and for any bounded Borel set A of R the
truncated charge @ := QEy(A) is bounded where Fy(-) is the spectral measure of Hy. For tempered charges
we set

Th o= —ite(W_ (I + H2)pW* (H — i) '[H,Qu)(H +1)7Y), Qa = QEo(A).

Since [@Q, Ho] = 0, we can decompose Q' = Quc ® Q. Let II(HZC) = {L*(T,d), b’ ()\)), M’,®'} be a
spectral representation of Hj°. Then there is a measurable family {Q’,.(A) } xer of bounded operators such that
Q. is unitarily equivalent to the multiplication operator MQIIC where

(Mg, )N = QN F M), f edmMg,), IeR,
dom(Mgy,) = {f € L*(R.dA\ b (N): QLN F'(A) € L*(R, A\, b/ ()}
Obviously, one gets Q) ,.(A) = Qu.(A)xa(A), A € R.If Q is a tempered charge, then Qq. is a tempered
charge for H§®, that is || Qe EG¢(A)]|5 < 00. Therefore, for a tempered charge one has
sup  ess-sup xe [|Quc(N)[lyr(x) < o0 (47)
AeB,(R)

where ess-sup means the essential spectrum with respect to the Lebesgue measure on R. In the following we
denote the set of all bounded Borel sets of R by B,(R).

Corollary 3.11. LetS’ = {H, Hy} be a £ -scattering system. Further, let () be a tempered charge and let p be
a density operator. If

sup [|QEo(A)|ls[I(I + HF)pEo(A)l < oo (48)
AeBy(R)

then the limit J' := limy,_, oo J (’ _LL) exists and the formula (44) is valid.

Proof. Applying Theorem 3.9 we find

Ty = o [ (@) = SV QNS ()N, A € By(R).

A727T A

From (48) which yields

sup (| QueEo(A)||5 (1 + HE)pacEo(A)||5 < o0
AeBy(R)

which yields

1Qac Eo(M)lls||(Z + HE)pacEo(A)|5 =
ess-sup ye a [| Qe (V) 1o (1) e85-sup sen (1 + A2) 125 (M) 5 (0)-
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Hence

sup [|QacEo(A)lls (1 + HE)pacEo(A)lls =
AGB},(R)

sup {ess-sup e p | Qe (M)l (xy888-sup xep (14 A%)[|phe (M0 } -
AEBL(R)

This gives

sup esssup sen { (1 + A")Que(N) o) ke (Mllrn } < o0
AEBL(R)

In particular, we have

SUp €SSSUP e (—L,1) {@+M)Q4M o 1o Ml x) } < o0 (49)

Using the definition 7" () := 5= (Iyr(x) — S'(A)), A € R, we find the relation 7" (\) = T'(e* arctan(A)) for a.e.
A € R. Taking into account (109) we get the estimate

dX N N
IT" M2y 5 < 2MH +0) 7" = (Ho+4) e, (50)
R 14+ A2

Since

Qiz(‘()‘) - Sl(/\)Qiz('S/()‘) =
2mi {T" (M) Quc(A) + Qac(N)T'(A) = 2miT" (A)Qac(A)T'(N) }

fora.e. A € R we find

196N (Qae (A) = " (NQaeS" M)lle, <
2+ 7) 1oacM) ) 1QueM g [T (M2,

for a.e. A € T where we have used that || (\)|[5/(x) < Z. Using (49) and (50) we verify that the integral
Toim [ BN (Qaeh) = SO QNS ()
R

exists and is finite. Hence

L
fim T 0y = Jim 5 [ 6 )(@alY) = SO QNS M)A = Ty

L—oco L—oo 27

which completes the proof. O

4 Examples

Let us consider examples where it is important that the Hamiltonian is not semibounded from below.

4.1 Landauer-Bittiker formula for dissipative operators

We consider the Schrodinger-type operator K in the Hilbert space & = L?((a, b)) defined by

i (@) € WH2((a,b))
dom(K) := ¢ g€ W"((a,b)) : (55 ¢) (a) = —Kag(a)
(559') (b) = rag(b)
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and
(Kg)(x) =1(9)(z), g € dom(K),

where
d 1 d

U6)(w) =~y gy g ¥0) V@@, € (o),

V € L>((a,b)) and m(x) > 0is real function such that m € L>°((a, b)) and L € L>°((a, b)). Furthermore,

m
we assume Kq, kp € Cy = {z € C : Sm(z) > 0}. The operator K is maximal dissipative and completely

non-self-adjoint. Its spectrum consists of non-real isolated eigenvalues in C_ which accumulate at infinity.

To analyze the operator K it is useful to introduce the elementary solutions v, (, z) and vy (z, 2),

— = = ! = —
(vg(x, 2)) — 2v4(x,2) =0, wv4(a,z) =1, Smia) v, (a, z) Ka, (51)
1 !
_ — = = 2
l(vp(, 2)) — zvp(x,2) =0, wp(b,2) =1, 3m(D) vy(b, 2) = Ky, (52)
x € [a,b], z € C, which always exist. The Wronskian of v, (x, z) and vy, (z, z) is defined by W (z), i.e.
W(z) = va(z, 2) Sm(a) vy (x, 2) — vp(z, z)#(x)vfl(x, 2). (53)

We note that the Wronskian does not depend on . Obviously, the functions v, (z, z) and v, (z, z)

Via(T,2) :=v4(x,Z) and vwp(z, 2) == wp(x,Z), z€C. (54)

x € [a,b], z € C, are also elementary solutions of

l(v*a(x, Z)) - ZU*Q(SC, Z) =0, U*a(av Z) =1, ﬁv;a(av Z) = —Ka, (55)

Z(U*b(xv Z)) - Zv*b(xa Z) =0, U*b(ba Z) =1, v;b(ba Z) = Kb, (56)

1
2m(b)

x € [a, b]. The Wronskian of v.,(z, z) and v.,(x, 2) is denoted by W, (z) and is also independent from x. Using
the elementary solutions one gets the representation

(H=2)""f)(=)= (57)

vp(x,2) [* va(z,2) [P
el CURIOEE e R
for 2 € o(H) and f € L*([a,b]) and
(H* =2)7' f)(2) = (58)
vz, 2) [ Vsa(z,2) [P
e [yt ) = ) [ avoatw s

for 2 € o(H*) and f € L?([a,b]), see [13].

Since H is completely non-self-adjoint the maximal dissipative operator H can be completely characterized by
its characteristic function 05 (2), z € o(H) N o(H™). The definition of the characteristic function relies on the
so-called boundary operators 7'(z) : & — C?, 2z € o(H) and T(z) : & — C2, z € o(H*), which are
defined in [13]. Introducing representations

2

{ {
/ia:qa+§oza and Kp =qp + =

2045, Qg,ap >0, (59)

the boundary operators are defined by

C( a((H =2 )
T = ( —aa((H - 2)"1)f(a) ) (60)
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and

_ ( ow((H =271 f) ()
To(2)f = ( —o ((H* — Z)ilf)(a) ) ) (61)

fe LQ([a7 b]). Using the resolvent representations (57) and (58) we obtain

Ty — L <ab ffdyva(y,Z)f(y)> )

W)\ ao [ dy op(y, 2) f(y)
and b
. _ 1 —Qy fa dy U*a(y7 Z)f(y)
L& =55 ( o [P dy vy, ) (9) ) | )

f € L?([a, b]). The adjoint operators are given by

. 1
TEO @ = s (contale ) aun(e2)) € (64
1 _ _
= W*(E) (fabv*a(x,z),aav*b(x,z))f,
and
. 1
(T(2)7¢) (z) = TAe) (—abv*a(w,z),aav*b(as,z)) 3 (65)
1 _ _
= W(—abva(x,z),ozavb(x,z))f,
where .
£=<§a>e(c2. (66)

The characteristic function © i () of the maximal dissipative operator H is a two-by-two matrix-valued function
which satisfies the relation

Ok (2)T(2)f =Tu(2)f, z€o(H)No(H"), aa,ap>0, (67)
f € L?([a, b]). It depends meromorphically on z € o(H) N o( H*) and is contractive in C_, i.e.
IOk (2)|| <1 for z€C_. (68)

Using the elementary solutions the characteristic function @K(-) takes the form

( Q0. (b, 2) —apay ) (69)

Ok(2) = Ie2 +1 —QpQyg a2v.(a, 2)

for z € o(H) N o(H*), cf. [13]

Since the operator K is maximal dissipative there is a larger Hilbert space $) and a self-adjoint operator H such
that R is embed in £ and the relation

PY)(H-2)"'1R=(K-2)"" zeC4,
is satisfied. The self-adjoint operator H is called a self-adjoint dilation of K. If the condition
clospan{(H — 2)"'R: 2 € C\R} = §

is satisfied, then H is called a minimal self-adjoint dilation K of H. Minimal self-adjoint dilations of maximal
dissipative operators are determined up to a certain isomorphism, in particular, all minimal self-adjoint dilations are
unitarily equivalent.
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In the present case the minimal self-adjoint dilation of the maximal dissipative operator H can be constructed in
an explicit manner. In accordance with [13] we introduce the larger Hilbert space

H=D_GRED, (70)

where © 4 := L?(R, C?). Introducing the graph €2,

R_ R,

one can write the Hilbert space ) as L2({2). Further, we define

g=9-S9® g+ (71)
e ¢ (z) . (2)
g-(x) = ( " () ) and g (z) = ( gi(z) ) (72)
for v € R_ and = € R, respectively. Let us introduce the matrices K¢ and K% which are defined by
K® = ( (1) HOa > and K = < (1) ,% ) (73)
as well as
Kb = ( (1) _gb > and Ki = < (1) _? ) (74)

Further we set
Qp 0
A=
< 0 Olb>
Using these notations the self-adjoint dilation K is defined by

g+ S W172(Ri7(c2)7
g, =g € W([a,b]),

dom(H):=<¢§g : 7
om(H) GED Ky, 4 Kb g, = Ag (0), 79
K$go+ Kb gy = Ag1(0)
and d d
H§ = _i%g— D l(g) D _iﬁg-kv g € dom(H), (76)
where, . .
/ /
_( 2m@9 (a) ) d _ ( 2m )9 (0) >
Ga = and g, = ) (77)
< g(a) ’ g9(b)
With respect to a graph picture the operator H looks like
9% (0) = 79 (b) = rog(b) 59/ (b) = Frg(b) = gt (0)
) ¢
—i%gli —i%gi
1(g)
. d a - d _a
—1g-9% a9+
) ¢
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We define another self-adjoint operator Hy by setting aip, = «, = 0. In this case we get

g+ € WHE(Ry, C?),
9, w9 € WH((a,b)),

dom(Hy):=¢ge€H: Kig,+Klg,=0,
Kiga + Kigb =0,
9-(0) = g+(0)

and

- . d . d .
Hyg = —io-g- ®l(g)® —io g+ g € dom(Hy),

Setting® = D_ & D, = L*(R, C?) we obtain
H=DBR

and
Hy=T® K,

where T is the momentum operator given by dom(7) := W12(R, C?)

(T)() = —ig f(z), [fe€dom(T),

and K is defined by
g € WH((a,b))

dom(Ko) := G €9 (529)(0) = avg(b)
(zm9)(a) = —qag(a)
Since the operator K is discrete one gets H¢ = T and $%°(H,) = L?(IR,C?). One easily checks that the

resolvent difference is a trace class operator. This is due to the fact that both operators H and H are self-adjoint
extensions of the symmetric operator H,

g+ € Wl’Q(Ri,C2)

9, =g € WH((a,b))
’ Ga = Gb = 0
g+(0) =0

dom(H):={ Ge®

which has finite deficiency indices. Hence S = {H7 Ho} is trace class scattering system. In particular, the wave
operators W (H, Hy) exist and are complete.

One easily checks that II(H§¢) = {L*(R, d\, C?), M, F} where M is the multiplication operator induced by
the independent variable A and F denotes the Fourier transform

1

T o

(FHN) /R = f(2)dz,  f € LA(R, da, C2).

It is known that the scattering operator S(H, Hy) = W (H, Hp)*W_(H, Hy) is unitarily equivalent to the
multiplication operator Mg+ induced by the measurable family {©O(\)*}acr in L?(R, d\, C?) where

. .. (10 o1 atv.q (b, \) —Qp Qg
O(\) = Jim O(A - in) = (0 1) + TRy ( o a2ua(a)

which exist and is contractive for A € R. Setting
Oy (\) := W(N) —iajva(b,\) and 6,(\) := W()\) —ia2uvp(a,\),

A € R, we find the representation

_ L (B0 i
Q(A)‘m(—mbaa aaw)
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and

. 1 O(N) ity
oWV = Ty (i;baa eab(A))' (78)

Since O(A)*O(\) = I¢2 for A € R we obtain

1=10,(N)]? +aia? = 0,(N)]? +afa? and 0,()\) = 0,()\) (79)

a

for A € R.

Let p be a steady state for Hy. Obviously, the steady state is unitarily equivalent to the multiplication M, induced
by a measurable family {p(A\)}aecr of non-negative bounded self-adjoint operators acting in C2. We use the
representation

p(\) = (f;b(()’\\)) pTa((>\>\))) >0, AeR. (80)

Notice that p(A) > 0 if and only if the conditions py(\) > 0, p,(A) > 0 and

[T < po(N)pa(N)
is satisfied for a.e. A € R. Moreover, p and (I + H2)p are bounded operators if and only the conditions

ess-sup g {Pb(A) + pa(A) +[T(A)]} < o0
and
esssup ycg (1 + A7) {pp(X) + pa(A) + [T(V)[} < 0. (81)
are satisfied, respectively.

In [14] the current related to the self-adjoint operator H was calculated in accordance with [19]. To this end the
generalized incoming eigenfunctions ¢ (x, A, a) and ¥ (z, A, b), z € Q, v € {a, b}, A € R of H were computed
and the current j,(x, A) was defined by

Lw(Jc, A, b)ym(z)y (z, A, b)> +

paN3m (TR (o) ()

JA%AVZMMM%m<

forx € Q, A € R, where () and p, () are the eigenvalues of p(A). It turns out that j,(x, A) is independent
from x, thatis j,(\) := j,(z, A), and admits the representation

Jp(A) = tr(p(A)C(N), AeR

where 1
. apQlg *
C(/\) = o TME@()\) , AER,

0 1
p= (" ).

cf. Proposition 4.1 of [14]. If tr(p(\)) € L*(R, d\), then the full current j,, is given by

and

o= [ isax

cf. Proposition 4.1 of [14]. Using (78) and (80) we find

L1 —ad02(m) — pa(V) + i (r(\)0a(N) — TOVB(N)
‘%4 WP A

Jo
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Let us calculate the current in accordance with Theorem 3.9. To define charges we note that © admits the decom-
position
Dy
D= .
Da

By )y and (), we denote the projections form ® onto ©; and ®,, respectively. The operators (J; and @,
commute with H and can be regarded as charges. The charge matrices are given

an=(y o) a9 @w=(g 1), rer

Applying Theorem 3.9 we find

1

Ta. =5 [ 500 (QuN) ~ BNQUNON)))

A straightforward computation shows that

Qa(N) —ON)Qa(NON)* = 1 ( —aja? iabaaea()\)) .

[W (N2 \—iapaabs(X) aia?
Taking into account (80) we obtain
tr(p(A)(Qa(A) = O(N)Qa(N)O(N))) =

W (—aiai(pb(A) = pa(N) + iaqan(T(A)fa(N) — 7( )m))

which yields

1 —agag(pb(k) = pa(N) +icgan(T(A\)ba(N) — Wea()‘))

— dA.
2 Jr (W2

S

Jp,Qa -

Using (79) we immediately get from (82) that J;f,Qa = j,- Comparing with [14] the proof is much shorter. Moreover,
from Proposition 4.1 of [14] we get that

1

5.l < %/}Rtr(p(/\))d/\ =5, [ (e + pa(A) X

By (81) the last integral exists.

4.2 Landauer-Biittiker formula for a pseudo-relativistic system

We consider the Hilbert space L? (R, (CQ) and the symmetric Dirac operator

a

@ = (7 3) gl (5 5) flo) Feaomay e,

where a > 0 and

—

dom(A) := {f € W'2(R,C?) : f(0) = 0}
and

.]F: <§1) ) f17f2 S LZ(Rﬂ dx)'
2

The deficiency indices n(A) are equal two. The operator A is completely non-self-adjoint. The domain of the
adjoint operator is given by
dom(A*) = WH(R_,C?) @ WH?(R,,C?).
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Ilts Weyl function M (z) was calculated in [5]. One has

zﬁng 0
M(z) = 0 jvz=a |’ z € Cy,
Vzt+a

where the cut of the square root \/ is fixed along the non-negative real axis. We define a self-adjoint extension
HO of A by HO = A* [ d0m<H0),

dom(Hy) = {f € dom(A*) : fo(~0) =0, fi(+0) =0}.

The operator H is self-adjoint and absolutely continuous. Its spectrum is given by o(Hg) = 04.(Hp) = R\
(—a, a). Itis not hard to see that the Hy has the form

Hy=H_&®H,

where H are are self-adjoint operators in L? (R, (CQ), respectively. A straightforward computation shows that
the operator HH_ and H are unitarily equivalent to the operator K _,

(K f)&) = i)~ af(~2), [ edom(K") )
dom(K_) = {WIA(R) & WA(R,): f(-0) = ~f(+0), 84
and K4,

(K o)) =i f(@) —af(—2), [ e dom(K,) = W2(R)

defined in L?(RR), respectively.
The limit M (A) := lim,_, o M (X + iy) exist for every point A € R\ {—a,a}. One has

,L'\/)\-‘ra 0
M) = 87(1 e | A€ R\ {~a,a}.
Z\/)\Jra
Hence
Aa 0
Sm(M)=| V" —], AeR\[-a.d]
0 Aa

and Sm(M (X)) = 0for A € (—a,a). We set h(\) := ran(Sm(M (X)), A € R\ {—a, a}. Obviously, we get

_Jc XeR\[-a,q]
HY) = {O A€ (—a,a).

We consider the direct integral L?(IR,d\, h())). | turns out that there is an isometry ® acting from $) onto
L2(R, dX, h(X\)) such that the triplet TI(Hy) = {L*(R, d\, h(A)), M, @} is a spectral representation of Hy.

Another self-adjoint extension H of A is defined by choosing a self-adjoint operator B,

b T
B_<T b+)’ b_,by eR, reC,

acting on C? and setting

7 . J1(=0) b— f2(=0) + 7 f1(+0)
dom(H) := {f € dom(A*) : £2(+0) r Fa(=0) + by f1(40) }

The self-adjoint extension H can be regarded as the Hamiltonian of some point interaction at zero. Since the
deficiency indices of A are finite the resolvent difference of H and H is trace class operator.
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We consider the trace class scattering system S = {H, Hy}. Following [2] the scattering matrix {S(\) }aer
admits the representation

S(A) = Iy + 2iy/Sm(M (X)) (B — M(X)'/Sm(M (M),
A € R\ [—a, a]. We find
b, _ ivAza .
(B =M™ = ) ( s W>
et(B— M()\)) —r b —ivate
for A € R\ [~a, a]. The transition matrix {7'(\) } xcr is defined T'(A) := S(X) — Iy(x), A € R\ [—a, a], which

yields
T(A) = 2i/Sm(M\)(B - M(A\)"'/Sm(MN), AeR\[—a,al.

Using the representation
() ()
T“"(u_w t++<A>)

we find
21 Vi+a
- = B (b+ A—a Z)
_ 21
=+ = TR E = o))
21
- = B o)
21 vVAi—a .
e = g (v )
We set
o) = I (VP = 4 (V)P Airl AER\ [~a,d],

" [det(B— M(N)P’
which is the cross section between the left- and right-hand scattering channels. Since || T'(\)||g(c2) < 2, A €
R\ [—a,a], wefind o(A) < 2, X € R\ [—a, al, which yields

2Jr|?
<1,
|det(B—M(\)|? —

A € R\ [—a,a].

Let -+ be the orthogonal projection from L?(R, C?) onto L?(R., C?). Obviously, Q+ commute with Hy. With
respect to the spectral representation the charges () correspond to

Q(A>=(3 8) and Q+<A)=(8 ‘1)) e R\ [~a,a].

If the steady state p is chosen as
p=p-Dpt,
then the corresponding charge matrices are given by

() = (”é” p& A)> . AER\[-a,d].

where p () are non-negative bounded Borel functions on R \ [—a, a]. The operator (I + HZ)p is bounded if
and only if €8S-SUP ) cg\ [~ a,q) (1 + A?)p+ (X) < 0. Applying Theorem 3.9 we find that the current J;)S,Q_ (Ir])is
given by

Ko =50 [ (-0 e
_2rP p—(A) — p+(A)
oo /R\[a,a] | det(B —M()\))Pd/\
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A very simple case arises if we set b = 0. In this case we have

2|r|2
Sa- (I = ¢ I

e USCEV I

The magnitude of the current becomes maximal in this case if |r| = 1, that is, if

s gy L .
o W=gr [ (o- )= prnir

Since () < 2 we find the estimate
1
o (< [ e

Obviously J[fQ_ (0) = 0 which is natural. In this case the self-adjoint operator H decomposes into a left and right
hand side extension which have nothing to do with each other. However, one also has lim|,.| J,‘fQi (Ir)) = 0.

For electrons one has to choose
pi(A) = pFD()\_:ui)7 )\GR,

where (14 is the so-called Fermi energy and prp () is the Fermi-Dirac distribution
prp(N) = (147" AeR, 5>0.
Obviously, the condition ess-sup g\ (4 41 (1 + A%)p+(A) < oo is not satisfied. However, it turns out that
p-(N) = py () = e Pt —e™P)p_(N)pi(V), AER.

satisfies ss-SUP \ [—q,q) (1 + A2)|p—(X) — p(N)| < oo which shows that the current J5Q7 is well defined.

Appendix: Spectral representations

A Spectral representation for unitary operators

Let € be a separable Hilbert space and let 1 a Borel measure on the unit circle T. We consider the Hilbert space
L?(T, dpu, €) and the multiplication operator Z defined by

(Z.]/c\)<<) = Cf(C)7 f € LZ(Tad%E)-

Let {P(¢) }¢er be a measurable family of orthogonal projections in £. Setting

(PF)Q) =P F), [ e€LT,dub), (85)

one defines orthogonal projection on L2(T,du,€). The subspace PL?(T,du,€) is denoted by
L2(T,du(¢), €(¢)) where £(¢) := P(C)€ in the following and is called a direct integral of Hilbert spaces
{€(¢) }cem, cf.[4]. We recall if an orthogonal projection on L?(T, dy, £) commutes with Z, then there is a measur-
able family { P(¢) }¢er of orthogonal projections such that P is given by (85).

For any unitary operator U there is a separable Hilbert space £ and a Borel measure 1 on T such that U is unitarily
equivalent to a part of Z. That means, there is an isometry ¥ : § — L?(T, dp, £) such that

vy = Z0.

The operator P = WW* is an orthogonal projection on L2(T, dy, €) commuting with Z. Hence there is a family
of measurable orthogonal projections {P(C)}gg such that P is given by (85). Notice that W is an isometry acting
from $) onto L2 (T, dy, £). The multiplication operator M := Z | L(T, du(¢),€(¢)),

(Mf)(¢) =Cf(), f e LXT,du(C),¥(c)),
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is unitarily equivalent to U. The triplet II(U) = {L?(T,du(¢),&(C)), M, ¥} is called a spectral representation
of U.

The existence of a spectral representation can be proved as follows. Let 1(-) be a scalar measure defined on
B(T) such that the spectral measure E(-) of U,

U= /1r CAE(Q),

is absolutely continuous with respect to u(-). Such a measure p always exists. Indeed, let C' = C* be a Hilbert-
Schmidt operator such that $§ = He(U) := clospan{E(d)ran(C) : § € B(T)} where E(-) is the spectral
measure of U. We set

w(0) :=tr(CE(6)C), &€ B(T).

Obviously, the spectral measure E(-) is absolutely continuous with respect to x(-). In fact, both measures are
equivalent.

Moreover, the operator-valued measure X(8) := CE(S)C, § € B(T), is absolutely continuous with respect to
u(+) and takes values in £1(%)). Since £1($) has the Radon-Nikodym property 3(-) admits a Radon-Nikodym
derivative T'(+) of X(-) exists with respect to u(-), belongs to T(¢) € £1(9) for a.e. ¢ € T and satisfies
Y(¢) > 0fora.e. ¢ € T with respect to 1. Hence we have

5(8) = /5 T(C)dpl<)

for any Borel set 6 € B(T). We set £(¢) := ran(Y({)) C ¢, ¢ € T, which defines a measurable family of
subspaces of £ := ran(C'). That means, the corresponding family of orthogonal projections from ¢ onto €(¢) is
measurable with respect to y(+).

Lemma A.1. Let L2(T, du(¢),€(¢)) and Y (¢) be as above. Further, let U be the linear extension of the mapping

(TE@O)CF)(C) =xs(OVT(Q)f, CET, fe9n.
If9 = Hco(U), thenTI(U) = {L*(T, du(¢),€(¢)), M, ¥} is a spectral representation of U.

Proof. Obviously, we have

IO EG)CF |2 00 ey = /5 VIR IRAu(C) = (SO, ), f e,

Hence W is an isometry action from $c(U) into L?(T, du(¢), ) with range L?(T,du(¢), €(¢)). Since § =
9¢c(U) one gets an isometry acting from $) onto L?(T, du(¢), €(¢)). Moreover, by

(w / UAE(Q)CH(C) = VIO, CeT, fes,
we get VU = ZV. O

The integer function Ny : T — Ny := {0,1,2,...,00}, Ny(¢) := dim(€(¢)), is called the spectral
multiplicity function of U'. We note that the family {€(¢) }¢er and the spectral multiplicity function Ny are defined
only a.e. with respect to u. Furthermore, it can happen that €(¢) = {0} for ¢ € T which yields Ny (¢) = 0. We
set supp (Ny) := {¢ € T : Ny(¢) > 0} and introduce the measure jiy := Xqupp (N, )1 Which is absolutely
continuous with respect to p.

Let U and U be unitary operators and let I[(U) = {L2(T,du,¥()), M, ¥} and TI(U) =
{L3(T,dp(¢ ),E(C ), M , \Tl} be spectral representations, respectively. The operators UandU are unitary equiv-
alent if and only if /15 and .y are equivalent and N (¢) = Ny () a.e. with respect to 1177. The unitary operator
U is called of constant spectral multiplicity ¥ € N := {1,2,..., 00} if Ni7(¢) = k a.e. with respect to js.
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B Spectral representation for /¢

In the paper we mainly need a spectral representation of the absolutely continuous part U *¢ of a unitary operator
U. In this case we choose (1 = v where v is the Haar measure on T. In this case the construction above simplifies
as follows:

As above, let C = C* € £9(%)) be a Hilbert-Schmidt operator on ). Since C € £5(%) we define by %€ :=
CE&(-)C a £1-valued measure on T which is absolutely continuous with respect to the Haar measure v on T.
lts Radon-Nikodym derivative is denoted by Y'(-).

Let us define a measurable family of subspaces by h(() by setting h(¢) = clo{ran(Y(¢))} C hinh =
clo(ran(C')). With this family we associate the direct integral L?(T, dv((), h(¢)).

LemmaB.1. Let L*(T,dv(¢),h(C)) and Y ({) as above. Further let ® be the linear extension of the mapping

(RE=(Q)CF)(C) =xs(OVY(Q)f, CET, fen

If the condition $°(U) = HE := clospan{E*(0)ran(C) : 6 € B(T)} is satisfied, then II(U*°) :
{L*(T,dv(¢),h(¢)), M, ®} defines a spectral representation of U .

The proof is similar to that one of Lemma A.1. If the condition H% = H**(U) is not satisfied, then IL(U*“)
{L3(T,dv(¢),h(C)), M, ®} is not a spectral representation of U but of U4 := U | HZ . Notice that ¢
$%¢(U) reduces U*“.

c

The following Lemma describes the action of the transformation ® and is also valid for this extension of the spectral
representation of Lemma B.1.

LemmaB.2. Let X : T — B(9) be strongly continuous. If the operator spectral integral

Lf = /T GE*(()CX(C)f,  fe,

exists, then

(PLA)(CQ) = VY(OX(Q)f, (€T, fe9, (86)

holds. Furthermore,
I'f = [ XM(Q)CaBE)f

and

L f = / DX (OVYOF©Q),  f=aFesn™ @)

Proof. Let J., € > 0, be a family of partitions of T such that sup |Z| = e. Let further (. : J. — T satisfy
=eJ.

¢(E) € Eforall E € J.. Then for

Lf ::/TdE“(g)CX(C)f, fen,

we have
Lf =lim " E*(2)CX(C(E))/.

SISV

by definition. Since ® is continuous and ran(L) C H(C'), we have

(RLH(N) = lim > (PE*(E)CX(A())S) (V)

=eJ.
= lim :; X=MVY(NX () f
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fora.e. ¢ € T. Now let Z¢ () be the unique element in 7, for which A € Z.()). Since X is continuous, we obtain

(PLfY(N) = hm VY(AN)X (A WMf=VY(AMNX(A

The adjoint relation (87) follows easily from
fo. [ X(cam=(0 1) = { [ am=(00x" Q. 1)
[ MVTOX Q. (@0(0) = (. [ X OVTTI@N(0)

forall g € 9. ]

C Spectral representation for H“¢

Let H be a self-adjoint operator on the separable Hilbert space $. We introduce its Cayley transform
U:=(G—-H)(i+H)™*
Obviously, we have
Ey(0) = Ex(8'), de€B(T), & ={\eR:eXarctanN) ¢ gy,

Let II(U%¢) = {L*(T,dv(¢),h(C)), M, ®}. Let us introduce the direct integral L2(R, d\, b’(\)) where d) is
the Lebesgue measure on R, and ' () := f)( 2iarctan(A)) A straightforward computation shows that the linear
map I : L*(T, dv(¢), h(¢)) — L*(R,dA, b’ (N)),

= )\2 f( 24 arctam()\))7 = R,

f € L2(R,d\ B'())), defines an isometry acting from L2(T,dv(¢),h(¢)) onto L2(R,dA,b'(N)). Let
{Q({)}¢cet be a measurable operator-valued function which defines a multiplication operator Mg in the direct
integral L2(T, dv((), h(C)). Setting

Q/()\) — Q(e% arctan(k))7 = R,

one easily defines a multiplication operator in M. in L?(R, dX, b’ (). It turns out that Mo = FMgF 1. In
particular, one gets that

FM F™' =My, §€B(T), & ={reR:e2tan)gg)

the last relation immediately shows that II( %) := {L?(R,d\,§’()\)), M, ®'}, ' := F®, defines a spectral
representation of the absolutely continuous part H ¢ of H.

D Scattering matrix for unitary operators

Let $) be a separable Hilbert space and let U and Uy be unitary operators such that
V=U-Ue 21(37)) (88)

where £1(-) denotes the set of trace class operators in §). In the following we call the pair S = {U, UO} of unitary
operators satisfying (88) a £1-scattering system.

If S = {U, Uy} is a £1 scattering system, then the wave operators

Qi = Qi(U, Uo) = s- lim UnUJnPaC(Uo)
n— oo
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exist and are complete. Completeness means that ran(£21.) = H*°(U) where $?¢(U). The scattering operator
S of the scattering system S is defined by

S:=SU,Up) := Q*+Q_.
In fact, the scattering operator acts only on $%¢(Uy) and is unitary there. Moreover, it commutes with U.

Let II(UEC) = {L*(T,dv(¢),h(C)), M, ®) be a spectral representation of the absolutely continuous part U$*
of Uy, cf. Appendix B. Since the scattering operator S is unitary on $?¢(Up) and commutes with U§® there is a
measurable family {.S(() }¢er of unitary operator on h(¢) such that S is unitary equivalent to Mg,

(Msf)(Q) = S(Q)f(¢), f e L*(T,dv(¢),h(¢)),

thatis S = &1 Mg®. The family S(¢) of unitary operators is called the scattering matrix of the scattering system

S.
At first we prove a technical lemma.

Lemma D.1. Let S = {U,Uy} be £, -scattering system. Then there is a bounded self-adjoint Hilbert-Schmidt
operator C' and a bounded operator GG such that the representation

V=U-Uy=CGC (89)
is valid.
Proof. Let V = Vp + iV} where where Vi := £(V + V*) and V; := 5;(V* — V*). Obviously, one has
Ve =V € £1(9).and Vi = Vi € £1(9). Let Cg := |Vg|'/2 and Cf := |V7|*/2. Then

Ve =CrGrCgr and V; =C;G;Cy (90)

where G := sign(Vg) and G := sign(V;). We set

C = ([Va| + [Vi))/2.
Obviously, we have

ICRFI* = (IVelf, /) < (VeI +VIDF £) = IICFI? fes.

Hence there is a contraction I' g such that Cr = I'rC' and C'r = CT'%. Similarly, there is a contraction I'; such
that Cr = I';Cy and C; = C(I'7. From (90) we find

V= C( }}GRFR + iP?G}F])C.

Setting G := 'y, GrI'r + iI'7G ' we prove (89). O

We define the Abel pre-wave operators by
Qulr) = (L) Tomy Ul P, o
Q_(r) = (Q—r)> 2, r"U"UyPse,
r € [0,1), where we have used the abbreviation P§¢ := P%(Up). It holds
Q4 = Slrl%rll Qg (r).

Let Ey(-) be spectral measure of Uy defined on the Borel subsets of T. We set E§°(-) := P*(Uy)Eo(-). A
straightforward computation gives

_  pac G pae

O, (r) = P47 /T e VAR ©) (92)
ac _ U* ac

Q_(r) = PS—p /T T rer VB Q). (93)
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Using U*V = —V*U, we find

¢
Q_ = PJ¢ —————V*dEZ°((). 94
()= P 1 [ g VA (© (04
Furthermore, from (92) and (94) we get
* — ac ac * C
Qi(r)y* = B +r/TdE0 (914 =0 (95)
¢
Q_(r)r = P“C+T/dE“C V— 96
(r) 0 L R0 (©) T—rcU (96)
Notice that w-lim,.1; 4 (r)* = Q7. Similarly, we find the representations
Qi (r) = P“C+r/dE(C)V7Ug ¢
+Hr= fo . T—rCU; " 0
¢
Q_(r) = Py° —r/dE V———Pc.
) = B [dEQV B
Using again U*V = —V*U, we get
¢
Qi (r) = Pg° —r/dE QVF ————<Fy° (97)
+( ) 0 T ( ) (I_TCU()) 0
Uy
Q_(r) = Pac—i—r/dE V*————— Pg°. 98
(r) 0 . (©) Tl ° (98)

We consider the transition operator T := 51— (P§° — S). Notice that
S = Pac(Uo) — 2miT.

In fact the operator T' acts only on $H%°(Up). Since the scattering operator S commutes with Uy the
transition operator T also commutes with U. With respect to the spectral representation II(U§¢) =
{L*(T,dv(¢),h(C)), M, ®} the transition operator 1" takes the form of a multiplication operator M induced
by a measurable family {7(¢) }¢er of bounded operators. Obviously, we have

S(\) = Tye) — 2miT(¢) (99)

for a.e. ¢ € T. The family T'(¢) of bounded operators is called the transition matrix of the scattering system S .
We are going to compute the measurable family {7°(¢) }cer.

Theorem D.2. Let S = {U7 Uo} be a £,-scattering system. With respect to the spectral representation
IH(U§e) = {L*(T,dv(¢),h(C)), M, ®} of US<, cf. Appendix B, the family of transition matrices {T'(C)}¢er

admits the representation
() =iCvY () Z(O)VY(C) (100)

for a.e. ¢ € T with respect to v where Z(() := o-lim,1 Z(r¢) and

Proof. Obviously we have
1 *
T - %Q_’_(QJ’_ Q_)
We set 1
T(r) = % 14 (r) —Q_(r))
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Notice that T" = s-lim,11 T'(r). Using the representations (97) and (98) we get

U
T _z—Q* /dE /dE }P“C
( { I_ on I —r&Uy 0
which yields
. r 2 * Y7k U0+§
e _ ac Q Y 5  pac
T0) =iy (=70 [NV G

Let us introduce the notation

1—- U
T(r,s) =1 - - /dEgC ) (s)VT (d — =Py, 0<rs<L

1+7r [T —rEUg|?

(102)

Since w-limgpq Q7% (s) = Q7 it seems natural to expect that w-limy; T'(r, s) = T(r) for 0 < r < 1. Indeed,

integrating by parts we get

/dE Q* pr——0Ts UO+£ Pac:

11— reus2™°
Up—1 0 Up+¢
Qv _pac_ [ poce)qryr— 01> pacy
+ |I+TU5|2 0 /]1' 0 (f) + 8£|I—T§U§|2 0 V(f)
and
Uo+¢
dEac Q* * PaC:
Jamscem v =

Up—1 0 Up+¢

QL (s)V™

Because 8@5% is bounded for r € [0, 1) we find that

. ac * * U0+£ ac
wliny / AE (O (V" [ P =
Up—1 0 Up+¢
Q* V*i Eac Q* V* 7Pacd
7+ U0|2 / 0 9 |1 —reUg2 © v()

which proves w-limgy1 T'(r, s) = T'(r) for 0 < r < 1. From (95) we get

Q4 (s)" :/TdEO“C(C) {I—i—sV*IgCU*}.

Inserting (103) into (102) we obtain

o 1—7? ¢ Uo + ¢
T = ES(Q)q 1 | % P,
=i g [ O e |V

where ( € T. Using (89) and the notation (101) we get

r l—r
1+7r

UO + C pac

He T=rcUE "

/ dE(C)CZ(5¢)C

Inserting the representation

U0+C ac __ £+< ac
T e e G

into (104) we find

—r? £€+¢ ac
o T|1_rcg|2CdE0 (€)

T(r,s) =1

s [ oozeo-
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which leads to

1—7r2 C+1
2m Jr 1= r¢el?

T(rs) =i [ AEG(Q)CZ(50)¢

) CdE§°(€).
Applying the map ® : $%¢(Uy) — L*(T, dv(¢), h(¢)) we obtain
(@T(r, )" F)(C) =

T &C+1
I VP20 - /|1 VYO F ©ae

where f € L2(T,dv(¢), 5(C)). We set

) =Y ()Z(s¢), CeT, 0<s<1.

Notice that X (s; () € £2($) for a.e. ¢ € T. Since X(s) := £o — limsp1 X(5;¢) = /Y (s)Z(s
a.e. ¢ € T there is a Borel subset A(e) C T for every € > 0 such that v(A(e )) < € and

Cx(e) :=sup{||X(s;Q)||g, : C€T\A(e), 0<s<1l}<oo

is valid. We note the existence of the set A(e) follows from Egorov’s theorem.

Using that observation we get

-~

(REG(T\ A())T(r) " F)(¢) = wlim(EG*(T \ A)(e))T(r, )27 )(¢)

. r 1—7"2 £<+1
:l(1+rXT\A(s)(<)mZ(<) = /|1_ <£I2\/7f €)du(e

for a.e. ¢ € T with respect to v and f € L3(T,dv(¢),5(¢)). Finally, taking the limit T 1 we get

(SEG(T\ A()TE " F)(¢) =
lim ®E§*(T\ A(e))T

fora.e. ¢ € T with respectto v and f € L? (T, dv(¢), b(¢)) where it was used that

TR B e O T o B _
10 =yl | e 1O, § € PTan(Q)6(0)

(@1 F)(C) = ilxma@OVY (2 VY ) F(©)

(105)

exists for

(106)

in the L?-sense, see [16, Section 1.D.2]. If f(() € L*=(T,dv((),5h(¢)), then /Y (() f(() €

L2(T, dv(¢), h(¢)). Hence we find that

(T() /() =i¢V/Y () Z() VY () F(Q)

forae. ( € T\ A(e) and f € L>(T,dv(¢), h(¢)) which yields (100) for a.e. ¢ € T \ A(g). Since € can be

chosen arbitrary small we we prove (100).

From (99) and (100) we get that the scattering matrix admits the representation

S(C) = Iy + 27¢V/Y (O Z(OVY (Q)

O

fora.e. ¢ € T. Since [|S(C)|ly(¢c) = 1forae. ( € Tweget [[S(C) — Iy(e)llpc) < 2forae ¢ € T which yields

IVFOZOVT Dl < -

fora.e. ¢ € T. In fact, this estimate can be proved directly.
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Corollary D.3. Let the assumptions of Theorem D.2 be satisfied. Then the following holds:
(i) For f L3(T,dv(¢),h(¢)) we have
(@ )V P(U0) ™ )(C) = / K¢ FO©. redy), (o

for a.e. ¢ € T with respect to v where K (r =/Y()Z(r{)*Y(£), ¢, eT.
(i) For f € L2(T,dv(¢),h(C)) we have

(®Q* VP (Uy)d " F)( /K GOF (108)

for a.e. ¢ € T with respect to v where K (¢, &) := /Y (¢) Z(Q)*\/Y (£),(, £ € T.

(iiiy For a.e. ¢ € T with respect to v one has the representation T'(¢) = i¢ K(¢,{)*. Moreover, T({) €
£1(b(N\)) fora.e ¢ € T with respecttov, |T(¢)|ls, € L*(T,dv(¢)) and

/T IOl endi(Q) < V]les- (109

In addition one has
Q" V) = / (K (¢, O)dn(¢) = i / Cr(T(Q) ) (C). (110

Proof. (i) Let K (r) := Q* (r)V. Using (96) we get

K(r)Pg = {ch By /T AB(QOV CrgU} VP

which leads to

ac __ ac Z ac
K(r)Pge = /TdEO (g)C{GchI_rCUCG}/TCdEO (©).

From (101) we get

. ¢
2()" = G +1GC—==CG
which yields
K(r)Ppe = / dE(()CZ(rC)" / CAEL ().
Thus

(@K (r)Peed F)(0) = V() Z(r)" / VY@ F©)dv(©)

f € L2(T,dv(¢), h(¢)) which verifies (107).

(i) Following the proof of Theorem D.2 we set

Q) =vVY()Z(r()*, ¢eT, 0<r<l1. (111)

As above, using the existence of X, (¢) := £o —lim,11 X(r;¢) = /Y ({)Z({)* for a.e. ¢ € T with respect to
v we find that for each € > 0 there is a Borel subset A, (¢) C T sat|sfy|ng V(A ( )) < € such that the condition

Cx,(g) =sup {||Xs(s;)|lg, : C €T\ As(e), 0<s<1}<o0. (112)

37



Using K := wilim,; K(r) = Q*V we get

(BE™(T\ A ()2 VPI@d™  f)(¢) =
wAim(DE(T \ A. ()92 (VP F)(¢) =

X0 OV Z(0)" / VY@ Fe)av(e),

f € L3(T,dv(¢),H(¢)), which proves (108) for a.e. { € T \ A, () with respect to v. Since ¢ is arbitrary (108)
holds for a.e. ( € T.

(iii) By [24, Proposition 7.5.2] we find that || K (¢, ()¢, € L(T,dv(¢)) and

/T IK(C.Olledv(C) < 1K ]le,-

From (100) we get that 7'(¢) = (K (¢, () for a.e. ¢ € T with respect to v. Thus | T(¢) ||, € L(T,dv(¢))
and (109) is valid. Using again [24, Proposition 7.5.2] we find

(V) = (K) = [ 6K 0)av(c)

T

By T'(¢) = iCK ((, ¢) we prove (110). O
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