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Analysis of a tumor model as a multicomponent deformable
porous medium

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels

Abstract

We propose a diffuse interface model to describe tumor as a multicomponent deformable
porous medium. We include mechanical effects in the model by coupling the mass balance equa-
tions for the tumor species and the nutrient dynamics to a mechanical equilibrium equation with
phase-dependent elasticity coefficients. The resulting PDE system couples two Cahn–Hilliard
type equations for the tumor phase and the healthy phase with a PDE linking the evolution of
the interstitial fluid to the pressure of the system, a reaction-diffusion type equation for the nu-
trient proportion, and a quasistatic momentum balance. We prove here that the corresponding
initial-boundary value problem has a solution in appropriate function spaces.

Introduction

Tumor growth is nowadays one of the most active area of scientific research, especially due to the
impact on the quality of life for cancer patients. Starting with the seminal work of Burton [10] and
Greenspan [35], many mathematical models have been proposed to describe the complex biological
and chemical processes that occur in tumor growth, with the aim of better understanding and ultimately
controlling the behavior of cancer cells. In recent years, there has been a growing interest in the
mathematical modelling of cancer, see for example [1, 2, 5, 9, 16, 20, 22]. Mathematical models
for tumor growth may have different analytical features: in the present work, we are focusing on the
subclass of continuum models, namely diffuse interface models. There are various ways to model the
interaction between the tumor and the surrounding host tissue. A classical approach is to represent
the interfaces between the tumor and healthy tissues as idealized surfaces of zero thickness, leading
to a sharp interface description that differentiates the tumor and the surrounding host tissue cell-by-
cell. These sharp interface models are often difficult to analyze mathematically, and may fail when the
interface undergoes a topological change. Metastasis, which is the spreading of cancer to other parts
of the body, is one important example of a change of topology. In such an event, the interface can no
longer be represented as a mathematical surface, and thus the sharp interface models do no longer
properly describe the reality.

On the other hand, diffuse interface models consider the interface between the tumor and the healthy
tissues as a layer of non-infinitesimal thickness in which tumor and healthy cells can coexist. The
main advantage of this approach is that the mathematical description is less sensitive to topological
changes. This is the reason why recent efforts in the mathematical modeling of tumor growth have
been mostly focused on diffuse interface models, see for example [15, 16, 21, 30, 33, 36, 43, 50], and
their numerical simulations demonstrating complex changes in tumor morphologies due to mechanical
stresses and interactions with chemical species such as nutrients or toxic agents. Regarding the recent
literature on the mathematical analysis of diffuse interface models for tumor growth, we can further
refer to [11, 12, 13, 18, 24, 25, 27, 29] as mathematical references for Cahn–Hilliard-type models and
[6, 28, 37, 41] for models also including a transport effect described by Darcy’s law.
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A further class of diffuse interface models that also include chemotaxis and transport effects has been
subsequently introduced (cf. [30, 33]); moreover, in some cases the sharp interface limits of such
models have been investigated generally by using formal asymptotic methods (cf. [42, 45]).

Including mechanics in the model is clearly an important issue that has been discussed in several
modeling papers, but has been very poorly studied analytically. Hence, the main aim of this paper is
to find a compromise between the applications and the rigorous analysis of the resulting PDE system:
we would like to introduce here an application-significant model which is tractable also analytically.
Regarding the existing literature on this subject, we can quote the paper [46], where, using multiphase
porous media mechanics, the authors represented a growing tumor as a multiphase medium contain-
ing an extracellular matrix, tumor and host cells, and interstitial liquid. Numerical simulations were also
performed that characterize the process of cancer growth in terms of the initial tumor-to-healthy cell
density ratio, nutrient concentration, mechanical strain, cell adhesion, and geometry. However, refer-
ring to [47] for more details on this topic, we mention here that many models in the literature are based
on the assumption that the tumor mass presents a particular geometry, the so-called spheroid, and in
that case the models mainly focus on the evolution of the external radius of the spheroid. The result-
ing mathematical problem is an integro-differential free boundary problem, which has been proved to
have solutions (cf. [8, 23]) and to predict the evolution of the system. Variants of this approach have
been then considered, e.g., in [17] differentiating between viable cells and the necrotic core. Further
extensions of the model introduced in [47] can be found in [44].

Very recently, in [32], a new model for tumor growth dynamics including mechanical effects has been
introduced in order to generalize the previous works [38, 39] with the goal to take into account cell-cell
adhesion effects with the help of a Ginzburg–Landau type energy. In their model an equation of Cahn–
Hilliard type is then coupled to the system of linear elasticity and a reaction-diffusion equation for
a nutrient concentration, and several questions regarding well-posedness and regularity of solutions
have been investigated.

In this paper, following the approach of [47], we introduce a diffuse interface multicomponent model for
tumor growth, where we include mechanics in the model, assuming that the tumor is a porous medium.
In [47], the tumor is regarded as a mixture of various interacting components (cells and extracellular
material) whose evolution is ruled by coupled mass and momentum balances. The cells usually are
subdivided into subpopulations of proliferating, quiescent and necrotic cells (cf., e. g., [15, 16]), and the
interactions between species are determined by the availability of some nutrients. Here, we restrict
ourselves to the case where we distinguish only healthy and tumor cells, even if we could, without
affecting the analysis, treat the case where we differentiate also between necrotic and proliferating
tumor cells. Hence, we represent the tumor as a porous medium consisting of three phases: healthy
tissue ϕ1 , tumor tissue ϕ2 , and interstitial fluid ϕ0 satisfying proper mass balance equations including
mass source terms depending on the nutrient variable % . The nutrient satisfies a reaction-diffusion
equation nonlinearly coupled with the tumor and healthy tissue phases by a coefficient characterizing
the different consumption rates of the nutrient by the different cell types. We couple the phases and
nutrient dynamics with a mechanical equilibrium equation. This relation is further coupled with the
phase dynamics through the elasticity modulus depending on the proportion between healthy and
tumor phases. We refer to [19] for a mathematical model of a multicomponent flow in deformable
porous media from which we take inspiration. The mass balance relations are derived from a free
energy functional which, in the domain Ω where the evolution takes place, can be written as

F =

∫
Ω

(
F̂ (p) +

|∇ϕ1|2

2
+
|∇ϕ2|2

2
+ (ψ + g)(ϕ1, ϕ2) +

|%|2

2

)
dx ,

where p denotes the fluid pressure and F̂ is a suitable nonnegative function of the pressure. The
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sum ψ + g represents the interaction potential between tumor and healthy phases, with dominant
component ψ which is convex with bounded domain, while g is its smooth nonconvex perturbation,
which is typically of double-well character. The quantity % represents the mass content of the nutrient.
Notice that the gradient terms in the free energy are due to the modeling assumption that the interface
between healthy and tumor phases is diffuse (we take the parameters in front of the gradients equal
to 1 here for simplicity, but, in practice, they determine the thickness of the interface and have to be
chosen properly). The quantities ϕ0, ϕ1, ϕ2 are relative mass contents, so that only their nonnegative
values are meaningful. We also assume that all the other substances present in the system are of
negligible mass, that is, the identity ϕ0 + ϕ1 + ϕ2 = 1 is to be satisfied as part of the problem.
Hence, we choose the domain of ψ to be included in the set Θ := {(ϕ1, ϕ2) ∈ R2 : ϕ1 ≥ 0, ϕ2 ≥
0, ϕ1 + ϕ2 ≤ 1} . Classically, ψ can be taken as the indicator function of Θ or a logarithmic type
potential (cf. [26]).

Under proper assumptions on the data, we prove the existence of weak solutions for the resulting PDE
system, which we will introduce in the next Section 1, coupled with suitable initial and conditions. The
PDEs consist of two Cahn–Hilliard type equations for the tumor phase and the healthy phase with
a PDE linking the evolution of the interstitial fluid to the pressure of the system, a reaction-diffusion
type equation for the nutrient proportion and the momentum balance. The technique of the proof is
based on a regularization of the system, where, in particular, the nonsmooth potential ψ is replaced
by its Yosida approximation ψε . Then, we prove existence of the approximated problem by means of a
Faedo–Galerkin scheme, and we pass to the limit by proving suitable uniform (in ε ) a priori estimates
and applying monotonicity and compactness arguments. A key point in the estimates consists in prov-
ing that the mean value of the phases belong to the interior of the domain Θ of ψ , which in turns
leads to the estimate of the mean value of the corresponding chemical potentials in the two Cahn–
Hilliard type equations (cf. [14, 26]). Uniqueness could be proved only in very particular situations, for
example, for smooth potentials ψ satisfying suitable growth conditions, and under some restrictions
on the interaction coefficients in the Cahn–Hilliard type equations for the phase. We prefer to leave
this argument for further studies of the model.

Plan of the paper. In the next Section 1, we introduce the model deduced from the modeling hy-
pothesis of [47] . In Section 2, we state the mathematical problem and the main results of the paper
concerning the existence of suitable weak solutions for the corresponding PDE system. The proof
relies on the passage to the limit (in Section 4) in a regularized problem, whose well-posedness is
obtained in Section 3.

1 Modeling

We follow the modeling hypotheses of [47] and represent the tumor as a porous medium consisting
of three phases: healthy tissue, tumor tissue, and interstitial fluid. We choose the Lagrangian formal-
ism and assume that the evolution of the system takes place in a bounded domain Ω ⊂ R3 with
Lipschitzian boundary.

The state of the system is described by the following scalar quantities:

ϕ0 : Relative mass content of the interstitial fluid

ϕ1 : Relative mass content of the healthy tissue

ϕ2 : Relative mass content of the tumor tissue
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µ1 : Chemical potential controlling the growth of the healthy tissue

µ2 : Chemical potential controlling the growth of the tumor tissue

p : Fluid pressure

w : Volume difference with respect to the referential state

% : Mass content of the nutrients

We consider the following evolution system in a given time interval (0, T ) :

ϕ̇i +
2∑
j=0

cij div ξj = Si, i = 0, 1, 2, (1.1)

%̇+ div ζ + A(ϕ1, ϕ2) % = 0, ζ = −D∇%, (1.2)

νẇ + E(ϕ1, ϕ2)w − p =
1

|Ω|

∫
Ω

(
E(ϕ1, ϕ2)w − p

)
dx, (1.3)(

µ1

µ2

)
∈ −

(
∆ϕ1

∆ϕ2

)
+ ∂ψ(ϕ1, ϕ2) +∇ϕg(ϕ1, ϕ2), (1.4)

S0 = −γ(%) ϕ̄0(1− ϕ0), S1 = γ(%) ϕ̄0ϕ1, S2 = γ(%) ϕ̄0ϕ2, (1.5)

ξj = −∇µj j = 0, 1, 2, (1.6)

µ0 = p, w = ϕ0 − f(p), (1.7)

where the dot denotes the derivative with respect to t ∈ (0, T ) , ∂ψ is the subdifferential of a convex
potential ψ , g is a smooth, bounded, and possibly nonconvex (typically “double-well”) perturbation of
ψ , ∇ is the gradient with respect to the space variable x = (x1, x2, x3) , ∇ϕ is the gradient with
respect to ϕ = (ϕ1, ϕ2) , ∆ is the Laplace operator, and ξj, ζ are fluxes of the components ϕj, % ,
respectively. The above system is coupled with the initial and boundary conditions

ϕi(0) = ϕ0 for i = 1, 2, w(0) = w0, %(0) = %0 in Ω, (1.8)

∇ϕi · n = 0 for i = 1, 2, ξi · n = 0 for i = 0, 1, 2, ζ · n = κ(%− %∗) on ∂Ω× (0, T ),
(1.9)

where n = n(x) is the unit outward normal vector at the point x ∈ ∂Ω .

In (1.5), as well as in what follows, for a generic function v ∈ L1(Ω× (0, T )) we denote by

v̄(t) =
1

|Ω|

∫
Ω

v(x, t) dx (1.10)

for t ∈ (0, T ) the mean value of v over Ω .

Eqs. (1.1) represent the mass balance for the three components ϕ0, ϕ1, ϕ2 of the system, where Si
are the source terms, and where cij are the constant interaction coefficients. Eq. (1.2) is a diffusion
equation describing the mass balance for the nutrients, with a constant positive diffusion coefficient
D > 0 and with a nonnegative coefficient A depending on ϕ1, ϕ2 and characterizing the different
consumption rates of the nutrient by the different cell types. The coefficient κ > 0 in the boundary
condition (1.9) for ζ is the diffusivity of the boundary for the nutrients, and %∗ is the (given) nutrient
concentration outside the domain. Eq. (1.3) is the mechanical equilibrium equation, with constant vis-
cosity coefficient ν > 0 and with positive elasticity modulus E(ϕ1, ϕ2) of the tissue which may differ
for different proportions of ϕ1 and ϕ2 . The constitutive functions A,E, f, γ , the convex potential ψ ,
the interaction constants, and the initial and boundary conditions satisfy Hypothesis 2.1 below.
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2 Statement of the problem

The quantities ϕ0, ϕ1, ϕ2 are relative mass contents, so that only their nonnegative values are mean-
ingful. We also assume that all the other substances present in the system are of negligible mass, that
is, the identity ϕ0 + ϕ1 + ϕ2 = 1 is to be satisfied as part of the problem. The convex functional ψ
has to be chosen in such a way that the closure Domψ of its domain Domψ is the set

Domψ = Θ := {ϕ = (ϕ1, ϕ2) ∈ R2 : ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ1 + ϕ2 ≤ 1}, (2.1)

and for δ ∈ (0, 1− (1/
√

2)) we define

Θδ := {ϕ ∈ Int Θ : dist(ϕ, ∂Θ) ≥ δ}. (2.2)

Let us first specify the hypothesis about the data of the problem.

Hypothesis 2.1. We fix a constant K ≥ 1 and assume the following hypothesis to hold.

(i)
2∑
i=0

cij = 0 for all j = 0, 1, 2 ,
2∑
j=0

cij = 0 for all i = 0, 1, 2 , and there exists some ĉ > 0

such that −
∑
i 6=j

cij|ξi − ξj|2 ≥ ĉ
(
|ξ1 − ξ0|2 + |ξ2 − ξ0|2

)
for all ξ0, ξ1, ξ2 ∈ R3 ;

(ii) E,A : R2 → [0, K] are Lipschitz continuous functions;

(iii) γ : R→ [−K,K] is a continuously differentiable function, |γ′(%)| ≤ K for all ρ ∈ R ;

(iv) f : R → R is a continuously differentiable function, f ′(p) ≥ f0 for some f0 > 0 and all
p ∈ R ;

(v) ψ : R2 → [0,+∞] is a proper, convex, and lower semicontinuous function satisfying (2.1). We
further assume that there exist positive constants δ, b′, c′, r′ such that, putting δT = δ e−KT−2

with K from Hypothesis (iii), the following implications hold:

(v1) dist(ϕ̂,ΘδT ) ≤ δT/2 =⇒ |ξ̂| ≤ b′ ∀ξ̂ ∈ ∂ψ(ϕ̂) ;

(v2) ϕ̂ ∈ ΘδT , |ϕ− ϕ̂| ≥ δT/4, ϕ ∈ Θ =⇒ r′|ξ − ξ̂| ≤
〈
ξ − ξ̂, ϕ− ϕ̂

〉
+ c′

∀ξ ∈ ∂ψ(ϕ), ∀ξ̂ ∈ ∂ψ(ϕ̂) ;

(vi) g : Θ→ R is a given function of class C2 ;

(vii) ϕ0
0, ϕ

0
1, ϕ

0
2, w

0, %0 ∈ W 1,2(Ω) ∩ L∞(Ω) are given initial conditions such that w0 = 0 ,
(ϕ0

1, ϕ
0
2) ∈ Θδ with δ from Hypothesis (v), ϕ0

0(x) + ϕ0
1(x) + ϕ0

2(x) = 1 for a. e. x ∈ Ω ;

(viii) %∗ ∈ L∞(∂Ω× (0, T )) is a given function with %̇∗ ∈ L2(∂Ω× (0, T )) .

Conditions (v1), (v2) need some comments. They slightly differ from those in [14, Proposition 2.10],
but it is easy to check that they are still satisfied if, for example, ψ is the indicator function of the set
Θ . Indeed, (v1) holds trivially. To verify that (v2) holds, take any ϕ ∈ Θ and ξ ∈ ∂ψ(ϕ) . We first
notice that ξ̂ = 0 , and

〈ξ, ϕ− v〉 ≥ 0 ∀v ∈ Θ.

DOI 10.20347/WIAS.PREPRINT.2842 Berlin 2021
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We are done if ξ = 0 . Otherwise,

v = ϕ̂+ δT
ξ

|ξ|

is an admissible choice, and we obtain that 〈ξ, ϕ− ϕ̂〉 ≥ δT |ξ|, which is precisely (v2) with r′ = δT
and c′ = 0 .

In the proof, we need to extend the function g to the whole of R2 . We consider an extension such that

Cg := sup{|g(ϕ)|, |∇ϕg(ϕ)|, | 〈∇ϕg(ϕ), ϕ〉 | : ϕ ∈ R2} <∞. (2.3)

The main result of the paper reads as follows.

Theorem 2.2. Let Hypothesis 2.1 hold. Then the system (1.1)–(1.8) admits a solution with the reg-
ularity ϕi ∈ L∞(Ω× (0, T )) , ∇ϕi ∈ L∞(0, T ;L2(Ω)) , ϕ̇i ∈ L2(0, T ;W−1,2(Ω)) , µi,∇µi ∈
L2(Ω× (0, T )) for i = 0, 1, 2 , (ϕ1(x, t), ϕ2(x, t)) ∈ Θ a. e., ϕ0 + ϕ1 + ϕ2 = 1 a. e., w ∈
L∞(Ω× (0, T )) , ẇ,∇w,∇ẇ ∈ L∞(0, T ;L2(Ω)) , %̇ ∈ L2(Ω× (0, T )) , %,∇% ∈ L∞(0, T ;
L2(Ω)) . The equations (1.3), (1.5)–(1.7) are satisfied almost everywhere in Ω × (0, T ) , (1.1)–(1.2)
and (1.4) are to be interpreted respectively as

∫
Ω

(
ϕ̇i vi +

2∑
j=0

cij 〈∇µj,∇vi〉

)
dx =

∫
Ω

Si vi dx, i = 0, 1, 2, (2.4)∫
Ω

(
%̇v̂ +D 〈∇%,∇v̂〉+ A(ϕ1, ϕ2) %v̂

)
dx+ κ

∫
∂Ω

(%− %∗) v̂ ds(x) = 0, (2.5)∫
Ω

(
(µ1 − ∂1g(ϕ1, ϕ2))(v1−ϕ1) + (µ2 − ∂2g(ϕ1, ϕ2))(v2−ϕ2)

)
dx

−
∫

Ω

(
〈∇ϕ1,∇(v1−ϕ1)〉+ 〈∇ϕ2,∇(v2−ϕ2)〉

)
dx ≤

∫
Ω

(
ψ(v1, v2)− ψ(ϕ1, ϕ2)

)
dx,

(2.6)

for a. e. t ∈ (0, T ) and for all test functions v0, v1, v2, v̂ ∈ W 1,2(Ω) .

The proof of Theorem 2.2 is divided into several steps. We introduce a small regularizing parameter
ε > 0 and approximate the convex potential ψ by its Yosida approximation ψε defined by the formula

ψε(ϕ) = min
z∈R2

{
1

2ε
|ϕ− z|2 + ψ(z)

}
. (2.7)

Let us recall the main properties of the Yosida approximation, see [3, 4, 7] for proofs.

Proposition 2.3. The mapping ψε : R2 → [0,∞) is convex and continuously differentiable, and the
so-called resolvent Jε of ∂ψ , defined as

Jε = (I + ε ∂ψ)−1, (2.8)

where I is the identity, is nonexpansive in R2 . The mapping ∇ϕψε is monotone and Lipschitz con-
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tinuous and has for every ϕ ∈ R2 the properties

∇ϕψε(ϕ) =
1

ε
(ϕ− Jεϕ) ∈ ∂ψ(Jεϕ) ∀ε > 0, (2.9)

ϕ ∈ Dom ∂ψ =⇒
{ |∇ϕψε(ϕ)−m(∂ψ(ϕ))| → 0

|∇ϕψε(ϕ)| ↗ |m(∂ψ(ϕ))|
as ε↘ 0, (2.10)

ψε(ϕ) =
ε

2
|∇ϕψε(ϕ)|2 + ψ(Jεϕ) ∀ε > 0, (2.11)

ψε(ϕ)↗ ψ(ϕ) as ε↘ 0, (2.12)

where m(∂ψ(ϕ)) is the element of ∂ψ(ϕ) with minimal modulus.

From (2.9)–(2.11) it follows that for every ϕ ∈ R2 and every ε > 0 we have

ψε(ϕ) =
1

2ε
|ϕ− Jεϕ|2 + ψ(Jεϕ), (2.13)

and from the trivial inequalities ψ(Jεϕ) ≥ |Jεϕ|2 − 1 and

2 〈ϕ, Jεϕ〉 ≤ 1

2ε+ 1
|ϕ|2 + (2ε+ 1)|Jεϕ|2

we obtain that

ψε(ϕ) ≥ 1

2ε+ 1
|ϕ|2 − 1 ∀ϕ ∈ R2. (2.14)

We consider the following weak formulation of the regularized problem (1.1)–(1.8):∫
Ω

(
ϕ̇i vi +

2∑
j=0

cij 〈∇µj,∇vi〉

)
dx =

∫
Ω

Si vi dx, i = 0, 1, 2, (2.15)∫
Ω

(
%̇v̂ +D 〈∇%,∇v̂〉+ A(ϕ1, ϕ2) %v̂

)
dx+ κ

∫
∂Ω

(%− %∗) v̂ ds(x) = 0, (2.16)

νẇ + E(ϕ1, ϕ2)w − p

|ϕ0|+ |ϕ1|+ |ϕ2|
=

1

|Ω|

∫
Ω

(
E(ϕ1, ϕ2)w − p

|ϕ0|+ |ϕ1|+ |ϕ2|

)
dx,

(2.17)(
µ1

µ2

)
= −

(
∆ϕ1

∆ϕ2

)
+∇ϕ (ψε(ϕ1, ϕ2) + g(ϕ1, ϕ2)) , (2.18)

S0 = −Q (1− ϕ0), S1 = Qϕ1, S2 = Qϕ2, (2.19)

Q =
γ(%) ϕ̄0

(|ϕ0|+ |ϕ1|+ |ϕ2|)(|ϕ̄0|+ |ϕ̄1|+ |ϕ̄2|)
, (2.20)

ξj = −∇µj j = 0, 1, 2, (2.21)

µ0 = p, w = ϕ0 − f(p), (2.22)

for a. e. t ∈ (0, T ) and for all test functions v0, v1, v2, v̂ ∈ W 1,2(Ω) .

Assuming that (2.15)–(2.22),(1.8) has a solution, choosing v0 = v1 = v2 = v in (2.15), and summing
up over i = 0, 1, 2 , we obtain formally from Hypothesis 2.1 (i) the identity∫

Ω

(
2∑
i=0

ϕ̇i

)
v dx =

∫
Ω

Q

(
2∑
i=0

ϕi − 1

)
v dx

DOI 10.20347/WIAS.PREPRINT.2842 Berlin 2021
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for all v ∈ W 1,2(Ω) , which implies together with Hypothesis 2.1 (vii) that, still formally,

2∑
i=0

ϕi(x, t) = 1 (2.23)

for all x and t . In particular, the denominators in (2.17) and (2.20) are greater or equal to unity. We
show below that in the limit, as ε → 0 , all of the ϕi will be nonnegative, and all of the denominators
will be equal to 1 .

3 Galerkin approximations

We solve the problem (2.15)–(2.22), (1.8) by Galerkin approximations. We choose the orthonormal
basis {ek : k ∈ N ∪ {0}} ⊂ L2(Ω) such that

−∆ek = λkek in Ω, ∇ek · n = 0 on ∂Ω, for k ∈ N ∪ {0}, λ0 = 0,

and for m ∈ N we introduce the functions

ϕ
(m)
i (x, t) =

m∑
k=0

ϕ̃ik(t)ek(x), µ
(m)
i =

m∑
k=0

µ̃ik(t)ek(x) for i = 0, 1, 2,

%(m)(x, t) =
m∑
k=0

%̃k(t)ek(x),

with time dependent coefficients ϕ̃ik(t), µ̃ik(t), %̃k(t) which are to be found as solutions to the ODE
system for k = 0, 1, . . . ,m ,∫

Ω

(
ϕ̇

(m)
i ek +

2∑
j=0

cij

〈
∇µ(m)

j ,∇ek
〉)

dx =

∫
Ω

S
(m)
i ek dx, i = 0, 1, 2, (3.1)∫

Ω

(
%̇(m)ek +D

〈
∇%(m),∇ek

〉
+ A(ϕ

(m)
1 , ϕ

(m)
2 ) %(m)ek

)
dx+ κ

∫
∂Ω

(%(m) − %∗)ek ds(x) = 0,

(3.2)

νẇ(m) + E(ϕ
(m)
1 , ϕ

(m)
2 )w(m) − f−1(ϕ

(m)
0 − w(m))

|ϕ(m)
0 |+ |ϕ

(m)
1 |+ |ϕ

(m)
2 |

=
1

|Ω|

∫
Ω

(
E(ϕ

(m)
1 , ϕ

(m)
2 )w(m) − f−1(ϕ

(m)
0 − w(m))

|ϕ(m)
0 |+ |ϕ

(m)
1 |+ |ϕ

(m)
2 |

)
dx, (3.3)

µ
(m)
0 = Pm(f−1(ϕ

(m)
0 − w(m))), (3.4)

µ
(m)
i = −∆ϕ

(m)
i + Pm

(
∂iψ

ε(ϕ
(m)
1 , ϕ

(m)
2 ) + ∂ig(ϕ

(m)
1 , ϕ

(m)
2 )

)
, i = 1, 2, (3.5)

S
(m)
0 = −Q(m) (1− ϕ(m)

0 ), S
(m)
1 = Q(m) ϕ

(m)
1 , S

(m)
2 = Q(m) ϕ

(m)
2 , (3.6)

Q(m) =
γ(%(m)) ϕ̄

(m)
0

(|ϕ(m)
0 |+ |ϕ

(m)
1 |+ |ϕ

(m)
2 |)(|ϕ̄

(m)
0 |+ |ϕ̄

(m)
1 |+ |ϕ̄

(m)
2 |)

, (3.7)
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where Pm : L2(Ω) → Hm := Span(e0, . . . , em) is the orthogonal projection of L2(Ω) onto Hm ,

ϕ̄
(m)
i = (1/|Ω|)

∫
Ω
ϕ

(m)
i dx . The initial conditions are

ϕ̃ik(0) =

∫
Ω

ϕ0
i (x) ek(x) dx, %̃k(0) =

∫
Ω

%0(x) ek(x) dx, w̃(m)(x, 0) = w0(x). (3.8)

System (3.1)–(3.2) is a locally well-posed system of 4(m + 1) first-order ordinary differential equa-
tions for 4(m + 1) scalar unknowns %̃k, ϕ̃ik , i = 0, 1, 2 , k = 0, 1, . . .m , while it is convenient
to interpret (3.3)–(3.6) as constitutive relations. We shall see below in Eq. (3.12) that the expressions
in the denominators of (3.3) and (3.7) are greater or equal to 1 , hence the formulas are meaningful.
In particular, since f−1 is Lipschitz continuous by Hypothesis 2.1 (iv), the equation (3.3) defines a
Lipschitz continuous solution operator W : C([0, T ];R3(m+1)) → C1([0, T ];W 1,2(Ω)) which with
given functions ϕ̃ik , i = 0, 1, 2 , k = 0, 1, . . .m , associates the solution w(m) of (3.3). The exis-
tence of a unique local solution to (3.1)–(3.6) is therefore guaranteed on a nondegenerate time interval
[0, Tm) , 0 < Tm ≤ T .

In order to show that the solution (3.1)–(3.6) is global, we derive some estimates for the solution on
the whole interval [0, Tm) .

3.1 Estimates independent of m

In the series of estimates to be derived in the formulas below, we denote by C any positive constant
which is independent of m and ε , and by Cε any constant which is independent of m and possibly
depends on ε . For simplicity, we denote by | · |H the norm in L2(Ω) , and by ‖ · ‖V the norm in
W 1,2(Ω) .

We first handle Eq. (3.2), which is easy. We multiply it by %̃k and sum up over k = 0, . . . ,m to obtain
that

d

dt

1

2

∫
Ω

|%(m)|2 dx+D

∫
Ω

|∇%(m)|2 dx+
κ

2

∫
∂Ω

|%(m)|2 ds(x) ≤ C. (3.9)

We proceed similarly, multiplying (3.2) by ˙̃%k and summing up over k = 0, . . . ,m , to obtain that∫
Ω

|%̇(m)|2 dx+
d

dt

(
D

∫
Ω

|∇%(m)|2 dx+ κ

∫
∂Ω

|%(m)|2 ds(x)

)
≤ C

(
1 +

∫
Ω

|%(m)|2 dx

)
,

(3.10)
hence,∫ Tm

0

∫
Ω

|%̇(m)|2 dx dt+ sup ess
t∈(0,Tm)

(∫
Ω

|∇%(m)|2(t) dx+

∫
∂Ω

|%(m)|2(t) ds(x)

)
≤ C. (3.11)

Equation (3.1) is more delicate. We choose an arbitrary v =
∑m

k=0 vkek ∈ Hm , multiply (3.1) by
vk , and sum up over k = 0, . . . ,m and i = 0, 1, 2 . From Hypothesis 2.1 (i), it follows that

d

dt

∫
Ω

(ϕ
(m)
0 +ϕ

(m)
1 +ϕ

(m)
2 ) v dx =

∫
Ω

(S
(m)
0 +S

(m)
1 +S

(m)
2 ) v dx

=

∫
Ω

Q(m)
(
ϕ

(m)
0 +ϕ

(m)
1 +ϕ

(m)
2 − 1

)
v dx,

so that necessarily, by Hypothesis 2.1 (vii),

ϕ
(m)
0 (x, t) + ϕ

(m)
1 (x, t) + ϕ

(m)
2 (x, t) = 1 (3.12)
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for all (x, t) ∈ Ω× [0, Tm) .

We further multiply the (i, k) -th equation of (3.1) by µ̃ik and sum up over i = 0, 1, 2 and k =
0, 1, . . . ,m to obtain

2∑
i=0

∫
Ω

ϕ̇
(m)
i µ

(m)
i dx+

2∑
i,j=0

cij

∫
Ω

〈
∇µ(m)

j ,∇µ(m)
i

〉
dx =

2∑
i=0

∫
Ω

S
(m)
i µ

(m)
i dx. (3.13)

We treat the three integrals in (3.13) separately. The first integral on the left-hand side can be rewritten
as

2∑
i=0

∫
Ω

ϕ̇
(m)
i µ

(m)
i dx =

∫
Ω

ẇ(m)f−1(ϕ
(m)
0 − w(m)) dx

+
d

dt

∫
Ω

(
F̂ (ϕ

(m)
0 − w(m)) + ψε(ϕ

(m)
1 , ϕ

(m)
2 ) + g(ϕ

(m)
1 , ϕ

(m)
2 )

+
1

2

(
|∇ϕ(m)

1 |2 + |∇ϕ(m)
2 |2

))
dx, (3.14)

where we denote F̂ (p) =
∫ p

0
f−1(p′) dp′ for p ∈ R . Note that by (3.3) for k = 0 we have∫

Ω
ẇ(m) dx = 0 , hence

∫
Ω
w(m) dx = 0 by Hypothesis 2.1 (vii).

It is easy to see that w(m) , as a solution to the ODE (3.3), admits an L∞ -bound independently of m
and ε , namely

sup ess
(x,t)∈Ω×(0,Tm)

|w(m)(x, t)| ≤ C. (3.15)

Indeed, we first add to both the left-hand side and the right-hand side of (3.3) the term

f−1(ϕ
(m)
0 )

|ϕ(m)
0 |+ |ϕ

(m)
1 |+ |ϕ

(m)
2 |

which is bounded by Hypothesis 2.1 (iv). We then multiply (3.3) by w(m) , use the fact that the mean
value of w(m) is zero and that f is increasing, integrate over Ω , and obtain that

d

dt

∫
Ω

|w(m)(x, t)|2 dx ≤ C

(
1 +

∫
Ω

|w(m)(x, t)| dx
)

for a. e. t ∈ (0, Tm) , hence,
∫

Ω
|w(m)(x, t)|2 dx ≤ C for t ∈ [0, Tm) . In particular, the right-hand

side of (3.3) is bounded independently of m and ε . We now repeat the same procedure, multiplying
(3.3) by signw(m) without integration over Ω , to get that

∂

∂t
|w(m)(x, t)| ≤ C a. e. in Ω× (0, Tm),

and we conclude that (3.15) holds true.

Using (3.3) and (3.15) we thus have∫
Ω

ẇ(m)f−1(ϕ
(m)
0 −w(m)) dx

=

∫
Ω

(|ϕ(m)
0 |+ |ϕ

(m)
1 |+ |ϕ

(m)
2 |)ẇ(m)

(
ẇ(m)+E(ϕ

(m)
1 , ϕ

(m)
2 )w(m)

)
dx

≥ 1

2

∫
Ω

|ẇ(m)|2 dx− C
∫

Ω

(
|ϕ(m)

0 |2 + |ϕ(m)
1 |2 + |ϕ(m)

2 |2
)

dx , (3.16)
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with a constant C > 0 which is independent of m and ε .

To estimate the second integral in (3.13), we use the vector formula

〈u, v〉 = −1

2
(|u− v|2 − |u|2 − |v|2)

to conclude, using Hypothesis 2.1 (i), that

2∑
i,j=0

cij

〈
∇µ(m)

j ,∇µ(m)
i

〉
= −1

2

∑
i 6=j

cij|∇µ(m)
j −∇µ(m)

i |2 ≥
ĉ

2

2∑
i=1

|∇µ(m)
i −∇µ(m)

0 |2. (3.17)

Finally, the integral on the right-hand side of (3.13) can be rewritten in the form

2∑
i=0

∫
Ω

S
(m)
i µ

(m)
i dx =

∫
Ω

S
(m)
0 f−1(ϕ

(m)
0 − w(m)) dx

+
2∑
i=1

∫
Ω

S
(m)
i

(
−∆ϕ

(m)
i + Pm(∂iψ

ε(ϕ
(m)
1 , ϕ

(m)
2 ))

)
dx. (3.18)

The function Q(m) defined in (3.7) is bounded in absolute value by the constant K from Hypothesis
2.1 (iii), and also

|S(m)
i (x, t)| ≤ K for all x ∈ Ω, t ∈ [0, Tm), i = 0, 1, 2 . (3.19)

By Proposition 2.3, the gradient ∇ϕψε of ψε is Lipschitz continuous with a constant depending on ε .
We thus obtain from (3.18) that∫

Ω

S
(m)
0 f−1(ϕ

(m)
0 − w(m)) dx+

2∑
i=1

∫
Ω

S
(m)
i Pm(∂iψ

ε(ϕ
(m)
1 , ϕ

(m)
2 ) + ∂ig(ϕ

(m)
1 , ϕ

(m)
2 )) dx

≤ Cε
(

1 + |ϕ(m)
0 |H + |ϕ(m)

1 |H + |ϕ(m)
2 |H + |w(m)|H

)
. (3.20)

The remaining term in (3.18) can be estimated using integration by parts as follows.

−
2∑
i=1

∫
Ω

S
(m)
i ∆ϕ

(m)
i dx =

2∑
i=1

∫
Ω

〈
∇S(m)

i ,∇ϕ(m)
i

〉
dx

≤ C
(
|∇%(m)|2H+|∇ϕ(m)

1 |2H+|∇ϕ(m)
2 |2H

)
. (3.21)

Combining (3.13)–(3.21), we thus obtain that

d

dt

∫
Ω

(
F̂ (ϕ

(m)
0 − w(m)) + ψε(ϕ

(m)
1 , ϕ

(m)
2 ) + g(ϕ

(m)
1 , ϕ

(m)
2 ) + |∇ϕ(m)

1 |2 + |∇ϕ(m)
2 |2

)
dx

+

∫
Ω

(
2∑
i=1

|∇µ(m)
i −∇µ(m)

0 |2
)

dx+

∫
Ω

|ẇ(m)|2 dx

≤ Cε
(

1 + |∇%(m)|2H + |∇ϕ(m)
1 |2H + |∇ϕ(m)

2 |2H + |ϕ(m)
0 |2H + |ϕ(m)

1 |2H + |ϕ(m)
2 |2H

)
. (3.22)

Hence, using (2.14), (3.11), (3.15), and Gronwall’s argument, we derive from (3.22) the estimate

sup ess
t∈(0,Tm)

(
|ϕ(m)

0 |2H(t) + |ϕ(m)
1 |2H(t) + |ϕ(m)

2 |2H(t) + |∇ϕ(m)
1 |2H(t) + |∇ϕ(m)

2 |2H(t)
)

+

∫ Tm

0

∫
Ω

(
2∑
i=1

|∇µ(m)
i −∇µ(m)

0 |2 + |ẇ(m)|2
)

(x, t) dx dt ≤ Cε. (3.23)
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Furthermore, differentiating (3.3) with respect to the spatial variables, we obtain that

ν∇ẇ(m) + E(ϕ
(m)
1 , ϕ

(m)
2 )∇w(m) + w(m)

(
∂1E(ϕ

(m)
1 , ϕ

(m)
2 )∇ϕ(m)

1 + ∂2E(ϕ
(m)
1 , ϕ

(m)
2 )∇ϕ(m)

2

)
+ (∇w(m)−∇ϕ(m)

0 )
(f−1)′(ϕ

(m)
0 −w(m))

|ϕ(m)
0 |+|ϕ

(m)
1 |+|ϕ

(m)
2 |

= f−1(ϕ
(m)
0 −w(m))∇

(
1

|ϕ(m)
0 |+|ϕ

(m)
1 |+|ϕ

(m)
2 |

)
.

(3.24)

Testing (3.24) by ∇w(m) and using (3.15) yields

d

dt
|∇w(m)|2H + c |∇w(m)|2H ≤ C

(
1 + |∇ϕ(m)

0 |2H + |∇ϕ(m)
1 |2H + |∇ϕ(m)

2 |2H
)
, (3.25)

with some constants C > c > 0 . From (3.12), we immediately obtain the pointwise bound

|∇ϕ(m)
0 | ≤ |∇ϕ

(m)
1 |+ |∇ϕ

(m)
2 | a. e. (3.26)

It follows from (3.23), (3.25), and by comparison in (3.24), that

sup ess
t∈(0,Tm)

(
|∇ẇ(m)|H +∇w(m)|H

)
≤ C. (3.27)

By virtue of (3.4), we have that

|∇µ(m)
0 | ≤ |∇ϕ

(m)
1 |+ |∇ϕ

(m)
2 |+ |∇w(m)| a. e. (3.28)

Since ∇ϕψε is Lipschitz continuous for every ε > 0 , we obtain from (3.4) that

µ̄
(m)
i (t) ≤ Cε

(
1 +

∫
Ω

2∑
i=1

|ϕ(m)
i |2(x, t) dx

)1/2

(3.29)

and ∫
Ω

|µ(m)
0 |2 dx ≤ C

(
1 +

∫
Ω

(
|ϕ(m)

0 |2 + |w(m)|2
)

dx

)
. (3.30)

We now summarize the above computations in (3.23)–(3.30) and obtain for all t ∈ (0, Tm) that∫
Ω

(
2∑
i=0

(
|ϕ(m)
i |2 + |∇ϕ(m)

i |2
)

+ |%(m)|2 + |∇%(m)|2 + |∇w(m)|2 + |∇ẇ(m)|2
)

(x, t) dx

+

∫ t

0

∫
Ω

(
2∑
i=0

(
|µ(m)
i |2 + |∇µ(m)

i |2
)

+ |ẇ(m)|2 + |%̇(m)|2
)

(x, τ) dx dτ ≤ Cε , (3.31)

with a constant Cε > 0 which is independent of m . By comparison in (3.5), we have a bound for
∆ϕ

(m)
i in L2(Ω × (0, T )) which is independent of m , i = 1, 2 . Finally, by comparison in (3.1), we

obtain bounds in L2(0, T ;W−1,2(Ω)) , which are independent of m , for ϕ̇(m)
i , i = 0, 1, 2 . We thus

have sufficient estimates which on the one hand guarantee that the solution exists on the whole time
interval [0, T ] and, on the other hand, enable us to pass to the limit as m → ∞ in (3.1)–(3.7) and
check that the following statement holds true.

Proposition 3.1. Let Hypothesis 2.1 hold and let ε > 0 be given. Then the system (2.15)–(2.22), (1.8)
admits a solution with the regularity ϕi, µi,∇µi,∆ϕi ∈ L2(Ω× (0, T )) , ∇ϕi ∈ L∞(0, T ;L2(Ω)) ,
ϕ̇i ∈ L2(0, T ;W−1,2(Ω)) for i = 0, 1, 2 , ϕ0 + ϕ1 + ϕ2 = 1 a. e., w ∈ L∞(Ω× (0, T )) ,
ẇ,∇w,∇ẇ ∈ L∞(0, T ;L2(Ω)) , %̇ ∈ L2(Ω× (0, T )) , %,∇% ∈ L∞(0, T ;L2(Ω)) .
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We can indeed pass to the limit in the initial conditions for ρ and w by virtue of (3.11) and (3.27). For
the initial conditions for ϕi , the argument is standard as well: it is easy to check for each i = 0, 1, 2
that

∀η > 0 ∀vi ∈ L2(Ω) ∃tη > 0 :

t ∈ (0, tη) =⇒ ∃mη ∈ N ∀m > mη :

∣∣∣∣∫
Ω

(ϕ
(m)
i (x, t)− ϕ(m)

i (x, 0))vi(x) dx

∣∣∣∣ < η .

(3.32)

4 Limit as ε→ 0

In the previous section, we have proved that system (2.15)–(2.22) coupled with initial conditions (1.8)
admits a global solution. The estimates that we have derived so far depend on ε . We split this section
into two subsections. In Subsection 4.1, we derive estimates independent of ε for the solution to
(2.15)–(2.22), and in Subsection 4.2, we prove Theorem 2.2 by passing to the limit as ε→ 0 .

4.1 Estimates independent of ε

Let us start with the following result which is a simple modification of [14, Propositions 2.10, 2.13].

Proposition 4.1. Let ψ satisfy Hypothesis 2.1 (v). Then there exist some ε̄ > 0 and positive con-
stants b, c, r such that, for ε ∈ (0, ε̄) , the Yosida approximations ψε of ψ have the following proper-
ties:

(i) dist(ϕ̂,ΘδT ) ≤ δT/2 =⇒ |∇ϕψε(ϕ̂)| ≤ b ;

(ii) ϕ̂ ∈ ΘδT , ϕ ∈ R2, |ϕ− ϕ̂| ≥ δT/2

=⇒ r|∇ϕψε(ϕ)−∇ϕψε(ϕ̂)| ≤ 〈∇ϕψε(ϕ)−∇ϕψε(ϕ̂), ϕ− ϕ̂〉+ c .

Proof. We prove the statement for b = b′ , r = r′ , c = c′+2r′b′ , where b′, c′, r′ are as in Hypothesis
2.1 (v). Let us start with part (i), and consider ϕ̂ ∈ R2 such that dist(ϕ̂,ΘδT ) ≤ δT/2 . For ε > 0 ,
we define Jεϕ̂ as in Proposition 2.3, and choose any ξ̂ ∈ ∂ψ(ϕ̂) . We have by (2.9) that

ξ̂ε := ∇ϕψε(ϕ̂) =
1

ε
(ϕ̂− Jεϕ̂) ∈ ∂ψ(Jεϕ̂),

hence −ε
〈
ξ̂ε, ξ̂ε − ξ̂

〉
=
〈
Jεϕ̂− ϕ̂, ξ̂ε − ξ̂

〉
≥ 0 , by the monotonicity of ∂ψ . We thus have

|ξ̂ε| ≤ b′ by Hypothesis 2.1 (v), and part (i) is proved.

To prove part (ii), let ϕ̂ ∈ ΘδT be given, and put ε̄ = δT/(4b
′) . For ε < ε̄ we have

|ϕ̂− Jεϕ̂| = ε|ξ̂ε| < δT
4
,

by virtue of part (i). Hence, dist(Jεϕ̂,ΘδT ) < δT/4 . Let further |ϕ− ϕ̂| ≥ δT/2 for some ϕ ∈ R2 .
We denote ξε = ∇ϕψε(ϕ) . We have either

|Jεϕ− Jεϕ̂| < δT
4
, (4.1)
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or

|Jεϕ− Jεϕ̂| ≥ δT
4
. (4.2)

In the case (4.1), we have dist(Jεϕ̂,ΘδT ) < δT/2 , and we obtain from (i) simply that

r|ξε − ξ̂ε| ≤ r(|ξε|+ |ξ̂ε|) ≤ 2rb.

If (4.2) holds, then we have by Hypothesis 2.1 (v) that

r|ξε− ξ̂ε| ≤
〈
ξε−ξ̂ε, Jεϕ−Jεϕ̂

〉
+c′ =

〈
ξε−ξ̂ε, ϕ−ϕ̂

〉
−ε|ξε−ξ̂ε|2+c′ ≤

〈
ξε−ξ̂ε, ϕ−ϕ̂

〉
+c′.

Combining the two inequalities, and using the monotonicity of ∇ϕψε , we obtain the assertion. �

We actually need the following consequence of Proposition 4.1.

Corollary 4.2. Let ψ, ε̄, b, c, r be as in Proposition 4.1. Then there exists a constant ĉ > 0 with the
property that, for every ε < ε̄ , for every ϕ̂ ∈ L2(Ω) such that ϕ̂(x) ∈ ΘδT a. e., and for every
ϕ ∈ L2(Ω) , we have that

r

∫
Ω

|∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x))| dx ≤
∫

Ω

〈∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x)), ϕ(x)− ϕ̂(x)〉 dx+ ĉ.

(4.3)

Proof. Let ϕ ∈ L2(Ω) be arbitrarily chosen. We define Ω+ := {x ∈ Ω : dist(ϕ(x),ΘδT ) ≥ δT/4} ,
Ω− = Ω \ Ω+ . For a. e. x ∈ Ω− , we have by Proposition 4.1 (i) that

|∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x))| ≤ 2b .

For a. e. x ∈ Ω+ , Proposition 4.1 (ii) yields that

r|∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x))| ≤ 〈∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x)), ϕ(x)− ϕ̂(x)〉+ c .

Using the fact that 〈∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x)), ϕ(x)− ϕ̂(x)〉 ≥ 0 a. e., we can combine the two
inequalities and obtain that

r

∫
Ω

|∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x))| dx ≤
∫

Ω

〈∇ϕψε(ϕ(x))−∇ϕψε(ϕ̂(x)), ϕ(x)− ϕ̂(x)〉 dr

+ c|Ω+|+ 2rb|Ω−| .

Putting ĉ := |Ω|(c+ 2rb) , we complete the proof. �

We now estimate the distance of the functions ϕ̄i(t) from the boundary of Θ . To this end, we choose
v0 = v1 = v2 = 1 and put

Γ =
γ(%)

(|ϕ0|+ |ϕ1|+ |ϕ2|)(|ϕ̄0|+ |ϕ̄1|+ |ϕ̄2|)
.

We obtain

˙̄ϕ0(t) =
ϕ̄0(t)

|Ω|

∫
Ω

Γ(x, t) (1− ϕ0(x, t)) dx, (4.4)

˙̄ϕ1(t) =
ϕ̄0(t)

|Ω|

∫
Ω

Γ(x, t)ϕ1(x, t) dx, (4.5)

˙̄ϕ2(t) =
ϕ̄0(t)

|Ω|

∫
Ω

Γ(x, t)ϕ2(x, t) dx. (4.6)
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From Hypothesis 2.1 (iii) it follows that |Γ(x, t) (1−ϕ0(x, t))| ≤ |Γ(x, t)| (|ϕ1(x, t)|+|ϕ2(x, t)|) ≤
K for a. e. (x, t) ∈ Ω× (0, T ) . By Hypothesis 2.1 (vii), we have ϕ̄0(0) ≥ δ/

√
2 > 0 , hence,

ϕ̄0(t) ≥ ϕ̄0(0) e−Kt > 0 for all t ∈ [0, T ]. (4.7)

Lower bounds for ϕ̄1, ϕ̄2 are more delicate to obtain. These functions are continuously differentiable.
Therefore, there exists some Tε ∈ [0, T ] such that

ϕ̄i(t) ≥ δ e−KT−1 for all t ∈ [0, Tε], i = 1, 2. (4.8)

Put T ∗ε = max{Tε ∈ [0, T ] : inequality (4.8) holds} , and assume that T ∗ε < T for some ε < ε̄ .
For definiteness, we can assume that

ϕ̄1(T ∗ε ) = δ e−KT−1. (4.9)

Taking into account (4.7), we have that 1− ϕ̄1(t)− ϕ̄2(t) = ϕ̄0(t) > (δ/2) e−Kt in [0, T ∗ε ] . Hence,
denoting ϕ = (ϕ1, ϕ2) , we have dist(ϕ̄(t), ∂Θ) ≥ (δ/2) e−KT−1 > δT , so that ϕ̄(t) ∈ ΘδT for
all t ∈ [0, T ∗ε ] .

Let us denote µ̄ = (µ̄1, µ̄2) . From (2.18) and (2.3) it follows that

|µ̄(t)| ≤
∫

Ω

(|∇ϕψε(ϕ)|+|∇ϕg(ϕ)|) dx ≤
∫

Ω

|∇ϕψε(ϕ)−∇ϕψε(ϕ̄)| dx+ (b+ Cg)|Ω|, (4.10)

where we have used Hypothesis 2.1 (vi) and Proposition 4.1 (i). We further obtain from Corollary 4.2
and (2.18) that

|µ̄(t)| ≤ 1

r

∫
Ω

〈∇ϕψε(ϕ)−∇ϕψε(ϕ̄), ϕ− ϕ̄〉 dx+ (b+ Cg)|Ω|+
c

r

=
1

r

∫
Ω

〈∇ϕψε(ϕ), ϕ− ϕ̄〉 dx+ (b+ Cg)|Ω|+
c

r

=
1

r

(
−
∫

Ω

|∇ϕ|2 dx−
∫

Ω

〈∇ϕg(ϕ), ϕ− ϕ̄〉 dx+

∫
Ω

〈µ, ϕ− ϕ̄〉 dx

)
+ (b+ Cg)|Ω|+

c

r
. (4.11)

We now use again (2.3), the fact that
∫

Ω
〈µ, ϕ− ϕ̄〉 dx =

∫
Ω
〈µ− µ̄, ϕ− ϕ̄〉 dx , and the elemen-

tary inequalities∫
Ω

|ϕ− ϕ̄|2 dx ≤ C

∫
Ω

|∇ϕ|2 dx,

∫
Ω

|µ− µ̄|2 dx ≤ C

∫
Ω

|∇µ|2 dx , (4.12)

to conclude that there exists a constant M, which is independent of ε , such that for all t ∈ [0, T ∗ε ] we
have

|µ̄(t)| ≤M

(
1 +

(∫
Ω

|∇ϕ|2(x, t) dx

)1/2(∫
Ω

|∇µ|2(x, t) dx

)1/2
)
. (4.13)

We now repeat the estimation procedure from Subsection 3.1, test the i -th equation in (2.15) by
v = µi , and sum up to obtain, similarly as in (3.13)–(3.16),

d

dt

∫
Ω

(
F̂ (ϕ0 − w) + ψε(ϕ) + g(ϕ) +

1

2
|∇ϕ|2 +

1

2
|w|2

)
dx

+
ĉ

2

∫
Ω

(
2∑
i=1

(|∇µi −∇µ0|2) +
1

2
|ẇ|2

)
dx ≤

2∑
i=0

∫
Ω

Siµi dx+K

∫
Ω

|w|2 dx (4.14)
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for a. e. t ∈ (0, T ∗ε ) . We have

2∑
i=0

∫
Ω

Siµi dx ≤ C
2∑
i=0

∫
Ω

|ϕi||µi| dx,

hence, by virtue of (4.12), (4.13), and the hypotheses on F̂ and g ,∫
Ω

(
|ϕ0|2 + ψε(ϕ) + |∇ϕ|2 + |w|2

)
(x, t) dx

+

∫ t

0

∫
Ω

(
2∑
i=1

(|∇µi −∇µ0|2) + |ẇ|2
)

(x, τ) dx dτ

≤ C

∫ t

0

(
1 +

∫
Ω

(
|w|2 + |∇ϕ|2 + |ϕ0|2 + |∇µ1|2 + |∇µ2|2

)
(x, t) dx

)
dτ. (4.15)

We have for all (x, t) ∈ Ω × [0, T ∗ε ] the identity ϕ0 + ϕ1 + ϕ2 = 1 and ∇ϕ0 = −∇ϕ1 − ∇ϕ2 ,
hence, |∇µ0| ≤ C(|∇ϕ0| + |∇w|) . Note that, repeating the computations leading to (3.15) and
(3.27), we derive the estimates

sup ess
(x,t)∈Ω×(0,T ∗

ε )

|w(x, t)| ≤ C, sup ess
t∈(0,T ∗

ε )

(|∇ẇ|H + |∇w|H) ≤ C, (4.16)

with C > 0 independent of ε . The Gronwall argument and (2.14) now yield that∫
Ω

(
|w|2 + ψε(ϕ) +

2∑
i=0

(
|ϕi|2 + |∇ϕi|2

))
(x, t) dx

+

∫ t

0

∫
Ω

(
2∑
i=1

(
|µi|2 + |∇µi|2

)
+ |ẇ|2

)
(x, τ) dx dτ ≤ C∗ (4.17)

for every t ∈ [0, T ∗ε ] , with a constant C∗ > 0 which is independent of ε . By comparison in (2.15),
we get the bound ∫ T ∗

ε

0

‖ϕ̇i(t)‖2
W−1,2(Ω) dt ≤ C , i = 0, 1, 2 . (4.18)

To make the list of estimates complete, recall that the upper bound in (3.9)–(3.10) is independent of
m and ε , so that

sup ess
t∈(0,T ∗

ε )

(|%(t)|H + |∇%(t)|H) ≤ C,

∫ T ∗
ε

0

|%̇(t)|2H dt ≤ C . (4.19)

The next step consists in proving that T ∗ε = T . To this end, we split for each t ∈ [0, T ∗ε ] the domain
Ω into three parts, namely

Ω0(t) = {x ∈ Ω : ϕ1(x, t) ≥ 0},
Ω1(t) = {x ∈ Ω : 0 > ϕ1(x, t) ≥ −ε1/4},
Ω2(t) = {x ∈ Ω : −ε1/4 > ϕ1(x, t)}.

Let us start with Ω2(t) . By definition (2.7) of ψε , we have for x ∈ Ω2(t) that

ψε(ϕ(x, t)) ≥ 1

2ε
min
z∈Θ
|ϕ1(x, t)− z1|2 ≥

1

2
√
ε
. (4.20)
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By virtue of (4.17), we have

|Ω2(t)| ≤ 2
√
ε

C∗
. (4.21)

We now rewrite Eq. (4.5) in the form

˙̄ϕ1(t) = ϕ̄0(t)

(∫
Ω0(t)

+

∫
Ω1(t)

+

∫
Ω2(t)

)
Γ(x, t)ϕ1(x, t) dx,

where∫
Ω0(t)

Γ(x, t)ϕ1(x, t) dx ≥ −Kϕ̄1(t),∫
Ω1(t)

Γ(x, t)ϕ1(x, t) dx ≥ −K|Ω|ε1/4,∫
Ω2(t)

Γ(x, t)ϕ1(x, t) dx ≥ −K
∫

Ω2(t)

|ϕ1(x, t)| dx ≥ −K|Ω2(t)|1/2
(∫

Ω

|ϕ1(x, t)|2 dx

)1/2

≥ −
√

2Kε1/4.

Hence,

˙̄ϕ1(t) = ϕ̄0(t)

∫
Ω

Γ(x, t)ϕ1(x, t) dx ≥ −K(ϕ̄1(t) + Λε1/4) (4.22)

with a constant Λ > 0 which is independent of ε . We thus obtain a lower bound for ϕ̄1(t) , namely
(note that ϕ̄1(0) ≥ δ by Hypothesis 2.1 (vii)),

ϕ̄1(t) ≥ δ e−Kt − Λε1/4
(
1− e−Kt

)
≥ δ e−Kt − Λε1/4 (4.23)

for t ∈ [0, T ∗ε ] . We see that for ε > 0 sufficiently small, condition (4.9) is violated. Hence, by (4.8),
T ∗ε = T and the estimate (4.17) holds globally in [0, T ] .

4.2 Proof of Theorem 2.2

We show that passing to the limit as ε→ 0 in (2.15)–(2.22) we obtain a solution to (1.1)–(1.7) in the
sense of Theorem 2.2. We label here the solution (µi, ϕi, w, %) of (2.15)–(2.22) with the upper index
ε in order to emphasize the dependence on ε .

The estimates (4.17)–(4.19) are independent of ε and hold globally on [0, T ] . We can therefore
extract a subsequence ε→ 0 such that

� ∇ϕεi → ∇ϕi for i = 0, 1, 2 , ∇%ε → ∇% , ∇wε → ∇w weakly-star in L∞(0, T ;L2(Ω)) ;

� %̇ε → %̇ , µεi → µ , ∇µεi → ∇µi for i = 0, 1, 2 , ẇε → ẇ weakly in L2(Ω× (0, T )) ;

� ϕ̇εi → ϕ̇i for i = 0, 1, 2 weakly in L2(0, T ;W−1,2(Ω)) .

Using the Sobolev embedding theorems, the trace theorem, and the Lions compactness lemma [40,
Theorem 5.1], we obtain the convergences, passing again to a subsequence of ε→ 0 if necessary,

� %ε → % , wε → w , strongly in C([0, T ];L2(Ω)) ;

� ϕεi → ϕi strongly in L2(Ω× (0, T )) , for i = 0, 1, 2 ;
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� %ε → % strongly in L2(0, T ;L2(∂Ω)) .

We can pass to the limit in all of the terms in (2.15)–(2.22), and the limit initial condition (1.8) is
obtained by an argument similar to (3.32). The variational inequality (2.6) needs to be paid some
attention. Since ψε is convex, we can rewrite (2.18) as∫

Ω

(
(µε1 − ∂1g(ϕε1, ϕ

ε
2))(v1−ϕε1) + (µε2 − ∂2g(ϕε1, ϕ

ε
2))(v2−ϕε2)

)
dx

−
∫

Ω

(
〈∇ϕε1,∇(v1−ϕε1)〉+ 〈∇ϕε2,∇(v2−ϕε2)〉

)
dx ≤

∫
Ω

(
ψε(v1, v2)− ψε(ϕε1, ϕε2)

)
dx

(4.24)

for a. e. t ∈ (0, T ) and for all test functions v1, v2 ∈ W 1,2(Ω) . We now choose an arbitrary test
function λ ∈ L2(0, T ) , λ(t) ≥ 0 a. e. From the above convergences, it follows that

lim inf
ε→0

∫ T

0

∫
Ω

|∇ϕεi (x, t)|2λ(t) dx dt ≥
∫ T

0

∫
Ω

|∇ϕi(x, t)|2λ(t) dx dt ,

and, using (2.12), we obtain the pointwise limit limε→0 ψ
ε(v1, v2) = ψ(v1, v2) . We multiply both

sides of the inequality (4.24) by λ(t) , integrate over t ∈ (0, T ) and pass to the limit to obtain∫ T

0

∫
Ω

(
(µ1 − ∂1g(ϕ1, ϕ2))(v1−ϕ1) + (µ2 − ∂2g(ϕ1, ϕ2))(v2−ϕ2)

)
λ(t) dx dt

−
∫ T

0

∫
Ω

(
〈∇ϕ1,∇(v1−ϕ1)〉+ 〈∇ϕ2,∇(v2−ϕ2)〉

)
λ(t) dx dt

≤
∫ T

0

∫
Ω

ψ(v1, v2)λ(t) dx dt− lim inf
ε→0

∫ T

0

∫
Ω

ψε(ϕε1, ϕ
ε
2)λ(t) dx dt (4.25)

for all test functions v1, v2 ∈ W 1,2(Ω) . It remains to prove that we have

lim inf
ε→0

∫ T

0

∫
Ω

ψε(ϕε1(x, t), ϕε2(x, t))λ(t) dx dt ≥
∫ T

0

∫
Ω

ψ(ϕ1(x, t), ϕ2(x, t))λ(t) dx dt.

(4.26)
If (4.26) is fulfilled, then, on the one hand, (2.6) holds and, on the other hand, we conclude that
ψ(ϕ1(x, t), ϕ2(x, t)) <∞ almost everywhere. This means, in particular, that (ϕ1(x, t), ϕ2(x, t)) ∈
Θ for a. e. (x, t) ∈ Ω × (0, T ) . Hence, as mentioned on the last line of Section 2, the identity
|ϕ0|+ |ϕ1|+ |ϕ2| = ϕ0 +ϕ1 +ϕ2 = 1 holds almost everywhere, so that (2.17) coincides with (1.3),
and (2.19)–(2.20) coincides with (1.5).

To prove (4.26), we first notice that by (4.14) we have

sup ess
t∈(0,T )

∫
Ω

ψε(ϕε(x, t)) dx ≤ C.

For simplicity, we omit for a moment the arguments (x, t) and write simply ϕε, ϕ instead of ϕε(x, t),
ϕ(x, t) . By (2.13), we have

ψε(ϕε) ≥ 1

2ε
|ϕε − Jεϕε|2 a. e. (4.27)

Hence, for a. e. t ≥ 0 , ∫
Ω

|ϕε − Jεϕε|2 dx ≤ 2ε

∫
Ω

ψε(ϕε) dx ≤ Cε . (4.28)
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We thus have for a. e. t ≥ 0 , by the triangle inequality, that

|Jεϕε(t)− ϕ(t)|H ≤ |Jεϕε(t)− ϕε(t)|H + |ϕε(t)− ϕ(t)|H ≤ Cε+ |ϕε(t)− ϕ(t)|H . (4.29)

We know that ϕε converge to ϕ in L2(Ω×(0, T )) . In particular, it follows from (4.29) that Jεϕε(x, t)
→ ϕ(x, t) a. e. in Ω× (0, T ) . On the other hand, by (2.11) we have

ψε(ϕε) ≥ ψ(Jεϕε) a. e., (4.30)

and (4.26) follows from (4.29)–(4.30) and from the lower semicontinuity of ψ . We thus obtain the
inequality∫ T

0

∫
Ω

(
(µ1 − ∂1g(ϕ1, ϕ2))(v1−ϕ1) + (µ2 − ∂2g(ϕ1, ϕ2))(v2−ϕ2)

)
λ(t) dx dt

−
∫ T

0

∫
Ω

(
〈∇ϕ1,∇(v1−ϕ1)〉+ 〈∇ϕ2,∇(v2−ϕ2)〉

)
λ(t) dx dt

≤
∫ T

0

∫
Ω

ψ(v1, v2)λ(t) dx dt−
∫ T

0

∫
Ω

ψ(ϕ1, ϕ2)λ(t) dx dt (4.31)

for all test functions v1, v2 ∈ W 1,2(Ω) , λ ∈ L2(0, T ) , λ(t) ≥ 0 a. e., which is equivalent to (2.6).
This completes the proof of Theorem 2.2.
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