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Abstract. In this paper we study some nonlinear elliptic equations in R™ obtained
as a perturbation of the problem with the fractional critical Sobolev exponent, that
is

(—A)Yu=chu? +uP in R",
where s € (0,1), n > 4s, € > 0 is a small parameter, p =
a contionuous and compactly supported function.

To construct solutions to this equation, we use the Lyapunov-Schmidt reduction,
that takes advantage of the variational structure of the problem. For this, the case
0 < ¢ < 1 is particularly difficult, due to the lack of regularity of the associated
energy functional, and we need to introduce a new functional setting and develop
an appropriate fractional elliptic regularity theory.

n+2s
n—2s?

0<g<pandhis
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1. INTRODUCTION
In this paper we deal with the problem
(1.1) (—A)Y’u=chu? +uP in R",
where s € (0,1) and (—A)® is the fractional Laplacian, that is
(—A)°u(z) = ¢,,s PV /Rn m dy for z € R",
where ¢, s is a suitable positive constant. Moreover, n > 4s, ¢ > 0 is a small

parameter, p = Zi’—g; is the fractional critical Sobolev exponent, 0 < ¢ < p and h is

a contionuous function that satisfies
(1.2) w := supp h is compact
(1.3) and hy #0.

We will find solutions of problem (1.1) by considering it as a perturbation of the
equation

(1.4) (=A)’u =P in R",

with p = ngi . It is known that the minimizers of the Sobolev embedding in R"™

are unique, up to translations and positive dilations. Namely if we set
1

(1 + ‘x|2)(n—25)/27
1

(1.5) 20() == s



then all the minimizers of the Sobolev embedding are obtained by the formula

(1.6) ela) s g (18,

where p > 0, £ € R". The normalizing constant «, s depends only on n and s
(see [28], [35], [17] and the references therein), and the explicit value of a, s is not
particularly relevant in our framework. Notice also that equation (1.4) is the Euler
Lagrange equation of this Sobolev embedding minimization problem.

It has been showed in [17] that solutions to (1.4) of the form (1.6) are nondegen-
erate. Namely, setting 0,2, ¢ and O¢z, ¢ the derivative of z, ¢ with respect to the
parameters i and & respectively, then all bounded solutions of the linear equation

(-A)w=pz ¢ mR"

are linear combinations of 0,z,¢ and O¢z,¢. We also refer to [22], where the
nondegeneracy result was proved in detail for s = 1/2 and n = 3 (but the proof
can be extended in higher dimensions and for fractional exponents s € (0,n/2) as

well).
HS (R™) -~ R2n |1‘ _ y|n+23 )

We set
and we define the space H*(R") as the completion of the space of smooth and
rapidly deceasing functions (the so-called Schwartz space) with respect to the norm
[Wl s gy + [l 2 gy, Where
2n
n—2s

*

is the fractional critical exponent.
We also introduce the space

X*:= H*(R") N L=(R"),
equipped with the norm
Jullxe o= [u] grs(ny + 1ull oo n)-
Given f € L?(R"), where (3 :=
(=A)*u = f in R" if

// ulw) —uy) (@) =eW) g0 [ o

|z — y[t2s Rn

n+25, we say that © € X* is a (weak) solution to

for any ¢ € X°.
We prove the following:

Theorem 1.1. Suppose that h is a continuous function that satisfies (1.2) and
(1.3). Then, there exist eg > 0, p1 > 0 and & € R™ such that problem (1.1) has a
positive solution uy . for any € € (0,e0), and ui e — 2y, ¢, n X° ase — 0.

Also, if h changes sign, then for any e € (0,e9) there exists a second positive
solution ug ¢ to (1.1) that, ase — 0, converges in X° to z,, ¢, with pe > 0, pa # 1,
and & € R", & # &1



In order to prove Theorem 1.1 we will use a Lyapunov-Schmidt reduction, that
takes advantage of the variational structure of the problem. Indeed, positive solu-
tions to (1.1) can be found as critical points of the functional f. : X* — R defined
by

|u(z) — u(y)?
(17) fs(u) R2n |.’L' _ y|n+23 d dy
1
~IT 1 h(:v) uq+1(aj) dx — ol ) p+1(:v) dzx.
We notice that f. can be written as
(1.8) fe(u) = folu) — e G(u),
where
1 o) —w@) )y L P (z)d
( 9> R2n \w — ‘n+2s v P+ 1 R~ b <x) v
and
1
(1.10) G(u) == il _h(x) ult (2) d.

Indeed, we will use a perturbation method that allows us to find critical points of
fe by bifurcating from a manifold of critical points of the unperturbed functional
fo (see for instance [6] for the abstract method).

Notice that critical points of fy are solutions to (1.4), and so, in order to construct
solutions to (1.1), we will start from functions of the form (1.6) and we will add
a small error to them in such a way that we obtain solutions to the perturbed
problem.

This small error will be found by means of the Implicit Function Theorem. To
do this, a crucial ingredient will be the nondegeneracy condition proved in [17] for
Zu.e, but the application of the linear theory in our case is non-standard and it
requires a pointwise control of the functional spaces.

Roughly speaking, one additional difficulty for us is indeed that when ¢ < 1 the
energy functional is not smooth at the zero level set, and so the classical Implicit
Function Theorem cannot be applied, unless we can avoid the singularity. For this,
the classical Hilbert space framework is not enough, and we have to keep track of
the pointwise behavior of the functions inside our functional analysis framework.
This is for instance the main reason for which we work in the more robust space X*
rather than in the more classical space H*®(R™).

Of course, the change of functional setting produces some difficulties in the
invertibility of the operators, since the Hilbert-Fredholm theory does not directly
apply, and we will have to compensate it by an appropriate elliptic regularity theory.

Once these difficulties are overcome, the Lyapunov-Schmidt reduction allows us
to reduce our problem to the one of finding critical points of the perturbation G,
introduced in (1.10). For this, we set

(1.11) U(p,€) = Glzue),
where z, ¢ has been introduced in (1.6). The study of the behavior of I' will give
us the existence of critical points of G, and so the existence of solution to (1.1).

There is a huge literature concerning the search of solutions for this kind of
perturbative problems in the classical case, i.e. when s = 1 and the fractional



Laplacian boils down to the classical Laplacian, see [1, 2, 3, 4, 5, 8, 10, 14, 15, 29, 30].
In particular, Theorem 1.1 here can be seen as the nonlocal counterpart of Theorem
1.3 in [2]. See also [25], where the concave term appears for the first time.

In the fractional case, the situation is more involved. Namely, the nonlocal
Schrédinger equation has recently received a growing attention not only for the
challenging mathematical difficulties that it offers, but also due to some important
physical applications (see e.g. [27], the appendix in [16], and the references therein).
In the subcritical case, this nonlocal Schrodinger equation can be written as

2 (=A)u+V(z)u =uP inR",

with 1 < p < Zf—gi and V a smooth potential. Multi-peak solutions for this type
of equations were considered recently in [18]. Also in this case, a key ingredient in
the proof is the uniqueness and nondegeneracy of the ground state solution of the
corresponding unperturbed problem, which has been proved in [24] for any s € (0, 1)
and in any dimension, after previous works in dimension 1 (see [23]) and for s close
to 1 (see [21]).

Moreover, given a bounded domain 2 C R™, the Dirichlet problem

2 (=APu+u=uP inQ,
u=0 in R\ Q,

was considered in [16], where the authors constructed solutions that concentrate at
the interior of the domain.

Concentrating solutions for fractional problems involving critical or almost crit-
ical exponents were considered in [13]. See also [11] for some concentration phe-
nomena in particular cases and [32] for the study of the soliton dynamics in related
problems. See also [12] for a semilinear problem with critical power, related to
the scalar curvature problem, that also exploits a Lyapunov-Schmidt reduction. It
is worth pointing out that, in our case, the presence of the subcritical, possibly
sublinear, power in our problem introduces extra difficulties that have required the
development of certain elliptic regularity theory, and the careful analysis of the
corresponding functional framework. Notice indeed that for sublinear powers ¢
the energy functional experiences a loss of regularity, so the standard functional
analysis methods are not directly available and several technical modifications are
needed.

In particular, we perform here a detailed analysis of the linearized equation, that
is the key ingredient to use the Lyapunov-Schmidt arguments. We think that these
results are of independent interest and can be useful elsewhere.

The paper is organized as follows. In Section 2 we show some auxiliary fractional
elliptic estimates needed in the subsequent sections. In Section 3 we perform the
Lyapunov-Schmidt reduction, with the detailed study of the linearized equation,
and the associated functional analysis theory. Section 4 is devoted to the study of
the behavior of I', as defined in (1.11). Finally, in Section 5 we complete the proof
of Theorem 1.1.

2. FRACTIONAL ELLIPTIC ESTIMATES

Here we obtain some uniform elliptic estimates on Riesz potential (though the
topic is of classical flavor in harmonic analysis, we could not find in the literature a
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statement convenient for our purposes). These estimates will be used in Section 3
in order to obtain the continuity properties of our functionals.
We recall that

H*(R") = {u:R" — R measurable s.t. [Jul|r2gn) + [u] gz gy < +00}.

To start with, we point out that the fractional Sobolev inequality holds in X?,
thanks to a simple limit procedure:

Lemma 2.1. Let n > 2s. Let f : R"™ — R be a measurable function. Suppose that
there exists a sequence of functions fr, € H*(R™) such that fr, — f in H*(R™) and
a.e. in R™. Then

(2.1) £l L2 @ny < C [l gy

for some C > 0 depending on n and s. In particular, the inequality in (2.1) holds
true for any f € X°.

Proof. For each k € N, we have that fr € H*(R™), so we can apply the fractional
Sobolev inequality (see e.g. Theorem 6.5 in [19]) and obtain

(2.2) 1fellz2x @ny < C [frl gremny-

Since
kEToo[fk]Hs(R") < kEToo[fk = flas@ny + fa=@n) < [as@n)

and, by Fatou Lemma,
1/2
lim inf *pny = |lim inf 24
klmm I el 1.2 (R7) [klmm /Rn | ()] x}

1/2*
> [ r@r ] =1l s,

we can pass to the limit in (2.2) and obtain (2.1). O

Here is the fractional elliptic regularity needed for our goals:

Theorem 2.2. Let n > 4s. Let 3:=2n/(n+2s) and 1) € L°(R™). Let also
(2.3) J(z) = / ) Y

T — y|n—23 :

Then:
(24) Jy € L (R"), and | 79| 12+ @n) < C [l] o (eny;
(2.5) Jy € HYR™), and [J¢] o gny < Cl[9[| o @n)s
(2.6) (=A)*(JyY) = ¢y in the weak sense, i.e.
// ((J)() — (J)(y)) (¢(x) — $(y))
R2n

o =y

dedy=c | 9(x)p(x)dx
Rn

for any ¢ € X°;
(2.7) if, in addition, it holds that ¢ € L= (R"), then J¢ € L>(R™),

and [Ty Il ) < C (IWllzgn) + ¥l )-
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Here above, C and ¢ are suitable positive constants' only depending on n and s.

Proof. The claim in (2.4) follows from an appropriate version of the Hardy-Littlewood-
Sobolev inequality, namely Theorem 1 on page 119 of [34], used here with « := 2s,
p:= [ and q := 2*.

Now we take a sequence of smooth and rapidly decreasing functions ; that
converge to ¥ in L#(R"), and we set ¥; := Jip;. We also set ¥ := Jib. Thus,
by (2.4), we have that

[W; = Ul p2r gny = [T (¥5 — )l L2 @y < CllY5 — YllLs@ny — 0

as j — 4o00. Thus, up to a subsequence,

(2.8) U, — U ae. in R",

Moreover, by Lemma 2(b) in [34], we have that

(29) [ g =c [ 501> 5@
n R’n,

for some ¢ > 0, for every g that is smooth and rapidly decreasing (and possibly
complex valued). As standard, we have denoted by § = Fg the Fourier transform
of g.

Now, for any ¢ smooth and rapidly decreasing and any § > 0, we take gs to be
the inverse Fourier transform of (|¢|2 + §)%, in symbols gs := FH((e? + 5)%{)).
We remark that (]¢|? + 5)%{) is smooth and rapidly decreasing, hence so is gs.
Accordingly, (2.9) implies that

(2.10) [ Ow@a@ds = [ b1 (€ + 8 d(6) .
n Rn

We claim that

(2.11) gs — FH(|€]%¢) in L2(R™), as § — 0.

To check this, we use Plancherel Theorem to compute
llgs — 9_1(|f|25<73)||%2(w) = [lgs — ‘£|2SQASH2L2(R”)

(2.12) , - , 2,4
= [CF? +8)° = 1618l any = [ €I+ 8)° — €2 1B(6) e
R

n

Then we observe that, if § € (0,1),
S S 2 S
(€7 4+ 8)° — [€**|” < 4(l¢* +1)*

and the function & — (|¢]2 4 1)2¢ |$(€)|? belongs to L' (R™), since ¢ is also rapidly
decreasing, thus (2.11) follows from (2.12) and the Dominated Convergence Theo-
rem.

Moreover, since 1); is rapidly decreasing, a direct computation with convolutions
(see e.g. Lemma 5.1 in [16]) gives that

C.
2.1 . < 7J’
( 3) |J’¢J(‘T)‘ 1+ |[L“n728
for some C; > 0. In particular, since n > 4s, we have that
(2.14) U, = Jy; € L*(R™).

1n the sequel, for simplicity we will just take ¢ = 1 in (2.6). This can be accomplished simply
by renaming J to ¢~ 1J.
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As a matter of fact, the derivatives of 1); are rapidly decreasing as well and V¥; =
J(V1;), thus the argument above also shows that V¥; € L?(R",R™), and so
(2.15) U; € H'(R™).
Using (2.11), (2.14) and the Plancherel Theorem, we conclude that

g%/R (szj)(x)mdx:/R () F1(€[200) () dar
(2.16) " ’

— [ w@leraea = [ e e i
Rn R
Now we point out that, for § € (0,1),

16172 (112 + 8)*(6)| < l€172* (1€ + 1)°1(€)]

and this function is in L'(R"), since n > 2s. Accordingly, the Dominated Conver-
gence Theorem gives that

lim / GO 1617 (67 +0)°00€) de = [ iy(6) (e ae.
This, (2.10) and (2.16) imply that

e [ e ©aOd = [ ©d0d=c [ @

for any ¢ smooth and rapidly decreasing.

Now we fix j € N and make use of (2.15): accordingly, by density, we find a
sequence ¥, of smooth and rapidly decreasing functions that converge to ¥, in
HY(R™) as k — +oo.

In particular, ¥; , — ¥, in L2(R™) and so, by Plancherel Theorem, also \i/j7k —
U, in L2(R™), as k — +o0o. Moreover, |£[2* < 1if |¢] < 1 and [€]** < [¢]?if |¢] > 1,
thus

(2.18) €% < 1+ (¢

Consequently

[P0 — i@ de< [ a+1eh) T (e - wi©) de
< C||Wj}k; - qjj”%.[l(]Rn) —0

as k — 400, and therefore

tim [ 059 54(0) de = /|s|2w ()2 de.

(2.19)

k—+oco
Then we apply (2.17) with ¢ := VU, 1; therefore we see that

/ €75 (6)* dg = lim / €120 (&) W, () dE
Rn
= lim c | () Tn(§)dé=c %f)‘ﬂ)df

k—4o00 R

Thus, by the Holder Inequality with exponents 3 and 2n/ (n — 2s), we obtain

| erera =c [ wi©wea

<c|lvjllos@n

95 L2+ my < C 5170y
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where (2.4) was used in the last step.
This (together with the equivalence of the seminorm in H*(R™), see Proposition
3.4 in [19]) says that

|W(2) — T ()| 2
//R o —gres dz dy < Cllv;ll1s@n)-

So we recall (2.8) and we take limit as j — 400, obtaining, by Fatou Lemma and
the fact that ¢; — ¢ in L°(R™), that

()~ V()
JL Bt dsdy < Ol ey

that establishes the estimate in (2.5).

Now we show that ¥ = Jy € HS(R”). For this, we notice that, since ¢ €
LA(R™), there exists a sequence of smooth and rapidly decreasing functions 1,
such that 1; converges to ¢ in L#(R™) as j — 400. So, thanks to the estimates in
(2.4) and (2.5), we have that

| J = Jjll p2x mny = ([T (0 = )l L2 @ny < CllY = il La@ny — 0,
and
[JY = Tl ge@ny = [T (@ = )] e @ny < ClIY = 5l @ny — 0,
as j — +oo. Therefore, setting ¥; := J;, the last two formulas say that

(2.20) W, converges to W in L2 (R") and in H*(R") as j — 4oc.

Moreover, we observe that, by (2.15), there exists a sequence of smooth and rapidly
decreasing functions W, such that ¥;; converges to ¥, in HY(R") as k — +o0,
and so U, converges to ¥; in H°(R™) as k — +o0, thanks to (2.19). By the
Sobolev immersion (see Theorem 6.5 in [19]), we have that U, ; converges to ¥, in
L? (R™) as k — +oo. Hence, using also (2.20) we obtain that ¥ = Jy € H*(R™),
and this concludes the proof of (2.5).

Now we prove (2.6). For this, we use (2.5) to see that

(@) —¥)(z) — (¥; — ¥)(y)
//}R% |z — y|nt2s ’ drdy = [¥; - ]Hs(Rn)
( 1/’)]}19(11@71 <C ||1/’ - 1/’jHQL5(Rn) — 0

as j — 4o00. This says that the sequence of functions
V() — ¥(y)

|z — ylms

M (z,y) =

converges to the function

M(a:,y) — \II(I) — \I/(y)

n+2s
|z —y| >

in L2(R?"). In particular, this implies weak convergence in L2?(R?"), that is

tim [ M@ rended= [[ M)y dedy
Jj—+oo R2n R27

for any v € L*(R?*").



Thus, if ¢ is smooth and rapidly decreasing, we can take

Y(ay) = A=Y
PRV
and obtain that
. (W(2) = ¥,(y)) (o(x) — 6(y))
jginoo //Rzn |z — y|nt2s dv dy

() (5) - 6»))
,//Rzn |x — |n+23 dx dy

Moreover, since 9); converges to 1 in L?(R™), we have that

hm / pi(x) ¢(z) da:—/ Y(x) ¢(z) dx.

Consequently, we can pass to the limit (2.17) and obtain (2.6) for any ¢ which is
smooth and rapidly decreasing.

It remains to establish (2.6) for any ¢ € X*. For this, we fix ¢ € X* and we
take a sequence ¢, of smooth and rapidly decreasing functions that converge to ¢
in F*(R™), and so, by Lemma 2.1, also in L? (R"). Also, we know that ¥ € H*(R"),
thanks to (2.5). In particular, by Cauchy-Schwarz and Holder inequalities, we
obtain that

// Y) (0= o0)@) = (@ =) B) 4 0

|z —y|nt?

< Y] ge ey (¢ — Okl gregny — 0

and ’/ (b(x (bk(ac)) dz

< |[YllLs@ny 16 — Skl L2* @y — O

as k — +o00. Therefore, we can write (2.6) for the smooth and rapidly decreasing
functions ¢y, pass to the limit in &, and so obtain (2.6) for ¢ € X*. This completes
the proof of (2.6).

Now we prove (2.7). For this, we use the Holder Inequality with exponents (3
and 2n/(n — 2s) to calculate

o
T =

< / 91| Lo (281 dy / W(x;y)'dy

B ly[" r\B, |Y|"T2*
B dy R
< Cllomwo+| [ We-uPa| |[
R™\ By R™\ By |yl

< C(Illwen + 19l zon ).

and this establishes (2.7). O

We establish now a generalization of Theorem 8.2 in [20], that will provide us
an L estimate for the solutions of some general kind of subcritical and critical
problems in R™.
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Theorem 2.3. Let u € H*(R™) be a solution of

K
(—A)°u = Zhiu% +f nR",
i=1
with h; € L¥(R™) and 0 < v < 2 =1 for every i = 1,..., K < 400, and
FeL™RY, f>0, withm e (— +oo] Then

s

HuHLoo(Rn) < 07

where C' > 0 is a constant depending onn, s, |[ull 2= mny, [[hill Lo (gny and || f[|Lm @) -

Proof. Let 0 < ¢ < 1 to be chosen later, and define

51“
(2.21) o(z) = D,
Hu||L2*(R")
where I' := maxy<;<x {7:}. Thus,
(2.22) 6]l 2 (gny = 0,
and
K 5T
(2.23) (~APo=S hig" + " f nR",
; [[ull Lo (my
where iz,(x) = hz(x)”“lsf%:l Now, for every integer & € N, let us define Ay :=
L2* (&)

1 — 27" and the functions
wy(x) := (p(x) — Ax)T,  for every x € R™.

By construction, wy € HS(R") and wg41(z) < wi(z) ae. in R™. Moreover,
following [20] it can be checked that for any k € N,

(2.24) {wp41 > 0} C {wy, > 27D}
and
(2.25) d(x) < 2"y (x)  for any z € {wpy1 > 0}

Consider now

Uy := ||wg %*2*(R")'

Thus, applying (8.10) of [20] with v := ¢ — (1 — Aj) we obtain

9 _ |wr+1(x) — wk+1(y)|2
[’wkﬂ}Hs(Rn) - //R% |x _ y‘n+2s dz dy

[, =) )

|z — y|nt2s

N
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and thus, using wi41 as a test function in (2.23) and applying (2.25) and the
monotonicity of w, we obtain

K

~ r
(Wit 1]%e oy < / hi@V wi d95+7/ Jwiy1 dx
e <2 ) il gy S0
K ~
< Z||hi||Lm(Rn)2%<k+1>/ Wi wyy dx
i=1 {wg41>0}
51“
+7/ fwgg1 dz
||U||L2*(Rn) {wy11>0}
K ~
< Z||hi||Lw(Rn)2%<k+1>/ w)ith da
i=1 {wy4+1>0}
51“
(2.26) +7/ fwp da.
||u||L2*(R") {wk+1>0}
On the other hand, by (2.24)
Us = llwellfor gy 2/ wy da
{wp>2-(k+1)}
> 27 D |{uy, > 27 DY 5 27 D {1 > 0},
and thus,
(2.27) {wpy1 > 0} < 22 *+D,,

Hence, applying Holder inequality and this estimate in (2.26), it yields

K
h i i i+t
[wkﬂ]?qs(R") S Z”hi||L°°(R")2%(k+l)||wk ’[Y,lztéRn)|{wk+1 > 0}
i=1
5I‘
+m“f| L (Rn) wkHL2* (]R")Hwk+1 > O}|ﬂ
K ~
< S il e 2840 D
i=1
o 2* (k+1)B771—1/m
i Ifllem @2 U, ’
HUHL?*(Rn)
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where 3:=1— 1 — L Combining this estimate with Lemma 2.1, we get
U1 < C[wk+1]§-{s(w) = C([wk+1]§{s(Rn))2 /2

K 2*/2
~ . (5F . i
< C Z:”hi||L°°(1R”)2(k+1)(2 U + I m(rmy2? EFDPU, Y
i=1 l[ull 2+ (&)
K k+1
S [ (1 +C ”Ei”L&(R")) PIC Uy
i=1
k+1
or . 12772
+ | 1+ Cr——flm@ny | 2% Uy }
[[ull L2 gny
K E+1
< |: (1 + CZ ||hi||Loc(]Rn) u”zg:é]R")) 2(2 -1) U’€
i=1
k+1 )
1+ CM 92" 8 Ulfl/m}2 /2
[[ull L2 (ny k
2% /2
< (Cf+1Uk+C§+1U,§‘l/m) ,

where C1, C2 > 1 depend only on n, s, |[ul| L2+ (gny, [[Pill Lo gy and || f||Lmgn). We
claim now that there exists n € (0,1) such that

(2.28) U? <82k, Wk eN.

To prove this, we proceed by induction. Indeed,

*

U = (Hwo %*2*(]12@))2/2 <Nl 2 gmy = 621,
thanks to (2.22). Now we suppose that the claim is true for Uy. Then,
Uy < oo oty
< ORIk /2 | k1 (g2 (=1/m) pk(1=1/m))2° /2

Since m > g one has that % (1 - i) > 1, and thus there exist positive constants

m
«1 and ap such that

2%* 2%* 1
—=14+a; and —(1—— ) =1+ as.
2 2 m

Hence,
Ula/i* Cf+1(52r77k>1+a1 + C§+1(62Fnk)1+a2
(2.29) — 52F77k ((Clnal)kcl(;?FLH + (Czna2)k0252r‘az) )

We set now

N

. ( 1 1 )
7 ‘= min 1 Y. 5
01/01 02/062

- " 1/204 " 1/2a2
6" := min (2@) s (2C’2> .

and
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Notice that, since C1,Cy > 1 and aq, e > 0, we obtain that 7, € (0,1). Thus,
Cin®* <1, Con™ <1,

and
0152Fa1 g 27 02521_‘042 < Q

[\

Substituting in (2.29) the claim follows.
Hence, taking limits in (2.28) we get

(2.30) Jlim Uy =0.
Moreover, since 0 < wy, < || € L? (R") for any k € N and kh—>Holo w, = (p—1)T ae.
in R™, by the Dominated Convergence Theorem we get

Jim Uy = [l( - 1)F
and therefore ¢ < 1 a.e. in R™. By repeating the proof with —¢ instead of ¢

we conclude that ||¢[|ze®n) < 1. Thus, recalling the definition of ¢ in (2.21), we
conclude that

o
L2* (R™) — 0,

l[ull 2 (gn
||| oo (mrmy < $7
with ¢ € (0,1) fixed. This concludes the proof of Lemma 2.3. O

3. THE LYAPUNOV-SCHMIDT REDUCTION

In this section we perform the Lyapunov-Schmidt reduction. Since the argument
is delicate and involves many lemmata, we prefer to develop it in different steps.

3.1. Preliminaries on the functional setting. Given 0 < pu; < pg and R > 0,
we define the manifold

(3.1) Zo :=A{zue st g1 < p < pa, |§] < R},

where z, ¢ was introduced in (1.6). We will perform our choice of R, p1 and po
later on. Notice that the functions in Z; are critical points of fo, as defined in (1.9).

We will often implicitly identify Zy with the subdomain (g1, p2) X Bg of R*T!
described by coordinates (i, &).

In order to apply the abstract variational method discussed in the introduction,
we would need in principle the functional f. defined in (1.7) to be C? on H*(R").
Unfortunately, this is not true if ¢ < 1, and therefore, in order to treat the whole
set of values g € (0,p), we recall that w is the support of the function h and we set

a = inf{z,¢(r) st. 2 €w, p1 < p < po, | <R},
V = {we X°st|w|xs <a/2}
(3.2) and U = {u=z,¢e+wst 2z,¢6€Zy, weV}.

We observe that, if u € U and x € w, then
a
u(z) = zue(r) +w(@) 2 a— ||lwllpen 2 a—|lwllx: >a— o =5
and so
(3.3) u(zx) > % >0 for any z € w.

Therefore, recalling (1.10), we obtain that the functional G is C? on U. Hence, also
f- : U = Riis of class C?.
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Now, we set

0z 0z
3.4 q-:zi’{,jzl,...,n, and qp11 = “’5,
( ) J ag] n-+ 8/.L
and we notice that g; satisfies
(3.5) (—A)°q; =p2l g, inR”

for every j =1,...,n+ 1. We also denote by

T, . Zo := span{q, .-, qnt1}
the tangent space to Zg at 2, ¢.
Moreover, (-,-) denotes the scalar product in H*(R"), that is, for any vy, vs €

H*(R"),
_ (vi(@) = vi(y)) (v2(2) — va(y))
(v1,v2) = //R% dx dy.

|z —y[r+2e

We also define the notion of orthogonality with respect to such scalar product and
we denote it by L. That is, we set

(T., Zo)" == {v € H¥(R™) s.t. {v,¢) =0 for all ¢ € TZMZO}.

Zp,€
In particular, we prove the following orthogonality result.
Lemma 3.1. There exist A; = A\i(p, &), fori=1,...,n+ 1, such that
Ny 0 df i,
<%7%>{)\i if i=3j,
and

Proof. For any r > 0, we write

Z(T) = (l_i_,r)(n—Qs)/Z'

In this way zo(7) = 2(|z|?) and so

s—n)/2 3 Il‘ — §|2
sele) = ez (E2E0Y

So we obtain that

5%,5 25—n)/2 5 ‘$*§|2 2(51‘ *Jii)
73&@) ( s 12 2
and therefore

0z ¢ _ (2s—n)/2
o, (y+&=un z

which is odd in the variable y;.
Similarly,

Oz 25 =1 (95 n_oyy2. (1T — &P @s—mya (12 = &7\ 2z =€
e G
thus

9z 25 =1 (9 ma)/2, 1Y w2 (WP 2yl
3.6 € _ (2s—m—2)/2 ~(2s—n)/251 ,

b

[yl 2(=v)
G u?

)
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that is even in any of the variables y;.

Notice also that P
sS—n = y
Zug(y + &) = p®sm/2z (M)
which is also even in any of the variables y;. As a consequence, using the change

of variable z = y + £ we obtain that, for any ¢, j € {1,...,n},

/n 2w 2t )az”( ) dx

23] 3§g
= [ 2 ly+ +
’ s—n =p— ‘y| = ‘y|2 4yzy
= / p(2s=m)(p+1)/2zp—1 <,u2 (z)? i ;ﬂj dy
[0 iy,
T e ifi=7,

for some ¢; > 0, which is bounded from zero uniformly.
Similarly, for any ¢ € {1,...,n},

(3.5 | @ e ) S @) da =0,

Finally, we observe that Z is positive and decreasmg, thus both z and —Zz' are
positive: this says that the right hand side of (3.6) is positive, and indeed bounded
from zero uniformly. Hence we obtain that

(3:9) /R Zhe (@) (@;;;f <x>)2 dz = ¢

with ¢o > 0 and bounded from zero uniformly.
Now, to make the notation uniform, we take ¢, n € {&1,...,&,, u} and we con-
sider the derivatives of z, ¢ with respect to ¢ and 7. Then we have that the quantity

Ozpe Ozue
ac ' on
is equal, up to dimensional constants, to

A)s/2 LPmE 3%, 9/28 783 ”
| Ay @) ()2 (a)a

- _ 882’ X3 0z K3
= [ T @) S @) da
0

0
= . a—C(fA)Szmg(x) S8 (z)dx

— [ e @) da

_ 0z 0z
= p / fe @75 (@) 55 (@) da

hence the desired result follows from (3.7), (3.8) and (3.9). O

Concerning the statement of Lemma 3.1, we point out that the proof shows that A; =
- = A\p (while A\,41 could be different), but in this paper we are not taking ad-
vantage of this additional feature.
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3.2. Solving an auxiliary equation. Keeping the notation introduced in the
previous subsection, the goal now is to solve an auxiliary equation by means of the
Implicit Function Theorem to obtain the following result.

Lemma 3.2. Let z,¢ € Zy. Then, for ¢ > 0 sufficiently small, there exists a
unique w = w(e, Zu ¢) € (T, EZo)l such that

// ((zue +w)(@) = (26 +w)(Y)) (p(z) = 9(y)) g dy

o — s

(3.10)
= [ (@) enelo) + w@)" + (rela) + w(2)") ola)do

for any ¢ € (TZMZO)L nXs.
Moreover, the function w is of class C* with respect to u and & and there exists
a constant C' > 0 such that

(3.11) lwllx: < Ce, and hm H H H H
X X
Indeed, recalling the definition of U given in (3.2), we can set for any u € U
(3.12) A (u) :=ehu? +uP.

We observe that u = J(A.(u)) (where J has been introduced in (2.3)) implies that
u solves (up to an unessential renormalizing constant that we neglect for simplicity,
recall the footnote on page 6)

(=A)°u = A.(u) in R",

thanks to Theorem 2.2 (see in particular (2.6)). Moreover, we have that

(313) HJ(AE(U))HLZ* (R") < +00.
Indeed, by (2.4) in Theorem 2.2 we get that there exists C' > 0 such that
(3.14) ([ (Ae (W)l 2= @ry < CllAc(w)]| Lo @ny,s

where 8 = 2n/(n + 2s). Now, since u € L? (R") and p = (n + 2s)/(n — 2s), we
have that u? € L?(R™). This and the fact that h is compactly supported imply
that ||Ac(u)||Ls@n) < +o00. Therefore, from (3.14) we deduce (3.13).

Analogously, making use of (2.5) and (2.7), one sees that

[J(Ac(u))] s mny + 1 (Ae ()| oo (rn) < +oc.

Hence, using Theorem 2.2, we have that if u € U then J(A.(u)) € X*.

Now, we use the notation U > u = z, ¢ +w, with 2z, ¢ € Zg and w € V, and we
recall that we are identifying the manifold Zy defined in (3.1) with (p1, p2) X Bp C
R We define

(3.15) H: (py,p2) X B x V x Rx R" — X5 x R*H!

H = (H,, Hs), with components

n+1

Hl(u7£7w787a) = Zue +w — J(AE(ZH,€ + UJ)) - Z Q5 Gy
i=1

H?(M7§7w757a) = (<w7q1>7"'7<w7qn+1>)7
where ¢; was defined in (3.4).
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Our goal is to find w = w(e, z,¢) (that we also think as w = w(e, p,§) with a
slight abuse of notation) that solves the equation H(u,&, w,e, ) = 0, that is the
system of equations

(316) Hl(ua§7w7€?a) :OZHQ(,UA,&U],E,CV)..
We notice that if w satisfies (3.16) then w € (TZMZO)J' and z, ¢ + w is a solution
of the auxiliary equation (3.10). Indeed, Ha(u, &, w,e,w) = 0 implies that

(w,gi) =0 foranyi=1,...,n+1,

ZMZO)L. Moreover, Hy(u,& w,e,a) = 0 gives that
Zue +w—J(Ac(zpe +w)) € Ty, . Zy, and so

2,

(zpe +w — J(Ac(2pe +w)), ) =0

which means that w € (T

for any ¢ € (TZMZO)L N X*. That is
(3.17)
// ((zne +w)(@) — (2 + ) (®)) () — ¢ (y))

|z —y|nt2

dx dy

_ [ U o) - e ) ol0) =0l o

o =y
= [ Aluet @) o) da,

for any ¢ € (szsZo)L N X*, thanks to (2.6) in Theorem 2.2, which is (3.10).

Therefore, to prove Lemma 3.2, the strategy will be to apply the Implicit Func-
tion Theorem to find a solution of the auxiliary equation H (u, &, w, e, &) = 0. Since
we are working in the space X?, it is not obvious that H satisfies the hypotheses
needed to apply this theorem. Indeed, the proofs of these requirements are very
technically involved, so we devote the next two subsections to study in detail the
behavior of the operator H.

3.2.1. Preliminary results on H. Consider the operator defined in (3.15). First of
all, we prove some continuity property.

Lemma 3.3. H is C' with respect to w.

Proof. We first notice that Hy depends linearly on w, and so it is C'. Now we
prove that H; is continuous in X*°. Indeed, for any wy,ws € V we have that

Hi(p, & wi,e, ) = Hi(p, § wa, €, ) = wi —wa —J (A (2,6 +w1)) +J (Ae (20,6 +w1)),
and therefore
[ H1(p, & wi, e, 0) — Hi(p, & wa, €, )| xs
< lwr = wallxs + 17(A= (26 +w1)) = J(Ac(zpe + w2))l|xe-
By (2.5) and (2.7) of Theorem 2.2 and the fact that J is linear we deduce that

(3.19)
[ J(Ac(zpe +w1)) — J(Ac(zp¢ + w2))] xo

< C ([ Ac(zue + w1) — Ac(zpe + w2) || Loomr) + 1 Ac(zpe + w1) — Ac(zpe + wa) || Lorn)) 5

(3.18)
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where § = 2n/(n + 2s). Now from (3.12) we deduce that
Ae(zue + w1) — Ac(2pue + w2)
= ch[(zue +w1)? = (2ue + w2)] + (zpg + w1)" = (2 + w2)”
= eqh(zpe + @) (w1 — w) + (26 + @) (wr — wa),

for some @ on the segment joining w; and wy (in particular @ € L? (R") and
Zue + W satisfies (3.3)). Consequently,

(3.20) ||A5(Zu,§ + U)l) — AE(ZM’g + ’lUg)HLoo(]Rn) <C le - ’w2||Loc(Rn).
Moreover, since h has compact support, we have that

(3.21) lle b (26 +@)7H(wi — w2l Loy < Cllwi — wa| oo (g

Finally, using Holder inequality with exponent 2*/8 = (n + 2s)/(n — 2s) and 6 :=
(n+2s)/4s, we get

H(Z;hf + w)pil(wl - w2)||?,ﬁ(]]§n)

- / (2ue + )PV (wy — wy)?
]Rn

< (/Rn(zu,é - @)@1),35)1/5 (/n(wl B w2)2*>ﬁ/2*
= (/R (Zue + w)2*> v (/n<w1 B w2)2*>ﬂ/2*

<C le - ’(1.)2”@2* (R™)

< c [wl - w2]§[s(Rn)7

up to renaming C > 0, where we have used Lemma 2.1 in the last line. Using this,
(3.20) and (3.21) into (3.19) we obtain that

1 7(A (2 +w1)) = J(Ac(zpe + w2)) [ xe < Cllwr — wellx,
which together with (3.18) imply that
||H1(M,€,U}1,E,C¥) - Hl(/”‘7€7w255’a)”XS < C le - w2||XS7

up to renaming C'. This shows the continuity of H; in X* with respect to w.
Now, in order to prove that H; is C', we observe that

gam el v T+ w)
=v—J (qs h(zpe +w)7 o+ p(zue + w)p_lv) .
To see this, we take v € V and [t| < 1 and we compute
Ae(zue +w+tv) — Ac(zpe +w)
= eh [(zue +w+ )T — (zue + )+ (zpe +w+t0)" — (Zu¢ +w)°
= qeh(zue +w) T v+ pze +w)P o+ O(#?),
and so

lim Ae(Zpg +w + fvt) — Ac(zue +w)

=qeh(zue +w)" 0+ p(2ue +w)P o,
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From this and the fact that J is linear we get that

0H,

T = llml[tv+J(A (e +w + t0) — Ac(ze +w))]

= v—=J (g h (zue +w)" v+ plzue +w)P M),
which is (3.22). From (3.22) we obtain that, for any wy,ws € V,

0H 0H
Hl u’g w1, €, O[) 1(#,5,’[}.}2,5,0&)
(3.23) dw L((X2)",X7)
= 17(AL(zg + w1)v) = J(AL(Zpne + w2)0)l| . -
[v]| xs=1
Since J is linear, by (2.5) and (2.7) in Theorem 2.2 we obtain that
(3.24)

(AL (206 +w1)v) = J(AL(zpe + w2)0)ll x

C (142 (zp¢ +wi)v — ALz g +w2)vl| e e + AL (206 + w1)v — AL(zpg +w2)vlLoEn)) ,
where § = 2n/(n + 2s). We have that

Al(zpe +wi)v — Al(zpe + wa)v
=qehv [(zue +wi)? = (zue +w2) T+ pv [(2ug +wi)P T = (zug +w2)P T

and so
(3.25) | AL (2,6 +w1)v — AL(2,6 + w2)v]
< qlg =1 elh| o] |2e + @[T wr — wa| + C lwr — w P~ o],

for some W on the segment joining w; and wy. Accordingly,

A i +w00)v = ALz + w2)v] e o)
(3.26) -
< (Jhwn = wall gy + s = waF - gn))

since z, ¢ + W satisfies (3.3). Concerning the estimate for the LB-norm, we observe
that, since h is compactly supported and v € LZOC(R"), we have

(327)  llalg — 1elhl o] [ze + @ *Jwr — walllLo@ny < Cllwr — wal L= en).

n+2s

Moreover, applying Hoélder inequality with exponents = "= and p we

obtain that

R e A e L

_2r
(r—1)8

. 4s/(n+2s) 1/p
(L) ()
Rn Rn
8ns/[(n+25)(n—29)] )"
= on — w2 ([ k)
< C||w1 — wy HSns/[(nJrZS)(n 25)]

12* (]Rn)
for a suitable positive constant C. Hence, by Lemma 2.1, we have that

4s/(n—2s)

4s/(n—2s) <C P

2* (R™) [wl w2}

llwr = w2 P~ o[l Lo geny < C llwr — wall
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up to relabelling C. This, (3.27) and (3.25) imply that

AL e + w000 = ALz +w2)0lLogeny < C (Jlwn = wallxe + o —wa [/ 2).

Putting together this, (3.26), (3.24) and (3.23), we obtain that %Iful is continuous
with respect to w in X*. This implies that H; is C' with respect to w, and concludes
the proof. O

Let us study now some properties of the derivative of H. In particular, consider
first the operator

(3.28) To:= 2 (4,€.0,0,0)0] = v J(A (o).

This definition is well posed, as next result points out:
Lemma 3.4. T is a bounded operator from H®(R™) to H®(R™).

Proof. Let v := Aj(zu,e)v = pzzglv. From (2.5), we know that

[T (A0 (20,6)0) o (mny = [T¥] e (mmy < Cl¥llLo@ny = Cp HZfi}lUHLB(Rny

with 8 = 2n/(n + 2s). On the other hand, using the Holder inequality with expo-
nents 2* /3 and (n+2s)/4s we can bound the quantity ||Zﬁ:€1UHL,ﬁ‘(Rn) with C [|v|| 2 ®n)
and thus by C [v] . (rn), thanks to the Sobolev inequality. This gives that

[J(A0(2p,6)0) ey < C [V] sy

which implies the desired result. O

It is important to remark that T is also a linear operator over X*. Of course,
since X* is a subset of H* (R™), the restriction operator, that we still denote by T,
maps X* continuously to H* (R™). What is relevant for us is that it also maps X*
continuously to X?, as next result explicitly states:

Lemma 3.5. T is a bounded operator from X°® to X°.

Proof. Same as the one of Lemma 3.4, using (2.7) in addition to (2.5). O

As a matter of fact, T" enjoys further compactness properties, as observed in the
next result:

Proposition 3.6. T is a Fredholm operator over H“"(]R") More explicitly, if we
set Kv = —J(Aj(z,e)v), we have that T' = Idp. g, + K, and K : H*(R") —
H*(R") is a compact operator over H®(R™).

Proof. We already know from Lemma 3.4 that K is a bounded operator over H* (R™).
Now, let {vi}ren be a sequence such that

To prove compactness, we need to see that

(3.30) {Kvi}ren contains a Cauchy subsequence in H*(R™).
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For this, we fix ¢ > 0 and we exploit (2.5) of Theorem 2.2 to obtain that
[Kv — KUm}HS(]R")
= [J(AG (zp.e) (1 = vm))] 7= )
< CllAg(2u.e) (00 = vm)ll Lo R
= C(l1 A6 (2.) (1 = vm) Lo (Br) + 146 (2p.e) (V1 = Vi)l L8 @7\ B ) )

where (3 := ni”és, R >0, and B :={z € R": |z| < R}.
Thus we notice that, for a fixed R > 0, the quantity ||vi||z2(p,) is bounded
by [[vkll2* (), Py Holder inequality, and the latter quantity is in turn bounded

by [Uk] f7s(gny» by Sobolev inequality. These observations and (3.29) imply that

(3.31)

lvkllwe2(Br) < Crs

for some Cr > 0 that does not depend on k. Moreover, the space W*2(Bg)
is compactly embedded in L?(Bg) (see Corollary 7.2 in [19] and recall that 3 €
(1,2*)). This implies that v, contains a Cauchy subsequence in L?(Bg) and so, up
to a subsequence, if [ and m are sufficiently large (say I, m > N(R,¢), for some
large N(R,¢)) we have that

v = vmllLe(Bg) < e

Notice also that

4s

Ay (zpe) = pz, ¢ € L(R"),
therefore
(3.32) (| A6(2ue) (v — vm)llLs(Br) < 1146 (2ue) Lo @m) v — Vil Lo (BR) < Ct

as long as I, m > N(R,¢).
On the other hand, applying Holder and Sobolev inequalities, and recalling (3.29)
once again,

| A6 (2p,6) (v — V) || L8 (Rr\ BR)

/AN
/N
T
=
o)
By
=
|
<
3
=
s
8
~_
—_
~
[\v)
*
/N
T
=
&)
oy
—~
3
I
RSk
ool
Y
i
ISH
5}
~_—
[\v)
»
S~
3

2s/n
1
< Cllui — vl p2x (gn / dy
EEED R\B p_je 1Y
< C[vl_vm]Hs(Rn,)Rin
< CR™,

with C' > 0 possibly different from line to line, but independent of R, [ and m.
Thus, we insert this and (3.32) into (3.31) and we deduce that

[Kv, — Kvm}Hs(Rn) <C(e+R™™),

provided that I, m > N(R,¢), possibly up to a subsequence. In particular, we can
choose R depending on ¢, for instance R := e=1/" and define N, := N(s_l/",s).
So we obtain that, for I, m > N,, the quantity [Kv; — K’Um]]_'[s(]Rn) is bounded by
a constant times €. This establishes (3.30). O
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Finally, for any (v, 8) € H*(R") x R"*! we define the linear operator

n+1
(3.33) T(v,B) = <Tv — Z Bigiy (v, q1), . .., (v, qn+1>) ,

i=1
with T defined in (3.28). The interest of such operator for us is that

OH
o(w, a)

(3.34) (1,€,0,0,0)[v, 8] = T(v, B).

We have:

Proposition 3.7. T is a bounded operator from H*(R™) x R*t1 to H(R™) x R+,
and from X° x R*! to X° x R**1,

Furthermore, T is a Fredholm operator over HS(R”) x R, More explicitly, it
can be written as the identity plus a compact operator over HS(R”) x R,

Proof. Let
n+1
S(’U,ﬁ) = <_ Zﬂlqla <v7q1>7 EE) (ann-‘rl)) .
i=1
Let also || - [| be either || - [| . (gny or || - [ x=. We have that
n+1 n+1
1@ A1 < S 18 laill + 3 Noll g il e oy
i=1 i=1
< 181+ 10l )
< (1814 loll).

This shows that S is a bounded operator from H®(R™) x R"+! to H*(R") x R*+1,
and from X* x R"*1 to X* x R**1. Then, noticing that T = (T, 0)+ S and recalling
Lemmata 3.4 and 3.5, we obtain that also T is a bounded operator from H“"(R") X
R to H*(R™) x R™!, and from X* x R"! to X* x R"1,

Now we show that it is Fredholm over H*(R™) x R™*1. For this, we set

n+1
K(Uvﬁ) = (KU - Zﬁlqh <U7(]1> - ﬁh ey <7)7QTL+1> - ﬁn+1> )

i=1
where K is the operator in Proposition 3.6. Notice that T = Id . gn)ygn+r + K,

so our goal is to show that X is compact over HS(R”) x R*+1. For this, we take a
sequence (vg, B) € H*(R™) x R™+! with [0kl e gy + [|Bkl[Rn+1 < 1 and we want

to find a Cauchy subsequence in Hs (R™) x R**1. To this goal, we use Proposi-
tion 3.6 to obtain a subsequence (still denoted by wvi) such that Kvy is Cauchy
in H*(R™). Also, again up to subsequences, vy, is weakly convergent in H*(R™),
therefore (v, ¢1) is Cauchy (and the same holds for (vg, g2), ..., (Vk, gn+1)). Finally,
since R™*! is finite dimensional, up to subsequence we can assume that also S is
Cauchy. Thanks to these considerations, and writing Br = (Bk1,-.-,0knt+1) €
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R"*!, we have that

H:K(Ukv Bk) - K(vm7 ﬂm)HHs(R'rL)XR'VL+1

n+1 n+1
< 1 Kve = Kol gre gy + Z 1Br,i = Bumil l14ill g mny + Z [{(vk — Vm, Gi)
=1 i=1

n+1

< c (nmk — Kooy + 185 = Bl + 3 [0 — v, q,»>|>
i=1

< g

provided that k and m are large enough. This shows that (vg, k) is Cauchy, as
desired. 0

3.2.2. Invertibility issues. Now we discuss the invertibility of the operator T that
was introduced in (3.33). Notice that there is a subtle point here. Indeed, the
operator T can be seen as acting over H*(R") x R™! or over X* x R™! (see
Proposition 3.7). On the one hand, the invertibility over H®(R") x R"*! should
be expected to be easier, since the operator is Fredholm there (see the last claim
in Proposition 3.7). On the other hand, since we want to obtain strong pointwise
estimates to keep control of the possible singularities of our functional, it is cru-
cial for us to invert the operator in a space that controls the functions uniformly,
namely X°® x R"T!. So our strategy will be the following: first we invert the oper-
ator in H $(R™) x R™*! (this will be accomplished using the Fredholm property in
Proposition 3.7, the regularity theory in Theorem 2.3 and a nondegeneracy result
in [17]). Then we will deduce from this information and a further regularity theory
that T is actually invertible also in X*® x R"*1,

The details of the argument go as follows. First, we recall the standard definition
of invertibility:

Definition 3.8. Let X,Y Banach spaces, and let S : X — Y be a linear bounded
operator. We say that S is invertible (and we write S € Inv(X,Y)) if there exists
a linear bounded operator S : Y — X such that

SS =Idy, SS=Idx.
Then, we show that T is invertible in H®(R™) x R"+:
Proposition 3.9. T € Inv(H*(R") x R, H*(R") x R"1).

Proof. By Proposition 3.7 and the theory of Fredholm operators (see e.g. [9], pages
168-169, for a very brief summary, and Chapter IV, Section 5, of [26], or [31], for a
detailed analysis), it is enough to show that T is injective over H*(R™) x R**1. For
this, let us take (v, 3) € H*(R") x R**! such that T (v, 3) = 0, that is, by (3.33),

n+1

(3.35) Tv = ; Bidi,

<v?q1> == <U7Qn+l> =0.
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Fixed j € {1,...,n+ 1}, using (3.28), (2.6) and (3.5), we observe that
(T, qj> =(v— PJ(Zﬁglv)v qj>

= (v, q5) —p RVVL(—A)SJ(Z,’Z?U) 4

(3.36) = (v a) —p /R Goe v
—(va) - [ oAy

= (v, 4j) = (v, ¢5)
=0.
This, (3.35) and Lemma 3.1 give that
n+1

0=(Tv,q;) =Y _ Bilai»a;) = \;3;,
im1

and so
(3.37) B; =0 for every j € {1,...,n+1}.

Therefore, v € H¥(R") is a weak solution of Tw = 0, that is, by (3.28) and (2.6),
the equation (—A)*v = pzﬁglv. Accordingly, by Theorem 2.3, we obtain that v €
L>°(R™).

Thanks to this, we can apply the nondegeneracy result in [17], that gives that v
must be a linear combination of ¢y, ..., ¢,+1. So we write

n+1

(3.38) V= cig
=1

for some ¢; € R, we recall (3.35) and once again Lemma 3.1, and we compute

n+1

0=(v,q5) = Y eilaig5) = c;\s,

i=1
that gives ¢; = 0 for every j € {1,...,n + 1}. By plugging this information
into (3.38), we conclude that v = 0. This and (3.37) give that (v,3) = 0 and so T
is injective on H*(R™) x R™*L. O

Next, we aim to prove that T € Inv(X® x R X x R**1). For this scope, we

need an improved regularity theory result, which goes as follows:

Lemma 3.10. Let C, > 0. For any u € X°, (o, ) € R™! x R**! and any ¢ €
H*(R™) which is a weak solution of

n+1

(3.39) (A% =pY izl g+ pl o+ peh lu
=1

with

(340 [W)itr ey < Collullx + 1Bllznss ).

we have that v € L>(R™) and
(3.41) el ey < C (Jlullxe + ]

Rn+1 + “ﬂl‘R“'+1)
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for some C' > 0.

Proof. The core of the proof is that the equation is linear in the triplet (¢, u, o),
so we get the desired result by a careful scaling argument. The rigorous argument
goes as follows. First, we use Theorem 2.3 to get that ¢ € L>°(R™), so we focus on
the proof of (3.41). Suppose, by contradiction, that (3.41) is false. Then, for any k
there exists a quadruplet (¢, ug, ok, B) € H¥(R™) x X* x R*1 x R™+! such that

n+1
(3.42) (=AY =p Z ak,izzzl(h’ +pah M + 2t g,
i=1
(3.43) 9okl oo (rny > K (||Uk||xs + [k lrn+r + ||ﬁk||uz<n+1)
and
(3.44) [l ey < Colllupllxe + I1Bellensn )

We remark that |[¢ ||z @n) < +00, since ¢ € L¥(R"), and [[¢g || rn) > 0, due
to (3.43). Thus, we can define

Uy = N - gy =
x| Loo mny” Ukl Loo n)’
. ag > B
ap = ——— and B = ————.
||1/)k||L°°(R") ||"/}k||L°°(]R")
Notice that
(3.45)
1kl poe mn) = 1
. . . w1
and ||l xe + l|anllreer + | Bellrees = lukllxs + llow|lrn+r + || Bk IR+ <L
%k || oo () k
thanks to (3.43).
Also, by linearity, equation (3.42) becomes
5 n+1 ~
(=AY =p Y arzh g+ p2l g i+ p2l
i=1

The right hand side of this equation is bounded uniformly in L% (R"™), thanks
to (3.45) and the fact that z, ¢ € L>°(R").

Thus, by Proposition 5 in [33], we know that for every 2 € R", there exists a
constant C' > 0 and a € (0,1) such that

[kl co By a(a)) < C-
We remark that C' and a are independent of k and x, therefore
(3.46) [Pkl oy < C-

From (3.45), we know that there exists a point z;, € R” such that ¢y (zz) > 1/2.
By (3.46), there exists p > 0, which is independent of k, such that ¢ > 1/4
in B,(x). As a consequence,

1/2*

_ 1\
9l L2® mny = (/ (4> d:c) 2 Co,
Bp(mk)
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with ¢, > 0 independent of k. Thus, by Sobolev inequality,
(3.47) 0] e ny > Cos
up to renaming ¢,. On the other hand, by (3.44) and (3.43), we have that

Wil _ Co(lunllxe + Il ) ¢,

o

(V] sy = [l ooy k]l Loo (mm) Ck

This is in contradiction with (3.47) when k is large, and therefore the desired result
is established. g

Finally, we show that T is invertible in X *(R™) x R"*1:
Proposition 3.11. T € Inv(X® x R*F1 X x R+,
Proof. By Proposition 3.9, we know that T € Inv(H*(R") x R*1, H*(R™) x R"*1).
Therefore, there exists an operator

T: HY(R") x R"™™ — H*(R") x R"™!

that is linc~ar and bounded and such that. TT =TT = IdHS(R")XR”'H' The bound-
edness of T as an operator acting over H*(R™) x R""! can be explicitly written
as
(3.48) 1T (s B g7+ oy < C s Bl ey s -

Now, since X* is a subset of H*(R™), we can consider the restriction operator of T
acting on X*® x R™*! (this restriction operator will be denoted by T as well). We
observe that, for any v € X*, we have that u € H*(R"), therefore, for any 3 € R"+1,

Tj'(u, 5) == Ist(Rn)XR7L+1 (uaﬁ) = (U,ﬂ)

Furthermore, if v € X* and 8 € R**!, then T(u,3) € X* x R**!, due to Propo-
sition 3.7. Hence the restriction of T over X* x R"™! may act on T(u,s), for
any (u,3) € X° x R"1 and we obtain that

(ji{‘T(ua /6) = IdHS(]R”)X]Rn+1 (’lL, /6) = (uaﬂ)

It remains to prove that
(3.49) 1, B)lxcexmnsr < € (lullx + 18llmess )

To prove it, we first use (3.48) to bound ||T(u, B s mey s+ With [u] e oy +
|B||gn+1, and then we observe that the latter quantity is in turn bounded by ||u|| xs+
||B]|gn+1. Thus, in order to show that T is bounded as an operator over X* x R*+1,
we only have to bound || T (u, B) |l oo (mr ) cRr A1 -
That is to say that the desired result is proved if we show that, for any v € X*°
and any 3 € R"*! we have that
Rn+1) .

(3.50) 1T (s B) | oo (Rm) xcr1 < C (HUHXS +118

To prove this, we fix u € X* and 8 € R"! and we set (v, @) := T(u, §) € H*(R™) x
R"+!. Thus, by (3.33),

n+1
(351) X®x Rn+1 3 (U,ﬁ) = ‘I(’U,Ol) = <TU - Z QG <U7Q1>7 R <ann+1>) :

i=1
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Taking the first coordinate and using (3.36), we obtain that, for any j € {1,...,n+

1},

n+1 n+1

<U»QJ TU - Z @;q;, QJ Z 6% Qza qj

Thus, by Lemma 3.1, we have that (u, qj) = —jAj and therefore
051 < C [t 1y

Accordingly

(3.52) lollgrss < C flul x--

Now we set 1 := v — u. Notice that ¢ € HS(}R”)7 since so are u and v. Moreover,
taking the first coordinate in (3.51) and using (3.28) and (2.6), we see that v is a
weak solution of

(=AY = (=4A)v—(-A)%u
n+1
= (=A)v— (“A)PTv+ ) a;(—A)g
i=1
n+1
= (A J(A)(zue)v JrZozZ q
n+1
= P vtp) wza
i=1
n+1
= P VP Uty ol la
i=1

The reader may check that this agrees with (3.39). Furthermore, by (3.48),
Wiy < 1000 gy

1T Cty B e ey it

O ([l ey + 1Bllros1 ).

N

Consequently,

(V] s gy < U] ey + [0 sy < ([U]Hé(]}{") + ”B”]R”*’l)a

up to renaming constants. The reader may check that this implies (3.40). Accord-
ingly the assumptions of Lemma 3.10 are satisfied, and we deduce from it that

Rn+1 ) .

9] o (ny < C'(HUHXS + [leflgn+r + 18]
Consequently, using (3.52), we obtain that
[vllzoe@ny < [Jullpeo@ny + 19l Lo @)

< O (llullx- + ol + 18]

< O (llullx- + 18l

Rn+1)
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up to renaming constants. Using this and once again (3.52), we obtain that
1T, B) oo (mny snt1 = [1(0, @) | oo ny 1
szt < C (Jlullxe + [1Bllens )

This establishes (3.50) and in turn (3.49), and so it completes the proof of the
desired result. (I

= [[vll oo gmy + vl

3.2.3. Proof of Lemma 3.2. Once we have studied in detail the operator H, we can
prove Lemma 3.2. As we pointed out at the beginning of this subsection, the idea is
to do it by means of the Implicit Function Theorem. For the sake of completeness,
we write here the precise statement of this theorem that we will use (see Theorem
2.3, page 38, of [7]).

Theorem 3.12 (Implicit Function Theorem). Let X,Y,Z be Banach spaces, and
let A and U be open sets of X and Y respectively. Let H € CY(A x U, Z) and

suppose that H(A*,u*) =0 and %—Z(A*,u*) € Inv(Y, 7).
Then there exist neighborhoods © of A* in X and U* of u* in'Y, and a map g €
CY(©,Y) such that
a) H(\ g(\) =0, for all A € ©.
b) H(A\ u) =0, with (\,u) € © x U*, implies u = g(\).

c) d(\) =— <%Z(p)>_ o %—Iz(p), where p = (X, g(A\)) and X € ©.

Now we conclude the proof of Lemma 3.2.

Proof of Lemma 3.2. Consider H defined in (3.15). First we observe that H is C!
with respect to ¢ and §. Indeed, z, ¢ is C' with respect to p and £. Moreover, J is
linear and A.(z,.¢ + w) is C! with respect to z, ¢ since 2z, ¢ + w is bounded from
zero on the support of h (recall (3.3)), therefore H; is C'! with respect to z,¢.

Also, H is C' with respect to € and «, since it depends linearly on these variables
(recall that J is linear and A. is linear with respect to ). Finally, H is C! with
respect to w thanks to Lemma 3.3.

Now we use the Implicit Function Theorem. Indeed, we notice that

(3.53) Hi(p1,€,0,0,0) = zpe — J(Ao(2p6)) = zpe — I (2, ) =0,
since z, ¢ is a solution to (1.4) (recall also (2.6)). Moreover,
(354) HQ(:LL7€307070) = O

In order to follow the notation of Theorem 3.12, we set
X =RxR"xR, Y:=X*xR' Z:.=X°xR",
A= (p1,p2) x Bp xR, U:=V xR}
and
A= (1, 6,0), uF:=(0,0), w:=(w,a).
Thus, we have proved that

(i) H € C*(AxU, Z), by the linear dependance of the variables and Lemma 3.3;
(ii) H(A*,u*) =0, by (3.53) and (3.54);

H
iii 8— A5 u*) e Inv(Y, Z), by (3.33), (3.34) and Proposition 3.11.
ou
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Notice here that, since V' was defined as
Vi={we X° st [|w]|x: < a/2},

it is an open subset of X?®. Therefore, all the hypotheses of the Implicit Function
Theorem are satisfied, and we conclude the existence of w € X* solution to (3.16),

that is, there exists w € X° N (TZMZO)L that solves the auxiliary equation in
(3.10). Furthermore, since H is of class C! with respect to €, p and ¢ in X?°, we
deduce that so is w.

Now we focus on the proof of (3.11). We observe that

O(w, a)

<O
Oe ¢

(3.55) H

‘XS xRn+1

Indeed, we write

(356) H(,Uw fa U}(E, ZM,§)7 g, a(€7 Zl‘«:§)) = O’

we differentiate with respect to ¢ and we set € := 0. Since

(3.57) w(0, z,¢) = 0 and (0, 2.¢) = 0,

we obtain that
0H oH o(w, a) _
De (Ma§707070) + 8(’[1.),0[) (M75507070) Oe (Oazu,f) =0.

Therefore, using the invertibility assumption, we get that

d(w,a) 3 OH ~oH
de (O’Zﬂ,f) - <M(/‘a§7070a0)> E(Magvovov()%

and so, since H is C'' with respect to X?,

"

sV <c

X xRntt

Then, since (w, @) is C'in ¢, in virtue of the Implicit Function Theorem, we obtain
(3.55).
From (3.55) and (3.57) we obtain that

l(w, )| xsxmnsr < Ce,

and this implies the first estimate in (3.11).

Now we prove the second and third estimates in (3.11). In this case, we will see
that the roles of u and £ are basically the same: for this, we write @ € R for any
of the variables (i, £) € R**! and we use the linearized equation to see that

82«' I3 1 32’ I3
—A)¢ s Zp M, .
(=4) Oow Poue Oow
This information can be written as

OH

%(M’£707070) =0.
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Now we take derivatives of (3.56) with respect to w and we set ¢ := 0. Recalling
(3.57) we obtain that

OH OH O(w, a)

0 = %(M’&O’QU) + m(ﬂvﬁyo,oﬂ)w(o’zm&)

oOH O(w, a)

= 8(w,a) (u,f,0,0,0) o (072%5)'

Hence, from the invertibility condition, we conclude that

o(w, a)

Ow

(O, ZM,E) = 0.
Since (w,a) are C! in &, we obtain that

0
(w706) (57zM,E)H —0.
aw XsxRnt+1

lim
e—0

This gives the second and third claim in (3.11) and completes the proof of Lemma
3.2. [l

3.3. Finite-dimensional reduction. Up to this point, we have found a function

w so that z,¢ + w satisfies our problem in the weak sense, when we test with

functions p € (77, , Z)+NX?*. The following result states that actually the equation

is satisfied for every test function in X*, i.e. that z, ¢ + w is a solution to (1.1).
Indeed, consider the reduced functional ®. : Zy — R, defined by

D (2) := fe(z +w),
where w = w(e, z) is provided by Lemma 3.2.

Proposition 3.13. Suppose that ®. has a critical point z,- ¢« € Zy for € small
enough. Thus, zue ¢ + w is a critical point of f., where w = w(e,zye ) €
(T. Zo)* is provided by Lemma 3.2.

ZpE e

Proof. For simplicity, we will denote i := u® and & := &%, and thus z,¢ 1= z,e ¢-.
Since z, ¢ is a critical point of ®., we know that there exists g > 0 such that for
every 0 < € < g it holds

d
(3.58) ad&;(zu’g + tp)

= 0 for every p € (1%, . Zo) N X°*.
t=0

Recalling the definition of ®., we observe that

Pe(2pe +tp) — Pe(2pe)

d .
%q)e(zu,f + t‘ﬁ) —o - tlg% ¢
— lLim fe(zue +to +wle, zue +19)) — fe(zpe + w(es 2ue))
t—0 t
S+ b+ (e ) + 1520+ oft) = Folee + 0(E 7))
= 11m
t—0 t

)

t=0

= b p (et wleze) o+ 20
= dt & 2’%5 U)E,Zl,,,g Y2 azmgﬁp
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and hence (3.58) is equivalent to

(3.59)
// ((zu +w)(@) = (zpe +w)(H) ((0+ F220)(@) — (0 + 2 0) (1)
on |z — y[nt2s de dy
— [ (ch@) (onelo) + wl@) + (o) +0(@)") (04 5 p)a) do
R 0

for any ¢ € (T%, . Zo) N X*.
Moreover, since w solves (3.16), Hi(u,§, w,e,a) = 0 is equivalent to affirm that

[ Lt )o) = Cne - 00) G000t o,
]RQTL

|z —y[r+2e

(3.60 — [ (@) ela) + 0(@) + (suela) + 0(@)") o)
n+1 N
_ ZO‘Z //}R (gi( zy)zllgi(i) W) 40 ay.
Consider now ¢; € T,

ee 20 deﬁned in (3.4). Thus, taking ¢ := ¢; in (3.59) and
applying (3.60) with ¢ := g; + 8Z qj we obtain

for any ¢ € X°.

(3.61)
n+1 . . ow . . ow_ .
(¢:(2) = a:(y)) (g5 + 522 45) (%) = (g5 + 522 45) (1))
0 = i € {3 dx d

Z “ //]R? |z —y[n+2s e

n—+1 n+1
= Zai<qi;% Zaz %77

i=1

n+1
ow
= Mo, i ),
3 +ZO‘ (¢ 8zu’£q]>

where Lemma 3.1 was also used in the last line.
Set now the (n + 1) x (n + 1) matrix B = (b;), defined as

ow
bE = iy m ) ':1,..., +17 ‘:1’.._’ ,
f (ai (%j) i n J n
ow )
bin+1 = <qi’37,u>’ i=1,...,n+1.

By Cauchy-Schwartz inequality and (3.11) one has

ow ow ) )
(3.62) hm (gs, 853) E1 0<q“37,u> =0, i=1,....,n+1,j=1,...,n,
and thus 1irr(1) |Bf|| = 0. Recalling that
E—
ow ow 0z 0
j = —w(e, 2 fOI‘]*l...,n
020 eV " 0z, 06 0 e ze) = ag,
and
ow ot = ow 8zu75:3w(52 ):aiu
Dzpe i 0zue Op op s ou’
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equation (3.61) becomes

n+1
Ao+ Y abs; =0, ij=1,...,n+1,

that is nothing but a (n+1) X (n+1) linear system with associated matrix A Idgn+1 +

B¢, whose entries are \;d;; + b;, where §;; = 1 and d;; = 0 whether ¢ # j. Thus,

since llﬂ(l) | Bf|| = 0, there exists €1 > 0 such that for ¢ < &1 the matrix A Idgn+1+ B¢
e—

is invertible, and therefore o; = 0 for every ¢ = 1,...,n + 1. Hence, coming back

o0 (3.60), we get

[ Lonstole) a0 (00) =00 o,
R2TL

|l‘ _ y|n+25

= / (sh(x) (zpe(@) + w(x))q + (zu.e(z) + w(:v))p) ¢(z) dz
for every ¢ € X, that is, 2, ¢ +w is a critical point of f. O

4. STUDY OF THE BEHAVIOR OF I’

At this point, we have reduced our original problem to a finite-dimensional one.
Indeed, we define the perturbed manifold

Ze :={u:=zu¢ +w(e, zu¢) s.t. zue € Zo},

which is a natural constraint for the functional f..
We recall (1.10)and (3.2) and we give the following

Definition 4.1. We say that u € U is a proper local maximum (or minimum,
respectively) of G if there exists a neighborhood U of u such that

G(u) =2 Gv) Yvel (G(u) < G(v) Yv €U, respectively),
and
G(u) > sup G(v) (G(u) < inf G(v), respectively).
vedU veIU

With this, one can prove that:
Proposition 4.2. Suppose that z, ¢ € Zy is a proper local mazimum or minimum
of G. Then, for e > 0 sufficiently small, ue = 2z, ¢ + w(e, 2u¢) € Ze is a critical
point of f-.

The proof of this can be found for instance in [6] (see in particular Theorem

2.16 there). A simple explanation goes as follows. First we notice that, for any
Zue € Zo,

(4.1) folzng) =0,
where fj is defined in (1.9). Indeed, z, ¢ is a critical point of fy, being a solution
to (1.4). Now, recalling (1.8) and using Taylor expansion in the vicinity of z, ¢, we
have
fe(zpe +w) = folzue +w) —eGlzue +w)
= folzug) + folzue) w+ o(jw]) — e Glzue) — € G'(2ue) w + o(e)
= Jo(zue) —€Glzue) +o(e)
= Jfol20) —eG(zue) +0(¢),
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where we have used (4.1) and (3.11), and the translation and dilation invariance of

Jo-
Therefore, we have reduced our problem to find critical points of GG. For this,
we set

B e g1 (T —=¢&
(4.2) P, €) = Glane) = /7 - W)z <u> ey
where

@3 e 2 28)aH )

2
Now we prove some lemma concerning the behavior of I'. In the first one we
compute the limit of I" as p tends to zero.

Lemma 4.3. Let T be as in (4.2). Then
linb [(p,8) =0 wuniformly in €.
n—

Proof. Thanks to (1.2), there exists 7 > 1 such that

(4.4) w=supph C B,.

We first suppose that & € R™ is such that || > 2r. Therefore, if |y| < r then
€ +yl =1l —lyl >,

and so £ +y € BS C w. This implies that

(4.5) hy+&) =0 if |¢| = 2r and |y| < 7.

Now, we observe that, using the change of variable y = z — &, T’ can be written as

o +1 (y>
T(,&)="— | hy+&: () dy.
(1, &) 011 Jon (y+&) 2 L)W

Hence, using (4.5) we have that, if || > 2r,

_ u—’Ys g+1 (y)
I, €) /|y|>rh(y+5)’z° L) dy

g+1
po y
< Grapee () [ o om
= yizr
This implies that
/Li’ys q+1 Yy

4.6 T'(p,&)| < —— maxz =) | ny.
(1.6) 1 < 275 s (1) Wil

Now, recalling (1.5), we obtain that
—2 1
zg“ <y> _ it p(n=28)(a+1)

n,s (n—2s)(g+1) ?
Z (2 + [yf?) 3
and so
+1 (Y 2 1 aft! 9 1
max z{ ( > = N(n_ @) max mEaED S M(n_ s)a+ )7
ly|>r o Wl>r (2 4 |y2) "2

for a suitable constant C' > 0 independent on p. Using this in (4.6) and recalling
(4.3), (1.2) and the fact that h is continuous, we get (up to renaming C)

(n—2s)(q+1)
2

IT(p, &) < Cp ,
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which tends to zero as g — 0. This concludes the proof in the case || > 2.
If instead || < 2r then one has

/nh(x) o (96;5) d < /m‘h(x) o+ (n—f) do

r—
< \|h||Loo(Rn)/ 23t <§> de,
|z|<r 14

thanks to (4.4), (1.2) and the fact that h is continuous.
We claim that

(4.8) / e (x - f) dx < C i (n=25)(a+1)}
|z|<r K

for some positive constant C' independent of 1 (possibly depending on r). To prove
this, we recall (1.5) and we get

/ zg'H <x—£> dr
|z|<r K

q+1 dx
= Qpg (n—25)(atD
lz|<r 2

(1 + —‘x,}&'z)

(4.7)

o4l / J M(n*25)(q+1) J
< x+/ T
T \Ja—elsu p<lo—g|<sr | — |72 @D
3r
< C <Mn +N(71725)(q+1) / pnflf(n72s)(q+1) dﬁ)
7
< C (u” 4 (=29t M*[(n*23)(q+1)*n]+)
< C (Mn _~_Mmin{n,(n72s)(q+1)})
< Cumin{n,(n72s)(q+1)}7

up to changing C' from line to line, and this shows (4.8). Therefore, by (4.2), (4.3)
and (4.7) we have that

T (1 )] < € = =23 minn(n=26)(a+1).
Hence, if (n —2s)(¢+ 1) < n we get that
[D(1.€)] < C =2,
which implies that I'(u, £) tends to zero as u — 0. If instead n < (n — 2s)(q + 1)

we obtain that
(n=25)(a7+1)

T(p, &)l < Cp™™
In this case, we observe that, since ¢ € (0,p) with p = Zf%; then ¢+ 1 < %,
and so

(n—2s)(¢g+1) n—2s 2n

2 T I
This implies that also in this case T'(u, &) tends to zero as p — 0. This concludes
the proof of Lemma 4.3. (]

Now we compute the limit of I as p + |£| tends to +oo.
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Lemma 4.4. Let T be as in (4.2). Then

lim T(u,&) =0.
pt|§[—o0
Proof. Suppose that ;1 — 4o00. Then recalling (1.2), the fact that h is continuous
and (1.5) we have
T, Ol < C ™7 Al Lr ge)s
for some positive constant C' independent on p. Therefore I'(u, ) tends to zero as
pu — +0o0.

Now suppose that u — [ for some f € [0, +00), therefore |{| — +o0. If 5 =0,
then we can use Lemma 4.3 and we get the desired result. Hence, we can suppose
that @ € (0,+00). In this case, we make the change of variable y = x — £ and we
write I' as

_H a1 (Y
(1.9) r9) =25 [ w9 () an
Since h has compact support (recall (1.2)), there exists » > 0 such that w =
supp h C B, and so (4.9) becomes

/1‘7%; q+1 <y>
4.10 D(p, &) = ~— h(y +€) 2 Z) dy.
(4.10) o=l [ st (2 )

We also notice that, since || — 400, we can suppose that |£] > 2r. Therefore, if
y € B.(=£), then |y + &| < r < |£|/2, which implies that

> 16l -ty +l > 1e - KL= L

Hence, recalling (1.5), we obtain that if y € B,.(—¢)

(v - a%j;l M(n—QS)(‘I+1)
Zh = (1 + \y|2)%
ag,t;l u(n*ZS)(qH)
|y‘(n—25)(q+1)
9(n—2s)(g+1) a%-‘;l M(n—QS)(q-‘rl)

S €] 290D

Using this, (1.2) and the fact that h is continuous into (4.10), we have that
1
s
|F(/~La £)| <Cu |§‘(n_25)(q+1) Hh||L1(R")7

for some constant independent on p and £. Since p — i € (0,+00), this implies
that
L(p,€) — 0 as [¢] — +o0,

thus concluding the proof of Lemma 4.4. O
Finally we show the following;:

Lemma 4.5. Let I' be as in (4.2). Suppose that there exists & € R™ such that
h(&) > 0 (h(&o) < O respectively). Then

lim Ly, &) = A,
pn—0 Mn_Vs

for some A > 0, possibly A = +o0 (A <0, possibly A = —o0, respectively).
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Proof. We prove the lemma only in the case h(§y) > 0, since the other case is
analogous. We notice that, by using the change of variable y = (z — £)/u, we can
rewrite I' as

(4.11) I(p, &) =

n—"ys
qg+1
< ¢ < p. In this case, we have that zy defined in

[ o+ 55" @y

2s
n—2s

Now, suppose first that

(1.5) satisfies
(4.12) 2t e LY(RM).
Then, from (4.11) we obtain

I'(p, o) 1 +1

— = h(py + &o) 2¢ dy.

=l (ny + &) 25" (y) dy
We observe that

h(py + &) 2 (y) — h(&o) 287 (y) as pu— 0.

Moreover, thanks to (1.2), the fact that A is continuous and (4.12), we have that

Iy +€0) 20 (y) < |[hll o @ny 25 (y) € L' (R™),
and so from the Dominated Convergence Theorem, we get

U, &0) — h(&) 1
T gl fp B W s =0,

2s
n—2s

h
A= q(_foi / 24 (y) dy

is strictly positive and bounded.

If instead 20" ¢ L'(R™), then we use Fatou’s Lemma to get

tinint [ h(uy+ &) o W)y > o) [ AT 0)dy,
R7 R™

H—

showing the lemma in the case < q < p. Notice that in this case

which implies that in this case A := +o00. This concludes the proof of Lemma
4.5. O

5. PROOF OF THEOREM 1.1

Now we are ready to complete the proof of Theorem 1.1.
We observe that, thanks to (1.3) and Lemma 4.5, there exist po > 0 as small as
we want and & € R™ such that

n—"7s

(5.1) T(p0, o) > “02 min{A,1} =: B.

Now, we use Lemma 4.3 to say that if x4 > 0 is sufficiently small, then
B
I(p, &) < bl for any £ € R™.
In particular, if 1 := p0/2, then

B
(5.2) [(p1,8) < bl for any £ € R™.
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Moreover, from Lemma 4.4 we deduce that there exists R, > 0 such that if p+|¢| >
R, we have

D6 < 5.

In particular, we can take pus = Ry = Ry + o + |$o] + 1 and we have that
B
(5.3) I(p,§) < 5 if either o = po and |£] < Ry or p < pg and [€] = Rs.

Now we perform our choice of R, u1 and pe in (3.1): we take p; and ps such
that (5.2) and (5.3) are satisfied, and R = Ra.
Also, we set
S = {u < p < pg and [ < R},
and we notice that I' admits a maximum in S, since I' is continuous and S is a
compact set. Moreover, thanks to (5.2) and (5.3) we have that

(5.4) T(u,€) < g if (1, €) € S.

On the other hand,

|€o| < R2 and p1 < po < pa,
which implies that (ug,&p) € S. Therefore, (5.1) and (5.4) imply that the maximum
of T is achieved at some point (j.,&,) in the interior of S.

Now, we go back to the functional G, and recalling (4.2) we obtain that G
admits a maximum z,, ¢, in the critical manifold Zy defined in (3.1). Hence, we
can apply Proposition 4.2 and we obtain the existence of a critical point of f., that
is a solution to (1.1), given by

Ute = 2,6, FW(E 2, ¢,)

Also, uj . is positive thanks to (3.11).
Furthermore, if h changes sign, then there exists £ € R™ such that h(&y) < 0,
and so we can use Lemma 4.5 to say that

s

D(7i0, &) < Foo— max{4,—1},

for some figp > 0. Then we can repeat all the above arguments (with suitable
modifications) to find a local minimum of ', and so a a local minimum of G. Then,
again from Proposition 4.2 we obtain the existence of a second positive solution.
This concludes the proof of Theorem 1.1.
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