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Abstract. In this paper we study some nonlinear elliptic equations in Rn obtained
as a perturbation of the problem with the fractional critical Sobolev exponent, that
is

(−∆)su = ε h uq + up in Rn,
where s ∈ (0, 1), n > 4s, ε > 0 is a small parameter, p = n+2s

n−2s , 0 < q < p and h is
a contionuous and compactly supported function.

To construct solutions to this equation, we use the Lyapunov-Schmidt reduction,
that takes advantage of the variational structure of the problem. For this, the case
0 < q < 1 is particularly difficult, due to the lack of regularity of the associated
energy functional, and we need to introduce a new functional setting and develop
an appropriate fractional elliptic regularity theory.
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1. Introduction

In this paper we deal with the problem

(1.1) (−∆)su = ε h uq + up in Rn,

where s ∈ (0, 1) and (−∆)s is the fractional Laplacian, that is

(−∆)su(x) = cn,s PV

∫

Rn

u(x)− u(y)
|x− y|n+2s

dy for x ∈ Rn,

where cn,s is a suitable positive constant. Moreover, n > 4s, ε > 0 is a small
parameter, p = n+2s

n−2s is the fractional critical Sobolev exponent, 0 < q < p and h is
a contionuous function that satisfies

ω := supp h is compact(1.2)
and h+ 6≡ 0.(1.3)

We will find solutions of problem (1.1) by considering it as a perturbation of the
equation

(1.4) (−∆)su = up in Rn,

with p = n+2s
n−2s . It is known that the minimizers of the Sobolev embedding in Rn

are unique, up to translations and positive dilations. Namely if we set

(1.5) z0(x) := αn,s
1

(1 + |x|2)(n−2s)/2
,

1
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then all the minimizers of the Sobolev embedding are obtained by the formula

(1.6) zµ,ξ(x) := µ(2s−n)/2 z0

(
x− ξ
µ

)
,

where µ > 0, ξ ∈ Rn. The normalizing constant αn,s depends only on n and s
(see [28], [35], [17] and the references therein), and the explicit value of αn,s is not
particularly relevant in our framework. Notice also that equation (1.4) is the Euler
Lagrange equation of this Sobolev embedding minimization problem.

It has been showed in [17] that solutions to (1.4) of the form (1.6) are nondegen-
erate. Namely, setting ∂µzµ,ξ and ∂ξzµ,ξ the derivative of zµ,ξ with respect to the
parameters µ and ξ respectively, then all bounded solutions of the linear equation

(−∆)sψ = p zp−1
µ,ξ ψ in Rn

are linear combinations of ∂µzµ,ξ and ∂ξzµ,ξ. We also refer to [22], where the
nondegeneracy result was proved in detail for s = 1/2 and n = 3 (but the proof
can be extended in higher dimensions and for fractional exponents s ∈ (0, n/2) as
well).

We set

[u]2
Ḣs(Rn)

:=
∫∫

R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy,

and we define the space Ḣs(Rn) as the completion of the space of smooth and
rapidly deceasing functions (the so-called Schwartz space) with respect to the norm
[u]Ḣs(Rn) + ‖u‖L2∗ (Rn), where

2∗ =
2n

n− 2s
is the fractional critical exponent.

We also introduce the space

Xs := Ḣs(Rn) ∩ L∞(Rn),

equipped with the norm

‖u‖Xs := [u]Ḣs(Rn) + ‖u‖L∞(Rn).

Given f ∈ Lβ(Rn), where β := 2n
n+2s , we say that u ∈ Xs is a (weak) solution to

(−∆)su = f in Rn if
∫∫

R2n

(
u(x)− u(y)

) (
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dx dy =

∫

Rn
f ϕ dx,

for any ϕ ∈ Xs.
We prove the following:

Theorem 1.1. Suppose that h is a continuous function that satisfies (1.2) and
(1.3). Then, there exist ε0 > 0, µ1 > 0 and ξ1 ∈ Rn such that problem (1.1) has a
positive solution u1,ε for any ε ∈ (0, ε0), and u1,ε → zµ1,ξ1 in Xs as ε→ 0.

Also, if h changes sign, then for any ε ∈ (0, ε0) there exists a second positive
solution u2,ε to (1.1) that, as ε→ 0, converges in Xs to zµ2,ξ2 with µ2 > 0, µ2 6= µ1,
and ξ2 ∈ Rn, ξ2 6= ξ1.
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In order to prove Theorem 1.1 we will use a Lyapunov-Schmidt reduction, that
takes advantage of the variational structure of the problem. Indeed, positive solu-
tions to (1.1) can be found as critical points of the functional fε : Xs → R defined
by

fε(u) :=
cn,s
2

∫∫

R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy(1.7)

− ε

q + 1

∫

Rn
h(x)uq+1

+ (x) dx− 1
p+ 1

∫

Rn
up+1

+ (x) dx.

We notice that fε can be written as

(1.8) fε(u) = f0(u)− εG(u),

where

(1.9) f0(u) :=
cn,s
2

∫∫

R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy − 1
p+ 1

∫

Rn
up+1

+ (x) dx

and

(1.10) G(u) :=
1

q + 1

∫

Rn
h(x)uq+1

+ (x) dx.

Indeed, we will use a perturbation method that allows us to find critical points of
fε by bifurcating from a manifold of critical points of the unperturbed functional
f0 (see for instance [6] for the abstract method).

Notice that critical points of f0 are solutions to (1.4), and so, in order to construct
solutions to (1.1), we will start from functions of the form (1.6) and we will add
a small error to them in such a way that we obtain solutions to the perturbed
problem.

This small error will be found by means of the Implicit Function Theorem. To
do this, a crucial ingredient will be the nondegeneracy condition proved in [17] for
zµ,ξ, but the application of the linear theory in our case is non-standard and it
requires a pointwise control of the functional spaces.

Roughly speaking, one additional difficulty for us is indeed that when q < 1 the
energy functional is not smooth at the zero level set, and so the classical Implicit
Function Theorem cannot be applied, unless we can avoid the singularity. For this,
the classical Hilbert space framework is not enough, and we have to keep track of
the pointwise behavior of the functions inside our functional analysis framework.
This is for instance the main reason for which we work in the more robust space Xs

rather than in the more classical space Ḣs(Rn).
Of course, the change of functional setting produces some difficulties in the

invertibility of the operators, since the Hilbert-Fredholm theory does not directly
apply, and we will have to compensate it by an appropriate elliptic regularity theory.

Once these difficulties are overcome, the Lyapunov-Schmidt reduction allows us
to reduce our problem to the one of finding critical points of the perturbation G,
introduced in (1.10). For this, we set

(1.11) Γ(µ, ξ) := G(zµ,ξ),

where zµ,ξ has been introduced in (1.6). The study of the behavior of Γ will give
us the existence of critical points of G, and so the existence of solution to (1.1).

There is a huge literature concerning the search of solutions for this kind of
perturbative problems in the classical case, i.e. when s = 1 and the fractional
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Laplacian boils down to the classical Laplacian, see [1, 2, 3, 4, 5, 8, 10, 14, 15, 29, 30].
In particular, Theorem 1.1 here can be seen as the nonlocal counterpart of Theorem
1.3 in [2]. See also [25], where the concave term appears for the first time.

In the fractional case, the situation is more involved. Namely, the nonlocal
Schrödinger equation has recently received a growing attention not only for the
challenging mathematical difficulties that it offers, but also due to some important
physical applications (see e.g. [27], the appendix in [16], and the references therein).
In the subcritical case, this nonlocal Schrödinger equation can be written as

ε2s(−∆)su+ V (x)u = up in Rn,

with 1 < p < n+2s
n−2s and V a smooth potential. Multi-peak solutions for this type

of equations were considered recently in [18]. Also in this case, a key ingredient in
the proof is the uniqueness and nondegeneracy of the ground state solution of the
corresponding unperturbed problem, which has been proved in [24] for any s ∈ (0, 1)
and in any dimension, after previous works in dimension 1 (see [23]) and for s close
to 1 (see [21]).

Moreover, given a bounded domain Ω ⊂ Rn, the Dirichlet problem
{
ε2s(−∆)su+ u = up in Ω,
u = 0 in Rn \ Ω,

was considered in [16], where the authors constructed solutions that concentrate at
the interior of the domain.

Concentrating solutions for fractional problems involving critical or almost crit-
ical exponents were considered in [13]. See also [11] for some concentration phe-
nomena in particular cases and [32] for the study of the soliton dynamics in related
problems. See also [12] for a semilinear problem with critical power, related to
the scalar curvature problem, that also exploits a Lyapunov-Schmidt reduction. It
is worth pointing out that, in our case, the presence of the subcritical, possibly
sublinear, power in our problem introduces extra difficulties that have required the
development of certain elliptic regularity theory, and the careful analysis of the
corresponding functional framework. Notice indeed that for sublinear powers q
the energy functional experiences a loss of regularity, so the standard functional
analysis methods are not directly available and several technical modifications are
needed.

In particular, we perform here a detailed analysis of the linearized equation, that
is the key ingredient to use the Lyapunov-Schmidt arguments. We think that these
results are of independent interest and can be useful elsewhere.

The paper is organized as follows. In Section 2 we show some auxiliary fractional
elliptic estimates needed in the subsequent sections. In Section 3 we perform the
Lyapunov-Schmidt reduction, with the detailed study of the linearized equation,
and the associated functional analysis theory. Section 4 is devoted to the study of
the behavior of Γ, as defined in (1.11). Finally, in Section 5 we complete the proof
of Theorem 1.1.

2. Fractional elliptic estimates

Here we obtain some uniform elliptic estimates on Riesz potential (though the
topic is of classical flavor in harmonic analysis, we could not find in the literature a
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statement convenient for our purposes). These estimates will be used in Section 3
in order to obtain the continuity properties of our functionals.

We recall that

Hs(Rn) = {u : Rn → R measurable s.t. ‖u‖L2(Rn) + [u]Ḣs(Rn) < +∞}.
To start with, we point out that the fractional Sobolev inequality holds in Xs,

thanks to a simple limit procedure:

Lemma 2.1. Let n > 2s. Let f : Rn → R be a measurable function. Suppose that
there exists a sequence of functions fk ∈ Hs(Rn) such that fk → f in Ḣs(Rn) and
a.e. in Rn. Then

(2.1) ‖f‖L2∗ (Rn) 6 C [f ]Ḣs(Rn),

for some C > 0 depending on n and s. In particular, the inequality in (2.1) holds
true for any f ∈ Xs.

Proof. For each k ∈ N, we have that fk ∈ Hs(Rn), so we can apply the fractional
Sobolev inequality (see e.g. Theorem 6.5 in [19]) and obtain

(2.2) ‖fk‖L2∗ (Rn) 6 C [fk]Ḣs(Rn).

Since

lim
k→+∞

[fk]Ḣs(Rn) 6 lim
k→+∞

[fk − f ]Ḣs(Rn) + [f ]Ḣs(Rn) 6 [f ]Ḣs(Rn)

and, by Fatou Lemma,

lim inf
k→+∞

‖fk‖L2∗ (Rn) =
[
lim inf
k→+∞

∫

Rn
|fk(x)|2∗ dx

]1/2∗

>
[∫

Rn
|f(x)|2∗ dx

]1/2∗

= ‖f‖L2∗ (Rn),

we can pass to the limit in (2.2) and obtain (2.1). �

Here is the fractional elliptic regularity needed for our goals:

Theorem 2.2. Let n > 4s. Let β := 2n/(n+ 2s) and ψ ∈ Lβ(Rn). Let also

(2.3) Jψ(x) :=
∫

Rn

ψ(y)
|x− y|n−2s

dy.

Then:

Jψ ∈ L2∗(Rn), and ‖Jψ‖L2∗ (Rn) 6 C ‖ψ‖Lβ(Rn);(2.4)

Jψ ∈ Ḣs(Rn), and [Jψ]Ḣs(Rn) 6 C ‖ψ‖Lβ(Rn);(2.5)

(−∆)s(Jψ) = cψ in the weak sense, i.e.(2.6)
∫∫

R2n

(
(Jψ)(x)− (Jψ)(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy = c

∫

Rn
ψ(x)φ(x) dx

for any φ ∈ Xs;
if, in addition, it holds that ψ ∈ L∞(Rn), then Jψ ∈ L∞(Rn),(2.7)

and ‖Jψ‖L∞(Rn) 6 C
(
‖ψ‖L∞(Rn) + ‖ψ‖Lβ(Rn)

)
.
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Here above, C and c are suitable positive constants1 only depending on n and s.

Proof. The claim in (2.4) follows from an appropriate version of the Hardy-Littlewood-
Sobolev inequality, namely Theorem 1 on page 119 of [34], used here with α := 2s,
p := β and q := 2∗.

Now we take a sequence of smooth and rapidly decreasing functions ψj that
converge to ψ in Lβ(Rn), and we set Ψj := Jψj . We also set Ψ := Jψ. Thus,
by (2.4), we have that

‖Ψj −Ψ‖L2∗ (Rn) = ‖J(ψj − ψ)‖L2∗ (Rn) 6 C‖ψj − ψ‖Lβ(Rn) → 0

as j → +∞. Thus, up to a subsequence,

(2.8) Ψj → Ψ a.e. in Rn.

Moreover, by Lemma 2(b) in [34], we have that

(2.9)
∫

Rn
(Jψj)(x) g(x) dx = c

∫

Rn
ψ̂j(ξ) |ξ|−2s ĝ(ξ) dξ,

for some c > 0, for every g that is smooth and rapidly decreasing (and possibly
complex valued). As standard, we have denoted by ĝ = Fg the Fourier transform
of g.

Now, for any φ smooth and rapidly decreasing and any δ > 0, we take gδ to be
the inverse Fourier transform of (|ξ|2 + δ)sφ̂, in symbols gδ := F−1

(
(|ξ|2 + δ)sφ̂

)
.

We remark that (|ξ|2 + δ)sφ̂ is smooth and rapidly decreasing, hence so is gδ.
Accordingly, (2.9) implies that

(2.10)
∫

Rn
(Jψj)(x) gδ(x) dx = c

∫

Rn
ψ̂j(ξ) |ξ|−2s (|ξ|2 + δ)sφ̂(ξ) dξ.

We claim that

(2.11) gδ → F−1(|ξ|2sφ̂) in L2(Rn), as δ → 0.

To check this, we use Plancherel Theorem to compute

‖gδ − F−1(|ξ|2sφ̂)‖2L2(Rn) = ‖ĝδ − |ξ|2sφ̂‖2L2(Rn)

=
∥∥[(|ξ|2 + δ)s − |ξ|2s] φ̂

∥∥2

L2(Rn)
=
∫

Rn

∣∣(|ξ|2 + δ)s − |ξ|2s
∣∣2 |φ̂(ξ)|2 dξ.

(2.12)

Then we observe that, if δ ∈ (0, 1),
∣∣(|ξ|2 + δ)s − |ξ|2s

∣∣2 6 4(|ξ|2 + 1)2s

and the function ξ 7→ (|ξ|2 + 1)2s |φ̂(ξ)|2 belongs to L1(Rn), since φ̂ is also rapidly
decreasing, thus (2.11) follows from (2.12) and the Dominated Convergence Theo-
rem.

Moreover, since ψj is rapidly decreasing, a direct computation with convolutions
(see e.g. Lemma 5.1 in [16]) gives that

(2.13) |Jψj(x)| 6 Cj
1 + |x|n−2s

,

for some Cj > 0. In particular, since n > 4s, we have that

(2.14) Ψj = Jψj ∈ L2(Rn).

1In the sequel, for simplicity we will just take c = 1 in (2.6). This can be accomplished simply

by renaming J to c−1J .
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As a matter of fact, the derivatives of ψj are rapidly decreasing as well and ∇Ψj =
J(∇ψj), thus the argument above also shows that ∇Ψj ∈ L2(Rn,Rn), and so

(2.15) Ψj ∈ H1(Rn).

Using (2.11), (2.14) and the Plancherel Theorem, we conclude that

lim
δ→0

∫

Rn
(Jψj)(x) gδ(x) dx =

∫

Rn
Ψj(x) F−1(|ξ|2sφ̂)(x) dx

=
∫

Rn
Ψ̂j(ξ) |ξ|2sφ̂(ξ) dξ =

∫

Rn
|ξ|2sΨ̂j(ξ) φ̂(ξ) dξ.

(2.16)

Now we point out that, for δ ∈ (0, 1),
∣∣∣|ξ|−2s (|ξ|2 + δ)sφ̂(ξ)

∣∣∣ 6 |ξ|−2s (|ξ|2 + 1)s|φ̂(ξ)|

and this function is in L1(Rn), since n > 2s. Accordingly, the Dominated Conver-
gence Theorem gives that

lim
δ→0

∫

Rn
ψ̂j(ξ) |ξ|−2s (|ξ|2 + δ)sφ̂(ξ) dξ =

∫

Rn
ψ̂j(ξ) φ̂(ξ) dξ.

This, (2.10) and (2.16) imply that

(2.17)
∫

Rn
|ξ|2sΨ̂j(ξ) φ̂(ξ) dξ = c

∫

Rn
ψ̂j(ξ) φ̂(ξ) dξ = c

∫

Rn
ψj(x)φ(x) dx,

for any φ smooth and rapidly decreasing.
Now we fix j ∈ N and make use of (2.15): accordingly, by density, we find a

sequence Ψj,k of smooth and rapidly decreasing functions that converge to Ψj in
H1(Rn) as k → +∞.

In particular, Ψj,k → Ψj in L2(Rn) and so, by Plancherel Theorem, also Ψ̂j,k →
Ψ̂j in L2(Rn), as k → +∞. Moreover, |ξ|2s 6 1 if |ξ| 6 1 and |ξ|2s 6 |ξ|2 if |ξ| > 1,
thus

(2.18) |ξ|2s 6 1 + |ξ|2.
Consequently∫

Rn
|ξ|2s

∣∣Ψ̂j,k(ξ)− Ψ̂j(ξ)
∣∣2 dξ 6

∫

Rn
(1 + |ξ|2)

∣∣F
(
Ψj,k(ξ)−Ψj(ξ)

)∣∣2 dξ

6 C‖Ψj,k −Ψj‖2H1(Rn) → 0
(2.19)

as k → +∞, and therefore

lim
k→+∞

∫

Rn
|ξ|2sΨ̂j(ξ) Ψ̂j,k(ξ) dξ =

∫

Rn
|ξ|2s|Ψ̂j(ξ)|2 dξ.

Then we apply (2.17) with φ := Ψj,k; therefore we see that
∫

Rn
|ξ|2s|Ψ̂j(ξ)|2 dξ = lim

k→+∞

∫

Rn
|ξ|2sΨ̂j(ξ) Ψ̂j,k(ξ) dξ

= lim
k→+∞

c

∫

Rn
ψ̂j(ξ) Ψ̂j,k(ξ) dξ = c

∫

Rn
ψ̂j(ξ) Ψ̂j(ξ) dξ..

Thus, by the Hölder Inequality with exponents β and 2n/(n− 2s), we obtain
∫

Rn
|ξ|2s|Ψ̂j(ξ)|2 dξ = c

∫

Rn
ψj(ξ) Ψj(ξ) dξ

6 c ‖ψj‖Lβ(Rn) ‖Ψj‖L2∗ (Rn) 6 C ‖ψj‖2Lβ(Rn),
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where (2.4) was used in the last step.
This (together with the equivalence of the seminorm in Hs(Rn), see Proposition

3.4 in [19]) says that
∫∫

R2n

|Ψj(x)−Ψj(y)|2
|x− y|n+2s

dx dy 6 C‖ψj‖2Lβ(Rn).

So we recall (2.8) and we take limit as j → +∞, obtaining, by Fatou Lemma and
the fact that ψj → ψ in Lβ(Rn), that

∫∫

R2n

|Ψ(x)−Ψ(y)|2
|x− y|n+2s

dx dy 6 C‖ψ‖2Lβ(Rn),

that establishes the estimate in (2.5).
Now we show that Ψ = Jψ ∈ Ḣs(Rn). For this, we notice that, since ψ ∈

Lβ(Rn), there exists a sequence of smooth and rapidly decreasing functions ψj
such that ψj converges to ψ in Lβ(Rn) as j → +∞. So, thanks to the estimates in
(2.4) and (2.5), we have that

‖Jψ − Jψj‖L2∗ (Rn) = ‖J(ψ − ψj)‖L2∗ (Rn) 6 C ‖ψ − ψj‖Lβ(Rn) → 0,

and
[Jψ − Jψj ]Ḣs(Rn) = [J(ψ − ψj)]Ḣs(Rn) 6 C ‖ψ − ψj‖Lβ(Rn) → 0,

as j → +∞. Therefore, setting Ψj := Jψj , the last two formulas say that

(2.20) Ψj converges to Ψ in L2∗(Rn) and in Ḣs(Rn) as j → +∞.

Moreover, we observe that, by (2.15), there exists a sequence of smooth and rapidly
decreasing functions Ψj,k such that Ψj,k converges to Ψj in H1(Rn) as k → +∞,
and so Ψj,k converges to Ψj in Hs(Rn) as k → +∞, thanks to (2.19). By the
Sobolev immersion (see Theorem 6.5 in [19]), we have that Ψj,k converges to Ψj in
L2∗(Rn) as k → +∞. Hence, using also (2.20) we obtain that Ψ = Jψ ∈ Ḣs(Rn),
and this concludes the proof of (2.5).

Now we prove (2.6). For this, we use (2.5) to see that
∫∫

R2n

∣∣(Ψj −Ψ)(x)− (Ψj −Ψ)(y)
∣∣2

|x− y|n+2s
dx dy = [Ψj −Ψ]2

Ḣs(Rn)

= [J(ψj − ψ)]2
Ḣs(Rn)

6 C ‖ψ − ψj‖2Lβ(Rn) → 0

as j → +∞. This says that the sequence of functions

Mj(x, y) :=
Ψj(x)−Ψj(y)

|x− y|n+2s
2

converges to the function

M(x, y) :=
Ψ(x)−Ψ(y)

|x− y|n+2s
2

in L2(R2n). In particular, this implies weak convergence in L2(R2n), that is

lim
j→+∞

∫∫

R2n
Mj(x, y) γ(x, y) dx dy =

∫∫

R2n
M(x, y) γ(x, y) dx dy

for any γ ∈ L2(R2n).
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Thus, if φ is smooth and rapidly decreasing, we can take

γ(x, y) :=
φ(x)− φ(y)

|x− y|n+2s
2

and obtain that

lim
j→+∞

∫∫

R2n

(
Ψj(x)−Ψj(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy

=
∫∫

R2n

(
Ψ(x)−Ψ(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy.

Moreover, since ψj converges to ψ in Lβ(Rn), we have that

lim
j→+∞

∫

Rn
ψj(x)φ(x) dx =

∫

Rn
ψ(x)φ(x) dx.

Consequently, we can pass to the limit (2.17) and obtain (2.6) for any φ which is
smooth and rapidly decreasing.

It remains to establish (2.6) for any φ ∈ Xs. For this, we fix φ ∈ Xs and we
take a sequence φk of smooth and rapidly decreasing functions that converge to φ
in Ḣs(Rn), and so, by Lemma 2.1, also in L2∗(Rn). Also, we know that Ψ ∈ Ḣs(Rn),
thanks to (2.5). In particular, by Cauchy-Schwarz and Hölder inequalities, we
obtain that∣∣∣∣∣

∫∫

R2n

(
Ψ(x)−Ψ(y)

) (
(φ− φk)(x)− (φ− φk)(y)

)

|x− y|n+2s
dx dy

∣∣∣∣∣
6 [Ψ]Ḣs(Rn) [φ− φk]Ḣs(Rn) → 0

and
∣∣∣∣
∫

Rn
ψ(x)

(
φ(x)− φk(x)

)
dx

∣∣∣∣ 6 ‖ψ‖Lβ(Rn) ‖φ− φk‖L2∗ (Rn) → 0

as k → +∞. Therefore, we can write (2.6) for the smooth and rapidly decreasing
functions φk, pass to the limit in k, and so obtain (2.6) for φ ∈ Xs. This completes
the proof of (2.6).

Now we prove (2.7). For this, we use the Hölder Inequality with exponents β
and 2n/(n− 2s) to calculate

|Jψ(x)| 6
∫

Rn

|ψ(x− y)|
|y|n−2s

dy

6
∫

B1

‖ψ‖L∞(B1)

|y|n−2s
dy +

∫

Rn\B1

|ψ(x− y)|
|y|n−2s

dy

6 C ‖ψ‖L∞(B1) +

[∫

Rn\B1

|ψ(x− y)|β dy
] 1
β
[∫

Rn\B1

dy

|y|2n dy
]n−2s

2n

6 C
(
‖ψ‖L∞(Rn) + ‖ψ‖Lβ(Rn)

)
,

and this establishes (2.7). �

We establish now a generalization of Theorem 8.2 in [20], that will provide us
an L∞ estimate for the solutions of some general kind of subcritical and critical
problems in Rn.
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Theorem 2.3. Let u ∈ Ḣs(Rn) be a solution of

(−∆)su =
K∑

i=1

hiu
γi + f in Rn,

with hi ∈ L∞(Rn) and 0 6 γi 6 2∗ − 1 for every i = 1, . . . ,K < +∞, and
f ∈ Lm(Rn), f > 0, with m ∈

(
n
2s ,+∞

]
. Then

‖u‖L∞(Rn) 6 C,

where C > 0 is a constant depending on n, s, ‖u‖L2∗ (Rn), ‖hi‖L∞(Rn) and ‖f‖Lm(Rn).

Proof. Let 0 < δ < 1 to be chosen later, and define

(2.21) φ(x) :=
δΓu(x)
‖u‖L2∗ (Rn)

, x ∈ Rn,

where Γ := max16i6K {γi}. Thus,

(2.22) ‖φ‖L2∗ (Rn) = δΓ,

and

(2.23) (−∆)sφ =
K∑

i=1

h̃iφ
γi +

δΓ

‖u‖L2∗ (Rn)

f in Rn,

where h̃i(x) := hi(x) δΓ−γi

‖u‖1−γi
L2∗ (Rn)

. Now, for every integer k ∈ N, let us define Ak :=

1− 2−k and the functions

wk(x) := (φ(x)−Ak)+, for every x ∈ Rn.

By construction, wk ∈ Ḣs(Rn) and wk+1(x) 6 wk(x) a.e. in Rn. Moreover,
following [20] it can be checked that for any k ∈ N,

(2.24) {wk+1 > 0} ⊆ {wk > 2−(k+1)}

and

(2.25) φ(x) < 2k+1wk(x) for any x ∈ {wk+1 > 0}.

Consider now

Uk := ‖wk‖2
∗

L2∗ (Rn).

Thus, applying (8.10) of [20] with v := φ− (1−Ak) we obtain

[wk+1]2
Ḣs(Rn)

=
∫∫

R2n

|wk+1(x)− wk+1(y)|2
|x− y|n+2s

dx dy

6
∫∫

R2n

(φ(x)− φ(y))(wk+1(x)− wk+1(y))
|x− y|n+2s

dx dy,
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and thus, using wk+1 as a test function in (2.23) and applying (2.25) and the
monotonicity of wk we obtain

[wk+1]2
Ḣs(Rn)

6
K∑

i=1

∫

{wk+1>0}
h̃iφ

γiwk+1 dx+
δΓ

‖u‖L2∗ (Rn)

∫

{wk+1>0}
fwk+1 dx

6
K∑

i=1

‖h̃i‖L∞(Rn)2γi(k+1)

∫

{wk+1>0}
wγik wk+1 dx

+
δΓ

‖u‖L2∗ (Rn)

∫

{wk+1>0}
fwk+1 dx

6
K∑

i=1

‖h̃i‖L∞(Rn)2γi(k+1)

∫

{wk+1>0}
wγi+1
k , dx

+
δΓ

‖u‖L2∗ (Rn)

∫

{wk+1>0}
fwk dx.(2.26)

On the other hand, by (2.24)

Uk = ‖wk‖2
∗

L2∗ (Rn) >
∫

{wk>2−(k+1)}
w2∗
k dx

> 2−2∗(k+1)|{wk > 2−(k+1)}| > 2−2∗(k+1)|{wk+1 > 0}|,

and thus,

(2.27) |{wk+1 > 0}| 6 22∗(k+1)Uk.

Hence, applying Hölder inequality and this estimate in (2.26), it yields

[wk+1]2
Ḣs(Rn)

6
K∑

i=1

‖h̃i‖L∞(Rn)2γi(k+1)‖wk‖γi+1

L2∗ (Rn)
|{wk+1 > 0}|1−

γi+1
2∗

+
δΓ

‖u‖L2∗ (Rn)

‖f‖Lm(Rn)‖wk‖L2∗ (Rn)|{wk+1 > 0}|β

6
K∑

i=1

‖h̃i‖L∞(Rn)2(k+1)(2∗−1)Uk

+
δΓ

‖u‖L2∗ (Rn)

‖f‖Lm(Rn)22∗(k+1)βU
1−1/m
k ,
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where β := 1− 1
m − 1

2∗ . Combining this estimate with Lemma 2.1, we get

Uk+1 6 C[wk+1]2
∗

Ḣs(Rn)
= C([wk+1]2

Ḣs(Rn)
)2∗/2

6 C

(
K∑

i=1

‖h̃i‖L∞(Rn)2(k+1)(2∗−1)Uk +
δΓ

‖u‖L2∗ (Rn)

‖f‖Lm(Rn)22∗(k+1)βU
1−1/m
k

)2∗/2

6
[ [(

1 + C
K∑

i=1

‖h̃i‖L∞(Rn)

)
2(2∗−1)

]k+1

Uk

+

[(
1 + C

δΓ

‖u‖L2∗ (Rn)

‖f‖Lm(Rn)

)
22∗β

]k+1

U
1−1/m
k

]2∗/2

6
[ [(

1 + C
K∑

i=1

‖hi‖L∞(Rn)‖u‖γi−1

L2∗ (Rn)

)
2(2∗−1)

]k+1

Uk

+

[(
1 + C

‖f‖Lm(Rn)

‖u‖L2∗ (Rn)

)
22∗β

]k+1

U
1−1/m
k

]2∗/2

6
(
Ck+1

1 Uk + Ck+1
2 U

1−1/m
k

)2∗/2
,

where C1, C2 > 1 depend only on n, s, ‖u‖L2∗ (Rn), ‖hi‖L∞(Rn) and ‖f‖Lm(Rn). We
claim now that there exists η ∈ (0, 1) such that

(2.28) U
2/2∗

k 6 δ2Γηk, ∀k ∈ N.

To prove this, we proceed by induction. Indeed,

U
2/2∗

0 =
(
‖w0‖2

∗

L2∗ (Rn)

)2/2∗

6 ‖φ‖2L2∗ (Rn) = δ2Γ,

thanks to (2.22). Now we suppose that the claim is true for Uk. Then,

U
2/2∗

k+1 6 Ck+1
1 Uk + Ck+1

2 U
1−1/m
k

6 Ck+1
1 (δ2Γηk)2∗/2 + Ck+1

2 (δ2Γ(1−1/m)ηk(1−1/m))2∗/2.

Since m > n
2s one has that 2∗

2

(
1− 1

m

)
> 1, and thus there exist positive constants

α1 and α2 such that

2∗

2
= 1 + α1 and

2∗

2

(
1− 1

m

)
= 1 + α2.

Hence,

U
2/2∗

k+1 6 Ck+1
1 (δ2Γηk)1+α1 + Ck+1

2 (δ2Γηk)1+α2

= δ2Γηk
(
(C1η

α1)kC1δ
2Γα1 + (C2η

α2)kC2δ
2Γα2

)
.(2.29)

We set now

η := min

(
1

C
1/α1
1

,
1

C
1/α2
2

)
,

and

δΓ := min

((
η

2C1

)1/2α1

,

(
η

2C2

)1/2α2
)
.
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Notice that, since C1, C2 > 1 and α1, α2 > 0, we obtain that η, δ ∈ (0, 1). Thus,

C1η
α1 6 1, C2η

α2 6 1,

and
C1δ

2Γα1 6 η

2
, C2δ

2Γα2 6 η

2
.

Substituting in (2.29) the claim follows.
Hence, taking limits in (2.28) we get

(2.30) lim
k→∞

Uk = 0.

Moreover, since 0 6 wk 6 |φ| ∈ L2∗(Rn) for any k ∈ N and lim
k→∞

wk = (φ− 1)+ a.e.

in Rn, by the Dominated Convergence Theorem we get

lim
k→∞

Uk = ‖(φ− 1)+‖2∗L2∗ (Rn) = 0,

and therefore φ 6 1 a.e. in Rn. By repeating the proof with −φ instead of φ
we conclude that ‖φ‖L∞(Rn) 6 1. Thus, recalling the definition of φ in (2.21), we
conclude that

‖u‖L∞(Rn) 6
‖u‖L2∗ (Rn)

δΓ
,

with δ ∈ (0, 1) fixed. This concludes the proof of Lemma 2.3. �

3. The Lyapunov-Schmidt reduction

In this section we perform the Lyapunov-Schmidt reduction. Since the argument
is delicate and involves many lemmata, we prefer to develop it in different steps.

3.1. Preliminaries on the functional setting. Given 0 < µ1 < µ2 and R > 0,
we define the manifold

(3.1) Z0 := {zµ,ξ s.t. µ1 < µ < µ2, |ξ| < R},
where zµ,ξ was introduced in (1.6). We will perform our choice of R, µ1 and µ2

later on. Notice that the functions in Z0 are critical points of f0, as defined in (1.9).
We will often implicitly identify Z0 with the subdomain (µ1, µ2) × BR of Rn+1

described by coordinates (µ, ξ).
In order to apply the abstract variational method discussed in the introduction,

we would need in principle the functional fε defined in (1.7) to be C2 on Ḣs(Rn).
Unfortunately, this is not true if q < 1, and therefore, in order to treat the whole
set of values q ∈ (0, p), we recall that ω is the support of the function h and we set

a := inf{zµ,ξ(x) s.t. x ∈ ω, µ1 < µ < µ2, |ξ| < R},
V := {w ∈ Xs s.t ‖w‖Xs < a/2}

and U := {u := zµ,ξ + w s.t. zµ,ξ ∈ Z0, w ∈ V } .(3.2)

We observe that, if u ∈ U and x ∈ ω, then

u(x) = zµ,ξ(x) + w(x) > a− ‖w‖L∞(Rn) > a− ‖w‖Xs > a− a

2
=
a

2
,

and so

(3.3) u(x) >
a

2
> 0 for any x ∈ ω.

Therefore, recalling (1.10), we obtain that the functional G is C2 on U . Hence, also
fε : U → R is of class C2.
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Now, we set

(3.4) qj :=
∂zµ,ξ
∂ξj

, j = 1, . . . , n, and qn+1 :=
∂zµ,ξ
∂µ

,

and we notice that qj satisfies

(3.5) (−∆)sqj = pzp−1
µ,ξ qj in Rn

for every j = 1, . . . , n+ 1. We also denote by

Tzµ,ξZ0 := span {q1, . . . , qn+1}
the tangent space to Z0 at zµ,ξ.

Moreover, 〈·, ·〉 denotes the scalar product in Ḣs(Rn), that is, for any v1, v2 ∈
Ḣs(Rn),

〈v1, v2〉 =
∫∫

R2n

(
v1(x)− v1(y)

) (
v2(x)− v2(y)

)

|x− y|n+2s
dx dy.

We also define the notion of orthogonality with respect to such scalar product and
we denote it by ⊥. That is, we set

(
Tzµ,ξZ0

)⊥ :=
{
v ∈ Ḣs(Rn) s.t. 〈v, φ〉 = 0 for all φ ∈ Tzµ,ξZ0

}
.

In particular, we prove the following orthogonality result.

Lemma 3.1. There exist λi = λi(µ, ξ), for i = 1, . . . , n+ 1, such that

〈qi, qj〉 =
{

0 if i 6= j,
λi if i = j,

and
inf

µ∈(µ1,µ2)
|ξ|<R

i∈{1,...,n+1}

λi(µ, ξ) > 0.

Proof. For any r > 0, we write

z̄(r) :=
αn,s

(1 + r)(n−2s)/2
.

In this way z0(x) = z̄(|x|2) and so

zµ,ξ(x) = µ(2s−n)/2z̄

( |x− ξ|2
µ2

)
.

So we obtain that
∂zµ,ξ
∂ξi

(x) = µ(2s−n)/2z̄′
( |x− ξ|2

µ2

)
2(ξi − xi)

µ2

and therefore
∂zµ,ξ
∂ξi

(y + ξ) = µ(2s−n)/2z̄′
( |y|2
µ2

)
2(−yi)
µ2

,

which is odd in the variable yi.
Similarly,

∂zµ,ξ
∂µ

(x) =
2s− n

2
µ(2s−n−2)/2z̄

( |x− ξ|2
µ2

)
− µ(2s−n)/2z̄′

( |x− ξ|2
µ2

)
2|x− ξ|2

µ3
,

thus

(3.6)
∂zµ,ξ
∂µ

(y + ξ) =
2s− n

2
µ(2s−n−2)/2z̄

( |y|2
µ2

)
− µ(2s−n)/2z̄′

( |y|2
µ2

)
2|y|2
µ3

,
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that is even in any of the variables yi.
Notice also that

zµ,ξ(y + ξ) = µ(2s−n)/2z̄

( |y|2
µ2

)
,

which is also even in any of the variables yi. As a consequence, using the change
of variable x = y + ξ we obtain that, for any i, j ∈ {1, . . . , n},

∫

Rn
zp−1
µ,ξ (x)

∂zµ,ξ
∂ξi

(x)
∂zµ,ξ
∂ξj

(x) dx

=
∫

Rn
zp−1
µ,ξ (y + ξ)

∂zµ,ξ
∂ξi

(y + ξ)
∂zµ,ξ
∂ξj

(y + ξ) dy

=
∫

Rn
µ(2s−n)(p+1)/2z̄p−1

( |y|2
µ2

)
(z̄′)2

( |y|2
µ2

)
4yiyj
µ2

dy

=
{

0 if i 6= j,
c1 if i = j,

(3.7)

for some c1 > 0, which is bounded from zero uniformly.
Similarly, for any i ∈ {1, . . . , n},

∫

Rn
zp−1
µ,ξ (x)

∂zµ,ξ
∂ξi

(x)
∂zµ,ξ
∂µ

(x) dx = 0.(3.8)

Finally, we observe that z̄ is positive and decreasing, thus both z̄ and −z̄′ are
positive: this says that the right hand side of (3.6) is positive, and indeed bounded
from zero uniformly. Hence we obtain that

(3.9)
∫

Rn
zp−1
µ,ξ (x)

(
∂zµ,ξ
∂µ

(x)
)2

dx = c2

with c2 > 0 and bounded from zero uniformly.
Now, to make the notation uniform, we take ζ, η ∈ {ξ1, . . . , ξn, µ} and we con-

sider the derivatives of zµ,ξ with respect to ζ and η. Then we have that the quantity
〈
∂zµ,ξ
∂ζ

,
∂zµ,ξ
∂η

〉

is equal, up to dimensional constants, to∫

Rn
(−∆)s/2

∂zµ,ξ
∂ζ

(x) (−∆)s/2
∂zµ,ξ
∂η

(x) dx

=
∫

Rn
(−∆)s

∂zµ,ξ
∂ζ

(x)
∂zµ,ξ
∂η

(x) dx

=
∫

Rn

∂

∂ζ
(−∆)szµ,ξ(x)

∂zµ,ξ
∂η

(x) dx

=
∫

Rn

∂

∂ζ
zpµ,ξ(x)

∂zµ,ξ
∂η

(x) dx

= p

∫

Rn
zp−1
µ,ξ (x)

∂zµ,ξ
∂ζ

(x)
∂zµ,ξ
∂η

(x) dx,

hence the desired result follows from (3.7), (3.8) and (3.9). �
Concerning the statement of Lemma 3.1, we point out that the proof shows that λ1 =
· · · = λn (while λn+1 could be different), but in this paper we are not taking ad-
vantage of this additional feature.
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3.2. Solving an auxiliary equation. Keeping the notation introduced in the
previous subsection, the goal now is to solve an auxiliary equation by means of the
Implicit Function Theorem to obtain the following result.

Lemma 3.2. Let zµ,ξ ∈ Z0. Then, for ε > 0 sufficiently small, there exists a
unique w = w(ε, zµ,ξ) ∈

(
Tzµ,ξZ0

)⊥ such that
∫∫

R2n

(
(zµ,ξ + w)(x)− (zµ,ξ + w)(y)

) (
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dx dy

=
∫

Rn

(
εh(x)

(
zµ,ξ(x) + w(x)

)q +
(
zµ,ξ(x) + w(x)

)p)
ϕ(x) dx,

(3.10)

for any ϕ ∈
(
Tzµ,ξZ0

)⊥ ∩Xs.
Moreover, the function w is of class C1 with respect to µ and ξ and there exists

a constant C > 0 such that

(3.11) ‖w‖Xs 6 C ε, and lim
ε→0

∥∥∥∥
∂w

∂µ

∥∥∥∥
Xs

+
∥∥∥∥
∂w

∂ξ

∥∥∥∥
Xs

= 0.

Indeed, recalling the definition of U given in (3.2), we can set for any u ∈ U
(3.12) Aε(u) := ε h uq + up.

We observe that u = J(Aε(u)) (where J has been introduced in (2.3)) implies that
u solves (up to an unessential renormalizing constant that we neglect for simplicity,
recall the footnote on page 6)

(−∆)su = Aε(u) in Rn,

thanks to Theorem 2.2 (see in particular (2.6)). Moreover, we have that

(3.13) ‖J(Aε(u))‖L2∗ (Rn) < +∞.
Indeed, by (2.4) in Theorem 2.2 we get that there exists C > 0 such that

(3.14) ‖J(Aε(u))‖L2∗ (Rn) 6 C‖Aε(u)‖Lβ(Rn),

where β = 2n/(n + 2s). Now, since u ∈ L2∗(Rn) and p = (n + 2s)/(n − 2s), we
have that up ∈ Lβ(Rn). This and the fact that h is compactly supported imply
that ‖Aε(u)‖Lβ(Rn) < +∞. Therefore, from (3.14) we deduce (3.13).

Analogously, making use of (2.5) and (2.7), one sees that

[J(Aε(u))]Ḣs(Rn) + ‖J(Aε(u))‖L∞(Rn) < +∞.
Hence, using Theorem 2.2, we have that if u ∈ U then J(Aε(u)) ∈ Xs.

Now, we use the notation U 3 u = zµ,ξ + w, with zµ,ξ ∈ Z0 and w ∈ V , and we
recall that we are identifying the manifold Z0 defined in (3.1) with (µ1, µ2)×BR ⊂
Rn+1. We define

(3.15) H : (µ1, µ2)×BR × V × R× Rn+1 → Xs × Rn+1

as H = (H1, H2), with components

H1(µ, ξ, w, ε, α) := zµ,ξ + w − J(Aε(zµ,ξ + w))−
n+1∑

i=1

αi qi,

H2(µ, ξ, w, ε, α) := (〈w, q1〉, . . . , 〈w, qn+1〉) ,
where qi was defined in (3.4).
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Our goal is to find w = w(ε, zµ,ξ) (that we also think as w = w(ε, µ, ξ) with a
slight abuse of notation) that solves the equation H(µ, ξ, w, ε, α) = 0, that is the
system of equations

(3.16) H1(µ, ξ, w, ε, α) = 0 = H2(µ, ξ, w, ε, α)..

We notice that if w satisfies (3.16) then w ∈
(
Tzµ,ξZ0

)⊥ and zµ,ξ + w is a solution
of the auxiliary equation (3.10). Indeed, H2(µ, ξ, w, ε, w) = 0 implies that

〈w, qi〉 = 0 for any i = 1, . . . , n+ 1,

which means that w ∈
(
Tzµ,ξZ0

)⊥. Moreover, H1(µ, ξ, w, ε, α) = 0 gives that
zµ,ξ + w − J(Aε(zµ,ξ + w)) ∈ Tzµ,ξZ0, and so

〈zµ,ξ + w − J(Aε(zµ,ξ + w)), ϕ〉 = 0

for any ϕ ∈
(
Tzµ,ξZ0

)⊥ ∩Xs. That is

∫∫

R2n

(
(zµ,ξ + w)(x)− (zµ,ξ + w)(y)

) (
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dx dy

=
∫∫

R2n

(
J(Aε(zµ,ξ + w))(x)− J(Aε(zµ,ξ + w))(y)

) (
ϕ(x)− ϕ(y)

)

|x− y|n+2s
dx dy

=
∫

Rn
Aε(zµ,ξ + w)(x)ϕ(x) dx,

(3.17)

for any ϕ ∈
(
Tzµ,ξZ0

)⊥ ∩Xs, thanks to (2.6) in Theorem 2.2, which is (3.10).
Therefore, to prove Lemma 3.2, the strategy will be to apply the Implicit Func-

tion Theorem to find a solution of the auxiliary equation H(µ, ξ, w, ε, α) = 0. Since
we are working in the space Xs, it is not obvious that H satisfies the hypotheses
needed to apply this theorem. Indeed, the proofs of these requirements are very
technically involved, so we devote the next two subsections to study in detail the
behavior of the operator H.

3.2.1. Preliminary results on H. Consider the operator defined in (3.15). First of
all, we prove some continuity property.

Lemma 3.3. H is C1 with respect to w.

Proof. We first notice that H2 depends linearly on w, and so it is C1. Now we
prove that H1 is continuous in Xs. Indeed, for any w1, w2 ∈ V we have that

H1(µ, ξ, w1, ε, α)−H1(µ, ξ, w2, ε, α) = w1−w2−J(Aε(zµ,ξ+w1))+J(Aε(zµ,ξ+w1)),

and therefore
‖H1(µ, ξ, w1, ε, α)−H1(µ, ξ, w2, ε, α)‖Xs

6 ‖w1 − w2‖Xs + ‖J(Aε(zµ,ξ + w1))− J(Aε(zµ,ξ + w2))‖Xs .
(3.18)

By (2.5) and (2.7) of Theorem 2.2 and the fact that J is linear we deduce that

‖J(Aε(zµ,ξ + w1))− J(Aε(zµ,ξ + w2))‖Xs
6 C

(
‖Aε(zµ,ξ + w1)−Aε(zµ,ξ + w2)‖L∞(Rn) + ‖Aε(zµ,ξ + w1)−Aε(zµ,ξ + w2)‖Lβ(Rn)

)
,

(3.19)
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where β = 2n/(n+ 2s). Now from (3.12) we deduce that

Aε(zµ,ξ + w1)−Aε(zµ,ξ + w2)
= ε h [(zµ,ξ + w1)q − (zµ,ξ + w2)q] + (zµ,ξ + w1)p − (zµ,ξ + w2)p

= εq h (zµ,ξ + w̃)q−1(w1 − w2) + p(zµ,ξ + w̃)p−1(w1 − w2),

for some w̃ on the segment joining w1 and w2 (in particular w̃ ∈ L2∗(Rn) and
zµ,ξ + w̃ satisfies (3.3)). Consequently,

(3.20) ‖Aε(zµ,ξ + w1)−Aε(zµ,ξ + w2)‖L∞(Rn) 6 C ‖w1 − w2‖L∞(Rn).

Moreover, since h has compact support, we have that

(3.21) ‖ε h (zµ,ξ + w̃)q−1(w1 − w2)‖Lβ(Rn) 6 C ‖w1 − w2‖L∞(Rn).

Finally, using Hölder inequality with exponent 2∗/β = (n+ 2s)/(n− 2s) and δ :=
(n+ 2s)/4s, we get

‖(zµ,ξ + w̃)p−1(w1 − w2)‖β
Lβ(Rn)

=
∫

Rn
(zµ,ξ + w̃)(p−1)β(w1 − w2)β

6
(∫

Rn
(zµ,ξ + w̃)(p−1)βδ

)1/δ (∫

Rn
(w1 − w2)2∗

)β/2∗

=
(∫

Rn
(zµ,ξ + w̃)2∗

)1/δ (∫

Rn
(w1 − w2)2∗

)β/2∗

6 C ‖w1 − w2‖βL2∗ (Rn)

6 C [w1 − w2]β
Ḣs(Rn)

,

up to renaming C > 0, where we have used Lemma 2.1 in the last line. Using this,
(3.20) and (3.21) into (3.19) we obtain that

‖J(Aε(zµ,ξ + w1))− J(Aε(zµ,ξ + w2))‖Xs 6 C ‖w1 − w2‖Xs ,
which together with (3.18) imply that

‖H1(µ, ξ, w1, ε, α)−H1(µ, ξ, w2, ε, α)‖Xs 6 C ‖w1 − w2‖Xs ,
up to renaming C. This shows the continuity of H1 in Xs with respect to w.

Now, in order to prove that H1 is C1, we observe that

∂H1

∂w
[v] = v − J(A′ε(zµ,ξ + w)v)

= v − J
(
qε h (zµ,ξ + w)q−1v + p(zµ,ξ + w)p−1v

)
.

(3.22)

To see this, we take v ∈ V and |t| < 1 and we compute

Aε(zµ,ξ + w + tv)−Aε(zµ,ξ + w)
= ε h [(zµ,ξ + w + tv)q − (zµ,ξ + w)q] + (zµ,ξ + w + tv)p − (zµ,ξ + w)p

= qε h (zµ,ξ + w)q−1tv + p(zµ,ξ + w)p−1tv +O(t2),

and so

lim
t→0

Aε(zµ,ξ + w + tv)−Aε(zµ,ξ + w)
t

= qε h (zµ,ξ + w)q−1v + p(zµ,ξ + w)p−1v.
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From this and the fact that J is linear we get that

∂H1

∂w
[v] = lim

t→0

1
t

[tv + J (Aε(zµ,ξ + w + tv)−Aε(zµ,ξ + w))]

= v − J
(
qε h (zµ,ξ + w)q−1v + p(zµ,ξ + w)p−1v

)
,

which is (3.22). From (3.22) we obtain that, for any w1, w2 ∈ V ,
∥∥∥∥
∂H1

∂w
(µ, ξ, w1, ε, α)− ∂H1

∂w
(µ, ξ, w2, ε, α)

∥∥∥∥
L((Xs)∗,Xs)

= sup
‖v‖Xs=1

‖J(A′ε(zµ,ξ + w1)v)− J(A′ε(zµ,ξ + w2)v)‖Xs .
(3.23)

Since J is linear, by (2.5) and (2.7) in Theorem 2.2 we obtain that

‖J(A′ε(zµ,ξ + w1)v)− J(A′ε(zµ,ξ + w2)v)‖Xs
6 C

(
‖A′ε(zµ,ξ + w1)v −A′ε(zµ,ξ + w2)v‖L∞(Rn) + ‖A′ε(zµ,ξ + w1)v −A′ε(zµ,ξ + w2)v‖Lβ(Rn)

)
,

(3.24)

where β = 2n/(n+ 2s). We have that

A′ε(zµ,ξ + w1)v −A′ε(zµ,ξ + w2)v

= q ε h v
[
(zµ,ξ + w1)q−1 − (zµ,ξ + w2)q−1

]
+ p v

[
(zµ,ξ + w1)p−1 − (zµ,ξ + w2)p−1

]
,

and so
|A′ε(zµ,ξ + w1)v −A′ε(zµ,ξ + w2)v|

6 q|q − 1| ε |h| |v| |zµ,ξ + w̃|q−2|w1 − w2|+ C |w1 − w2|p−1|v|,
(3.25)

for some w̃ on the segment joining w1 and w2. Accordingly,

‖A′ε(zµ,ξ + w1)v −A′ε(zµ,ξ + w2)v‖L∞(Rn)

6 C
(
‖w1 − w2‖L∞(Rn) + ‖w1 − w2‖p−1

L∞(Rn)

)
,

(3.26)

since zµ,ξ + w̃ satisfies (3.3). Concerning the estimate for the Lβ-norm, we observe
that, since h is compactly supported and v ∈ Lβloc(Rn), we have

(3.27) ‖q|q − 1| ε |h| |v| |zµ,ξ + w̃|q−2|w1 − w2|‖Lβ(Rn) 6 C ‖w1 − w2‖L∞(Rn).

Moreover, applying Hölder inequality with exponents 2∗

(p−1)β = n+2s
4s and p we

obtain that

‖|w1 − w2|p−1|v|‖β
Lβ(Rn)

=
∫

Rn
|w1 − w2|(p−1)β |v|β

6
(∫

Rn
|w1 − w2|2

∗
)4s/(n+2s)(∫

Rn
|v|pβ

)1/p

= ‖w1 − w2‖8ns/[(n+2s)(n−2s)]

L2∗ (Rn)

(∫

Rn
|v|2∗

)1/p

6 C ‖w1 − w2‖8ns/[(n+2s)(n−2s)]

L2∗ (Rn)
,

for a suitable positive constant C. Hence, by Lemma 2.1, we have that

‖|w1 − w2|p−1|v|‖Lβ(Rn) 6 C ‖w1 − w2‖4s/(n−2s)

L2∗ (Rn)
6 C [w1 − w2]4s/(n−2s)

Ḣs(Rn)
,
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up to relabelling C. This, (3.27) and (3.25) imply that

‖A′ε(zµ,ξ +w1)v−A′ε(zµ,ξ +w2)v‖Lβ(Rn) 6 C
(
‖w1−w2‖Xs +‖w1−w2‖4s/(n−2s)

Xs

)
.

Putting together this, (3.26), (3.24) and (3.23), we obtain that ∂H1
∂w is continuous

with respect to w inXs. This implies thatH1 is C1 with respect to w, and concludes
the proof. �

Let us study now some properties of the derivative of H. In particular, consider
first the operator

(3.28) Tv :=
∂H1

∂w
(µ, ξ, 0, 0, 0)[v] = v − J(A′0(zµ,ξ)v).

This definition is well posed, as next result points out:

Lemma 3.4. T is a bounded operator from Ḣs(Rn) to Ḣs(Rn).

Proof. Let ψ := A′0(zµ,ξ)v = pzp−1
µ,ξ v. From (2.5), we know that

[J(A′0(zµ,ξ)v)]Ḣs(Rn) = [Jψ]Ḣs(Rn) 6 C ‖ψ‖Lβ(Rn) = Cp ‖zp−1
µ,ξ v‖Lβ(Rn),

with β = 2n/(n+ 2s). On the other hand, using the Hölder inequality with expo-
nents 2∗/β and (n+2s)/4s we can bound the quantity ‖zp−1

µ,ξ v‖Lβ(Rn) with C ‖v‖L2∗ (Rn)

and thus by C [v]Ḣs(Rn), thanks to the Sobolev inequality. This gives that

[J(A′0(zµ,ξ)v)]Ḣs(Rn) 6 C [v]Ḣs(Rn),

which implies the desired result. �

It is important to remark that T is also a linear operator over Xs. Of course,
since Xs is a subset of Ḣs(Rn), the restriction operator, that we still denote by T ,
maps Xs continuously to Ḣs(Rn). What is relevant for us is that it also maps Xs

continuously to Xs, as next result explicitly states:

Lemma 3.5. T is a bounded operator from Xs to Xs.

Proof. Same as the one of Lemma 3.4, using (2.7) in addition to (2.5). �

As a matter of fact, T enjoys further compactness properties, as observed in the
next result:

Proposition 3.6. T is a Fredholm operator over Ḣs(Rn). More explicitly, if we
set Kv := −J(A′0(zµ,ξ)v), we have that T = IdḢs(Rn) + K, and K : Ḣs(Rn) →
Ḣs(Rn) is a compact operator over Ḣs(Rn).

Proof. We already know from Lemma 3.4 thatK is a bounded operator over Ḣs(Rn).
Now, let {vk}k∈N be a sequence such that

(3.29) [vk]Ḣs(Rn) 6 1.

To prove compactness, we need to see that

(3.30) {Kvk}k∈N contains a Cauchy subsequence in Ḣs(Rn).
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For this, we fix ε > 0 and we exploit (2.5) of Theorem 2.2 to obtain that

[Kvl −Kvm]Ḣs(Rn)

= [J(A′0(zµ,ξ)(vl − vm))]Ḣs(Rn)

6 C‖A′0(zµ,ξ)(vl − vm)‖Lβ(Rn)

= C(‖A′0(zµ,ξ)(vl − vm)‖Lβ(BR) + ‖A′0(zµ,ξ)(vl − vm)‖Lβ(Rn\BR)),

(3.31)

where β := 2n
n+2s , R > 0, and BR := {x ∈ Rn : |x| < R}.

Thus we notice that, for a fixed R > 0, the quantity ‖vk‖L2(BR) is bounded
by ‖vk‖L2∗ (BR), by Hölder inequality, and the latter quantity is in turn bounded
by [vk]Ḣs(Rn), by Sobolev inequality. These observations and (3.29) imply that

‖vk‖W s,2(BR) 6 CR,

for some CR > 0 that does not depend on k. Moreover, the space W s,2(BR)
is compactly embedded in Lβ(BR) (see Corollary 7.2 in [19] and recall that β ∈
(1, 2∗)). This implies that vk contains a Cauchy subsequence in Lβ(BR) and so, up
to a subsequence, if l and m are sufficiently large (say l, m > N(R, ε), for some
large N(R, ε)) we have that

‖vl − vm‖Lβ(BR) 6 ε.
Notice also that

A′0(zµ,ξ) = pz
4s

n−2s
µ,ξ ∈ L∞(Rn),

therefore

(3.32) ‖A′0(zµ,ξ)(vl − vm)‖Lβ(BR) 6 ‖A′0(zµ,ξ)‖L∞(Rn)‖vl − vm‖Lβ(BR) 6 Cε
as long as l, m > N(R, ε).

On the other hand, applying Hölder and Sobolev inequalities, and recalling (3.29)
once again,

‖A′0(zµ,ξ)(vl − vm)‖Lβ(Rn\BR)

6
(∫

Rn\BR
(vl − vm)2∗ dx

)1/2∗ (∫

Rn\BR
(pz

4s
n−2s
µ,ξ )

n
2s dx

)2s/n

6 C‖vl − vm‖L2∗ (Rn)



∫

Rn\BR−|ξ|
µ

1
|y|2n dy




2s/n

6 C[vl − vm]Ḣs(Rn)R
−n

6 CR−n,

with C > 0 possibly different from line to line, but independent of R, l and m.
Thus, we insert this and (3.32) into (3.31) and we deduce that

[Kvl −Kvm]Ḣs(Rn) 6 C(ε+R−n),

provided that l, m > N(R, ε), possibly up to a subsequence. In particular, we can
choose R depending on ε, for instance R := ε−1/n, and define Nε := N(ε−1/n, ε).
So we obtain that, for l, m > Nε, the quantity [Kvl −Kvm]Ḣs(Rn) is bounded by
a constant times ε. This establishes (3.30). �
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Finally, for any (v, β) ∈ Ḣs(Rn)× Rn+1 we define the linear operator

(3.33) T(v, β) :=

(
Tv −

n+1∑

i=1

βiqi, 〈v, q1〉, . . . , 〈v, qn+1〉
)
,

with T defined in (3.28). The interest of such operator for us is that

(3.34)
∂H

∂(w,α)
(µ, ξ, 0, 0, 0)[v, β] = T(v, β).

We have:

Proposition 3.7. T is a bounded operator from Ḣs(Rn)×Rn+1 to Ḣs(Rn)×Rn+1,
and from Xs × Rn+1 to Xs × Rn+1.

Furthermore, T is a Fredholm operator over Ḣs(Rn)×Rn+1. More explicitly, it
can be written as the identity plus a compact operator over Ḣs(Rn)× Rn+1.

Proof. Let

S(v, β) :=

(
−
n+1∑

i=1

βiqi, 〈v, q1〉, . . . , 〈v, qn+1〉
)
.

Let also ‖ · ‖ be either ‖ · ‖Ḣs(Rn) or ‖ · ‖Xs . We have that

‖S(v, β)‖ 6
n+1∑

i=1

|βi| ‖qi‖+
n+1∑

i=1

‖v‖Ḣs(Rn)‖qi‖Ḣs(Rn)

6 C
(
|β|+ ‖v‖Ḣs(Rn)

)

6 C
(
|β|+ ‖v‖

)
.

This shows that S is a bounded operator from Ḣs(Rn)×Rn+1 to Ḣs(Rn)×Rn+1,
and from Xs×Rn+1 to Xs×Rn+1. Then, noticing that T = (T, 0)+S and recalling
Lemmata 3.4 and 3.5, we obtain that also T is a bounded operator from Ḣs(Rn)×
Rn+1 to Ḣs(Rn)× Rn+1, and from Xs × Rn+1 to Xs × Rn+1.

Now we show that it is Fredholm over Ḣs(Rn)× Rn+1. For this, we set

K(v, β) :=

(
Kv −

n+1∑

i=1

βiqi, 〈v, q1〉 − β1, . . . , 〈v, qn+1〉 − βn+1

)
,

where K is the operator in Proposition 3.6. Notice that T = IdḢs(Rn)×Rn+1 + K,
so our goal is to show that K is compact over Ḣs(Rn)×Rn+1. For this, we take a
sequence (vk, βk) ∈ Ḣs(Rn) × Rn+1 with ‖vk‖Ḣs(Rn) + ‖βk‖Rn+1 6 1 and we want
to find a Cauchy subsequence in Ḣs(Rn) × Rn+1. To this goal, we use Proposi-
tion 3.6 to obtain a subsequence (still denoted by vk) such that Kvk is Cauchy
in Ḣs(Rn). Also, again up to subsequences, vk is weakly convergent in Ḣs(Rn),
therefore 〈vk, q1〉 is Cauchy (and the same holds for 〈vk, q2〉, . . . , 〈vk, qn+1〉). Finally,
since Rn+1 is finite dimensional, up to subsequence we can assume that also βk is
Cauchy. Thanks to these considerations, and writing βk = (βk,1, . . . , βk,n+1) ∈
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Rn+1, we have that
∥∥K(vk, βk)−K(vm, βm)

∥∥
Ḣs(Rn)×Rn+1

6 ‖Kvk −Kvm‖Ḣs(Rn) +
n+1∑

i=1

|βk,i − βm,i| ‖qi‖Ḣs(Rn) +
n+1∑

i=1

|〈vk − vm, qi〉|

6 C

(
‖Kvk −Kvm‖Ḣs(Rn) + ‖βk − βm‖Rn+1 +

n+1∑

i=1

|〈vk − vm, qi〉|
)

6 ε,

provided that k and m are large enough. This shows that (vk, βk) is Cauchy, as
desired. �

3.2.2. Invertibility issues. Now we discuss the invertibility of the operator T that
was introduced in (3.33). Notice that there is a subtle point here. Indeed, the
operator T can be seen as acting over Ḣs(Rn) × Rn+1 or over Xs × Rn+1 (see
Proposition 3.7). On the one hand, the invertibility over Ḣs(Rn) × Rn+1 should
be expected to be easier, since the operator is Fredholm there (see the last claim
in Proposition 3.7). On the other hand, since we want to obtain strong pointwise
estimates to keep control of the possible singularities of our functional, it is cru-
cial for us to invert the operator in a space that controls the functions uniformly,
namely Xs × Rn+1. So our strategy will be the following: first we invert the oper-
ator in Ḣs(Rn)× Rn+1 (this will be accomplished using the Fredholm property in
Proposition 3.7, the regularity theory in Theorem 2.3 and a nondegeneracy result
in [17]). Then we will deduce from this information and a further regularity theory
that T is actually invertible also in Xs × Rn+1.

The details of the argument go as follows. First, we recall the standard definition
of invertibility:

Definition 3.8. Let X,Y Banach spaces, and let S : X → Y be a linear bounded
operator. We say that S is invertible (and we write S ∈ Inv(X,Y )) if there exists
a linear bounded operator S̃ : Y → X such that

SS̃ = IdY , S̃S = IdX .

Then, we show that T is invertible in Ḣs(Rn)× Rn+1:

Proposition 3.9. T ∈ Inv(Ḣs(Rn)× Rn+1, Ḣs(Rn)× Rn+1).

Proof. By Proposition 3.7 and the theory of Fredholm operators (see e.g. [9], pages
168-169, for a very brief summary, and Chapter IV, Section 5, of [26], or [31], for a
detailed analysis), it is enough to show that T is injective over Ḣs(Rn)×Rn+1. For
this, let us take (v, β) ∈ Ḣs(Rn)× Rn+1 such that T(v, β) = 0, that is, by (3.33),

Tv =
n+1∑

i=1

βiqi,

〈v, q1〉 = · · · = 〈v, qn+1〉 = 0.

(3.35)
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Fixed j ∈ {1, . . . , n+ 1}, using (3.28), (2.6) and (3.5), we observe that

〈Tv, qj〉 = 〈v − pJ(zp−1
µ,ξ v), qj〉

= 〈v, qj〉 − p
∫

Rn
(−∆)sJ(zp−1

µ,ξ v) qj

= 〈v, qj〉 − p
∫

Rn
zp−1
µ,ξ v qj

= 〈v, qj〉 −
∫

Rn
v (−∆)sqj

= 〈v, qj〉 − 〈v, qj〉
= 0.

(3.36)

This, (3.35) and Lemma 3.1 give that

0 = 〈Tv, qj〉 =
n+1∑

i=1

βi〈qi, qj〉 = λjβj ,

and so

(3.37) βj = 0 for every j ∈ {1, . . . , n+ 1}.
Therefore, v ∈ Ḣs(Rn) is a weak solution of Tv = 0, that is, by (3.28) and (2.6),
the equation (−∆)sv = pzp−1

µ,ξ v. Accordingly, by Theorem 2.3, we obtain that v ∈
L∞(Rn).

Thanks to this, we can apply the nondegeneracy result in [17], that gives that v
must be a linear combination of q1, . . . , qn+1. So we write

(3.38) v =
n+1∑

i=1

ciqi

for some ci ∈ R, we recall (3.35) and once again Lemma 3.1, and we compute

0 = 〈v, qj〉 =
n+1∑

i=1

ci〈qi, qj〉 = cjλj ,

that gives cj = 0 for every j ∈ {1, . . . , n + 1}. By plugging this information
into (3.38), we conclude that v = 0. This and (3.37) give that (v, β) = 0 and so T

is injective on Ḣs(Rn)× Rn+1. �
Next, we aim to prove that T ∈ Inv(Xs×Rn+1, Xs×Rn+1). For this scope, we

need an improved regularity theory result, which goes as follows:

Lemma 3.10. Let Co > 0. For any u ∈ Xs, (α, β) ∈ Rn+1 × Rn+1 and any ψ ∈
Ḣs(Rn) which is a weak solution of

(3.39) (−∆)sψ = p
n+1∑

i=1

αiz
p−1
µ,ξ qi + pzp−1

µ,ξ ψ + pzp−1
µ,ξ u

with

(3.40) [ψ]Ḣs(Rn) 6 Co
(
‖u‖Xs + ‖β‖Rn+1

)
,

we have that ψ ∈ L∞(Rn) and

(3.41) ‖ψ‖L∞(Rn) 6 C
(
‖u‖Xs + ‖α‖Rn+1 + ‖β‖Rn+1

)
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for some C > 0.

Proof. The core of the proof is that the equation is linear in the triplet (ψ, u, α),
so we get the desired result by a careful scaling argument. The rigorous argument
goes as follows. First, we use Theorem 2.3 to get that ψ ∈ L∞(Rn), so we focus on
the proof of (3.41). Suppose, by contradiction, that (3.41) is false. Then, for any k
there exists a quadruplet (ψk, uk, αk, βk) ∈ Ḣs(Rn)×Xs ×Rn+1 ×Rn+1 such that

(3.42) (−∆)sψk = p

n+1∑

i=1

αk,iz
p−1
µ,ξ qi + pzp−1

µ,ξ ψk + pzp−1
µ,ξ uk,

(3.43) ‖ψk‖L∞(Rn) > k
(
‖uk‖Xs + ‖αk‖Rn+1 + ‖βk‖Rn+1

)

and

(3.44) [ψk]Ḣs(Rn) 6 Co
(
‖uk‖Xs + ‖βk‖Rn+1

)
.

We remark that ‖ψk‖L∞(Rn) < +∞, since ψk ∈ L∞(Rn), and ‖ψk‖L∞(Rn) > 0, due
to (3.43). Thus, we can define

ψ̃k :=
ψk

‖ψk‖L∞(Rn)
, ũk :=

uk
‖ψk‖L∞(Rn)

,

α̃k :=
αk

‖ψk‖L∞(Rn)
and β̃k :=

βk
‖ψk‖L∞(Rn)

.

Notice that

‖ψ̃k‖L∞(Rn) = 1

and ‖ũk‖Xs + ‖α̃k‖Rn+1 + ‖β̃k‖Rn+1 =
‖uk‖Xs + ‖αk‖Rn+1 + ‖βk‖Rn+1

‖ψk‖L∞(Rn)
6 1
k
,

(3.45)

thanks to (3.43).
Also, by linearity, equation (3.42) becomes

(−∆)sψ̃k = p
n+1∑

i=1

α̃k,iz
p−1
µ,ξ qi + pzp−1

µ,ξ ψ̃k + pzp−1
µ,ξ ũk.

The right hand side of this equation is bounded uniformly in L∞(Rn), thanks
to (3.45) and the fact that zµ,ξ ∈ L∞(Rn).

Thus, by Proposition 5 in [33], we know that for every x ∈ Rn, there exists a
constant C > 0 and a ∈ (0, 1) such that

‖ψ̃k‖Ca(B1/4(x)) 6 C.
We remark that C and a are independent of k and x, therefore

(3.46) ‖ψ̃k‖Ca(Rn) 6 C.

From (3.45), we know that there exists a point xk ∈ Rn such that ψ̃k(xk) > 1/2.
By (3.46), there exists ρ > 0, which is independent of k, such that ψ̃k > 1/4
in Bρ(xk). As a consequence,

‖ψ̃k‖L2∗ (Rn) >
(∫

Bρ(xk)

(
1
4

)2∗

dx

)1/2∗

> co,



26

with co > 0 independent of k. Thus, by Sobolev inequality,

(3.47) [ψ̃k]Ḣs(Rn) > co,
up to renaming co. On the other hand, by (3.44) and (3.43), we have that

[ψ̃k]Ḣs(Rn) =
[ψk]Ḣs(Rn)

‖ψk‖L∞(Rn)
6
Co

(
‖uk‖Xs + ‖βk‖Rn+1

)

‖ψk‖L∞(Rn)
6 Co

k
.

This is in contradiction with (3.47) when k is large, and therefore the desired result
is established. �

Finally, we show that T is invertible in Xs(Rn)× Rn+1:

Proposition 3.11. T ∈ Inv(Xs × Rn+1, Xs × Rn+1).

Proof. By Proposition 3.9, we know that T ∈ Inv(Ḣs(Rn)×Rn+1, Ḣs(Rn)×Rn+1).
Therefore, there exists an operator

T̃ : Ḣs(Rn)× Rn+1 → Ḣs(Rn)× Rn+1

that is linear and bounded and such that TT̃ = T̃T = IdḢs(Rn)×Rn+1 . The bound-
edness of T̃ as an operator acting over Ḣs(Rn) × Rn+1 can be explicitly written
as

(3.48) ‖T̃(u, β)‖Ḣs(Rn)×Rn+1 6 C ‖(u, β)‖Ḣs(Rn)×Rn+1 .

Now, since Xs is a subset of Ḣs(Rn), we can consider the restriction operator of T̃

acting on Xs × Rn+1 (this restriction operator will be denoted by T̃ as well). We
observe that, for any u ∈ Xs, we have that u ∈ Ḣs(Rn), therefore, for any β ∈ Rn+1,

TT̃(u, β) = IdḢs(Rn)×Rn+1(u, β) = (u, β).

Furthermore, if u ∈ Xs and β ∈ Rn+1, then T(u, β) ∈ Xs × Rn+1, due to Propo-
sition 3.7. Hence the restriction of T̃ over Xs × Rn+1 may act on T(u, β), for
any (u, β) ∈ Xs × Rn+1, and we obtain that

T̃T(u, β) = IdḢs(Rn)×Rn+1(u, β) = (u, β).

It remains to prove that

(3.49) ‖T̃(u, β)‖Xs×Rn+1 6 C
(
‖u‖Xs + ‖β‖Rn+1

)
.

To prove it, we first use (3.48) to bound ‖T̃(u, β)‖Ḣs(Rn)×Rn+1 with [u]Ḣs(Rn) +
‖β‖Rn+1 , and then we observe that the latter quantity is in turn bounded by ‖u‖Xs+
‖β‖Rn+1 . Thus, in order to show that T is bounded as an operator over Xs×Rn+1,
we only have to bound ‖T̃(u, β)‖L∞(Rn)×Rn+1 .

That is to say that the desired result is proved if we show that, for any u ∈ Xs

and any β ∈ Rn+1 we have that

(3.50) ‖T̃(u, β)‖L∞(Rn)×Rn+1 6 C
(
‖u‖Xs + ‖β‖Rn+1

)
.

To prove this, we fix u ∈ Xs and β ∈ Rn+1 and we set (v, α) := T̃(u, β) ∈ Ḣs(Rn)×
Rn+1. Thus, by (3.33),

(3.51) Xs × Rn+1 3 (u, β) = T(v, α) =

(
Tv −

n+1∑

i=1

αiqi, 〈v, q1〉, . . . , 〈v, qn+1〉
)
.
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Taking the first coordinate and using (3.36), we obtain that, for any j ∈ {1, . . . , n+
1},

〈u, qj〉 = 〈Tv −
n+1∑

i=1

αiqi, qj〉 = −
n+1∑

i=1

αi〈qi, qj〉.

Thus, by Lemma 3.1, we have that 〈u, qj〉 = −αjλj and therefore

|αj | 6 C [u]Ḣs(Rn).

Accordingly

(3.52) ‖α‖Rn+1 6 C ‖u‖Xs .
Now we set ψ := v − u. Notice that ψ ∈ Ḣs(Rn), since so are u and v. Moreover,
taking the first coordinate in (3.51) and using (3.28) and (2.6), we see that ψ is a
weak solution of

(−∆)sψ = (−∆)sv − (−∆)su

= (−∆)sv − (−∆)sTv +
n+1∑

i=1

αi(−∆)sqi

= (−∆)sJ(A′0(zµ,ξ)v) +
n+1∑

i=1

αi(−∆)sqi

= pzp−1
µ,ξ v + p

n+1∑

i=1

αiz
p−1
µ,ξ qi

= pzp−1
µ,ξ ψ + pzp−1

µ,ξ u+ p
n+1∑

i=1

αiz
p−1
µ,ξ qi.

The reader may check that this agrees with (3.39). Furthermore, by (3.48),

[v]Ḣs(Rn) 6 ‖(v, α)‖Ḣs(Rn)×Rn+1

= ‖T̃(u, β)‖Ḣs(Rn)×Rn+1

6 C
(

[u]Ḣs(Rn) + ‖β‖Rn+1

)
.

Consequently,

[ψ]Ḣs(Rn) 6 [u]Ḣs(Rn) + [v]Ḣs(Rn) 6 C
(

[u]Ḣs(Rn) + ‖β‖Rn+1

)
,

up to renaming constants. The reader may check that this implies (3.40). Accord-
ingly the assumptions of Lemma 3.10 are satisfied, and we deduce from it that

‖ψ‖L∞(Rn) 6 C
(
‖u‖Xs + ‖α‖Rn+1 + ‖β‖Rn+1

)
.

Consequently, using (3.52), we obtain that

‖v‖L∞(Rn) 6 ‖u‖L∞(Rn) + ‖ψ‖L∞(Rn)

6 C
(
‖u‖Xs + ‖α‖Rn+1 + ‖β‖Rn+1

)

6 C
(
‖u‖Xs + ‖β‖Rn+1

)
,
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up to renaming constants. Using this and once again (3.52), we obtain that

‖T̃(u, β)‖L∞(Rn)×Rn+1 = ‖(v, α)‖L∞(Rn)×Rn+1

= ‖v‖L∞(Rn) + ‖α‖Rn+1 6 C
(
‖u‖Xs + ‖β‖Rn+1

)
.

This establishes (3.50) and in turn (3.49), and so it completes the proof of the
desired result. �

3.2.3. Proof of Lemma 3.2. Once we have studied in detail the operator H, we can
prove Lemma 3.2. As we pointed out at the beginning of this subsection, the idea is
to do it by means of the Implicit Function Theorem. For the sake of completeness,
we write here the precise statement of this theorem that we will use (see Theorem
2.3, page 38, of [7]).

Theorem 3.12 (Implicit Function Theorem). Let X,Y, Z be Banach spaces, and
let Λ and U be open sets of X and Y respectively. Let H ∈ C1(Λ × U,Z) and

suppose that H(λ∗, u∗) = 0 and
∂H

∂u
(λ∗, u∗) ∈ Inv(Y, Z).

Then there exist neighborhoods Θ of λ∗ in X and U∗ of u∗ in Y , and a map g ∈
C1(Θ, Y ) such that

a) H(λ, g(λ)) = 0, for all λ ∈ Θ.
b) H(λ, u) = 0, with (λ, u) ∈ Θ× U∗, implies u = g(λ).

c) g′(λ) = −
(
∂H

∂u
(p)
)−1

◦ ∂H
∂λ

(p), where p = (λ, g(λ)) and λ ∈ Θ.

Now we conclude the proof of Lemma 3.2.

Proof of Lemma 3.2. Consider H defined in (3.15). First we observe that H is C1

with respect to µ and ξ. Indeed, zµ,ξ is C1 with respect to µ and ξ. Moreover, J is
linear and Aε(zµ,ξ + w) is C1 with respect to zµ,ξ since zµ,ξ + w is bounded from
zero on the support of h (recall (3.3)), therefore H1 is C1 with respect to zµ,ξ.

Also, H is C1 with respect to ε and α, since it depends linearly on these variables
(recall that J is linear and Aε is linear with respect to ε). Finally, H is C1 with
respect to w thanks to Lemma 3.3.

Now we use the Implicit Function Theorem. Indeed, we notice that

(3.53) H1(µ, ξ, 0, 0, 0) = zµ,ξ − J(A0(zµ,ξ)) = zµ,ξ − J(zpµ,ξ) = 0,

since zµ,ξ is a solution to (1.4) (recall also (2.6)). Moreover,

(3.54) H2(µ, ξ, 0, 0, 0) = 0.

In order to follow the notation of Theorem 3.12, we set

X := R× Rn × R, Y := Xs × Rn+1, Z := Xs × Rn+1,

Λ := (µ1, µ2)×BR × R, U := V × Rn+1,

and
λ∗ := (µ, ξ, 0), u∗ := (0, 0), u := (w,α).

Thus, we have proved that
(i) H ∈ C1(Λ×U,Z), by the linear dependance of the variables and Lemma 3.3;
(ii) H(λ∗, u∗) = 0, by (3.53) and (3.54);

(iii)
∂H

∂u
(λ∗, u∗) ∈ Inv(Y,Z), by (3.33), (3.34) and Proposition 3.11.
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Notice here that, since V was defined as

V := {w ∈ Xs s.t ‖w‖Xs < a/2},

it is an open subset of Xs. Therefore, all the hypotheses of the Implicit Function
Theorem are satisfied, and we conclude the existence of w ∈ Xs solution to (3.16),
that is, there exists w ∈ Xs ∩

(
Tzµ,ξZ0

)⊥ that solves the auxiliary equation in
(3.10). Furthermore, since H is of class C1 with respect to ε, µ and ξ in Xs, we
deduce that so is w.

Now we focus on the proof of (3.11). We observe that

(3.55)
∥∥∥∥
∂(w,α)
∂ε

∥∥∥∥
Xs×Rn+1

6 C.

Indeed, we write

(3.56) H
(
µ, ξ, w(ε, zµ,ξ), ε, α(ε, zµ,ξ)

)
= 0,

we differentiate with respect to ε and we set ε := 0. Since

(3.57) w(0, zµ,ξ) = 0 and α(0, zµ,ξ) = 0,

we obtain that

∂H

∂ε
(µ, ξ, 0, 0, 0) +

∂H

∂(w,α)
(µ, ξ, 0, 0, 0)

∂(w,α)
∂ε

(0, zµ,ξ) = 0.

Therefore, using the invertibility assumption, we get that

∂(w,α)
∂ε

(0, zµ,ξ) = −
(

∂H

∂(w,α)
(µ, ξ, 0, 0, 0)

)−1
∂H

∂ε
(µ, ξ, 0, 0, 0),

and so, since H is C1 with respect to Xs,
∥∥∥∥
∂(w,α)
∂ε

(0, zµ,ξ)
∥∥∥∥
Xs×Rn+1

6 C.

Then, since (w,α) is C1 in ε, in virtue of the Implicit Function Theorem, we obtain
(3.55).

From (3.55) and (3.57) we obtain that

‖(w,α)‖Xs×Rn+1 6 Cε,

and this implies the first estimate in (3.11).
Now we prove the second and third estimates in (3.11). In this case, we will see

that the roles of µ and ξ are basically the same: for this, we write $ ∈ R for any
of the variables (µ, ξ) ∈ Rn+1 and we use the linearized equation to see that

(−∆)s
∂zµ,ξ
∂$

= pzp−1
µ,ξ

∂zµ,ξ
∂$

.

This information can be written as

∂H

∂$
(µ, ξ, 0, 0, 0) = 0.
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Now we take derivatives of (3.56) with respect to $ and we set ε := 0. Recalling
(3.57) we obtain that

0 =
∂H

∂$
(µ, ξ, 0, 0, 0) +

∂H

∂(w,α)
(µ, ξ, 0, 0, 0)

∂(w,α)
∂$

(0, zµ,ξ)

=
∂H

∂(w,α)
(µ, ξ, 0, 0, 0)

∂(w,α)
∂$

(0, zµ,ξ).

Hence, from the invertibility condition, we conclude that

∂(w,α)
∂$

(0, zµ,ξ) = 0.

Since (w,α) are C1 in ε, we obtain that

lim
ε→0

∥∥∥∥
∂(w,α)
∂$

(ε, zµ,ξ)
∥∥∥∥
Xs×Rn+1

= 0.

This gives the second and third claim in (3.11) and completes the proof of Lemma
3.2. �

3.3. Finite-dimensional reduction. Up to this point, we have found a function
w so that zµ,ξ + w satisfies our problem in the weak sense, when we test with
functions ϕ ∈ (Tzµ,ξZ0)⊥∩Xs. The following result states that actually the equation
is satisfied for every test function in Xs, i.e. that zµ,ξ + w is a solution to (1.1).

Indeed, consider the reduced functional Φε : Z0 → R, defined by

Φε(z) := fε(z + w),

where w = w(ε, z) is provided by Lemma 3.2.

Proposition 3.13. Suppose that Φε has a critical point zµε,ξε ∈ Z0 for ε small
enough. Thus, zµε,ξε + w is a critical point of fε, where w = w(ε, zµε,εε) ∈
(Tzµε,ξεZ0)⊥ is provided by Lemma 3.2.

Proof. For simplicity, we will denote µ := µε and ξ := ξε, and thus zµ,ξ := zµε,ξε .
Since zµ,ξ is a critical point of Φε, we know that there exists ε0 > 0 such that for
every 0 < ε < ε0 it holds

(3.58)
d

dt
Φε(zµ,ξ + tϕ)

∣∣∣∣
t=0

= 0 for every ϕ ∈ (Tzµ,ξZ0) ∩Xs.

Recalling the definition of Φε, we observe that

d

dt
Φε(zµ,ξ + tϕ)

∣∣∣∣
t=0

= lim
t→0

Φε(zµ,ξ + tϕ)− Φε(zµ,ξ)
t

= lim
t→0

fε(zµ,ξ + tϕ+ w(ε, zµ,ξ + tϕ))− fε(zµ,ξ + w(ε, zµ,ξ))
t

= lim
t→0

fε(zµ,ξ + tϕ+ w(ε, zµ,ξ) + t ∂w
∂zµ,ξ

ϕ+ o(t))− fε(zµ,ξ + w(ε, zµ,ξ))

t

=
d

dt
fε

(
zµ,ξ + w(ε, zµ,ξ) + t

[
ϕ+

∂w

∂zµ,ξ
ϕ

]) ∣∣∣∣
t=0

,
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and hence (3.58) is equivalent to

∫∫

R2n

(
(zµ,ξ + w)(x)− (zµ,ξ + w)(y)

) (
(ϕ+ ∂w

∂zµ,ξ
ϕ)(x)− (ϕ+ ∂w

∂zµ,ξ
ϕ)(y)

)

|x− y|n+2s
dx dy

=
∫

Rn

(
εh(x)

(
zµ,ξ(x) + w(x)

)q +
(
zµ,ξ(x) + w(x)

)p) (ϕ+
∂w

∂zµ,ξ
ϕ)(x) dx,

(3.59)

for any ϕ ∈
(
Tzµ,ξZ0

)
∩Xs.

Moreover, since w solves (3.16), H1(µ, ξ, w, ε, α) = 0 is equivalent to affirm that
∫∫

R2n

(
(zµ,ξ + w)(x)− (zµ,ξ + w)(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy

−
∫

Rn

(
εh(x)

(
zµ,ξ(x) + w(x)

)q +
(
zµ,ξ(x) + w(x)

)p)
φ(x) dx,

=
n+1∑

i=1

αi

∫∫

R2n

(
qi(x)− qi(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy,

(3.60)

for any φ ∈ Xs.
Consider now qj ∈ Tzµ,ξZ0 defined in (3.4). Thus, taking ϕ := qj in (3.59) and

applying (3.60) with φ := qj + ∂w
∂zµ,ξ

qj we obtain

0 =
n+1∑

i=1

αi

∫∫

R2n

(
qi(x)− qi(y)

) (
(qj + ∂w

∂zµ,ξ
qj)(x)− (qj + ∂w

∂zµ,ξ
qj)(y)

)

|x− y|n+2s
dx dy

=
n+1∑

i=1

αi〈qi, qj〉+
n+1∑

i=1

αi〈qi,
∂w

∂zµ,ξ
qj〉

= λjαj +
n+1∑

i=1

αi〈qi,
∂w

∂zµ,ξ
qj〉,

(3.61)

where Lemma 3.1 was also used in the last line.
Set now the (n+ 1)× (n+ 1) matrix Bε = (bεij), defined as

bεij := 〈qi,
∂w

∂ξj
〉, i = 1, . . . , n+ 1, j = 1, . . . , n,

bεi,n+1 := 〈qi,
∂w

∂µ
〉, i = 1, . . . , n+ 1.

By Cauchy-Schwartz inequality and (3.11) one has

(3.62) lim
ε→0
〈qi,

∂w

∂ξj
〉 = lim

ε→0
〈qi,

∂w

∂µ
〉 = 0, i = 1, . . . , n+ 1, j = 1, . . . , n,

and thus lim
ε→0
‖Bε‖ = 0. Recalling that

∂w

∂zµ,ξ
qj =

∂w

∂zµ,ξ

∂zµ,ξ
∂ξj

=
∂

∂ξj
w(ε, zµ,ξ) =

∂w

∂ξj
for j = 1, . . . , n

and
∂w

∂zµ,ξ
qn+1 =

∂w

∂zµ,ξ

∂zµ,ξ
∂µ

=
∂

∂µ
w(ε, zµ,ξ) =

∂w

∂µ
,
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equation (3.61) becomes

λjαj +
n+1∑

i=1

αib
ε
ij = 0, i, j = 1, . . . , n+ 1,

that is nothing but a (n+1)×(n+1) linear system with associated matrix λ IdRn+1 +
Bε, whose entries are λjδij + bεij , where δjj = 1 and δij = 0 whether i 6= j. Thus,
since lim

ε→0
‖Bε‖ = 0, there exists ε1 > 0 such that for ε < ε1 the matrix λ IdRn+1 +Bε

is invertible, and therefore αi = 0 for every i = 1, . . . , n + 1. Hence, coming back
to (3.60), we get

∫∫

R2n

(
(zµ,ξ + w)(x)− (zµ,ξ + w)(y)

) (
φ(x)− φ(y)

)

|x− y|n+2s
dx dy

=
∫

Rn

(
εh(x)

(
zµ,ξ(x) + w(x)

)q +
(
zµ,ξ(x) + w(x)

)p)
φ(x) dx,

for every φ ∈ Xs, that is, zµ,ξ + w is a critical point of fε. �

4. Study of the behavior of Γ

At this point, we have reduced our original problem to a finite-dimensional one.
Indeed, we define the perturbed manifold

Zε := {u := zµ,ξ + w(ε, zµ,ξ) s.t. zµ,ξ ∈ Z0},
which is a natural constraint for the functional fε.

We recall (1.10)and (3.2) and we give the following

Definition 4.1. We say that u ∈ U is a proper local maximum (or minimum,
respectively) of G if there exists a neighborhood U of u such that

G(u) > G(v) ∀ v ∈ U (G(u) 6 G(v) ∀ v ∈ U, respectively),

and
G(u) > sup

v∈∂U
G(v) (G(u) < inf

v∈∂U
G(v), respectively).

With this, one can prove that:

Proposition 4.2. Suppose that zµ,ξ ∈ Z0 is a proper local maximum or minimum
of G. Then, for ε > 0 sufficiently small, uε := zµ,ξ + w(ε, zµ,ξ) ∈ Zε is a critical
point of fε.

The proof of this can be found for instance in [6] (see in particular Theorem
2.16 there). A simple explanation goes as follows. First we notice that, for any
zµ,ξ ∈ Z0,

(4.1) f ′0(zµ,ξ) = 0,

where f0 is defined in (1.9). Indeed, zµ,ξ is a critical point of f0, being a solution
to (1.4). Now, recalling (1.8) and using Taylor expansion in the vicinity of zµ,ξ, we
have

fε(zµ,ξ + w) = f0(zµ,ξ + w)− εG(zµ,ξ + w)
= f0(zµ,ξ) + f ′0(zµ,ξ)w + o(|w|)− εG(zµ,ξ)− εG′(zµ,ξ)w + o(ε)
= f0(zµ,ξ)− εG(zµ,ξ) + o(ε)
= f0(z0)− εG(zµ,ξ) + o(ε),
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where we have used (4.1) and (3.11), and the translation and dilation invariance of
f0.

Therefore, we have reduced our problem to find critical points of G. For this,
we set

(4.2) Γ(µ, ξ) := G(zµ,ξ) =
µ−γs

q + 1

∫

Rn
h(x)zq+1

0

(
x− ξ
µ

)
dx,

where

(4.3) γs :=
(n− 2s)(q + 1)

2
.

Now we prove some lemma concerning the behavior of Γ. In the first one we
compute the limit of Γ as µ tends to zero.

Lemma 4.3. Let Γ be as in (4.2). Then

lim
µ→0

Γ(µ, ξ) = 0 uniformly in ξ.

Proof. Thanks to (1.2), there exists r > 1 such that

(4.4) ω = supp h ⊂ Br.
We first suppose that ξ ∈ Rn is such that |ξ| > 2r. Therefore, if |y| < r then

|ξ + y| > |ξ| − |y| > r,

and so ξ + y ∈ Bcr ⊂ ωc. This implies that

(4.5) h(y + ξ) = 0 if |ξ| > 2r and |y| < r.

Now, we observe that, using the change of variable y = x− ξ, Γ can be written as

Γ(µ, ξ) =
µ−γs

q + 1

∫

Rn
h(y + ξ) zq+1

0

(
y

µ

)
dy.

Hence, using (4.5) we have that, if |ξ| > 2r,

Γ(µ, ξ) =
µ−γs

q + 1

∫

|y|>r
h(y + ξ) zq+1

0

(
y

µ

)
dy

6 µ−γs

q + 1
max
|y|>r

zq+1
0

(
y

µ

) ∫

|y|>r
h(y + ξ) dy.

This implies that

(4.6) |Γ(µ, ξ)| 6 µ−γs

q + 1
max
|y|>r

zq+1
0

(
y

µ

)
‖h‖L1(Rn).

Now, recalling (1.5), we obtain that

zq+1
0

(
y

µ

)
= αq+1

n,s

µ(n−2s)(q+1)

(µ2 + |y|2)
(n−2s)(q+1)

2

,

and so

max
|y|>r

zq+1
0

(
y

µ

)
= µ(n−2s)(q+1) max

|y|>r

αq+1
n,s

(µ2 + |y|2)
(n−2s)(q+1)

2

6 C µ(n−2s)(q+1),

for a suitable constant C > 0 independent on µ. Using this in (4.6) and recalling
(4.3), (1.2) and the fact that h is continuous, we get (up to renaming C)

|Γ(µ, ξ)| 6 C µ (n−2s)(q+1)
2 ,
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which tends to zero as µ→ 0. This concludes the proof in the case |ξ| > 2r.
If instead |ξ| < 2r then one has

∫

Rn
h(x) zq+1

0

(
x− ξ
µ

)
dx 6

∫

|x|<r
h(x) zq+1

0

(
x− ξ
µ

)
dx

6 ‖h‖L∞(Rn)

∫

|x|<r
zq+1

0

(
x− ξ
µ

)
dx,

(4.7)

thanks to (4.4), (1.2) and the fact that h is continuous.
We claim that

(4.8)
∫

|x|<r
zq+1

0

(
x− ξ
µ

)
dx 6 C µmin{n,(n−2s)(q+1)},

for some positive constant C independent of µ (possibly depending on r). To prove
this, we recall (1.5) and we get

∫

|x|<r
zq+1

0

(
x− ξ
µ

)
dx

= αq+1
n,s

∫

|x|<r

dx
(

1 + |x−ξ|2
µ2

) (n−2s)(q+1)
2

6 αq+1
n,s

(∫

|x−ξ|6µ
dx+

∫

µ<|x−ξ|<3r

µ(n−2s)(q+1)

|x− ξ|(n−2s)(q+1)
dx

)

6 C

(
µn + µ(n−2s)(q+1)

∫ 3r

µ

ρn−1−(n−2s)(q+1) dρ

)

6 C
(
µn + µ(n−2s)(q+1) µ−[(n−2s)(q+1)−n]+

)

6 C
(
µn + µmin{n,(n−2s)(q+1)}

)

6 C µmin{n,(n−2s)(q+1)},

up to changing C from line to line, and this shows (4.8). Therefore, by (4.2), (4.3)
and (4.7) we have that

|Γ(µ, ξ)| 6 C µ− (n−2s)(q+1)
2 µmin{n,(n−2s)(q+1)}.

Hence, if (n− 2s)(q + 1) 6 n we get that

|Γ(µ, ξ)| 6 C µ(n−2s)(q+1),

which implies that Γ(µ, ξ) tends to zero as µ → 0. If instead n < (n − 2s)(q + 1)
we obtain that

|Γ(µ, ξ)| 6 C µn− (n−2s)(q+1)
2 .

In this case, we observe that, since q ∈ (0, p) with p = n+2s
n−2s , then q + 1 < 2n

n−2s ,
and so

n− (n− 2s)(q + 1)
2

> n− n− 2s
2

2n
n− 2s

= 0.

This implies that also in this case Γ(µ, ξ) tends to zero as µ → 0. This concludes
the proof of Lemma 4.3. �

Now we compute the limit of Γ as µ+ |ξ| tends to +∞.
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Lemma 4.4. Let Γ be as in (4.2). Then

lim
µ+|ξ|→+∞

Γ(µ, ξ) = 0.

Proof. Suppose that µ → +∞. Then recalling (1.2), the fact that h is continuous
and (1.5) we have

|Γ(µ, ξ)| 6 C µ−γs ‖h‖L1(Rn),

for some positive constant C independent on µ. Therefore Γ(µ, ξ) tends to zero as
µ→ +∞.

Now suppose that µ → µ̄ for some µ̄ ∈ [0,+∞), therefore |ξ| → +∞. If µ̄ = 0,
then we can use Lemma 4.3 and we get the desired result. Hence, we can suppose
that µ̄ ∈ (0,+∞). In this case, we make the change of variable y = x − ξ and we
write Γ as

(4.9) Γ(µ, ξ) =
µ−γs

q + 1

∫

Rn
h(y + ξ) zq+1

0

(
y

µ

)
dy.

Since h has compact support (recall (1.2)), there exists r > 0 such that ω =
supp h ⊂ Br and so (4.9) becomes

(4.10) Γ(µ, ξ) =
µ−γs

q + 1

∫

|y+ξ|6r
h(y + ξ) zq+1

0

(
y

µ

)
dy.

We also notice that, since |ξ| → +∞, we can suppose that |ξ| > 2r. Therefore, if
y ∈ Br(−ξ), then |y + ξ| 6 r < |ξ|/2, which implies that

|y| > |ξ| − |y + ξ| > |ξ| − |ξ|
2

=
|ξ|
2
.

Hence, recalling (1.5), we obtain that if y ∈ Br(−ξ)

zq+1
0

(
y

µ

)
=

αq+1
n,s µ

(n−2s)(q+1)

(µ2 + |y|2)
(n−2s)(q+1)

2

6
αq+1
n,s µ

(n−2s)(q+1)

|y|(n−2s)(q+1)

6
2(n−2s)(q+1) αq+1

n,s µ
(n−2s)(q+1)

|ξ|(n−2s)(q+1)
.

Using this, (1.2) and the fact that h is continuous into (4.10), we have that

|Γ(µ, ξ)| 6 C µγs 1
|ξ|(n−2s)(q+1)

‖h‖L1(Rn),

for some constant independent on µ and ξ. Since µ → µ̄ ∈ (0,+∞), this implies
that

Γ(µ, ξ)→ 0 as |ξ| → +∞,
thus concluding the proof of Lemma 4.4. �

Finally we show the following:

Lemma 4.5. Let Γ be as in (4.2). Suppose that there exists ξ0 ∈ Rn such that
h(ξ0) > 0 (h(ξ0) < 0 respectively). Then

lim
µ→0

Γ(µ, ξ0)
µn−γs

= A,

for some A > 0, possibly A = +∞ (A < 0, possibly A = −∞, respectively).



36

Proof. We prove the lemma only in the case h(ξ0) > 0, since the other case is
analogous. We notice that, by using the change of variable y = (x − ξ)/µ, we can
rewrite Γ as

(4.11) Γ(µ, ξ) =
µn−γs

q + 1

∫

Rn
h(µy + ξ) zq+1

0 (y) dy.

Now, suppose first that 2s
n−2s < q < p. In this case, we have that z0 defined in

(1.5) satisfies

(4.12) zq+1
0 ∈ L1(Rn).

Then, from (4.11) we obtain

Γ(µ, ξ0)
µn−γs

=
1

q + 1

∫

Rn
h(µy + ξ0) zq+1

0 (y) dy.

We observe that

h(µy + ξ0) zq+1
0 (y)→ h(ξ0) zq+1

0 (y) as µ→ 0.

Moreover, thanks to (1.2), the fact that h is continuous and (4.12), we have that

h(µy + ξ0) zq+1
0 (y) 6 ‖h‖L∞(Rn) z

q+1
0 (y) ∈ L1(Rn),

and so from the Dominated Convergence Theorem, we get

Γ(µ, ξ0)
µn−γs

→ h(ξ0)
q + 1

∫

Rn
zq+1

0 (y) dy as µ→ 0,

showing the lemma in the case 2s
n−2s < q < p. Notice that in this case

A :=
h(ξ0)
q + 1

∫

Rn
zq+1

0 (y) dy

is strictly positive and bounded.
If instead zq+1

0 6∈ L1(Rn), then we use Fatou’s Lemma to get

lim inf
µ→0

∫

Rn
h(µy + ξ0) zq+1

0 (y) dy > h(ξ0)
∫

Rn
zq+1

0 (y) dy,

which implies that in this case A := +∞. This concludes the proof of Lemma
4.5. �

5. Proof of Theorem 1.1

Now we are ready to complete the proof of Theorem 1.1.
We observe that, thanks to (1.3) and Lemma 4.5, there exist µ0 > 0 as small as

we want and ξ0 ∈ Rn such that

(5.1) Γ(µ0, ξ0) > µn−γs0

2
min{A, 1} =: B.

Now, we use Lemma 4.3 to say that if µ > 0 is sufficiently small, then

Γ(µ, ξ) <
B

2
for any ξ ∈ Rn.

In particular, if µ1 := µ0/2, then

(5.2) Γ(µ1, ξ) <
B

2
for any ξ ∈ Rn.
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Moreover, from Lemma 4.4 we deduce that there exists R∗ > 0 such that if µ+ |ξ| >
R∗ we have

Γ(µ, ξ) <
B

2
.

In particular, we can take µ2 = R2 = R∗ + µ0 + |ξ0|+ 1 and we have that

(5.3) Γ(µ, ξ) <
B

2
if either µ = µ2 and |ξ| 6 R2 or µ 6 µ2 and |ξ| = R2.

Now we perform our choice of R, µ1 and µ2 in (3.1): we take µ1 and µ2 such
that (5.2) and (5.3) are satisfied, and R = R2.

Also, we set
S := {µ1 6 µ 6 µ2 and |ξ| 6 R},

and we notice that Γ admits a maximum in S, since Γ is continuous and S is a
compact set. Moreover, thanks to (5.2) and (5.3) we have that

(5.4) Γ(µ, ξ) <
B

2
if (µ, ξ) ∈ ∂S.

On the other hand,
|ξ0| < R2 and µ1 < µ0 < µ2,

which implies that (µ0, ξ0) ∈ S. Therefore, (5.1) and (5.4) imply that the maximum
of Γ is achieved at some point (µ∗, ξ∗) in the interior of S.

Now, we go back to the functional G, and recalling (4.2) we obtain that G
admits a maximum zµ∗,ξ∗ in the critical manifold Z0 defined in (3.1). Hence, we
can apply Proposition 4.2 and we obtain the existence of a critical point of fε, that
is a solution to (1.1), given by

u1,ε := zµ∗,ξ∗ + w(ε, zµ∗,ξ∗).

Also, u1,ε is positive thanks to (3.11).
Furthermore, if h changes sign, then there exists ξ̃0 ∈ Rn such that h(ξ̃0) < 0,

and so we can use Lemma 4.5 to say that

Γ(µ̃0, ξ̃0) 6 µ̃n−γs0

2
max{A,−1},

for some µ̃0 > 0. Then we can repeat all the above arguments (with suitable
modifications) to find a local minimum of Γ, and so a a local minimum of G. Then,
again from Proposition 4.2 we obtain the existence of a second positive solution.
This concludes the proof of Theorem 1.1.
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[25] J. Garćıa Azorero, E. Montefusco, I. Peral: Bifurcation for the p-laplacian in RN . Adv.

Differential Equations 5 (2000), no. 4–6, 435–464.

[26] T. Kato: Perturbation Theory for Linear Operators. Second edition, Springer-Verlag, Berlin,

1976.

[27] N. Laskin: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000),
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