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Si:P as a laboratory analogue for hydrogen on high
magnetic field white dwarf stars
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I. Galbraith3, N.V. Abrosimov4, H. Riemann4, S.G. Pavlov5, H.-W. Hübers5,6 & P.G. Murdin7

Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 105 T (1 gigagauss),

the maximum observed on high-field magnetic white dwarfs, is impossible because practi-

cally available fields are about a thousand times less. In this regime, the cyclotron and binding

energies become equal. Here we demonstrate Lyman series spectra for phosphorus impu-

rities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and

dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with

quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for

experiments on He and H2 analogues, and for investigation of He2, a bound molecule pre-

dicted under extreme field conditions.
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T
he response of atoms to high magnetic fields has been of
interest for many decades1–4. It has been suggested that
magnetic flux densities up to 105 T (1 gigagauss) exist on

the surface of white dwarf and cataclysmic variable stars5–7. This
inference is based on a complex process that involves a
combination of modelling the pattern of flux around the
surface and up through the atmosphere of the star, and a
search for transitions that are stationary with magnetic field2–4.
These models are then compared with astrophysical spectra.
Definitively extracting a magnetic field value from the
comparison is challenging because the measured spectra are
noisy with many overlapping features, as can be seen from some
examples in Fig. 1. In some cases, predicted features are missing
and in others there are extra features. Such discrepancies are
usually attributed to the inhomogeneity of the magnetic field
across the surface or line-of-sight, and possibly species other than
hydrogen. At the same time, there is controversy about how such
high fields could even persist for any significant length of time8,
and the dearth of high-field magnetic white dwarfs (HFMWDs)
found in binary systems9. Identification of the observed spectral
features is further hindered at these fields because the calculation
of theoretical spectra where the magnetic cyclotron energy
(:eB/me) is comparable to the coulombic binding energy
(the Rydberg R¼mee4/2k2:2, where k¼ 4pe0) is non-trivial,
especially for atomic species other than hydrogen, such as
helium10–12. The difficulty is that in the regime of interest
(BBB0¼me

2e3/2k2:3) the Zeeman effect becomes quadratic13–15,
the spherical symmetry of the Coulomb potential competes with
the cylindrical symmetry of the magnetic field, and the
Schrodinger equation is non-integrable, so producing quantum
chaos16,17. The theory for the very complex Zeeman structure in
atoms has been compared with laboratory absorption spectra in
magnetic fields up to 8 T (refs 13–15). Although in Rydberg
atoms the cyclotron energy can be more easily made equivalent to
the substantially lower binding energy (the characteristic field is
lowered by a factor n4 where n is the principal quantum
number)18, the regime near B0 is receiving renewed interest
because it has recently been shown that a new kind of magnetic
chemical bond can be produced that supersedes the electronic
bond19, creating new molecules such as He2.

The Hamiltonian for an electron in atomic hydrogen usually
applied is

H0 ¼
p2

2me
� e2

kr
ð1Þ

where p¼ � i:r is the momentum operator. When a hydrogen
atom is subjected to a magnetic field, we replace p2 in equation 1
by (pþA)2, where A is the vector potential defined by B¼r�A.
We now have, in units such that me¼ e¼ k¼:¼ 1,

H¼H0 þ
1
2
ðp:AþA:pÞþ 1

2
A2 ð2Þ

where H0 is the zero-field Hamiltonian (equation 1), the second
term, H1, is linear in field and the last term, H2, is responsible for
the quadratic Zeeman effect. The Hamiltonian of equations 1 and
2 ignores spin orbit coupling and assumes the heavy ion mass
limit, that is, it ignores the motion of the ion/donor. The general
case is considered in refs 20,21. In other species, different
approximations are necessary. Given the above questions, and the
renewed interest in the high-field regime, it is crucial to validate
experimentally the theory for the absorption spectra on which the
inferred fields are based. Doing so directly for hydrogen is
impractical because the required fields are two to three orders of
magnitude beyond what is currently available in any
laboratory22,23. Such tests become even more essential where
atomic species beyond hydrogen are being considered, for
example, helium10–12 or molecular hydrogen24–27 as for these
cases the multiple particle calculations required are complex and
involve approximations (for example, basis-state choices and
sizes) that are not a priori guaranteed.

In low field, the Zeeman spectrum may be found from
perturbation theory, the orbital and magnetic quantum numbers
are constants of the motion. In this regime, B{B0 (half an atomic
unit of field) the quadratic term is negligible, and the transitions
shift linearly with field because H1¼½LzBz produces the usual
linear Zeeman energy ½mB (where Lz is the component of
angular momentum along B||z and m is the magnetic quantum
number). At very high field, the Coulomb potential is the
perturbation and again there are constants of motion, but in the
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Figure 1 | Hydrogen Balmer spectrum for HFMWDs. The spectra are taken from the Sloane Digital Sky Survey7. They have been flattened by subtracting

a 4th order polynomial fit and inverted. Also shown are all theoretical Balmer series transitions—we have chosen the field values to produce the best

fit. No account has been taken here of the temperature or the spatial and temporal field inhomogeneity and this accounts for the difference in the field

values quoted here when compared with fits from a full calculation7. The magnitude of the dipole matrix element, and the polarization are shown,

respectively, by the length and colour of the lines (red, circular sþ polarization, Dm¼ � 1; green, linear pz, Dm¼0; blue, circular s�, Dm¼ þ 1).
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intermediate regime close to B0, the Zeeman spectrum is much
more complex (Fig. 1).

It has long been known1 that shallow impurities in
semiconductors exhibit energy level spectra that bear striking
similarities to those of free atoms, and the canonical example is
the Group V donor such as phosphorus in silicon (Si:P). In this
case, the Group IV silicon atoms are tetrahedrally bonded, so the
donor has one unused valence electron, loosely bound, which
orbits about the ion core. The Si:P system yields well-resolved
hydrogenic Lyman series spectra at zero field28,29 with excitations
that are long lived and useful as alternatives to free atoms for
quantum information applications30–32. The cyclotron energy
and the donor-binding energy are equal for magnetic fields at
around 30 T because the cyclotron and binding energies are
scaled by the effective mass and dielectric constant1,33. Equation 2
still holds, and we now use appropriately scaled units so that
m*¼ e¼ erk¼:¼ 1, see Table 1.

There are other possible analogues such as acceptors but these
are much more complicated34, while other host materials such as
III–V semiconductors generally produce such a small binding
energy, or such wide homogeneous line widths, that the Rydberg
states are not well resolved until BcB0 (refs 33,35), which thus
sheds little light on the understanding of HFMWDs. To validate
any computational scheme for helium in the high magnetic field
regime accurately, a suitable analogue to measure would be the
double donor sulphur in Si (ref. 36). Similarly, the ability to
position phosphorous donors with atomic precision allows one to
build coupled donor pairs to mimic molecular hydrogen24–27.

In this work, we use Si:P as an analogue of hydrogen in
conditions similar to those at the surface of HFMWDs. The
measured Lyman series spectra reproduce the theoretical
predictions for free hydrogen under high field, with quadratic
Zeeman splitting and strong mixing of spherical harmonics,
demonstrating the possibility of the use of Si:P for modelling
astrophysical data in the laboratory.

Results
High-field Lyman spectroscopy of Si:P. Figure 2 shows the
measured and computed Lyman series spectra for silicon doped
with phosphorus as a function of applied magnetic field (see
Supplementary Data 1 for the raw data). The [001] cubic crystal
axis, the field and the light propagation direction were chosen to
be all parallel (Faraday geometry). The circular polarization
dependence of the lowest two transitions is also shown in Fig. 2,
for forward and reverse fields (Supplementary Data 2), showing
that some transitions select one circular polarization. The
experimental donor transitions are sharp and clearly resolved up
to principal quantum number n¼ 6.

Theoretical field dependence of Si:P and free hydrogen.
Figure 1 shows the positions and dipole transition strengths of the
Balmer series for known HFMWDs, and Fig. 3 the Lyman
series. Whereas the low field limit of the Balmer series has only
three components that split linearly, at high field, the Ha
(2p-3d) line splits into 3� 5¼ 15 components and so on. The
quadratic Zeeman effect produces transitions that are forbidden
at low field and a very complex Balmer spectrum (Fig. 1). The
complexity is only somewhat reduced in the Lyman series (Fig. 3).
Figure 2 shows the theoretical field dependence of the Si:P
transition energies. The absolute level positions were calculated in
atomic units, and these were converted to transition energies
using a field-independent ground state energy of � 2.277R (see
below). The magnetic field and transition energies were converted
to tesla and meV using standard parameters (Table 1), so no
fitting was performed.

The experimental and theoretical results are compared in Fig. 2
and Table 2. The calculation is in excellent agreement with the
donor experiment, in both energy and polarization. There is also
a striking correspondence between the calculated donor Lyman
series (Fig. 2) and that for hydrogen (Fig. 3), especially between
the circularly polarized transitions shown in red and blue.
Figure 4 shows the very strong field-induced mixing, evident from
the completely different wavefunction shapes at high field. At
n¼ 6, the states have a radius of 36 Bohr radii, or 114 nm, which
corresponds to the average spacing between the donors (110 nm
for the sample used) so that adjacent wavefunctions overlap,
leading to broadening of the transitions. These wavefunctions are
among the largest in radial extent ever investigated in the solid
state, and for a free hydrogen atom to have a similar radius would
require nB45.

Influence of anisotropic crystal environment in Si:P. There are
also some notable differences between Figs 2 and 3. The donors
have a number of additional transitions, shown in cyan, that at
first sight do not correspond with hydrogen, some transitions that
ought to be forbidden for light incident along the field axis (the
linearly polarized hydrogen transitions on Fig. 3, shown in green,
such as the 2p0 are forbidden for Faraday geometry), and anti-
crossings in these transitions. These effects all arise from the fact
that while the hydrogen Hamiltonian is spherically symmetric,
the donor electron experiences the periodic environment of the
cubic crystal host. The constant energy surface in momentum
space for electrons in vacuum is a sphere centred at the origin,
whereas in silicon there are six equivalent conduction band val-
leys (Fig. 2d) (electrons with zero group-velocity have non-zero
phase velocity—an effect of the periodic medium). The valleys are
ellipsoidal, that is, anisotropic, and characterized by g¼mt/ml

where mt and ml are the transverse and longitudinal effective
masses. As a result of the donor anisotropy (ga1), some
degeneracies are lifted at zero field, so that, for example, the 2p0
state is unpolarized and at lower energy than the 2p±.

Anisotropy produces an additional degree of freedom; the
angle between the magnetic field and the valley axis. For free
hydrogen atoms with spherical symmetry, we are at liberty to
choose to quantize the angular momentum along the magnetic
field, that is, B¼ (0,0,Bz). If the silicon sample is mounted with
the field in the [001] crystallographic direction then two of the
valleys (valleys 1 and 2 in Fig. 2d) have B||z, where z is the valley
axis direction, whereas the other four have B>z. Anisotropy is
the origin, for example, of the transition in Fig. 2 that starts at
39.2meV at zero field but shows no linear Zeeman shift—it is the
2p±x for B||x (the subscript x on the level designation indicates
the valley orientation).

Table 1 | Experimental parameters and derived units.

Parameters
Transverse effective mass mt/me 0.1905
Longitudinal effective mass ml/me 0.9163
Relative permittivity er 11.4

Derived quantities (using m*¼mt)
Mass anisotropy g 0.208
Rydberg energy R (meV) 19.9
Hartree 2R (meV) 39.9
Characteristic field B0 (T) 32.8
Atomic unit of field 2B0 (T) 65.6
Bohr radius a0 (nm) 3.17

Parameters used28,37,38 and the scaled atomic units derived from them.
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Ground state central cell correction and field dependence. The
central unit cell of the silicon crystal where the donor atom sits
has some strain and rearrangements of the electron cloud that

break the host periodicity. These effects are strongly localized and
do not extend more than a unit cell. Their net effect is to cause a
short-range change in the potential additional to the hydrogenic
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Figure 2 | Field dependence of Si:P Lyman series. The field was oriented along the [001] crystal axis in Faraday geometry (that is, light propagation

along the field axis). The sample temperature was 2.2 K (so that kBT¼0.010 Rydberg, equivalent to 1,600K for free hydrogen atoms). (a) Experimental

far-infrared absorption spectra. Each transmission spectrum has been normalized, then inverted and finally offset so that the baseline corresponds

to the field applied. No smoothing or other processing has been used. The noise feature just below 50meV that increases in size with field is due to

vibrations in the magnet cooling water system. (b) Theoretical donor Lyman transition spectrum. The strongest transitions are labelled according

to their upper state. The magnitude of the dipole matrix element and polarization are indicated, respectively, by the thickness and colour of the lines

(red, circular sþ for valleys 1 and 2; blue, circular s– for valleys 1 and 2; cyan, unpolarized transitions for valleys 3–6). Some important states have been

identified from the dominant components of the wavefunction character. Note that the 4f– state labelled at about 20T is only weakly allowed and

undergoes many anti-crossings with the p– series. (c) Circularly polarized absorption spectrum. (d) The multi-valley conduction band of silicon. The valley

axis coordinate system (x,y,z) and the light propagation (k) and field (B) directions used are indicated.
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Figure 3 | Field dependence of hydrogen Lyman series for both Faraday and Voigt geometry. The strongest transitions are labelled according to their

upper state. The magnitude of the dipole matrix element and polarization are indicated, respectively, by the thickness and colour of the lines (red, circular

sþ for Faraday geometry, that is, k||B; blue, circular s– for Faraday geometry; green, pz transitions for Voigt geometry that is, k>B). The spectra are taken

from ref. 6. The field associated with each spectrum has been chosen for the best fit without regard for the astrophysical models of the temperature and so

on, as for Fig. 1.
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Coulomb potential, which only affects states with significant
amplitude at the centre, that is, donor states that have s-orbital
character. In our Lyman series absorption experiment, this
quantum defect only affects the ground 1s state. The observed
transition energies (Fig. 2) are all larger than 1 Rydberg, that is,
the extra potential is attractive.

This observation implies that this wavefunction has a smaller
extent than predicted by scaling from hydrogen, which reduces
the already small tuning with field (because H2¼½A2 scales
with r2). We therefore took the 1s state to be field independent.

We anticipate that the main improvements that can be made to
the theory include small adjustments in the parameters, and a
better calculation of the ground state and its field dependence,
which must include proper treatment of the effects of the central
cell correction.

Quadratic versus anisotropic linear Zeeman effect. Because we
have used much higher field and higher quality samples than
previous donor spectroscopy33,37,38, we have also resolved new
anti-crossings separately induced by either the linear or quadratic
Zeeman couplings for the same low quantum number states
important in white dwarf spectra (Fig. 1). These anti-crossings are
very sensitive tests for the theory, and allow direct experimental
measurement of the matrix elements of the Zeeman interaction.
For the crystal orientation examined here (that is, [001]), there
are examples of anti-crossings that are purely due to the same
quadratic Zeeman coupling observed for free hydrogen, while
others are purely due to the linear Zeeman coupling introduced
by the anisotropy.

Looking at the experimental data of Fig. 2, we can clearly see
the anti-crossing of the 2p±x line and the 3p0x line at 14 T, with
splitting 1meV. As the dominant basis-state components in the
wavefunction are p± and p0, respectively, the term in the
Hamiltonian responsible for the anti-crossing clearly couples
DL¼ 0 and Dm¼±1 (where L is the orbital quantum number),
and such terms are not present for hydrogen—it is only produced
by the linear Zeeman effect in the presence of anisotropy. Anti-
crossings due to this same linear Zeeman coupling may be
observed for 2p±x and 3p±x with 4p0x (with much smaller radial
overlap and hence smaller splitting). The downwards shift of 2p0x
above 15T results from similar coupling with 2p±x (with large
radial overlap).

Turning to the quadratic Zeeman Hamiltonian, we observe
anti-crossings with Dm¼ 0 and DL¼±2 that are entirely due to
this coupling, and the same terms are present both in free
hydrogen and the silicon donor with B||z. An example is evident
in the p– series (red lines on Figs 2 and 3), in which transitions
gain and lose strength as a function of field. The p– series is
coupled by the quadratic Zeeman interaction to the f– (and h– and
so on) series, and whereas Lyman transitions from 1s to p– are
dipole allowed, transitions to f– are forbidden. The f– states
have the stronger field dependence and the 4f– cuts through the
p– series leaving gaps. Figure 5 (Supplementary Data 3) shows a
detail of Fig. 2 around the anti-crossing of the 4f– with the 5p–.

Discussion
Having successfully verified the theory of hydrogen in high
magnetic fields, we can return to the consideration of the white
dwarf star spectra in Fig. 1. The centre panel shows the calculated
hydrogen spectrum at each magnetic field with the dipole
strength of each transition reflected in the width of the line. For
the six magnetic white dwarfs shown, we have selected the
magnetic field that best fits the measured spectrum. There is a
good degree of agreement for all spectra and where extra or
missing features are present, we can be confident that other
effects are responsible (such as, for example, other species or
strongly inhomogeneous magnetic fields).

In summary, we have experimentally investigated the spectro-
scopy of a solid-state analogue of hydrogen in conditions
equivalent to the surface of the highest field magnetic white
dwarf known. The calculated state energies, their anti-crossings,
and the selection rules show excellent agreement with experiment
up to the highest fields, thus validating the theoretical approach
and providing confidence in its use for modelling astrophysical
data. The simple scaling between the binding energies for Si:P and
hydrogen is extremely well known, and here we show that much
more subtle use can be made of it for measurement of Zeeman
couplings. These quadratic Zeeman couplings and anti-crossings
are responsible for the complexity of the predicted field
dependence of the Balmer spectrum (Fig. 1), and although the
effect of the quadratic Zeeman interaction has been detected in

Table 2 | Calculated transition energies compared with
experiment.

State hnexp
(B¼30T),

meV

Eth
(B¼0.9146B0),

Ry

hnth
(B¼0.9146B0),

meV

hnth� hnexp,
%

2p0x 33.50 �0.589 33.72 0.7
2p� 37.89 �0.362 38.26 1.0
3p0x 40.09 �0.254 40.41 0.8
2p±x 43.16 �0.123 43.03 0.3
A 43.19 �0.087 43.75 1.3
B 44.79 �0.015 45.19 0.9
3p� 44.81 0.020 45.89 2.4
4p� 49.04 0.219 49.86 1.7
5p� 52.71 0.400 53.48 1.5
2pþ 54.88 0.510 55.67 1.4

The experimental transition energies are from the 30 T data. The theoretical absolute level
positions at B¼ 30T¼0.9146B0 are relative to the zero-field continuum edge. The theoretical
transition energy was calculated, assuming that the ground state energy is field independent (as
described in the text). For comparison, the experimental line width was 0.09meV (that is,
B0.3%). Transitions A and B are strongly mixed x-valley transitions.
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both free atoms1,15 and solids28,29,33–35,37,38, its characteristic
anti-crossings with Dm¼ 0 and DL¼±2 have not been observed
previously (and neither have the purely linear Zeeman, B>z
anisotropy induced, anti-crossings with Dm¼±1 and DL¼ 0).
The results show that silicon donors provide an excellent
laboratory material for studying effects of atomic physics that
have previously been beyond the capability of laboratory
equipment and available for study only in extreme astrophysical
phenomena. We propose that analogues of helium (such as
sulphur or selenium in silicon36) or H2 (phosphorus pairs), where
the theory is yet more difficult, will prove critical to underpinning
confident interpretation of other white dwarf spectra. The
analogues are also likely to be the only way to study new kinds
of magnetic chemical bonds19. Our scheme also opens the way to
use solid-state systems to investigate quantum effects in a regime
where forces manifesting spherical and cylindrical symmetry
compete equally.

Methods
Experimental methods. The sample used for Fig. 2a was a 500-mm-thick float zone
grown monocrystalline silicon with a phosphorus density of 8� 1014 cm� 3, and a
residual concentration of other donors and acceptors below 1013 cm� 3. It was
polished to a 1� wedge, and mounted in helium exchange gas at T¼ 2.2 K. Far-
infrared radiation from a Fourier transform interferometer (Bruker IFS-113v), was
brought to the sample by an evacuated beam line and focusing cone, and the
transmission was detected by a liquid-helium-cooled Si-composite bolometer. The
unapodized spectral resolution of Fig. 2a was 0.04meV, confirmed by the residual
presence of water vapour absorption lines of this width. The sample exhibits
phosphorus donor absorption lines of width 0.09meV and this is limited by the
natural isotopic variation of surrounding silicon atoms (and can be reduced
somewhat by purification29). The lifetime broadened line width is 0.008meV

(refs 30,31). The signal dependence on magnetic flux density B was determined
with a 33 T (0.33 MG) water-cooled Bitter magnet, with the field axis, the light
propagation direction and the normal to the sample plane all parallel, that is, the
Faraday geometry23. For polarized experiments, a wire grid polarizer and an x-cut
quartz quarter wave plate were mounted with optical axes at 45� to each other
directly on top of the sample. The wave plate bandwidth covered only the 2p0 and
2p� transitions. Each transmission interferogram was Fourier transformed,
normalized with the median spectrum to remove the water lines, then inverted, and
finally offset so that the baseline corresponds to the field applied. No smoothing or
other processing has been used. The raw interferogram data for Fig. 2a,c and Fig. 5
are provided in Supplementary Data 1–3, respectively. The data consist of
interferograms in columns. Each interferogram has been averaged 30 times. The
first row of each data matrix refers to the magnetic field value, while the first
column indicates the step number, which is in power-of-two multiples of the HeNe
laser wavelength that is, 16� 632.8 nm. A tab is used to separate data within the
rows. The length of the interferogram determines the resolution, which is different
for each figure/file. The samples (and field resolution) used for each figure are
different. All samples are P doped with the growth direction of o1004. All were
500 mm thick and polished to 1� wedge. Further details are on growth method and
doping concentration are provided with each Supplementary Data file.

Theoretical methods. For the theoretical calculations, we used a Lanczos proce-
dure to find the radial wavefunctions exactly37. The main alternative approach
would have been a variational calculation38. The advantage of the latter method is
that it does not require large matrix diagonalization. However, the disadvantage is
that it requires a very large number of fitting parameters and is therefore not
predictive. It has also been shown37,38 that this method does not easily allow
separation of linear and quadratic Zeeman terms at high fields. The exact
diagonalization method, although it requires large matrices, requires no fitting and
it accurately predicts the results for any field direction, it can identify the different
contributions to the anti-crossings and it can be used to produce the wavefunctions
and matrix elements for the transitions.

Because of the mass anisotropy, the zero-field Hamiltonian for silicon is, in
scaled atomic units (Table 1),

H0 ¼ � 1
2

@2

@x02
þ @2

@y02
þ g

@2

@z02

� �
� 1

r
: ð3Þ

The primed coordinates represent the laboratory frame, and we make a coordinate
transformation,37 so that the kinetic energy operator is isotropic (and consequently
the Coulomb potential is now anisotropic):

H0 ¼ � 1
2
r2 � 1

r
f ðg; yÞ; ð4Þ

where

f ðg; yÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1� gÞ cos2 y

p
and y is the polar zenith angle (that is, angle down from the z axis) in the
transformed frame. We write the wavefunction as a series of functions in separated
polar coordinates

cðr; y;fÞ¼
X1
L¼ 0

XL
m¼ � L

UL;mðrÞ
r

YL;mðy;fÞ;

where YL,m are the spherical harmonics. The UL,m are the wavefunctions to be
found. Using the YL,m as the basis, the Schrödinger Equation using the
Hamiltonian of equation 4 in matrix form is

� 1
2
@2

@r2
þ LðLþ 1Þ

2r2

� �
UL;mðrÞ�

X
L0

1
r
FL;m;L0;m0 UL0 ;m0 ðrÞ¼ EUL;mðrÞ ð5Þ

where E is the energy and FL;m;L0 ;m0 ¼ YL;m fj jYL0 ;m0

D E
. FL,m,L0 ,m0 is zero unless

m¼m0 and L has the same parity as L0 , so equation 5 produces independent series
of levels according to m and parity of L.

The values of FL,m,L0 ,m0 were found by numerically calculating the overlap
integral of the spherical harmonic functions, and the secular equation was set up
using the finite element approximation to the second derivative. To find the lowest
energy-bound states for any given parity and m, this large matrix diagonalization
problem was solved using the Lanczos numerical procedure, encoded in ARPACK
library routines for Fortran.

In silicon donors, we choose z to be along the valley axis, and in general, the field
in the laboratory frame, B0 , can now have components in the xy plane. We choose
the symmetric gauge1, A¼½B� r, and for donors the apparent magnetic field in
the transformed frame is36

B¼r�A¼ð ffiffiffi
g

p
B

0

x ;
ffiffiffi
g

p
B

0

y ;B
0

zÞ:

The linear Zeeman Hamiltonian is

H1 ¼
1
2
ðp:AþA:pÞ¼ 1

2
B:L¼ 1

4
ðB� Lþ þBþ L� Þþ 1

2
BzLz ;

M
ag

ne
tic

 fi
el

d 
(T

)
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Figure 5 | Quadratic Zeeman-induced anti-crossing. A detail around

44meV and 3.5 T of the Si:P absorption (Fig. 2) is shown in white.

Superimposed are the theoretical circularly polarized transitions (that is,

those which have direct correspondence with free hydrogen): red open/

solid symbols, Dm¼ � 1; blue solid symbols, Dm¼ þ 1 (and diameter

proportional to the magnitude of the dipole matrix element). The excellent

agreement between the experiment and theory is evident. The red open

symbols highlight the 4f– (starts at 43.7meV at 0 T) and 5p– (starts at

44.2meV). The transition 1s to 4f– is only weakly allowed by the anisotropy

(it is strictly forbidden at B¼0 in hydrogen), while the 5p– is strongly

allowed. The transitions anti-cross at about 3.5 T and so that the 4f– line

gains p– character, while the 5p– gains f– character. The dashed lines are

guides to the eye, indicative of the positions of the two levels without their

mutual interaction.
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where B� ¼Bx � iBy , L is the angular momentum and L� ¼ Lx � iLy are the
raising and lowering operators. The quadratic Zeeman Hamiltonian is

H2 ¼
1
2
A2 ¼ 1

8

y2B2
z þ z2B2

y � 2yzByBz

þ z2B2
x þ x2B2

z � 2zxBzBx

þ x2B2
y þ y2B2

x � 2xyBxBy

8<
:

9=
;

¼ r2
ffiffiffiffiffiffiffi
p
120

r
�
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z

h i
þ

ffiffi
2
3

q
Y2;0

1
2 ðB2

x þB2
yÞ�B2

z

h i
�Y2;� 1 iByBz þBzBx

� �
�Y2;1 iByBz�BzBx

� �
�Y2;� 2

1
2 ðB2

x �B2
yÞþ iBxBy

h i
�Y2;2

1
2 ðB2

x �B2
yÞ�iBxBy

h i
8>><
>>:

9>>=
>>;

in which we substituted the Cartesian definitions of the spherical harmonics.
The matrix elements of Lz lead to an additional diagonal term in equation 5, and

is the main contribution to the Zeeman effect at small field along z, and those of
Y0,0 lead to diagonal terms quadratic in field (for all field directions). The matrix
elements of L±, which appear for non-zero Bxy, couple states with Dm¼±1, and
DL¼ 0. The matrix elements of Y2,m between the basis states are given by Gaunt
Coefficients that we evaluated analytically using Wigner 3j symbols. The Y2,0 term
couples states with Dm¼ 0 and DL¼ 0,±2 and appears for all field directions
(except tan� 1ð1=

ffiffiffiffiffi
2g

p
Þ to the crystal axis); Y2,±1 couples states with Dm¼±1 and

DL¼ 0,±2 and appears when B is neither parallel nor perpendicular to z; and
Y2,±2 couples states with Dm¼±2 and DL¼ 0,±2 and appears when there is a
component of field in the xy plane.

The Zeeman effect in hydrogen and silicon donors with B||z. For free hydrogen
atoms, or for B0 along [001] for silicon donors, we are left only with Lz terms in H1

and Y0,0 and Y2,0 terms in H2. Of these, only Y2,0 produces off-diagonal terms. The
non-zero off-diagonal matrix elements allow coupling by the magnetic field of
spherical harmonic basis states with Dm¼ 0 and DL¼ 0,±2. This is the same set
that is coupled by f in the case of donors in silicon, so the donor and hydrogen
problems are therefore of the same complexity and can be separated for each
different value of m and L parity independently. We solved it using a Lanczos
procedure just as for donors in zero field. Using the spherical harmonics up to
L¼ 15 as a basis was sufficient for the Lyman series, but L¼ 30 was found to be
necessary for the Balmer series. The Lyman calculations of Figs 2,3 took a few tens
of minutes on a standard laptop. Convergence tests show that the results are
accurate to better than 1 part in 104 for the highest energy transitions shown.

The Zeeman effect in silicon donors with B0
x,ya0. For B0

xya0, H1 includes L±
terms and H2 includes Y2,±1 and Y2,±2 terms, which break the Dm¼ 0 selection
rule. This leaves only parity of L as a good quantum number, that is, we now have
to include in the basis all spherical harmonics of a given L parity in the basis. This
greatly increases the complexity of the problem. We used the Lanczos procedure to
solve the coupling due to the Lz and Y2,0 terms only, and treated the remaining
terms as a perturbation in the new basis of the new wavefunctions. In doing so we
included the 10 states with lowest energy for each L parity and m up to m¼±6
and we then diagonalised the Y2,±1 and Y2,±2 interactions between these states
exactly.

Transition rates. The electric dipole approximation for the transition rate caused
by an oscillating electric field e0 contains the matrix element (in the laboratory
frame) of e0 .r0 where the field in the transformed frame is e¼ðe0x ; e

0
y ;

ffiffiffi
g

p
e
0
zÞ. In

terms of the spherical harmonics:

ci e � rj jcf

D E
¼

Z1
0

dr r2
X1
L¼ 0

XL
m¼ �L

Ui
L;m

r
YL;m

ffiffiffiffiffi
4p
3

r
Y1;� 1eþ �Y1;1e� þY1;0ez
� �

r
X1
L0 ¼ 0

XL0
m0 ¼ � L0

Uf
L0 ;m0

r

						
						YL0 ;m0

* +

This contains a sum of Gaunt coefficients, each related to a different light
polarization. Note that these transitions involve states with opposite L parity. The
calculation therefore requires calculation of both sets of parity states. In the case of
B||z, the m states are not mixed, so for the Lyman series (Figs 2,3) we only need
� 1omo1, for the Balmer series (Fig. 1) we need � 2omo2 and so on.
Figure 2c shows the experimental verification of the selection rules, that is, the
reversal of the field direction reverses the sense of circular polarization needed.
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