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A continuum model for yttria-stabilised zirconia incorporating
triple phase boundary, lattice structure and immobile oxide ions

Petr Vágner, , Clemens Guhlke, Vojtěch Miloš,, Rüdiger Müller, Jürgen Fuhrmann

Abstract

A continuum model for yttria-stabilised zirconia (YSZ) in the framework of non-equilibrium
thermodynamics is developed. Particular attention is given to i) modeling of the YSZ-metal-gas
triple phase boundary, ii) incorporation of the lattice structure and immobile oxide ions within
the free energy model and iii) surface reactions. A finite volume discretization method based on
modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations.

The model is used to study the impact of yttria and immobile oxide ions on the structure of the
charged boundary layer and the double layer capacitance. Cyclic voltammograms of an air-half
cell are simulated to study the effect of parameter variations on surface reactions, adsorption and
anion diffusion.

1 Introduction

Detailed continuum models of high temperature solid oxide electrochemical cells (SOEC)1describe the
underlying chemistry with spatially distinguished phases (oxide ion conductor, electric conductor, gas)
of the triple phase boundary [BG02, BGV07, ZKJ+05, VBHG+09]. Surface physics processes such as
tangential diffusion and surface chemical reactions of the surface species are employed. In particular,
the electron-transfer reaction at the triple phase boundary is usually modelled with Butler-Volmer-type
kinetics containing overpotential, the difference of the electric potential between the metal and the
bulk of the YSZ, as the driving force. The ionically or electrically conductive parts of a solid oxide
cell are electroneutral in the respective bulks. The overpotential, appearing at the phase interface is
caused by formation of a charged double layer of oxide ions in YSZ and electrons in the electrode.
Although the overpotential correlates with the excess concentration of oxide ions available for the
electron-transfer reaction in steady-state scenarios, it cannot capture the dynamics of the double layer.
Therefore, if such a model is compared to the results of a dynamic current-voltage measurement, e.g.
electrochemical impedance spectroscopy or linear-sweep voltammetry, the dynamics of the double
layer is underrepresented.

To determine the structure and dynamics of the space-charge layer of oxide ions in the YSZ, at the
continuum level, the Poisson-Nernst-Planck (PNP) system, generalized in order to account for the effect
of the finite density of available lattice sites for oxide ions, can employed.

Such an approach was already used to capture the formation and behavior of the electrochemical double
layers at electrode-electrolyte interfaces [BTA04, LGD16]. The PNP system was successfully applied to
the solid-state electrochemical systems, e.g. lithium batteries [LFJ11, BYL15, dKW18].In [ZK16], the
PNP equations were already applied for proton ceramic fuel cells, however, the thermodynamics of the
crystalline lattice and of the surface were not taken into account.

1Either fuel cells, or electrolysis cells.
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In this work, a modeling approach for charged bulk-surface interfaces based on first principles of
nonequilibrium thermodynamics resulting in a generalized Poisson-Nernst-Planck system [DGM18]
(based on [dGM84]) is used to formulate the model of dynamics of the space-charged layer at the
YSZ-metal-air triple interface. The main advantage of this approach is its consistency between the free
energy (equilibrium) and fluxes (dynamics).

The paper is organized as follows. The free energy model of the bulk YSZ, capturing the crystalline
structure, immobile oxide ions and elastic deformation, is developed in section 2. The resulting chemical
potentials are introduced into the gPNP model [DGM18] after its modification for the description of the
lattice velocity. Section 3 is dedicated to the treatment of the bulk metal and gas. Both phases are
assumed to be in a diffusional equilibrium. The free energy of the surface and the surface dynamics
are described and developed in the Section 4. The modeling approach results in a coupled system of
evolution equation describing the transport of oxide ions in the bulk of electrolyte, adsorption of oxide
ions from bulk to the surface and electron-transfer reaction alongside with the Poisson equation.

Using a finite volume based discretization, double layer capacitance and linear-sweep voltammetry
simulations are performed in Section 5. The performed simulations study the effects of the newly
introduced concept immobile oxide ions, the free energy parameters and the kinetic rates on the current
response.

The novelty of the approach lies in the synthesis of the crystalline lattice bulk-surface free energy
description and the coupled bulk-surface dynamics in non-equilibrium thermodynamics framework.
Owing to this, it is possible to simulate the equilibrium behavior, e.g. the double layer capacitance, and
dynamic behavior, e.g. the cyclic voltammetry, using a single model. Notable contribution to the state of
the art models of YSZ is the thermodynamic treatment of the surface dynamics.

2 Bulk YSZ

We consider the charge transport exclusively in the isothermal electrostatic setting, therefore the
temperature T is assumed to be constant and the electric field is given asE = −∇ϕ. Moreover, a
simple material model for polarization based on a constant susceptibility χ is chosen.

2.1 General mixture and crystalline structure

Mixture quantities. We model YSZ as mixture of four constituents: zirconium and yttrium cations
denoted by Zr and Y, respectively, and oxide anions. We assume that only a part of the oxide anions
is freely mobile and refer to these as Om, whereas the remaining immobile oxide anions Oi are fixed
to the underlying crystal structure. For referencing the different constituents of the mixture we use the
index set IYSZ = {Zr,Y,Oi,Om}. Each constituent is characterized by the atomic mass mα and
its atomic charges zαe0, where α ∈ IYSZ. The constant e0 is the elementary charge and zα is the
charge number of the constituent. Multiplication of the number densities nα by mα gives the partial
mass densities,

ρα = mαnα . (2.1)

The (total) mass density ρ and the free charge density nF of YSZ are defined as follows,

ρ =
∑
α∈IYSZ

mαnα , nF = e0
∑
α∈IYSZ

zαnα . (2.2)
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Continuum model for yttria-stabilised zirconia 3

While each species is transported by its partial velocity υα, we introduce for the mixture the barycentric
velocity

υ = 1
ρ

∑
α∈IYSZ

ραυα . (2.3)

The diffusion fluxes of the constituents are determined by the transport relative to the barycentric
velocity, viz.

Jα = ρα(υα − υ) implying the constraint
∑
α∈IYSZ

Jα = 0 . (2.4)

Crystalline structure. The crystalline structure of pure ZrO2 is well known, see e.g. [Sco75] and
might be described conveniently in terms of unit crystal cells. Unit crystal cells of yttria-doped zirconia
are, due to the yttria doping, difficult to be described systematically [Hun51]. To overcome this, we
introduce cation and anion spatial lattices, so that they coincide with the respective lattices in pure
cubic ZrO2, i.e. locations of Zr4+ or O2 – . Contrary to the pure ZrO2, the cation lattice of YSZ is occupied
also by Y3+ and some of the anion lattice sites may be empty. The cation lattice unit cell is assumed to
be face-centered cubic and contains 8 cations in its vertices and 4 in the centers of the faces. Each
vertex site is shared by seven other unit cells and each face-center site by one additional unit cell.
Hence, there are M#

C = 4 cation lattice sites belonging to one unit cell. There are M#
A = 8 anion

lattice sites contained in the cation lattice unit cell, these are located inside the unit cell and not being
shared by the neighboring unit cells. In general, the ratio m = M#

A /M
#
C is a fixed constant that results

from the given combination of materials. In the case of YSZ, we have m = 2. The spacing of the
lattice can be described by a number density n# of unit crystal cells, that may be non-homogeneous in
space due to the non-uniformity of the lattice. The densities of the cation lattice sites are then given as
n#

C = M#
C n

# while for the anion lattice sites is mM#
C n#. We assume that all cation lattice sites are

actually occupied by either zirconium or yttrium cations whereas some of the anion sites may be left
unoccupied. We thus have

n#
C = nZr + nY , mn#

C ≥ nOi + nOm . (2.5)

To further specify the state of the YSZ , we introduce the proportion ν# of immobile oxide ions and the
filling ratio y of the anion lattice sites,

ν# = nOi

mn#
C
, y = nOm

mn#
C − nOi

. (2.6)

In addition, we define the molar fraction x# of Y2O3 in YSZ,

x# =
1
2nY

n#
C − 1

2nY
, (2.7)

To simplify the model, we assume the Zirconium, Yttrium and immobile oxide ions are bound to the
lattice and thus all are transported with identical lattice velocity

υα = υ# for α ∈ {Zr,Y,Oi} . (2.8)

DOI 10.20347/WIAS.PREPRINT.2583 Berlin 2019



P. Vágner, C. Guhlke, V. Miloš, R. Müller, J. Fuhrmann 4

2.2 Free energy and chemical potentials

The free energy density2 ρψ of YSZ is assumed to be a function of temperature T , partial mass
densities ρα and the electric fieldE. We suppose that the free energy density ρψ(T, ρα,E) can be
split into four additive parts: reference energy, entropy of mixing, elastic energy and polarization energy,

ρψ(T, (ρα)α∈IYSZ ,E) = ρψref + ρψpolar + ρψmech + ρψmix , (2.9)

where only ρψpolar depends on the electric fieldE and only ρψmix depends on the crystal structure. The
entropy density ρs and the chemical potentials of the respective species µα are defined with respect to
the free energy density as

∂ρψ

∂T
= −ρs , ∂ρψ

∂ρα
= µα . (2.10)

Reference energy. The reference free energy describes a suitable chosen reference state and is
assumed to be

ρψref =
∑
α∈IYSZ

ραµ
ref
α . (2.11)

Here, µref
α denotes the temperature dependent reference chemical of each individual constituent.

Polarization energy. On top of the free charge density nF according to 2.2right, an excess charge
density nP may arise in the material due to the presence of the electric field, mechanical strain, etc, see
e.g. [LPL84, Chapter 2]. This excess charge is usually described by a polarization vector P so that

− divP = nP . (2.12)

We refrain from a comprehensive discussion of constitutive modeling of polarization like e.g. in [DGM18]
and assume that in bulk YSZ, the relaxation time of the polarization is small and the polarization vector
P is proportional to the electric fieldE, i.e.

∂ρψ

∂E
= −P , P = χε0E . (2.13)

The number χ is the electric susceptibility of YSZ, which for simplicity is assumed spatially homoge-
neous here. Integrating (2.13) such that ρψpolar vanishes forE → 0 yields the free energy density due
to polarization

ρψpolar = −ε0χ

2 |E|
2 . (2.14)

Elastic energy. We introduce the material pressure p, which is independent of the electric fieldE,
and is defined by the Gibbs-Duhem relation

p = −ρψ̃ +
∑
α∈IYSZ

ραµα , (2.15)

2The free energy function is defined here as: ρψ = ρu− P ·E − Tρs, where ρu is the density of internal energy.
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where ρψ̃ = ρψref + ρψmix + ρψmech. The elastic contribution to the free energy is based on a simple
linear constitutive relation between the material pressure p and the number densities nα of YSZ,

p = pref +K
( ∑
α∈IYSZ

vref
α nα − 1

)
. (2.16)

Here K is the bulk modulus of YSZ and vref
α are the specific volumes of the YSZ species under the

reference pressure pref . In general the specific volumes are functions of temperature and pressure, but
for simplicity we assume vref

α are constant.

By use of an alternative set of variables for the free energy density ρψ̃ the Gibbs-Duhem relation (2.15)
can be written as, cf. [LGD16, equation A.6],

p

ρ2 = ∂ψ̌

∂ρ
. (2.17)

Here ρψ̌(t, ρ, cα) denotes the free energy density ρψ̃ as a function of the total mass density ρ and the
mass fractions cα = ρα

ρ
.

Insertion of (2.16) into (2.17) and integration such that ρψmech vanishes for p→ pref yields the desired
elastic contribution to the free energy ρψmech, viz.

ρψmech = (pR −K)(ρf − 1) +Kρf ln(ρf) , (2.18)

where ρf =
∑

α∈IYSZ
vref
α nα.

Entropy of mixing. The entropy of mixing depends on the microscopic configuration of the mobile
oxide ions in the anion lattice. We therefore consider a YSZ specimen that is homogeneous, so that
nα = Nα/V , where Nα is the total number of a species in a volume V . Let W represent the number
of possible realizations to arrange the mobile oxide ions on the anion lattice. Then the mixing entropy
density, according to Boltzmann’s formula, reads

ρηmix = kB

V
ln(W ) . (2.19)

Every immobile oxide ion is assumed to be fixed at a certain anion lattice site. The number of anion
lattice sites available for the mobile oxide ions is therefore (mN#

C −NOi). Thus, there are

W = (mN#
C −NOi)!

NOm! (mN#
C −NOi −NOm)!

(2.20)

ways to place the mobile oxide ions, which are indistinguishable, at the admissible lattice sites. Using
Stirling’s formula, we obtain for the mixing entropy density

ρηmix ≈ −kB(mn#
C − nOi)(y ln y + (1− y) ln(1− y)) , (2.21)

with the filling ratio y according to (2.6). Then the entropic contribution to free energy density follows by
integration of (2.10)left with respect to the temperature,

ρψmix = kBT (mn#
C − nOi)(y ln y + (1− y) ln(1− y)) . (2.22)

The integration constant is chosen such that the entropy of mixing contribution to the free energy
density vanishes at T = 0.
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Chemical potentials. The chemical potentials are independent of the electric field due to the choice
of a constant susceptibility. With the above contributions to the free energy, the chemical potential are

µOm = µref
Om + kBT

mOm
ln
( y

1− y
)

+ vref
Om

mOm

(
pref+K ln

(
1+p− p

ref

K

))
, (2.23a)

µOi = µref
Oi − kBT

mOi
ln (1− y) + vref

Oi
mOi

(
pref +K ln

(
1 + p− pref

K

))
, (2.23b)

µα = µref
α +mkBT

mα
ln (1− y) + vref

α

mα

(
pref +K ln

(
1 + p− pref

K

))
(2.23c)

α = Zr,Y .

2.3 Bulk governing equations and constitutive modeling

The electro-thermodynamic state of YSZ, occupying an interval ΩYSZ ⊂ R at any time t, is described by
the number densities nα (α ∈ IYSZ), the barycentric velocity υ and the electrostatic potential ϕ, which
all are functions of time and position. In the isothermal electrostatic setting with a constant susceptibility,
the evolution equations for the electro-thermodynamic state variables in the bulk are given by the
Poisson equation, partial mass balances and the quasi-static momentum balance [DGM15, DGM18],

−ε0(1 + χ)∂zzϕ = nF , (2.24a)

∂tρα + ∂z(ραυ + Jα) = 0 , α ∈ IYSZ , (2.24b)

∂zp+ nF∂zϕ = 0 . (2.24c)

The diffusion flux. The constraint (2.4)right and the constitutive equations (2.8) imply that the diffusion
fluxes have to be pairwise linear dependent. We chose JOm as the independent flux and obtain

Jα = − ρα
ρZr + ρY + ρOi

JOm for α ∈ {Zr,Y,Oi} . (2.25)

An entropy principle [DGM18] is exploited to obtain the constitutive equation for the flux JOm. To this
end, the entropy production due to diffusion is written as a sum of binary products as

ξD =
∑
α∈IYSZ

JαDα

!
≥ 0 , (2.26)

where the driving forces are

Dα = −
(
∂z
µα
T

+ zαe0

mα

1
T
∂zϕ
)

for α ∈ IYSZ . (2.27)

To satisfy the second law of thermodynamics, i.e. to guarantee that the entropy production is non-
negative, we insert the relations (2.25) into the entropy production (2.26) and then chose a linear
relation between the diffusion flux JOm and the resulting term depending on the driving forces. We
obtain

JOm = −M
(
ρZr(DZr −DOm) + ρY(DY −DOm) + ρOi(DOi −DOm)

ρZr + ρY + ρOi

)
(2.28)

with M > 0 .

Here, mobility coefficient M may be a function of the thermodynamic variables and their derivatives, as
long as it is guaranteed to be non-negative.
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Incompressibility. A useful simplification of the YSZ bulk model is possible when taking the large
bulk modulus K of YSZ into account. Hayashi et al. in [HSM+05] reported a bulk modulus of YSZ of
K = 205 GPa at 25 ◦C and we assume it to be in a comparable order of magnitude at the operating
temperature of YSZ at 600 ◦C. This motivates to study the incompressible limit K

pref →∞. Under the
assumption that the pressure p is bounded, we obtain from the constitutive relation (2.16) the constraint

K/pref →∞ :
∑
α∈IYSZ

vref
α nα = 1 . (2.29)

Thus, the pressure p becomes an independent variable of the system and the sum of all number
densities is independent of the pressure. For simplicity we assumed that the crystal lattice does not
deform over time and that all species except species Om move with the lattice velocity. To be consistent
with the incompressibility constraint (2.29), we thus have to require that the specific volume of the
mobile oxide ions vanishes i.e.

vref
Om = 0 . (2.30)

In the incompressible limit K/pref →∞, the chemical potentials (2.23) are linear in the pressure:

µOm = µref
Om + kBT

mOm
ln
( y

1− y
)
, (2.31a)

µOi = µref
Oi − kBT

mOi
ln (1− y) + vref

Oi
mOi

p , (2.31b)

µα = µref
α +mkBT

mα
ln (1− y) + vref

α

mα
p α = Zr,Y . (2.31c)

Vanishing lattice velocity. For further simplification of the YSZ model, we assume that the lattice
does not deform over time such that an appropriate reference frame can be chosen where the lattice
velocity υ# vanishes,

υ# = 0 . (2.32)

Then the mass balance equations imply constant number densities for the immobile species, i.e.
∂tnα = 0 for α = Zr,Y,Oi, and the barycentric velocity is given by ρυ = ρOmυOm which can be
expressed in terms of the diffusion flux of the mobile oxide ions as

(ρZr + ρY + ρOi)υ = JOm . (2.33)

The assumptions of incompressibility and vanishing lattice velocity may be also viewed alternatively as
a description of the charge transport in the reference frame of the cation lattice which does not undergo
any deformation.

2.4 Summary of the bulk YSZ model

The constitutive modeling above motivates to change the set of variables from the number densities
(nα)α∈I to {n#

C , ν
#, x#, y}. Due to the vanishing lattice velocity the quantities n#

C , x# and ν# are
constant in time and are further considered as model parameters. Therefore, the thermodynamic state
of the bulk YSZ is described by three quantities: filling ratio y, electrostatic potential ϕ and pressure p.
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In addition, we define the lattice volume V #, lattice mass m# and lattice charge number z# as

V #n#
C = nZrv

ref
Zr + nYv

ref
Y + nOiv

ref
O

= n#
C

(
1− x#

1 + x# v
ref
Zr + 2x#

1 + x#v
ref
Y +mν# vref

O

)
, (2.34a)

m#n#
C = n#

C

(
1− x#

1 + x#mZr + 2x#

1 + x#mY +mν#mO

)
, (2.34b)

z#n#
C = n#

C

(
1− x#

1 + x# zZr + 2x#

1 + x# zY +mν# zO

)
, (2.34c)

respectively.

The evolution of the thermodynamic state is then described by

−ε0(1 + χ)∂zzϕ = nF , (2.35a)

mOm
(1− ν#)m

V # ∂ty + ∂z

((
1 +mOm

(1−ν#)m
m# y

)
JOm

)
= 0 , (2.35b)

∂zp+ nF∂zϕ = 0 . (2.35c)

Let us assumeM linearly dependent [Mai04] on ρOm asM = DmOm
kB

ρOm. Eventually, the free charge
and the diffusion flux of mobile oxide ions are given as

nF = e0n
#
C (z# + zO(1− ν#)m y) , (2.36a)

JOm = −mOm D
(1−ν#)m

V #

(
1 +mOm

(1−ν#)m
m# y

)( ∂zy

1− y + y e0zOm
kBT

∂zϕ

)
, (2.36b)

where (2.35c) was used in place of the pressure gradient term. The parameter x# has usually values
in the range of [0, 0.2] and we have ν# ∈ [0, 1

m
2+x#

1+x# ]. The remaining parameters of the YSZ model
are given in Tab. 1 .

Table 1: Characteristic values. Per-particle masses mα are used in the calculations.

temperature T 800 ◦C
dielectric constant χ 40

Zr cation charge number zZr +4
Y cation charge number zY +3

oxide ion charge number zOm, zOi −2
Zr molar mass MZr 91.22 g mol−1

Y molar mass MY 88.91 g mol−1

O molar mass MO 16 g mol−1

ratio of C/A lattices m 2
YSZ molar fraction x# 0.08

ratio of immobile O2 – ν# [0, 1
m

2+x#

1+x# ]
specific lattice volume of YSZ V # 3.35× 10−29 m3

lattice cation number density n#
C (V #)−1

diffusion coefficient D 1× 10−11 m2/s

DOI 10.20347/WIAS.PREPRINT.2583 Berlin 2019



Continuum model for yttria-stabilised zirconia 9

3 Bulk metal and gas phase

In order to act as an electrolyte in a SOC, the YSZ has to be connected to two different materials: a gas
phase and some electric conductor. In this paper, we do no consider the internal structure of these
parts of the SOC. Therefore, we assume the gas to be equilibrated such that boundary conditions at the
gas-YSZ surface can be determined easily. Although not appropriate for the use in real SOC, we will
treat the conductor as a pure metal, since this way the conductor can be almost completely removed
from the model.

3.1 Bulk gas

The gas in the bulk is assumed to behave as an ideal mixture of ideal gases. We introduce the index
set Igas of the constituents of the gas phase. For each constituent, the partial pressure is pα = cαRT .
The chemical potential of a gaseous species reads

µα(pα, T ) = µref
α (T ) + kBT

mα

ln
(
pα
pref

)
for α ∈ Igas, (3.1)

where the reference pressure is given by the standard atmospheric pressure pref = 100 kPa and µref
α

is the chemical potential of the pure substance.

In the bulk domain Ωgas ⊂ R3, we assume that the diffusion is fast such that the chemical potentials
are homogeneous in space, i.e.∇µα = 0 for α ∈ Igas. Since there are no charge carriers in the gas,
we assume that the electric potential ϕ is also homogeneous in the gas phase.

3.2 Bulk metal

For the description of the conductor, we apply the Sommerfeld model of metals, cf. [Som28]. The metal
is considered as a mixture of positively charged metal ions M+ and free electrons e− with negligible
volume and high mobility. Thus, we use the index set Imetal = {M+, e−} for the constituents. We
assume the metal ions to be incompressible and thus the density of metal ions to be homogeneous
in the whole metal domain Ωmetal ⊂ R3, cf. [LGD16]. Sufficiently far away from the metal boundary,
i.e. outside of double layers, the metal is electroneutral and therefore the bulk number density ne− of
the electrons and the corresponding bulk chemical potential µe− are material dependent constants.
Neglecting electric resistance, the electric potential ϕ is homogeneous in the metal bulk. Moreover,
we assume quasi-equilibrium in the metal such that in particular the electrochemical potential of the
electrons is constant not only in the bulk but also inside double layers, i.e.

∇(me−µe− − e0ϕ) = 0 . (3.2)

4 Surface – triple phase boundary

The electrodes in solid oxide cells are combined of YSZ, metal and the gas phase. Thus, an interface
model should, in principle, treat three thermodynamically distinct surfaces and one triple phase line
present in the electrode. For a start, in this work, we aim at a strongly simplified 1D model of the
electrodes. To incorporate the triple phase boundary into such a 1D model, we assume that the only

DOI 10.20347/WIAS.PREPRINT.2583 Berlin 2019



P. Vágner, C. Guhlke, V. Miloš, R. Müller, J. Fuhrmann 10

contribution of the metal as an electric conductor is to provide free electrons for the charge transport.
We make the following assumptions:

i) The YSZ surface is endowed with a thin layer of metal ions and their corresponding free electrons.

ii) The tangential diffusion of electrons along the surface is assumed to be fast compared to all the
other treated kinetic processes.

iii) The metal ions and electrons do not contribute to the internal energy and entropy of the surface.

Due to the first assumption, the electrons are transported only tangentially to the surface. The second
assumption implies spatially homogeneous surface electrochemical potentials which only may change
in time. The last assumptions allows to approximate the triple phase boundary by a simple surface
model, which can be reduced to a 1D model in a straightforward way. A more detailed derivation of this
reduction of a triple phase line into a 1D model can be found in the context of intercalation electrodes
in [GGM+18].

The following derivation of the YSZ surface model is based on the general approach developed in
[DGM15, DGM18].

4.1 Surface constituents and basic quantities.

As in the bulk, we describe the YSZ surface as a mixture of different surface constituents and apply
for the surface quantities analogous notation with an underset ’s’ added. In the isothermal case, the
surface temperature T

s
is identical to the constant bulk temperature T and appears in the equations

only as a parameter. In addition to the constituents from the metal and the bulk phases of the gas and
YSZ bulk, surface reaction products may be present on the surface. Thus, the index set of all surface
constituents is of the form IS = IYSZ ∪ Igas ∪ Imetal ∪ Ireact, where Ireact is the index set of surface
reaction products.

Each surface constituent is characterized by its surface number density n
s
α, atomic mass mα and

electric charge number zα. The partial mass densities ρ
s
α, the total mass density ρ

s
and the free electric

charge density for the surface are defined by

ρ
s
α = mαn

s
α , ρ

s
=
∑
α∈IS

ρ
s
α , n

s

F =
∑
α∈IS

zαe0n
s
α . (4.1)

We assume that proper preparation and cutting of the bulk YSZ crystal results in the formation of a
planar face which can be represented by our surface model. Therefore, as in the bulk YSZ case, the
surface lattice density of cations is in certain relation to the surface density of anion lattice, i.e. the
surface anion density is m

s
n#

C
s

. The surface cation lattice is assumed to be fully occupied by zirconium

and yttrium cations, whereas the anion lattice is partially occupied by mobile and immobile oxide ions.

n#
C
s

= n
s

Zr + n
s

Y , m
s
n#

C
s
≥ n

s
Oi + n

s
Om . (4.2)

The surface model needs to reflect the structure of the bulk YSZ model. The YSZ surface is defined by
the cation crystal lattice. The deformation of the cation lattice therefore prescribes the surface velocity.
In order to maintain the compatibility of the bulk model and the surface model, we have

υ
s

= υ# . (4.3)
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On the YSZ surface gaseous species may adsorb and some reaction products may be formed. The
admissible adsorption sites for gaseous species and reaction products in general depend on the lattice
sites of the YSZ crystal. We assume that these adsorption sites coincide with the anion surface lattice
sites of YSZ. Several chemical reactions may occur. Denoting the constituents by Aα for α ∈ IS , the
reactions can be written in the form∑

α∈IS
aiαAα

Ri
f

s−−⇀↽−−
Ri

b
s

∑
α∈IS

biαAα for i = 1, . . . ,M. (4.4)

The constants aiα, biα are positive integers and γiα := biα − aiα denote the stoichiometric coefficients
of the reactions. Here Ri

f > 0 denotes the forward reaction rate and accordingly Ri
b > 0 denotes the

backward reaction rate. The net reaction rate is defined as Ri = Ri
f − Ri

b. Since charge and mass
have to be conserved in every single reaction, we have∑

α∈IS
mαγ

i
α = 0 and

∑
α∈IS

zαγ
i
α = 0 for i = 1, . . . ,M . (4.5)

4.2 Surface free energy

The surface free energy can in general be assumed to be independent of the electric field. Here,
we also assume that there is no elastic energy contribution and we distinguish two different entropic
contributions to the free energy density. One takes into account the entropy of mixing of the mobile
oxide ions on the anion lattice and the other is due to for the mixing of adsorbed gas species and
reaction products on the adsorption sites. The metal ions and electrons only contribute to the reference
energy. The free energy density for the surface is of the form

ρ
s
ψ
s
(T

s
, (ρ

s
α)α∈IS) = ρ

s
ψ
s

ref + ρ
s
ψ
s

mix, anions + ρ
s
ψ
s

mix, adsorbates . (4.6)

The surface entropy and the surface chemical potentials are defined as∂ρsψs
∂T

s

 = −ρ
s
s
s
,

∂ρsψs
∂ρ

s
α

 = µ
s
α α ∈ IS . (4.7)

In general an elastic energy contribution has to be taken into account. The derivation of the energy
is quite similar to the bulk. In [LGD16] an example for a metal-electrolyte interface can be found. It
turns out that if the constitutive equation of the surface tension depends only on the immobile YSZ
species, and the lattice velocity υ# is equal to the surface velocity, then the remaining equations for the
adsorption and surface reaction are independent of the elastic contribution. Therefore, for simplicity, we
ignore the surface elasticity.

Surface mixing of oxide ions. On the surface we introduce the coverage of anion lattice sites as

y
s

=
n
s

Om

m
s
n#

C
s
− n

s
Oi
. (4.8)

Then, the free energy contribution due to the mixing entropy of the oxide ions can be derived in
analogous way like in the bulk as

ρ
s
ψ
s

mix,anions = kBT
s

(m
s
n#

C
s
− n

s
Oi)
(
y
s

ln(y
s
) + (1− y

s
) ln(1− y

s
)
)

(4.9)
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Surface mixing of gaseous adsorbates and reaction products. Since some of the adsorption
sites for gaseous constituents might not be occupied, we can define the number density of vacancies
and the surface coverage of the gaseous species as

n
s
V = m

s
n#

C
s
−

∑
α∈Igas∪Ireact

n
s
α , (4.10)

y
s
α =

nα
s

m
s
n#

C
s

for α ∈ Igas ∪ Ireact ∪ {V } . (4.11)

The free energy contribution due to the configuration of adsorbed gaseous species can be derived by
Boltzmann’s formula where the vacancies are taken into account. We obtain

ρ
s
ψ
s

mix,adsorbates = kBT
s
m
s
n#

C
s

∑
α∈Igas∪Ireact∪{V }

y
s
α ln y

s
α . (4.12)

Reference surface energy. As in the bulk, the reference surface free energy describes a suitable
chosen reference state of the surface and is assumed to be

ρ
s
ψ
s

ref =
∑
α∈IS

ραµ
s

ref
α . (4.13)

µref
α denotes the temperature dependent reference chemical potential of each individual constituent.

Surface chemical potentials. The surface chemical potentials are given in terms of the surface
number densities according to definition (4.7)right as

µ
s

Om = µ
s

ref
Om +

kBT
s

mOm
ln
( y

s

1− y
s

)
, (4.14a)

µ
s

Oi = µ
s

ref
Oi −

kBT
s

mOi
ln
(
1− y

s

)
, (4.14b)

µ
s
α = µ

s

ref
α +

m
s
kBT

s

mα

(
ln
(
1− y

s

)
+ ln y

s
V

)
α = Zr,Y , (4.14c)

µ
s
α = µ

s

ref
α +

kBT
s

mα
ln
( y

s
α

y
s
V

)
, α ∈ Igas ∪ Ireact , (4.14d)

µ
s
α = µ

s

ref
α , α ∈ Imetal . (4.14e)

4.3 Governing equations, constitutive modeling and coupling to the bulk

For the coupling of bulk and surface, we have to introduce the boundary traces of the bulk quantities.
For a generic function u(t, x) in the YSZ bulk, we define

u|YSZ
S = lim

x∈ΩYSZ→S
u . (4.15)

In analogous way, traces for functions in the gas bulk domain can be defined. Due to the choice of
pairwise disjoint index sets for the bulk domains, most of the quantities are only defined in one of the
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subdomains. Therefore, we assume the simplification u|S = limx→S u. By convention, we let ν denote
the outer normal of the YSZ domain.

In the planar one-dimensional approximation of the general surface mass balance equation, cf. [DGM15,
DGM18], the tangential transport and the curvature related terms vanish. Only the surface chemical
reactions (4.4) and mass transport normal to the surface can change the surface densities of the
constituents. The surface mass balances and the remaining surface equation for the electric field in the
electrostatic approximation read

∂tρ
s
α =

M∑
i=1

γiαmαR
i +
((
Jα + ρα(υ − υ

s
)
)
ν
)∣∣∣

S
, α ∈ IYSZ . (4.16a)

∂tρ
s
α =

M∑
i=1

γiαmαR
i −
((
Jα + ρα(υ − υ

s
)
)
ν
)∣∣∣

S
, α ∈ Igas . (4.16b)

∂tρ
s
α =

M∑
i=1

γiαmαR
i , α ∈ Ireact . (4.16c)

ε0
(
(1 + χ)∇ϕν

)
|YSZ
S = n

s

F (4.16d)

We assume that Zr,Y,Oi are not involved in any surface reaction. Since υα = υ# = υ
s

for α ∈
{Zr,Y,Oi} according to (2.8) and (4.17), the surface mass balance equations (4.16a) imply that the
corresponding surface number densities are constant, i.e.

0 = ρα(υ# − υ
s
)|S =

(
Jα + ρα(υ − υ

s
)
)∣∣
S

= ∂tn
s
α (4.17)

for α = Zr,Y,Oi .

Maxwell’s surface equations in the electrostatic setting imply that the electrostatic potential is continuous
at the gas-YSZ interface, see e.g. [LPL84]. for further details. This allows us to introduce the surface
electrostatic potential,

ϕ
s

= ϕ|YSZ
S = ϕ|gas

S . (4.18)

4.4 Constitutive modeling

To derive constitutive equations for the normal mass fluxes and surface reaction rates, we apply the
entropy principle according to [DGM18]. At first, we reduce the entropy production ξ

s
derived in [DGM18,
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eqn. (6.14)] to the isothermal electrostatic one-dimensional setting 3, viz.

ξ
s

=− 1
T
s

M∑
k=1

( ∑
β∈IS

γkβmβµ
s
β

)
Rk

︸ ︷︷ ︸
ξ
s

react

+
∑
α∈IYSZ

((
Jαν + ρα(υ − υ

s
)ν
) (

µα
T
−

µ
s
α

T
s

))∣∣∣YSZ

S︸ ︷︷ ︸
ξ
s

YSZ

+
∑
α∈Igas

(
−
(
Jαν + ρα(υ − υ

s
)ν
) (

µα
T
−

µ
s
α

T
s

))∣∣∣gas

S︸ ︷︷ ︸
ξ
s

gas

!
≥ 0 (4.19)

on S .

The entropy production can be split into the three contributions: ξ
s

react, ξ
s

YSZ and ξ
s

gas, stemming from

surface the reactions (4.4), adsorption from the bulk YSZ and adsorption from the gas phase, re-
spectively. In analogous way like in the bulk, the structure of the entropy production (4.19) allows to
derive constitutive equations such that the second law of thermodynamics is satisfied, i.e. the entropy
production is non-negative.

Adsorption from YSZ bulk. Let us define the adsorption of oxide ions from the bulk to the surface as

O2−(YSZ) −−→ O2−(s) . (4.20)

According to (4.17), ξ
s

YSZ contains only the term with normal flux of mobile oxide ions, i.e.

ξ
s

YSZ =
(
JOmν + ρOm(υ − υ

s
)ν
)(µOm

T
−
µ
s

Om

T
s

)∣∣∣YSZ

S
, (4.21)

where the second bracket on the right hand side is equal to affinity of (4.20). By using a linear relation
between the differences of chemical potentials and the mass flux, the entropy production ξ

s
YSZ is

guaranteed to be non-negative,

(JOmν + ρOm(υ − υ
s
)ν)
∣∣YSZ

S
= D

s

(µOm

T
−
µ
s

Om

T
s

)∣∣∣YSZ

S
with D

s
≥ 0 . (4.22)

Adsorption from gas phase. In the bulk gas phase, the fluxes are restricted by the constraint∑
α∈Igas

Jα = 0 and on the surface, (4.3) has to be satisfied. Therefore, we reformulate the entropy

3For the representation of the entropy production, we assumed that the kinetic term 1
2ρ(υ

s
− υ)2 is small and can be

ignored.
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production due to the gas adsorption, as

ξ
s

gas = −ρ(υ − υ
s
)ν
∣∣
S

(µ0

T
−
µ
s

0

T
s

)∣∣∣gas

S

+
∑

α∈Igas\{0}

(
−
(
Jαν + ρα(υ − υ

s
)ν
))(µα − µ0

T
−
µ
s
α − µ

s
0

T
s

)∣∣∣gas

S
, (4.23)

where an arbitrary species is selected and denoted by the index 0. Linear relations are employed to
define the constitutive relations for the mass fluxes of the gas species on S,

−
(
Jαν + ρα(υ − υ

s
)ν
)∣∣gas

S
= M

s
α

(µα − µ0

T
−
µ
s
α − µ

s
0

T
s

)∣∣∣gas

S
(4.24a)

for α ∈ Igas \ {0} ,

−ρ(υ − υ
s
)ν
∣∣gas

S
= M

s

(µ0

T
−
µ
s

0

T
s

)∣∣∣gas

S
, (4.24b)

with M
s
α,M

s
≥ 0. The phenomenological coefficients M

s
α and M

s
are positive to guarantee a non-

negative entropy production.

Surface reactions. For the surface reactions, we use the nonlinear closure developed in [DGM15]

Ri = Ri
0

[
exp

(
− βi

kBT
s

∑
α∈IS

γiαmαµ
s
α

)

− exp
(

(1− βi)
kBT

s

∑
α∈IS

γiαmαµ
s
α

)]
, (4.25)

withRi
0 ≥ 0. The constants βi ∈ (0, 1) are called symmetry factors. In an asymptotic limit of vanishing

double layer width the constitutive equation (4.25) allows to derive generalized Butler-Volmer equations
for the surface reactions, see [DGM16].

4.5 Summary of the surface model

On the surface, we consider a single surface net reaction with β = 1/2. From the YSZ phase only the
mobile oxide ions and from the conductor only the surface electrons are allowed to participate in this
reaction. We assume fast adsorption from the gas phase, i.e. µα|S = µ

s
α for α ∈ Igas.

R
s

= −2R
s

0 sinh
(

1
2

[
∆GR

kBT
+ γOm ln

( y
s

1− y
s

)

+
∑
α∈Igas

γα ln
(
pα
pref

)
+
∑
α∈Ireact

γα ln
( y

s
α

y
s
V

)])
, (4.26a)
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∆GR = γOmmOmµ
s

ref
Om + γe−me−µ

s

ref
e− +

∑
α∈Igas

γαmαµ
ref
α +

∑
α∈Ireact

γαmαµ
s

ref
α (4.26b)

Moreover, we choose

D
s

= A
s

0
m2

O
kB

, (4.27)

so that [A
s

0] = 1/m2/s. Finally, only the following evolution equation is solved for on the surface,

mO∂t
(1− ν#

s
)m

s

a# y
s
− A

s
0mO

−∆GA

kBT
+ ln

 y|S
1− y|S

1− y
s

y
s

 = mOγOmR
s
, (4.28)

with

∆GA = mOmµ
s

ref
Om − mOmµ

ref
Om

∣∣∣
S
. (4.29)

Table 2: Characteristic values and parameters for the surface part of the model.

reaction kin. coef. R
s

0 1× 1010 /m2/s
oxide ion adsorption coef. A

s
0 1× 1017 /m2/s

surface density of cations a
s

# 3
2
√
V # ≈ 1.04× 10−19 m2

surface ratio of imm. ox. ions ν
s

# 0.9
surface anion lattice num. m

s
[0,4]

gibbs energy of adsorption ∆GA 0.2 eV
gibbs energy of reaction ∆GR 0.2 eV

rel. partial pressure of O2 patm 0.21

5 Simulation of a SOC half-cell

We consider an YSZ-air electrode that contains the YSZ and gas bulk domains and the YSZ-gas
surface S located at xS . We chose a point xB > xS outside of the double layer, located in the bulk
YSZ sufficiently far away from S. Thus, the YSZ can be assumed to be electroneutral and consequently
also isobaric in the YSZ bulk including xB . We assume that the pressure at xB corresponds to the
outer pressure4 and the filling ratio of the anion lattice sites y at xB is determined by the crystal lattice,
i.e.

yB = y(t, xB) = − z#

zOm (1− ν#)m , (5.1a)

p(t, xB) = 100 kPa . (5.1b)

4In general, the total stress has to specified, but due to electroneutrality assumption at xB and the one dimensional
approximation, the total stress and material pressure p coincide.
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The gas phase consists of nitrogen5 N2 and oxygen O2 and values for the spatially homogeneous
chemical potentials µN2 and µO2 are prescribed.

On the YSZ surface, two reaction take place: dissociation of oxygen molecules and electron transfer to
form oxide anions, viz.

O2 −−⇀↽−− 2 O and O + 2 e− −−⇀↽−− O2− . (5.2)

The adsorption of gaseous species is assumed to be considerably faster than the reaction and diffusion
processes. Hence, the phenomenological coefficients in equations (4.24) for gaseous adsorbates are
large, implying that the surface chemical potential and bulk chemical potential of the gas species are
equal. Moreover, we assume fast dissociation, i.e. the reaction rate for the dissociation reaction (5.2) is
large, and we obtain from (4.25)

fast adsorption: µN2|S = µ
s

N2 , µO2 |S = µ
s

O2 , (5.3a)

fast dissociation of O2: 2mOµ
s

O = mO2µ
s

O2 . (5.3b)

Cell potential. The thin metal layer on the YSZ surface is assumed to be connected to a metal current
collector, e.g. a wire. Therefore, there is an electric contact at the YSZ surface to an external circuit. Let
µext

e− and ϕext denote the (spatially homogeneous) chemical and the electrostatic potential in the current
collector bulk, respectively. Assuming, that the electrochemical potential of the electrons is continuous
at the surface, we can determine the contact potential U ref

0 = ϕext − ϕ
s

as

U ref
0 = kBT

e0
me−

(
µext

e− − µ
s

e−
)
. (5.4)

Due to the incompressibility of the metal bulk and the constitutive equation (4.14e) on the surface, the
contact potential is a material dependent constant, i.e. ∂tU

ref
0 = 0.

In principle, we are capable to measure the electrostatic potential ϕB at xB , e.g. with a suitable
reference electrode. We define the half cell potential U of the solid oxide half-cell as

U = ϕext − ϕB = U ref
0 + ϕ

s
− ϕB . (5.5)

Thus, boundary condition for the electrostatic potential in the YSZ domain is given by the half cell
potential U , and a normalization condition for ϕB , e.g. ϕB = 0.

Electric current. We are interested in the electric current I flowing through the electric wire contacted
to the SOC electrode. The global mass balance equations allows us to relate the electric current I ,
flowing through the wire, to the quantities of the SOC electrode model as follows,

I

A
= − d

dt

(
e0zOmn

s
Om
)

+ d
dt

(
(1 + χ)ε0∇ϕν

)∣∣YSZ

S
− ze−e0

M∑
i=1

γie−R
i , (5.6)

where A is the area of the cross section of the gas-YSZ interface. The derivation of formula (5.6) is
summarized in Appendix A.

5We chose nitrogen as the reference species for the gas phase, i.e. A0 = N2.
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5.1 Double layer capacitance of blocking electrode

First, we want to investigate the equilibrium properties of the model derived above and therefore assume
that no electron transfer reaction take place on the surface. This situation can be met if the contact of
gas phase and YSZ is prevented by e.g. continuous metal layer. When an applied voltage is sustained
so that the system is allowed to relax to an equilibrium state, and mobile oxide ions adsorb or desorb
between the bulk and the surface and a charged layer in the bulk of YSZ is formed. We introduce the
boundary layer charge QBL and the surface charge QS of the gas-YSZ interface as

QBL = −
∫ xB

xS

nF dz (5.7)

QS = −zOme0n
s

Om . (5.8)

In equilibrium both the surface charge and the boundary layer charge are function of the applied half
cell potential U , or – equally well – of the voltage U − U ref

0 = ϕ
s
− ϕB , cf. [LGD16]. This allows us to

define the corresponding surface, boundary layer and double layer capacitance as

CS = d

d(U − U ref
0 )

QS , CBL = d

d(U − U ref
0 )

QBL , CDL = CS + CBL , (5.9)

respectively. Due to the 1D approximation, we are able to derive explicit representations of the bulk
and surface capacitance as functions of the potential difference U − U ref

0 . The homogeneity of the
electrochemical potential in equilibrium, i.e.

µOm + zOm
e0

mOm
ϕ = µOm(xB) + zOm

e0
mOm

ϕ(xB) , (5.10)

allows to express the filling ratio and the free charge dependence on ϕ− ϕB as

nF(ϕ− ϕB) = e0n
#
C (z# + zOm(1− ν#)m y(ϕ− ϕB)) (5.11)

y(ϕ− ϕB) = X(ϕ− ϕB)
1 +X(ϕ− ϕB) (5.12)

with X(ϕ− ϕB) = yB
1− yB

exp
(
− zOme0

kBT
(ϕ− ϕB)

)
. (5.13)

Then multiplication of the Poisson equation (2.24a) with ∂xϕ and integration yields, assuming vanishing
∂xϕ in the bulk,

∂xϕ = − sign(ϕ− ϕB)

√
2e0n

#
C

(1 + χ)ε0

×
√
kBT

e0
(1− ν#)m ln

(
(1− yB)(1 +X(ϕ− ϕB))

)
− (ϕ− ϕB)z#

=: F (ϕ− ϕB) . (5.14)

Clearly, the derivative of the potential is a monotonous function, thus, we can express the boundary
layer charge and capacitance as

QBL =
∫ ϕS−ϕB

0

nF(ϕ̃)
F (ϕ̃) dϕ̃ , CBL = nF(ϕS − ϕB)

F (ϕS − ϕB) . (5.15)
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Figure 1: Dependence of the double layer capacitanceCDL as a function of the applied half cell potential
U on the mobility ratio ν# (left) and on the dielectric constant χ (right).

The impact of the mobility ratio ν# and of dielectric constant χ on the bulk layer capacitance is shown in
Fig. 1. To screen a positive surface potential, a negatively charged layer in the YSZ has to be formed by
occupying available anion lattice sites. Clearly, this number of available anion lattice sites is independent
of the mobility ratio ν# and thus, the charge layer profile and the double layer capacitance CBL have to
be independent of ν# for positive applied potentials. To the contrary, when the surface potential is more
negative than the bulk, a small ν#, i.e. a large portion of the oxide anions is mobile, allows to vacate
many anion lattice sides near the surface, leading to effective screening of the surface potential by a
high negative charge density in the boundary layer and resulting in high capacity. The growth of the
double layer capacitance for increasing χ, can be attributed to a spreading of the boundary layer due to
the greater amount of the polarized charge. We fix χ = 27 and ν# = ν

s

# = 0.9 for all the following

numerical simulations if not stated otherwise. On the surface, we have

y
s
(ϕ

s
− ϕB) =

Y (ϕ
s
− ϕB)

1 + Y (ϕ
s
− ϕB) (5.16)

with Y (ϕ
s
− ϕB) = yB

1− yB
exp

(
−∆GA

kBT
− zOme0

kBT
(ϕ

s
− ϕB)

)
. (5.17)

Thus, we can express the surface charge and capacitance as

QS = −zOme0
(
(1− ν#

s
)m

s
n#

C
s

)
y
s
, (5.18a)

CS = z2
Ome

2
0

kBT
(1− ν#

s
)m

s
n#

C
s

Y (ϕ
s
− ϕB)(

1 + Y (ϕ
s
− ϕB)

)2 , (5.18b)

Fig. 2 shows the influence of ∆GA on the double layer capacitance of a blocking electrode. Negatively
charged oxide ions tend to move into higher electric potential. If the adsorption energy, ∆GA =
mOmµ

s

ref
Om −mOmµ

ref
Om, is positive, then energy is required to for oxide ion to pass from the bulk to the

surface. Stronger negative values of ∆GA foster the adsorption of oxide anions to the surface and
thereby shift the surface capacitance maximum to more negative potentials. This can be seen most
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Figure 2: Left: surface capacitance CSfor different values of ∆GA. Right: the combined double layer
capacitance CDL Remaining parameters are χ = 27, ν# = ν#

s
= 0.9.

clearly in Fig. 2left where only the surface contribution is shown. Comparison of the Fig. 1 and Fig. 2
suggests that the bulk contribution remains undisturbed. The maxima of surface capacitance in 2left are
due to the saturation of the surface for growing potential difference. The position of the maxima occurs
for

(ϕ
s

max − ϕB) = ∆GA

2e0
− kBT

2e0
ln
(

yB
1− yB

)
. (5.19)

Comparison to experiment Fig. 3 compares simulations with fitted data to experimentally measured
capacitance curves for different temperatures [tEHBV01]. We do not attempt to systematically adjust
the model parameters to the data due to the polycrystalline nature of the YSZ studied in the experiment,
instead, we try to illustrate the possible temperature dependence and the effect of the fitted parameters.
As the temperature dependencies would need additional modeling efforts, as a first step, for this paper,
we performed the fit separately for each temperature.

It is difficult to assert that a particular oxide ion is mobile or immobile in the microscopic picture. It is
suitable to consider the parameters ν# and ν#

s
determining certain (dynamic) equilibrium between the

admissible and occupied vacancies in state with vanishing macroscopic free charge density. As this is
usually an effect of thermal excitations, the values of ν# and ν#

s
should depend on temperature. Also

∆GA presumably depends on the temperature.

To this end also m
s

was treated as a fitting parameter shared for the three cases.

5.2 Capacitive currents

In the case of time dependent applied voltages, the current representation (5.6) simplifies in the absence
of reactions to the case of no electron transfer:

I

A
= − d

dt
(
zOme0n

s
Om
)

+ d
dt
(
(1 + χ)ε0∇ϕν

)∣∣YSZ

S
(5.20)

= d
dtQS + d

dtQBL .
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Table 3: Fitted parameters, see Fig. 3

temperature T 475 ◦C 525 ◦C 575 ◦C
Gibbs adsorption energy ∆GA 0.14 eV 0.16 eV 0.18 eV

bulk immobiles ratio ν# 0.85 0.57 0.07
surf. immobiles ratio ν

s

# 0.85 0.64 0.44
surf. lattice ratio m

s
0.26 0.26 0.26

−0.4 −0.2 0 0.2 0.40
0.5

575 ◦C

475 ◦C
525 ◦C

Voltage V

C
ap

ac
ita

nc
e

F/
m

2
Experimental data comparison

Figure 3: Blocking electrode capacitance, marked plots: experimental 8 % mol polycrystalline
YSZ [tEHBV01], solid: fit of the blocking electrode model.

Thus, the current is composed of two contributions describing the change of the surface charge and
the boundary layer charge, respectively. However, unlike in the equilibrium case, QS and QBL are not
uniquely determined by the applied voltage. Consider a small time depending perturbation around the
half cell equilibrium potential Ū , i.e. the applied voltage is U(t) = Ū + ∆U(t). For a time scale of
the perturbation considerably slower than the diffusion and adsorption, the system can be assumed to
behave quasi-static and the current I can be linearised at Ū such that

I ≈ CDL(Ū)d∆U
dt

. (5.21)

Thus, the double layer capacitance can be measured at low frequencies using impedance spectroscopy,
or with cyclic voltammetry (CV) at low sweep rate. Here, sweep rate refers to the slope of voltage
change during one linear cycle.

Kinetic coefficients The blocking electrode model contains two kinetic parameters: diffusion coeffi-
cient D and adsorption rate A0. If one of those parameters is small w.r.t. sweep rate, a limitation of the
total current occurs. To this end the sweep rate is fixed to 1 mV s−1 in this paragraph. Small values of
adsorption coefficient limit charging and discharging of the surface oxide ions as it is shown in Fig. 4.
The current due to charging of the bulk double layer is not affected by this.

Similarly, small values of D lead to limitation of the rate of charging the bulk double as documented in
Fig. 5. In this case, the charging of the surface is affected, because the bulk diffusion limits the supply
of the oxide ions.
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Figure 4: Voltammetry of blocking electrode varying adsorption coefficient A0. The current is scaled by
the respective rate of voltage change. Left: total current. Right: surface contribution to the current. The
additional parameters are: ∆GA = 0.2 eV, D = 1× 10−11 m2/s.
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Figure 5: Voltammetry of blocking electrode varying bulk diffusion coefficient D. The current is scaled
by the respective rate of voltage change. Left: total current. Right: bulk contribution to the current. The
additional parameters are: ∆GA = 0.2 eV, A0 = 1× 1017 /m2/s.

Length of domain and sweep rate Faster sweep rates affect the current response of the blocking
electrode similarly as small values of the kinetic coefficients. Fast-changing voltage unveils limited rates
of oxide ion transportation that can be attributed to concrete mechanisms. Figures 6 illustrate this for
the oxide ion adsorption. Fig. 6right in particular shows that the rate of the surface charging is limited due
to the adsorption. For even greater sweep rates, the decreasing rates of current to the bulk diffusion
limitation are displayed in Fig. 7left.

The bulk diffusion limitation depends also on the domain length, see Fig. 7right.
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Figure 6: Voltammetry of blocking electrode varying sweep rates. The current is scaled by the respective
rate of voltage change. Left: increasing sweep rates distinguish the charging of surface and bulk double
layers. Right: the surface charging contribution to the current. The additional parameters are: ∆GA =
0.2 eV, D = 1× 10−11 m2/s, A0 = 1× 1017 /m2/s.
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Figure 7: Linear-sweep voltammetry of blocking electrode. Left: increasing sweep rates for thick
electrolyte xB = 5× 10−3 m. Right: Fixed fast sweep rate, varying electrolyte thickness.

5.3 Currents of full half cell

Let us now investigate a scenario where on the surface the electrochemical reaction 5.2right proceeds.
In the constitutive relation for the reaction rate according to (4.25), we choose the symmetry factor
β = 1

2 , yielding

R
s

= −2R
s

0 sinh
(

1
2kBT

(mOmµ
s

Om − 2me−µ
s

e− −
1
2mO2µ

s
O2)
)

(5.22)
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Figure 8: Linear-sweep voltammetry different values of ∆GR (left) and ∆GA (right). With reaction rate
R
s

0 = 1× 108 /m2/s and adsorption rate A0 = 1× 1017 /m2/s.

With the chemical potential (4.14) and ∆GR = mOmµ
s

ref
Om − 2me−µ

s

ref
e− − 1

2mO2µ
s

ref
O2

we get

R
s

= −2R
s

0 sinh

 1
2kBT

(
∆GR + ln

y
s

1− y
s

− 1
2 ln pO2

pref

) , (5.23)

Cyclic voltammetry with realistic sweep rate rvolt = 1 mV s−1 is fixed in further demonstration of the
basic features of the investigated system with the reaction.

5.3.1 Free energy parameters

Gibbs energy of reaction ∆GR is treated as an additional free energy parameter entering the model
with the surface chemical reaction. The different ∆GR values, see Fig. 8left, do not alter the charging of
the double layer but lead to the shift of the onset of the reaction current. Gibbs energy of adsorption
∆GA, see Fig. 8right, shifts, consistently with the blocking electrode case, cf. Fig. 2, charging of bulk a
surface layer. The shift of the reaction onset occurs because ∆GA shifts the chemical potential of the
surface oxide ions, cf. (5.22). The reaction current is for either non-zero ∆GA or ∆GR in the depicted
range much greater then the bulk and surface contributions.

5.3.2 Reaction rate

According to (5.6) surface reaction rate R0 changes the relative magnitude of the reaction current,
hence it also changes the relative onset of the reaction current w.r.t bulk and surface contributions as
it shown in Fig. 9. The limiting case of a small R0 is the blocking electrode. The effects of D and A0
are for the open system similar as for the blocking electrode case. Small values would lead to surface
charging and consequently to bulk charging limitations thus hindering the reaction.
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Figure 9: Linear-sweep voltammetry for different values of reaction coefficient R0. For ∆GR = 0.2 eV,
∆GA = 0.2 eV and A

s
0 = 1× 1017 /m2/s.

6 Discussion

The representation of the interface was chosen as uncomplicated as possible so that the behavior of
oxide ions double layer dynamics remains unobscured. This was achieved, however, let us discuss
the drawbacks of the treatment. First, in a real electrode two distinguished surfaces (YSZ, metal) are
present and the electron-transfer reaction occurs near their intersection. Hence, tangential diffusion of
the surface species comes into play together with the particular geometrical realization. To this end a
two or three dimensional model would be required including the in-plane transport of the species. A
question that naturally follows is: where exactly does the electron-transfer reaction occur, at the contact
line or on one of the surfaces? Second, behavior of the metal electrons may in the close vicinity of the
contact line start to display quantum effects that may result in richer behavior of the electron-transfer
reaction. Third, the adsorption of gaseous species may under some circumstances limit the supply
of gaseous species to the surface. Fourth, the appearing surface species depend on the particular
electrode material. In particular, the nature and amount of the surface species will be different for
Pt, Au or LSM electrodes. Also and additional phase of surface oxide ions with different adsorption
energy might also be present. Finally, one might also consider production of surface oxygen O(s) for the
blocking electrode (although no desorption to the gas phase is possible) and investigate the mechanical
strain to the interfaces due to this.

7 Summary and Conclusions

A generalized Poisson-Nernst-Planck system describing YSZ|gas|metal-interface has been derived
from first principles of nonequilibrium thermodynamics and numerically solved for simulating double
layer capacitance and cyclic voltammetry measurements.

The core of the gPNP system is due to carefully derived free energy densities for the bulk YSZ and
the YSZ|metal|gas surface capturing the main features of the YSZ crystalline nature. It is assumed
that the described species, except for mobile oxide ions, are bound to the crystalline lattice. These
assumptions result, using the entropy principle, in a novel form of the mobile oxide ion flux, which is a
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certain combination of the electrochemical potentials of all species. The charged layer in the metal is
assumed to be in a diffusional equilibrium, since no transport limitations of the electrons is assumed.
Finally, the formula for the electric current measured in the apparatus is derived.

A numerical model for the system has been derived and implemented in one spatial dimension using the
finite volume method, specifically a variant of the Scharfetter-Gummel scheme, in the Julia programming
language [BEKS17].

Although the model is strictly developed as isothermal, most of its parameters may depend on the
temperature. Therefore, the parametric study is also aimed to demonstrate the scenarios where some of
the parameters become limiting to the charge transfer of the system. Finally, the capacitance of blocking
YSZ electrode taken from literature [tEHBV01] is fitted with the model, the quality of the fit relies heavily
on the newly introduced ratios of immobile oxide ions ν# and ν

s

#. For each temperature these can be

fitted alongside with ∆GA to the measured data. While the derivation of the model assumed a single
crystal, the measurements had been obtained for polycrystalline YSZ. Therefore, the presented fitting
results can be seen only as a first step towards a model for polycrystalline YSZ which ideally should be
derived from the presented model using homogenization techniques. Moreover, the presented model
can serve as a starting point for further extensions containing more sophisticated surface chemistry
capable of describing the anodic and cathodic within one kinetic model.

A Electric current

Let I be the electric current flowing through an electric wire to the gas-YSZ surface, which can be
measured by an amperemeter. The current is related to the temporal change of the surface electron
density and electron production on the gas-YSZ surface. For spatially homogeneous fields on a gas-YSZ
surface with the area A, we have

I

A
= ze−e0

( d
dt
n
s

e− −
M∑
k=1

γke−R
k
)
. (A.1)

The derivation based on surface and bulk balance equations, see [DGM18], the metal model proposed
in [LGD16] and that the atomic mass of electrons are much smaller than the atomic mass of metal
atoms, i.e. me−/mM ≈ 0.

To express the electron number density n
s

e− in (A.1) we use the identity

d
dt
n
s

F = d
dt

(
e0ze−n

s
e− + e0zOmn

s
Om

)
, (A.2)

which follows from equation (4.17) and that the surface number density of metal ions is constant. Then,
with

n
s

F = ((1 + χ)ε0∇ϕν)
∣∣YSZ

S
, (A.3)

Introducing (A.2),(A.3) into (A.1) yields the identity (5.6).
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B Summary of the model

For easy reference, we summarize the model equations which have been implemented.

−ε0(1 + χ)∂xxϕ = nF , (B.1a)

mOm∂t
(1− ν#)m

V # y + ∂x

((
1 +mOm

(1− ν#)m
m# y

)
JOm

)
= 0 (B.1b)

with

JOm =−D mOm
(1− ν#)m

V #

(
1 +mOm

(1− ν#)m
m# y

)
×
[

∂xy

(1− y) + y
zOme0

kBT
∂xϕ

]
, (B.1c)

nF = e0

V #

(
zOm(1− ν#)m y + z#) (B.1d)

for bulk with the choice of mobility coefficient

M = D
mOm

kB
ρOm = Dm2

Om
(1− ν#)m
V # kB

y, (B.2)

where [D] = m2s−1 is a diffusion coefficient.

On the surface, we have with β = 1/2 The electrochemical reaction is supposed to be

1
2O2 + 2e− −−⇀↽−− O2− (B.3)

and we define

∆GA = mOmµ
s

ref
Om − mOmµ

ref
Om

∣∣∣
S
, (B.4a)

∆GR = mOmµ
s

ref
Om −mO2

µref
O2

2 − 2me−µ
ref
e− . (B.4b)

This leads to the surface equations in the form

mOm∂t
(1− ν#

s
)m

s

a# y
s

= mOmA
s

0

−∆GA

kBT
+ ln

y|S (1− y
s
)

(1− y|S) y
s

+mOmR
s
, (B.5a)

with

R
s

= R0

[
exp

(
−β∆GR

kBT

) y
s

1− y
s

−β pO2

β
2 (B.5b)

− exp
(

(1− β)∆GR

kBT

) y
s

1− y
s

(1−β)

pO2
− (1−β)

2

]
,

= −2R0 sinh

1
2

∆GR

kBT
+ 1

2 ln

 y
s

1− y
s

− 1
4 ln(pO2)

] (B.5c)
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with the choice of adsorption coefficient

D
s

= A
s

0
m2

Om
kB

, (B.6)

where [A
s

0] = m−2s−1 denotes the rate of adsorption.

The two systems are coupled by the adsorption boundary condition

jOmν|S =
(

1 +mOm
(1− ν#)m

m# y

)
JOmν|S (B.7)

=A
s

0mOm

−∆GA

kBT
+ ln

y|S (1− y
s
)

(1− y|S) y
s

 , (B.8)

where ν denotes an outer normal of YSZ domain at S.

If not stated otherwise, the simulation parameters used are given in table 4.

Table 4: Summary of parameters for the bulk-surface model.

temperature T 800 ◦C
dielectric constant χ 27

Zr cation charge number zZr +4
Y cation charge number zY +3

oxide ion charge number zOm, zOi −2
Zr molar mass MZr 91.22 g mol−1

Zr atomic mass mZr 15.15× 10−26 kg
Y molar mass MY 88.91 g mol−1

Y atomic mass mY 14.76× 10−26 kg
O molar mass MOm 16 g mol−1

Om atomic mass mOm,mOi 2.66× 10−26 kg
ratio of C/A lattices m 2

YSZ molar fraction x# 0.08
ratio of immobiles ν# [0, 1

m
2+x#

1+x# ]
specific lattice volume of YSZ V # 3.35× 10−29 m3

lattice cation number density n#
C (V #)−1

————- ——— ———

reaction kin. coef. R
s

0 1× 1010 /m2/s
oxide ion adsorption coef. A

s
0 1× 1017 /m2/s

surface density of cations a
s

# 3
2
√
V # ≈ 1.04× 10−19 m2

surface ratio of imm. ox. ions ν
s

# 0.9
surface ratio of C/A latt. m

s
[0,4]

gibbs energy of adsorption ∆GA 0.2 eV
gibbs energy of reaction ∆GR 0.2 eV

rel. partial pressure of O2 patm 0.21
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C The finite volume method

In order to perform the spatial discretization, we introduce collocation points x1 = xS, x2, . . . , xn−1,
xn= xB in the simulation domain Ω = (xS, xB). The density of these points ins increased in a
geometric fashion towards the electrode surface at xS . Around the collocation points, we define the
control volumes ω1 = [x1,

x2+x1
2 ] ωi = [xi+xi−1

2 , xi+xi+1
2 ] (i = 2 . . . n− 1), ωn = [xn+xn−1

2 , xn].
The finite volume discretization method used to perform the numerical simulation is based on the
classical Scharfetter-Gummel scheme from semiconductor device simulation [SG69] which assumes
constant species fluxes between neighboring control volumes, The fluxes are expressed via the
unknowns in the corresponding collocation points based on an analytical solution of the flux equation.
This approach automatically introduces an upwind stabilization of the discretization scheme which is
necessary to handle the possibly steep electric potential gradients in the polarization boundary layer.

In order to handle the non-idealities occurring in generalized PNP models, the scheme needs to be
adapted in a thermodynamically consistent manner. For an introductory discussion of the general ideas
in the context of semiconductors, see [FRD+17], In the context of electrolyte simulation, a reformulation
based on species activities as primary variables can be a starting point for a corresponding modification
[Fuh15].

Here, we use an approach which starts from the reformulation of the species flux based on the
introduction of a drift potential g(y, ϕ) combined of the excess chemical potential describing the
non-ideality and the electrostatic potential, an idea which goes back at least to [YD85],

jOm = −D̃ ∂xy + y ∂xg(y, ϕ). (C.1a)

On [xk, xl], we set ȳkl = 1
2(yk + yl) and

jOm =
(

1 +mOm
(1− ν#)m

m# ȳkl

)
JOm = −D̃ ∂xy + y D̃∂xf(y, ϕ)︸ ︷︷ ︸

∂xg(y,ϕ)

, (C.2a)

where

D̃ = D mOm
(1− ν#)m

V #

(
1 +mOm

(1− ν#)m
m# ȳkl

)
, (C.3a)

∂xf =
(

1 +mOm
(1− ν#)m

m#

)
∂x (ln(1− y))

− zOm
e0

kBT

(
1 +mOm

(1− ν#)m
m# ȳkl

)
∂xϕ. (C.3b)

The numerical flux between neighboring control volumes ωk and ωl is then computed as

jNUM
Om,kl = D̃

|xk − xl|

[
ykB

(
−g(yk, ϕk)− g(yl, ϕl)

D̃

)
−ylB

(
g(yk, ϕk)− g(yl, ϕl)

D̃

)]
, (C.4a)

where yk, yl, ϕk, ϕl are values in computational nodes and B(x) := x
exp(x)−1 is Bernoulli function.

Under the assumption of jOm and ∂xg(y, ϕ) = g′ being constant, as in [SG69], the direct calculation
of the numerical flux can be done using the integration factor exp(− g′

D̃
) and integrating over [xk, xl].
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