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Abstract

In recent years the theory of the Wasserstein metric has opened up a new treat-
ments of the diffusion equations as gradient systems, where the free energy or the
entropy take the role of the driving functional and where the space is equipped with
the Wasserstein metric. We show on the formal level that this gradient structure can
be generalized to reaction-diffusion systems with reversible mass-action kinetic. The
metric is constructed by using the dual dissipation potential, which is a quadratic
functional of all chemical potentials including the mobilities as well as the reaction
kinetics. The metric structure is obtained by Legendre transform from the dual
dissipation potential.

The same ideas extend to systems including electrostatic interactions or a correct
energy balance via coupling to the heat equation. We show this by treating the
semiconductor equations involving the electron and hole densities, the electrostatic
potential, and the temperature. Thus, the models in [AGH02], which stimulated
this work, have a gradient structure.

1 Introduction

In the seminal work of Otto [Ott98, JKO98, Ott01] it was shown that certain diffusion
equations can be interpreted as gradient flows with respect to the physically relevant free
energy or the entropy as a driving functional. The difficulty is that the associated Rie-
mannian metric is rather weak, namely a weighted H−1 norm, where the weight depends
on the state itself. In the scalar case it turned out that the associated distance is well-
defined and can be characterized as the Wasserstein distance, which is well-established in
transportation theory, see [AGS05] for a survey. However, to the author’s best knowledge
there is no corresponding theory of gradient structures for systems of reaction-diffusion
equations. For coupled diffusion systems joint gradient structures seems to be common
knowledge, although they are rarely highlighted.

The major obstructions to the construction of gradient structures for reaction-diffusion
systems arise from the reaction terms, since the reaction kinetics can lead to quite general
nonlinearities. It is well know that for large classes for reaction systems there exists
(convex) Liapunov functions, namely the free energy of the negative entropy, and thus
it can be shown that all solutions converge to equilibria. Here we want to complete
the theory by showing that for certain classes we can even give a gradient structure.
The motivation for the present work are the thermodynamical models for semiconductors
derived in [AGH02]. In this work the reaction terms were written in a very special form
involving the associated chemical potentials. The observation of the present work is that
these reaction terms can be written the derivative of a (dual dissipation) potential ψ∗ with
respect to the chemical potentials, see Remark 4.1. For consistency and wider application
we will use a slightly different form in this work.
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In this work we establish a gradient structure for certain reaction-diffusion systems as well
as for systems coupled with the heat equation. However, we simply establish the formal
Riemannian structure, more precisely its inverse, which we call the dual dissipation

potential. From there it is possible to characterize the corresponding weak Riemannian
structure by solving the associated elliptic problem with state-dependent coefficients. The
subsequent characterization of the associated distance between different states would be
desirable for the case of reaction-diffusion systems as well, however, this goes far beyond
the present work.

All material in this short paper will be purely formal and will not address the question
in which function spaces the objects are well defined or in which spaces the problem is
well-posed. We simply concentrate on the formal manipulations and choices which have
to be done to obtain functionals given a formal gradient structure. It is expected that
these formulations will have future impact on the analysis of such systems, for instance on
the construction of solutions via the metric approach (see [AGS05]) or on the construction
of suitable space-time discretizations preserving not only positivity and energy decay (as
in [Gli09, GlG09]) but also the full gradient structure.

To explain the main ideas of the paper we start with the general notion of gradient
systems. A triple (Z,Φ,Ψ) is called a gradient system if the state space Z is a Hilbert
space, Φ : Z → R∞ := R∪{∞} is the driving functional, and Ψ is the dissipation potential
with the quadratic form Ψ(z,

•

z) = 1
2
〈G(z)

•

z,
•

z〉. The evolution is given in the form

G(z)
•

z = −DΦ(z) or equivalently
•

z = −∇GΦ(z) := −G(z)−1DΦ(z). (1.1)

Note that this equation can be seen as a force balance between friction forces and potential
restoring forces. For our work it is crucial to work this the dual form obtained via the
dual dissipation potential Ψ∗(z, ·) : Z∗ → [0,∞] obtained from Ψ(z, ·) : Z → [0,∞] via
Legendre transform:

Ψ∗(z,µ) =
1

2
〈µ,G(z)−1µ〉.

The dual gradient structure is then given as the rate equation

•

z = DΨ∗(z,−DΦ(z)) = −G(z)−1DΦ(z). (1.2)

The point of our work is to establish suitable functionals Φ and dual dissipation potentials
Ψ∗ such that reaction diffusion systems of the type

•

n = div
(
M(n)∇n

)
+ R(n) (1.3)

can be written as a dual gradient system in the sense of (1.2).

In fact, there is a rich literature (see e.g. [Grö83, GGH96, GlH97, DeF06, DeF07, Gli08,
BDS09]) on energy-entropy estimates for reaction-diffusion systems, which establish decay
of solutions to the unique steady state under given constraints. In these works the driving
functionals are just used as Liapunov function; and its interplay with the dissipation
potential gives convergence. Here we show that in many of the considered cases there
is even an exact gradient structure. Thus, there is future potential to apply the more
advanced variational theory for gradient systems. On the long run, the results of present
work have the potential to improve on sharpen these results, since it becomes evident
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that the functionals used as Liapunov functionals only, are in fact driving functionals in
a gradient system.

Our motivation and the the fundamental ideas to treat a sufficiently large class of reaction-
diffusion equations came from the work [AGH02], where energy-electro-reaction-diffusion
systems for semiconductors where treated. The reactions (also called recombinations
in the semiconductor context) are strongly reversible reactions according to mass-action
kinetics, cf. [FeH77, Grö83, ErT89]. This means that the reaction coefficient for the
forward and the backward reaction are the same. This microscopic reversibility is a good
assumption for elementary reactions on the microscopic and nanoscopic level, but there
are many macroscopic models that do not fall into this class.

As an example consider a model with two species X1 and X2 and the reaction

α1X1 + α2X2

k+

⇀↽
k−

β1X1 + β2X2.

The associated reaction-diffusion systems for the densities n = (n1, n2) reads

•

n1 = d1∆n1 − (α1−β1)
(
k+n

α1

1 n
α2

2 −k−n
β1

1 n
β2

2

)
,

•

n2 = d2∆n2 − (α2−β2)
(
k+n

α1

1 n
α2

2 −k−n
β1

1 n
β2

2

)
.

(1.4)

Our gradient structure uses the total free energy as the driving functional, namely

F(n) =

∫

Ω

n1(log n1−1) + n2(logn2−1) dx,

while the dual dissipation potential is the sum of Wasserstein-type mobility terms plus a
reaction term, namely

Ψ∗(n;µ1, µ2) =
1

2

∫

Ω

n1d1|∇µ1|
2+n2d2|∇µ2|

2+k+ℓ(n
α1

1 n
α2

2 , n
β1

1 n
β2

2 )
((

α1−β1

α2−β2

)
·
(

µ1

µ2

))2
dx

with ℓ defined in (3.1). Using the strong reversibility conditions k+ = k− it is easy
to check that the dual gradient system

•

n = DµΨ∗(n;−DF(n)) gives exactly (1.4).

In Section 3 we give generalizations of the above approach to arbitrary numbers of species
and reactions, to systems with cross-diffusion, and to systems with weakly reversible
reactions fulfilling the detailed balance condition. In Section 3.5 we then consider
reaction-diffusion systems coupled to a corresponding heat equation giving the exact en-
ergy balance. The driving functional is then the total entropy S while the total internal
energy E provides a conserved quantity. It turns out that using the internal energy u as
the thermodynamic state variable is much simpler than the more desirable temperature.
However, it is one of the advantages of gradient systems, that transformation between
different coordinate systems can be done with a reasonable amount of work.

Section 4 is devoted to electro-reaction-diffusion systems, where the species may be
charged. The distribution of the charges generates an electrostatic potentials, whose elec-
tric field leads to additional drift contributions of the species proportional to their charge.
In Section 4.1 we treat the simple isothermal van Roosbroeck system for the densities of
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electrons and holes only. In the final section is devoted to the full temperature-dependent
semiconductor models devised in [AGH02]. We show that these models have a (dual)
gradient structure. These models allow for an arbitrary number of charged species and
arbitrary reversible reactions. Moreover, one can replace the Boltzmann statistics, which
leads to the terms ni(log ni−1), by the physically more appropriate Fermi-Dirac statistics.

2 Gradient formulations

We present different levels of the modeling in the form of generalized gradient flows. For
a linear state space Z we consider a dissipation potential Ψ(z,

•

z), i.e., Ψ : TZ → [0,∞].
For each z the potential Ψ(z, ·) : Z → [0,∞] satisfies Ψ(z, 0) = 0 and is assumed to be
lower semicontinuous and convex. Given an energy functional Φ : Z → R the generalized
gradient flow is given in the form

0 ∈ ∂•

zΨ(z,
•

z) + DΦ(z) in T∗

zZ ∼ Z∗. (2.1)

In classical gradient flows, the dissipation potential has the quadratic form Ψ(z,v) =
1
2
〈G(z)v,v〉, where G(z) : TzZ → T∗

zZ is a self-adjoint, positive definite operator. We
then have the classical gradient-flow equation

G(z)
•

z = −DΦ(z). (2.2)

An equivalent formulation is obtained by using the Legendre transform Ψ∗(z, ·) = L[Ψ(z, ·)],
namely Ψ∗(z, ζ) = sup{ 〈ζ,v〉 − Ψ(z,v) | v ∈ Z }. Then, (2.1) is equivalent to the rate
equation

•

z = ∂ζΨ
∗(z,−DΦ(z)), (2.3)

which in the classical gradient-flow case reads
•

z = −G(z)−1DΦ(z). The energy balance
can be written in different ways

Φ(z(0) − Φ(z(t)) =

∫ t

0

〈∂•

zΨ(z,
•

z),
•

z〉dt (2.4a)

=

∫ t

0

Ψ(z,
•

z) + Ψ∗(z,−DΦ(z))dt (2.4b)

=

∫ t

0

〈−DΦ(z), ∂ζΨ
∗(z,−DΦ(z))〉dt. (2.4c)

by using the classical Legendre equivalence

ζ ∈ ∂J (v) ⇐⇒ v ∈ ∂J ∗(ζ) ⇐⇒ J (z) + J ∗(ζ) = 〈ζ,v〉.

Since the right-hand sides in (2.4) represent the dissipated energy, we call Ψ the dissipation
potential and Ψ∗ the dual dissipation potential. Here (2.4b) plays a special role in the
development of generalized gradient flows as it specifies the dynamics already completely.

Remark 2.1 (Transformation rule) Often it is desirable to transform a gradient sys-
tem for z via a transformation z = φ(p), where φ : P → Z is a local isomorphism. Given

(Z,Φ,Ψ) we define the gradient system (P , Φ̃, Ψ̃) via

Φ̃(p) = Φ(φ(p)) and Ψ̃(p,
•

p) = Ψ(φ(p),Dφ(p)
•

p).
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Obviously, the two gradient systems are equivalent. Moreover we have

G̃(p) = Dφ(p)∗G(φ(p))Dφ(p) and Ψ̃∗(p,µ) = Ψ∗(φ(p),Dφ(p)−∗µ).

In our applications for reaction-diffusion systems we will have two different types of gra-
dient systems (i) isothermal systems with the (free) energy as driving functional and (ii)
non-isothermal models with the entropy as driving functional.

In case (i) we usually write the gradient system (Z,F ,Ψ) in the dual form n = DµΨ∗(n;−F(n)),
where n is the vector of densities of the species and µ = DF(n) denotes the correspond-
ing thermodynamic force dual to n. The functional F is decreasing and Ψ(n;

•

n) =
Ψ∗(n;−DF(n)) gives the energy-dissipation.

In case (ii) we use the entropy functional S as a function of the densities n and the internal
energy u and have an additional conserved functional E(n, u) is is the total energy. The
thermodynamic forces are denoted by η = DnS(n, u) and τ = DuS(n, u) such that,
using standard thermodynamic conventions (cf. [AGH02, Mie10]) we find the absolute
temperature θ = 1/τ and the chemical potentials µ = θη. The systems takes the form

(
•

n,
•

u) = Dη,τΨ(n, u; +DS(n, u)), (2.5)

where the “+” is because −S is a Liapunov function. The quantity Ψ(n, u;
•

n,
•

u) =
Ψ∗(n, u; DS(n, u)) is called the entropy production.

Moreover, E is conserved along all solutions, if the invariance condition

Ψ∗(n, u; (η, τ)+λDE(n, u)) = Ψ∗(n, u; (η, τ)) for all (n, u), λ ∈ R (2.6)

holds. This relation obviously implies 〈DE(n, u),DΨ∗(n, u; η, τ)〉 = 0, which leads to

d

dt
E(n, u) = 〈DE(n, u), (

•

n,
•

u)〉 = 〈DE(n, u),DΨ∗(n, u; DS(η, τ)〉 = 0. (2.7)

In reaction-diffusion systems we will also have other conserved quantities such as atom or
charge conservation.

In the case of a conserved energy E and possible further conserved functionals C1, . . . , Cm,
one can use the principle of maximal entropy, which means to maximize the (con-
cave) entropy S under the constraints E(z) = E0 and Cj(z) = Cj. Under suitable as-
sumptions one obtains an extremum zeq and Lagrange multipliers λ0, . . . , λm ∈ R such
that

0 = DS(zeq) + λ0DE(zeq) + λ1DC1(zeq) + · · · + λmDCm(zeq).

Having an invariance (2.6) but now also including Cj it is easy to see that zeq is actually
a steady state of the the gradient system (2.5).

3 Reaction-diffusion systems

The aim of this section is to show that reactions-diffusion systems of the type (1.2)
may have a gradient structure, if the the reaction terms are generated from reversible
reactions. The point is that the gradient structure is obtained in an indirect way using
the dual gradient structure. It seems that this gradient structure is even unknown for the
systems of ODEs describing the reactions without any diffusion.
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3.1 Reversible reactions

We consider n = (n1, . . . , nI) ∈ RI to be the densities of m different chemical species
X1, . . . , XM reacting according to the mass action law, i.e. the reactions

αr
1X1 + · · ·+ αr

IXI

kr
+

⇀↽
kr
−

βr
1X1 + · · ·+ βr

IXI ,

where r = 1, ..., R is the number of possible reactions, αr,βr ∈ NI
0 are the vectors of

the stoichiometric coefficients, and kr
+ and kr

−
the positive forward and backward reaction

rates, which may depend on n as well. The corresponding reaction kinetics is given by
the ODE system

•

n = R(n) :=

R∑

r=1

−
(
kr

+(n)nαr

−kr
−
(n)nβr)(

αr − βr
)
,

where nα = nα1

1 · · ·nαI

I , see [FeH77, Grö83, ErT89].

The rth reaction is called strongly reversible, if kr
+ = kr

−. If all reactions are reversible,
i.e. kr

±
= kr, then we can write the whole system as a gradient systems as follows. We

define the free energy as F (n) =
∑I

i=1 ni(logni − 1), which gives the chemical potentials
DF (n) = µ = (µ1, . . . , µm) ∈ RI with µi = logni. We define the dual dissipation
potential

ψ∗(n,µ) =

R∑

r=1

kr(n)

2
ℓ(nαr

,nβr

)
(
(αr−βr) · µ

)2

with ℓ(x, y) =

{ x−y

log x−log y
for x 6= y,

y for x = y.

(3.1)

We note that the function ℓ : ]0,∞[2 → ]0,∞[ is analytic. To check the identity R(n) ≡
Dµψ

∗(n,−DF (n)) we simply exploit µ · α = log(nα).

The stoichiometric subspace S and its orthogonal complement S⊥ are defined via

S := span{αr−βr | r = 1, . . . , R } ⊂ R
I , S

⊥ := { ξ ∈ R
I | ξ·µ = 0 for all µ ∈ S }. (3.2)

Then for each ξ ∈ S
⊥ the function Cξ(n) = ξ · n defines a first integral, which is easily

checked by using ψ∗(n,µ+ξ) = ψ∗(n,µ). These conservation laws often go under the
name conservation of atomic species, see [ErT89].

Clearly, ψ∗ can be written as the quadratic form

ψ∗(n,µ) =
1

2
µ · H(n)µ with H(n) ∈ R

I×I
spsd,

where the subscript “spsd” denotes symmetric and positive semi-definite matrices. By
the definition of the stoichiometric subspace and the positivity of kr the mapping H(n)
is strictly positive definite on S. Thus, the Legendre transform ψ(n, ·) : RI → [0,∞] of
ψ∗(n, ·) : RI → [0,∞[ can be easily calculated in the form

ψ(n,v) =

{ (
1
2
H(n)+v

)
· v for v ∈ S,

∞ for v 6∈ S,
(3.3)
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where H+ denotes the pseudo inverse (Moore-Penrose inverse) of H . Thus, the gradient
systems reads

0 = D •

nψ(n,
•

n) + DF (n).

The definition of ψ guarantees
•

n ∈ S and thus the quantities Cξ are conserved.

Remark 3.1 (Detailed balance) The above gradient structure can be generalized to
weakly reversible reactions, if the reactions have constant rates kr

+ and kr
− which are

microscopically reversible, or what is equivalent, they satisfy the detailed balance

condition, i.e. there exists a steady state n◦ = (n◦

1, . . . , n
◦

I) ∈ ]0,∞[I such that

kr
◦ := kr

+nαr

◦ = kr
−nβr

◦ for r = 1, . . . , R,

see [ErT89, p. 45]. Then, defining the relative free energy F◦(n) =
∑I

i=1 ni(log(ni/n
◦

i )−1)

and ψ∗
◦(n,µ) =

∑R

r=1
kr
◦

2
ℓ(nαr

/nαr

◦ ,nβr

/nβr

◦ )
(
µ · (αr−βr)

)2
gives the desired gradient

structure.

Remark 3.2 (Relative entropy) The above construction of F◦ can be understood in
the sense of the “relative entropy”. In many cases the (entropic part of the isothermal)
free energy F can be written in the form F (n) =

∑I

i=1 φi(ni). For a given state n◦ =

(n◦

1, . . . , n
◦

I) the construction is F◦(n) =
∑I

i=1 φi(ni/n
◦

i )n
◦

i .

3.2 Diffusion system

For a given bounded and sufficiently smooth domain Ω ⊂ Rd we now consider a pure
diffusion system of the form

•

n = div
(

M̃(n)∇n
)

for x ∈ Ω, M(n)∇n · ν = 0 on ∂Ω.

Here ∇n ∈ RI×d and M̃(n) ∈ Lin(RI×d; RI×d). We will see that M̃ must have a certain
structure to allow for a gradient structure with respect to the same free energy as above,
namely F(n) =

∫
Ω
F (n(x))dx where F (n) =

∑I

i=1 ni(log ni−1).

The dual dissipation functional is

Ψ∗

diff(n,µ) =

∫

Ω

∇µ · M(n)∇µdx,

where M(n) ∈ Lin(RI×d; RI×d) is assumed to be symmetric and positive semi-definite.
Using µ = DF (n) = (log ni)i=1,...,I leads to the dual gradient flow

•

n = DµΨ∗

diff(n,−DF (n)) = div
(
M(n)D−1

n ∇n)
)

with Dn := diag(n1, ..., nI).

Thus, we reveal the special form needed for M̃(n), namely

M̃(n) = M(n)D−1
n , where D−1

n = D2F (n).

The situation is simple, if there is no cross-diffusion, i.e.

div
(
M̃(n)∇n

)
=

(
div

(
M̃i(n)∇ni

))
i=1,...,I

with M̃i(n) ∈ R
d×
spsd.
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Then, we let ∇µ · M(n)∇µ =
∑I

i=1 ni∇µi · M̃i(n)∇µi, which leads to a sum of scalar

Wasserstein metrics for each components, if the matrices M̃i are constant. In particular,
it is easy to obtain the diagonal system

•

n = diag(M̃1, . . . , M̃I)∆n

However, for systems with cross-diffusion the situation is more complicated, since unsym-
metries and nontrivial dependencies on n will appear.

The gradient structure is obtained from the metric induced by Ψ∗

diff via Legendre trans-
form. For this we use mass conservation d

dt

∫
Ω

n(t, x) dx ≡ 0 and define X00 = { v ∈
L2(Ω; RI) |

∫
Ω

v(x)dx = 0 }. On the formal level we obtain, for v ∈ X00, the formula

Ψdiff(n,v) =

∫

Ω

1

2
v · M−1

n vdx =

∫

Ω

1

2
v · µv

ndx =

∫

Ω

1

2
∇µv

n · M(n)∇µv
ndx, (3.4)

where µv
n is the unique solution in X00 of

v = Mnµ = − div(M(n)∇µ) in Ω, (M(n)∇µ) · ν = 0 on ∂Ω.

Thus, we have found the formal gradient system

0 = D •

nΨdiff(n,
•

n) + DF(n) ⇐⇒
•

n = DΨ∗

diff(n,−DF(n)).

3.3 Combining reactions and diffusion

Combining reactions and diffusion is simple in the rate form, since we just have to add
the dual dissipation potentials, because we have the same driving functional F in both
cases. For the given domain Ω ⊂ Rd we define the underlying space X = L1(Ω; RI) and
the functionals

F(n) =

∫

Ω

F (n(x))dx with F (n) =

I∑

i=1

ni(logni−1),

Ψ∗(n,µ) =

∫

Ω

1

2
∇µ(x) · (M(n(x))∇µ(x)) + ψ∗(n(x),µ(x))dx.

with ψ∗ for Section 3.1.

To make the structure more exact, we need to employ the conserved quantities. We define
the subspace

X0 := {n ∈ X |

∫

Ω

n(x)dx ∈ S },

and the conserved quantities Cξ(n) =
∫
Ω

n(x) · ξ dx, where ξ ∈ S
⊥. For simplicity we

now assume that kr(n) > 0 and M(n) are positive definite for all n ∈ ]0,∞[I . Then, the
kernel of the quadratic form Ψ∗(n, ·) can be characterized easily. The diffusive term gives
∇µ ≡ 0 and the reaction part ψ∗ gives µ(x) ∈ S⊥ a.e. Thus the kernel is exactly the
orthogonal complement of X0, namely

X⊥

0 = {µ ∈ L2(Ω; RI) | ∃ ξ ∈ S
⊥ : µ(x) = ξ a.e. }.
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Thus, we are able to define Ψ(n, ·) as formal metric via the Legendre transform of Ψ∗.
For v ∈ X0 we let

Ψ(n,v) =

∫

Ω

1

2
v · A−1

n vdx =

∫

Ω

1

2
v · µ̃v

ndx = Ψ∗(n, µ̃v
n),

where µ̃v
n is the unique solution in X0 of

v = Anµ̃ = − div(M(n)∇µ̃) + H(n)µ̃ in Ω, (M(n)∇µ) · ν = 0 on ∂Ω.

Since Ψ∗ has the additive form Ψ∗

diff + Ψ∗
react with Ψ∗

react(n,µ) =
∫
Ω
ψ∗(n(x),µ(x))dx its

Legendre transform can also be obtained via the inf-convolution, namely

Ψ(n,v) = inf{Ψdiff(n,v1) + Ψreact(n,v2) | v1 + v2 = v }

where Ψdiff is defined in (3.4) while Ψreact is obtained from ψ in (3.3) via integration over
Ω. Altogether, we have established the gradient form

0 = D •

nΨ(n,
•

n) + DF(n).

3.4 An example of reversible reaction-diffusion systems

To highlight the structures we give an elementary example, where the diffusion part is
constant, isotropic, and without cross-diffusion. The system has two species X1 and X2

with the single reversible reaction pX1 ⇀↽ qX2. The reaction-diffusion system

•

n1 = M1∆n1 − kp(np
1 − nq

2),
•

n2 = M2∆n2 + kq(np
1 − nq

2) in Ω, (3.5)

which we complete with the no-flux boundary conditions ∇ni · ν = 0 on ∂Ω. For the
special case p = q = 1 the gradient structure was derived independently in [PSV09].

As given above, the free energy is F(n1, n2) =
∫
Ω
n1(log n1−1) + n2(logn2−1)dx and the

dual dissipation potential is

Ψ∗(n1, n2;µ1, µ2) =
1

2

∫

Ω

n1M1|∇µ1|
2 + n2M2|∇µ2|

2 + kℓ(np
1, n

q
2)(pµ1−qµ2)

2 dx,

where ℓ is given in (3.1). Obviously, S
⊥ = span

(
q

p

)
and C(n1, n2) =

∫
Ω
qn1+pn2 dx is a

conserved quantity.

For the given initial value (n1(0), n2(0)) ∈ H1(Ω; R2) the unique solution of (3.5) will
converge to the unique steady state which is the minimizer of n 7→ F(n) subjected to the
constraint C(n) = C(n1(0), n2(0)), which is a spatially constant state.

3.5 Reaction-diffusion systems with temperature coupling

As next increase of complexity we also include temperature effects into the gradient struc-
ture. In this case we will use a functional for the energy conservation, while the entropy
will take over role of the driving functional. To model temperature effects we have several

9



choices for the the additional internal variable, namely the temperature, the internal en-
ergy, or the entropy, see [Mie10] for more details. To obtain our joint gradient structure
it seems best to use the internal energy u : Ω → R, which leads to the functionals

E(n, u) =

∫

Ω

udx and S(n, u) =

∫

Ω

S(n(x), u(x))dx.

for the total energy and the total entropy, respectively. Hence, S : ]0,∞[I × R → R

models the thermodynamic properties of the system. The corresponding thermodynamic
driving forces are

η = DnS(n, u) = ∂nS(n, u), τ = DuS(n, u) = ∂uS(n, u),

where, by standard thermodynamic modeling, θ = 1
θ
> 0 is the absolute temperature.

We define a dual potential Ψ∗ for the driving forces (η, τ) via

Ψ∗(n, u; η, τ) =

∫

Ω

1

2
∇

(
η

τ

)
·M(n, u)∇

(
η

τ

)
+ ψ∗(n, u,η)dx,

where ψ∗ is given as in Section 3.1, but now the reaction rates may depend on the
temperature via the internal energy, i.e.

ψ∗(n, u; η) =
R∑

r=1

k̂r(n, u)

2
ℓ(nαr

,nβr

)
(
η · (αr−βr)

)2
=

1

2
η · Ĥ(n, u)η.

Here the coefficients k̂r are different from kr in (3.1), since η has the physical dimension

of µ divided by temperature (e.g. we may take k̂r = θ2kr). In particular, Ψ∗ is now the
dual entropy-production potential.

Using DE(n, u) =
(
0

1

)
, we easily find the invariance

Ψ∗(n, u;
(

η

τ

)
+λ1DE+λ2DCξ) = Ψ∗(n, u,η, τ) for all λ1, λ2 ∈ R, ξ ∈ S

⊥. (3.6)

The dual gradient system
(•

n
•

u

)
= D(η,τ)Ψ

∗(n, u; DS(n, u)) takes the form

•

n = − div jn + Ĥ(n, u)∂nS(n, u),
•

u = − div ju,

(
jn

ju

)
= M(n, u)

(
∇∂nS(n, u)

∇∂uS(n, u)

)
. (3.7)

Using the no-flux boundary conditions it is easy to see that the total energy E as well as
all Cξ are conserved along solutions.

However, it is more common to use the temperature θ instead of the internal energy u.
Thus, based on the free energy F (n, θ) we may define the relations

u = U(n, θ) := F (n, θ) − θ∂θF (n, θ), s = S(n, θ) := −∂θF (n, θ). (3.8)

We arrive at the functionals

S(n, θ) =

∫

Ω

S(n(x), θ(x))dx and E(n, θ) =

∫

Ω

U(n(x), θ(x))dx.

10



Using the abstract transformation rule in Remark 2.1, we obtain the transformed Ψ
∗

via

Ψ
∗

(n, θ; µn, µθ) = Ψ∗(n, U(n, θ); µn−
µθ

∂θU(n, θ)
∂nU(n, θ),

µθ

∂θU(n, θ)
).

Thus, (3.7) is equivalent to a dual gradient system for (n, θ) in the form

( •

n
•

θ

)
= DΨ

∗

(n, θ,DnS(n, θ),DθS(n, θ)).

Again we have conservation of energy via Ψ∗(n, θ; (η, µθ)+λDn,θE) = Ψ∗(n, θ; η, µθ).
Moreover, using the definition of U and S via F in (3.8) we obtain

∂nS −
∂θS

∂θU
∂nU = −

1

θ
∂nF ,

∂θS

∂θU
=

1

θ
,

Ψ
∗

(n, θ; DnS(n, θ),DθS(n, θ)) = Ψ∗(n, U(n, θ);
1

θ
∂nF (n, θ),

1

θ
).

This leads to a coupled system for (n, θ) in the form

•

n = − div jn −
1

θ
H(n, θ)∂nF (n, θ),

•

θ =
1

∂θU

(
− div jθ + ∂nU · div jn +

1

θ
∂nU · H(n, θ)∂nF (n, θ)

)
,

where H(n, θ) = Ĥ(n, U(n, θ)) and

(
jn

jθ

)
= M(n, U(n, θ))∇

(
−1

θ
∂nF
1
θ

)
.

(3.9)

In this system we clearly see the influence of reactions on the temperature and vice versa.
Moreover, the above derivation shows that (3.9) is a gradient system for the driving
functional −S and the dual potential Ψ

∗

, which keeps E invariant.

To see a little more the structure of the equations we consider a free energy in the form

F (n, θ) = cθ(1− log θ) + F0(n) + θF1(n).

For the internal energy and the entropy we obtain

U(n, θ) = cθ + F0(n), S(n, θ) = c log θ − F1(n).

Typically F1(n) =
∑I

i=1 fi(ni) with convex fi (e.g. fi(n) = n(log n−1)), which makes S
concave. A particularly simple case is obtained if F0 ≡ 0, because now U depends only on
θ and 1

θ
∂nF is independent of θ. Then, we obtain a weakly coupled system only, namely

•

n = div
(
Mnn(n, θ)∇∂nF1(n)

)
− Ĥ(n, θ)∂nF1(n),

•

θ = − div
(
Mθθ(n, θ)∇(1/θ)

)
.

We may simplify further by assuming Mθθ(n, θ) = θI, then the last equation is the linear
heat equation.
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4 Semiconductor equations

The additional feature in semiconductors, or more generally in electro-reaction-diffusion
systems, is that we need to take into account the electric charges of the species. These
charges generate an electrostatic potential whose electric field creates drift forces propor-
tional to the charges of the species. Thus, the flux terms are now given in terms of drift
and diffusion. That is why these systems are also called (energy)-drift-diffusion equations,
see [Gaj94, AGH02, Gli08, GlG09].

As an easy start, in Section 4.1, we treat the simplest semiconductor model, namely the
van Roosbroeck system. This system has two species, namely electrons and holes with
densities n and p, respectively. The single reaction is called ‘recombination’, since an
electron-hole pair can be created or annihilated. In Section 4.2 we show that general
electro-reaction-diffusion systems with arbitrary charge distributions and with tempera-
ture effects can be written with a dual gradient structure. As before, the main assumption
is that the reactions or recombinations are strongly reversible or satisfy the detailed bal-
ance condition, see Remark 3.1. In particular, we conclude that all systems treated in
[AGH02] have a dual gradient structure.

4.1 The van Roosbroeck system with recombination

Here we treat the simplest isothermal model, where total energy is the driving functional.
For simplicity and clarity of the concept, we set most material parameters equal to 1.
For the general case, we refer to the next subsection, where general materials and many
species are treated.

The state of the system is described by the densities n and p of electrons and holes,
respectively. A density n = (n, p) : Ω → ]0,∞[2 generates an electrostatic potential φn

as the unique solution of the linear potential equation

−∆φ = δ − n+ p in Ω, φ = φDir on ∂Ω, (4.1a)

where δ : Ω → R a given doping profile. The different sign in front of n and p reflect
the different charge of electrons and holes, respectively. The evolution of the densities
(n, p) is governed by diffusion, drift according to ∇φn, and recombination according to
the simple creation-annihilation reaction for electron-hole pairs, viz.,

Xn +Xp ⇀↽ 0, i.e. α =
(
1
1

)
and β =

(
0
0

)
.

Since the material parameters are all 1, the drift-diffusion system reads

•

n = div
(
∇n− n∇φn

)
− (np−1),

•

p = div
(
∇p + p∇φn

)
− (np−1).

(4.1b)

Note that the fluxes jn = ∇n − n∇φn and jp = ∇p + p∇φn include the diffusive parts
due to ∇n or ∇p (Fick’s law) as well as the charge-dependent drift parts −n∇φn and
+p∇φn.

12



For establishing a gradient structure we define the functionals E and Q as the total energy
(sum of electrostatic and free energy) and the total charge, respectively:

E(n) =

∫

Ω

1

2
|∇φn|

2 + F (n, p)dx and Q(n) =

∫

Ω

δ−n+p dx,

where F (n, p) = n(log n−1) + p(log p−1). The differentials read

DE(n) =

(
log n− φn

log p+ φn

)
and DQ(n) =

(
−1

1

)
.

For the first relation one needs to use that φn solves (4.1a) and depends linearly on n,
see [AGH02, Lem. 6.1]. The dual dissipation potential is chosen as

Ψ∗(n, p;µn, µp) =

∫

Ω

n

2
|∇µn|

2 +
p

2
|∇µp|

2 +
ℓ(np, 1)

2
(µn+µp)

2 dx,

where ℓ is defined in (3.1). Thus, we again have two Wasserstein terms for the mobilities
plus a reaction term.

We immediately find Ψ∗(n; µ+λDQ(n)) = Ψ∗(n; µ) for all λ ∈ R. Moreover, using

Ψ∗(n;−DE(n)) =

(
− div

(
n∇(− logn + φn)

)
+ ℓ(np, 1)(− log(np))

− div
(
p∇(− log p− φn)

)
+ ℓ(np, 1)(− log(np))

)

we see that
•

n = Ψ∗(n;−DE(n)) is the desired dual gradient structure of the van Roos-
broeck system (4.1).

4.2 Energy-drift-diffusion equations with recombination

We now follow the general setup for semiconductor models with temperature developed in
[AGH02]. The vector n = (n1, . . . , nI) : Ω → R

I contains all densities, where i = 1, . . . , I
labels the different species, such as electrons, holes, ions, excited states, traps, etc. Each
species is assumed to have a charge number, which are collected in the charge vector
q = (q1, . . . , qI) ∈ ZI . To include the energy properly, we use the internal energy u.

According to [AGH02, Thm. 6.2 and Rem. 7.3], the balance equations take the form

•

n + div jn = R in Ω, jn · ν = 0 on ∂Ω; (4.2a)
•

u+ div ju = φq · div jn in Ω, ju · ν = 0 on ∂Ω; (4.2b)

− div(ε∇φ) = δ + q · n in Ω, φ = φDir on ΓDir and ε∇φ · ν = 0 on ΓNeu. (4.2c)

Here δ is a doping profile, φ is the electrostatic potential, and ε > 0 is the electric
permittivity (tensor). For the fluxes one now takes the ansatz

(
jn

ju

)
= M(n, u)∇

(
η̃

τ

)
, (4.3)

where the mobility tensor M is assumed to be symmetric and positive semidefinite. (In
case of immobile species, some entries of M should be ∞, in the sense that the corre-
sponding quadratic form is only defined on a strict subspace.) As before, (η̃, τ) will be
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suitable thermodynamic driving forces associated with (n, u) obtained from the entropy
functional. As before, the recombination terms R will be given in the form

R(n, u) = H(n, u)η, (4.4)

where H is obtained from a general set of R strongly reversible reactions

αr
1Xi + · · ·αr

IXI ⇀↽ βr
1Xi + · · ·βr

IXI , r = 1, . . . , R.

(As explained in Remark 3.1 it would be sufficient to have reactions satisfying the detailed
balance condition and renormalizing the densities suitably.) We define the dual reaction
potential

ψ∗(n, u; η) =
R∑

r=1

Kr(n, u)

2

((
αr−βr

)
· η

)2

=
1

2
η · H(n, u)η.

Note that we have subsumed the previous product kr(n, u)ℓ(nαr

,nβr

) into one constant
Kr(n, u). This generalizes the approach and allows for the usage of Fermi-Dirac statistics
instead of the Boltzmann statistics only. However, we will lose the polynomial form of
the reaction terms R, see Remark 4.2.

The important point in electro-chemical reactions is that each reaction preserves the total
amount of electric charge. Using the stoichiometric subspace S ⊂ RI introduced in (3.2)
and its orthogonal complement S⊥, this simply means q ∈ S⊥. Hence, ψ∗ satisfies the
invariance ψ∗(n, u; η+λq) = ψ∗(n, u; η) for all λ ∈ R, which implies R(n, u) · q ≡ 0.

To describe the full gradient structure, we introduce the functionals for the total charge,
the total energy, and the entropy via

Q(n, u) =

∫

Ω

δ+q·n dx, E(n, u) =

∫

Ω

1

2
∇φn·ε∇φn+u dx, S(n, u) =

∫

Ω

S(n, u)dx,

respectively, where φn is the unique solution of the Poisson equation (4.2c). The entropy
density S(n, u) encodes the material properties in dependence on the temperature, but
now expressed in terms of the internal energy. In [AGH02, Prop. 3.2] it is shown that it is
physically reasonable (for certain semiconductor materials) to assume that S : ]0,∞[I ×
R → R is strictly concave.

For the differentials we obtain the expressions

DQ(n, u) =

(
q

0

)
, DE(n, u) =

(
φn

1

)
, DS(n, u) =

(
η

τ

)
,

where τ = 1/θ = ∂uS(n, u) is the inverse temperature and η = ∂nS(n, u).

We first check that the semiconductor system (4.2) is thermodynamically consistent in the
sense of [AGH02], viz. the total charge and the total energy are constant and the entropy
grows along solutions. For this we still need to specify the thermodynamic driving force
η̃ in the flux relation (4.3). We follow [AGH02] and let

η̃ = DnS(n, u) −
1

θ
DnE(n, u) = ∂nS(n, u) − ∂uS(n, u)φnq.
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Charge conservation, energy conservation and entropy production for solutions of (4.2) is
now obtained as follows:

d

dt
Q(n, u) = 〈DQ(n, u), (

•

n,
•

u)〉

=

∫

Ω

q · (R− div jn)dx = −

∫

Ω

div q · jndx = 0;

d

dt
E(n, u) = 〈DE(n, u), (

•

n,
•

u)〉

=

∫

Ω

φnq · (R− div jn) − div ju + φnq· div jndx = −

∫

Ω

div ju dx = 0;

d

dt
S(n, u) = 〈DS(n, u), (

•

n,
•

u)〉 =

∫

Ω

∂nS(n, u) ·
•

n + ∂uS(n, u)
•

udx

=

∫

Ω

(
η̃+

φn

θ
q
)
· (R− div jn) +

1

θ

(
− div ju + φnq· div jn

)
dx

=

∫

Ω

−η̃· div jn −
div ju
θ

+ η̃·Rdx =

∫

Ω

− div js+σ∇+σR dx

with js = η̃ · jn +
1

θ
ju, σ∇ = ∇

(
eη

τ

)
·M∇

(
eη

τ

)
≥ 0, and σR = η̃ · R ≥ 0.

where we used q ·R ≡ 0 several times as well as the no-flux boundary conditions jn ·ν = 0
and ju · ν = 0, which also imply js · ν = 0 for the entropy flux js. The entropy production
due to diffusion σ∇ is nonnegative by the positive definiteness of M , and the entropy
production σR of the reaction terms is nonnegative because of (4.4) and q ·R ≡ 0 giving

σR = η̃ · R(n, u) = η · H(n, u)η ≥ 0,

Finally we give the full dual gradient structure by defining the dual entropy-production
potential Ψ∗. The point is that we need to use the modified driving force η̃ in the mobility
term while we have to use the η in the reaction term:

Ψ∗(n, u; η, τ) =

∫

Ω

1

2
∇

(
η−τφnq

τ

)
·M(n, u)∇

(
η−τφnq

τ

)
+ ψ∗(n, u,η)dx. (4.5)

The usage of η̃ in the mobility term serves a threefold purpose. First, it introduces the
drift term into the balance equation for n, since (4.3) gives

(
jn

ju

)
= M(n, u)∇

(
η̃

τ

)
= M(n, u)

(
∇(∂nS(n, u)−φn

θ
q)

∇(1/θ)

)
.

Second, charge and energy conservation are obtained from the invariance

Ψ∗(n, u; (η, τ)+λ1DQ(n, u)+λ2DE(n, u)) = Ψ∗(n, u; η, τ) for all λ1, λ2 ∈ R.

Third, it produces the source term φnq · div jn in the the energy balance.

The latter statement and the derivation of the differential equation generated by the dual
gradient system d

dt

(
n

u

)
= D(η,τ)Ψ

∗(n, u,DS(n, u)) are obtained by noting the relation

〈(η̂, τ̂),DΨ∗(n, u; DS(n, u))〉 =

∫

Ω

∇

(
η̂−τ̂ φn

θ
q

τ̂

)
·

(
jn

ju

)
+ η̂ · H(n, u)∂nS(n, u) dx,
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which holds for all (η̂, τ̂). Comparing with 〈(η̂, τ̂), (
•

n,
•

u)〉 we easily obtain the equations
•

n = − div jn + H(n, u)∂nS(n, u)),
•

u = − div ju + φnq · div jn,

which are the desired equations (4.2a) and (4.2b).

Remark 4.1 (Pair interactions) In [AGH02] all considered reactions are pair interac-

tion and they are written in the form k̃ij(n, u)(eqjηj−qiηi−1)α, . Obviously, these terms can
be rewritten in the linear formKij(n, u)(qjηj−qiηi) whereKij(n, u) = kij(n, u)ℓ(emij(n,u), 1)
with mij = qj∂ni

S − qi∂ni
S.

Moreover, the presentation in [AGH02] is for n = (n0, n1, n2) with q = (−1,−1, 1), where
n1 and n2 are the electron and hole densities, respectively. The three reactions are

X1 +X2 ⇀↽ 0, X0 +X2 ⇀↽ 0, X0 ⇀↽ X1.

The reactions are given in terms of exponentials of the electrochemical potentials ξi =
−qiµi. This suggests to introduce a non-quadratic dual potential ψ̂∗ in the form

ψ̂∗(n, θ; µ) = ̺0(n, θ)Ξ(µ1+µ2) + ̺1(n, θ)Ξ(µ0+µ2) + ̺2(n, θ)Ξ(µ1−µ0),

where Ξ(t) = et − 1 − t. Hence ψ̂∗(n, θ; ·) : R3 → [0,∞[ is smooth, strictly convex, and

satisfies ψ̂∗(n, θ; 0) = 0. Combining this with the diffusion terms to a dual functional Ψ̂∗

one can define a generalized gradient system in the sense of (2.3).

Remark 4.2 (Fermi-Dirac statistics) In semiconductor models it is often desirable to
replace the Boltzmann statistics by the more accurate Fermi-Dirac statistics. In [AGH02,
Eqn. (1)] the following form for the free energy F is suggested:

F (n, θ) = cθ(1− log θ) −
I∑

i=1

qiniEi(θ) + θ
I∑

i=1

si(θ)fi(ni/si(θ)),

where Ei denotes suitable energy levels and si state densities, which depend on the tem-
perature. Here the functions fi give rise to the chemical potentials

µi =
1

θ
∂ni
F (n, θ) = f ′

i(ni/si(θ)) − qiEi(θ).

IN the Boltzmann case one assumes f ′

i(n) = log n and obtains fi(n) = n(logn−1). For a
Fermi-Dirac statistics one uses the Fermi integrals

Fγ(µ) =
1

Γ(γ+1)

∫
∞

0

ζγ

1 + exp(ζ−µ)
dζ,

where the index satisfies γ > −1. Note that Fγ(µ) ≈ eµ and Fγ(µ) ≈ µγ for µ ≪ 0 and
µ ≫ 0, respectively. For f ′

i we now take the inverse of some Fγ−1 and obtain fi(n) =
nF

−1
γ−1(n)−Fγ(F

−1
γ−1(n)).

The main difference in using the Fermi-Dirac statistics is that linear combinations of
chemical potentials can no longer be written as products of the densities. This is a special
property of the logarithm, which is associated to the Boltzmann statistics.

Thus, when using the Fermi-Dirac statistics the recombination terms should not be written
as polynomials. To keep the gradient structure it is essential to keep linear combinations of
the chemical potentials, i.e. the classical recombination term np−n2

i needs to be replaced
by K(n, p)(f ′

n(n) + f ′
p(p) − 2µi).
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