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Abstract. In this paper we show that a nonlocal minimal surface which is a graph outside a cylinder is in
fact a graph in the whole of the space.

As a consequence, in dimension 3, we show that the graph is smooth.
The proofs rely on convolution techniques and appropriate integral estimates which show the pointwise

validity of an Euler-Lagrange equation related to the nonlocal mean curvature.

1. Introduction

This paper deals with the geometric properties of the minimizers of a nonlocal perimeter functional.
More precisely, given s ∈ (0, 1/2), and an open set Ω ⊆ Rn, the s-perimeter of a set E ⊆ Rn in Ω was

defined in [7] as

Pers(E,Ω) := L(E ∩ Ω, Ec) + L(Ω \ E,E \ Ω),

where Ec := Rn \ E and, for any disjoint sets F and G,

L(F,G) :=

∫∫

F×G

dx dy

|x− y|n+2s
.

This nonlocal perimeter captures the global contributions between the set E and its complement and it is
related to some models in geometry and physics, such as the motion by nonlocal mean curvature (see [8])
and the phase transitions in presence of long-range interactions (see [17]).

As customary in the calculus of variation literature, one says that E is s-minimal in Ω if Pers(E,Ω) <
+∞ and Pers(E,Ω) 6 Pers(F,Ω) among all the sets F which coincide with E outside Ω.

Several analytic and geometric properties of s-minimal sets have been recently investigated, in terms,
for instance, of asymptotics [16, 3, 9, 1, 13], regularity [10, 18, 15] and classification [4, 11]. Some examples
of s-minimal sets (or, more generally, of sets which possess vanishing nonlocal mean curvatures) have been
given in [12, 14].

The main result of this paper establishes that an s-minimal set is an subgraph, if so are its exterior data:

Theorem 1.1. Let Ωo be an open and bounded subset of Rn−1 with boundary of class C1,1, and let Ω :=
Ωo × R. Let E be an s-minimal set in Ω. Assume that

(1.1) E \ Ω = {xn < u(x′), x′ ∈ Rn−1 \ Ωo},
for some continuous function u : Rn−1 → R. Then

E ∩ Ω = {xn < v(x′), x′ ∈ Ωo},
for some v : Rn−1 → R.

The proof of Theorem 1.1 is based on a sliding method, but some (both technical and conceptual)
modifications are needed to make the classical argument work, due to the contributions “coming from
far”. First of all, since the s-minimal set is not assumed to be smooth, some supconvolutions techniques
are needed to take care of interior contact points. Moreover, a fine analysis of the possible contact points
which lie on the boundary (and at infinity) is needed to complete the arguments.

We also mention that, in general s-minimal surfaces are not continuous up to the boundary of the
domain (even if the datum outside is smooth), and indeed boundary stickiness phenomena occur (see [14]
for concrete examples). The possible discontinuity at the boundary makes the proof of Theorem 1.1 quite
delicate, since the graph property “almost fails” in a cylinder (see Theorem 1.2 in [14]), and, in general,
the graph property cannot be deduced only from the outside data but it may also depend on the regularity
of the domain.

1



2

As a matter of fact, we think that it is an interesting open problem to determine whether or not
Theorem 1.1 holds true without the assumption that ∂Ωo is of class C1,1 (for instance, whether or not a
similar statement holds by assuming only that ∂Ωo is Lipschitz).

The results in Theorem 1.1 may be strengthen in the case of dimension 3, by proving that two-dimensional
minimal graphs are smooth. Indeed, we have:

Theorem 1.2. Let Ωo be an open and bounded subset of R2 with boundary of class C1,1, and let Ω := Ωo×R.
Let E be an s-minimal set in Ω. Assume that

E \ Ω = {xn < u(x′), x′ ∈ Rn−1 \ Ωo},
for some continuous function u : Rn−1 → R. Then

(1.2) E ∩ Ω = {x3 < v(x′), x′ ∈ Ωo},
for some v ∈ C∞(Ωo).

The proof of Theorem 1.2 relies on Theorem 1.1 and on a Bernstein-type result of [15].

The rest of the paper is organized as follows. In Section 2 we discuss the notion of supconvolutions and
subconvolutions for a nonlocal minimal surface, presenting the geometric and analytic properties that we
need for the proof of Theorem 1.1.

In Section 3 we collect a series of auxiliary results needed to compute suitable integral contributions and
obtain an appropriate fractional mean curvature equation in a pointwise sense (i.e., not only in the sense
of viscosity, as done in the previous literature).

The proof of Theorem 1.1 is given in Section 4 and the proof of Theorem 1.2 is given in Section 5.

2. Supconvolution of a set

In this section, we introduce the notion of supconvolution and discuss its basic properties. This is the
nonlocal modification of a technique developed in [5] for the local case.

Given δ > 0, we define the supconvolution of the set E ⊆ Rn by

E]
δ :=

⋃

x∈E
Bδ(x).

Lemma 2.1. We have that
E]
δ =

⋃

v∈Rn
|v|6δ

(E + v).

Proof. Let y ∈ Bδ(x), with x ∈ E. Let v := y − x. Then |v| 6 δ and y = x+ v ∈ E + v, and one inclusion
is proved.

Viceversa, let now y ∈ E + v, with |v| 6 δ. We set in this case x := y − v. Hence |y − x| = |v| 6 δ,

thus y ∈ Bδ(x). In addition, x ∈ (E + v)− v = E, so the other inclusion is proved. �

Corollary 2.2. If p ∈ ∂E]
δ, then there exist v ∈ Rn, with |v| = δ, and xo ∈ ∂E such that p = xo + v

and Bδ(xo) ⊆ E]
δ.

Also, if E]
δ is touched from the outside at p by a ball B, then E is touched from the outside at xo by B−v.

Proof. Since p ∈ E]
δ, we have that there exists a sequence pj ∈ E]

δ such that pj → p as j → +∞. By
Lemma 2.1, we have that pj ∈ E + vj, for some vj ∈ Rn with |vj| 6 δ. That is, there exists xj ∈ E such
that pj = xj + vj. By compactness, up to a subsequence we may assume that vj → v as j → +∞, for
some v ∈ Rn with

(2.1) |v| 6 δ.

Therefore

(2.2) xj = pj − vj → p− v =: xo
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as j → +∞. By construction,

(2.3) xo ∈ E
and

(2.4) p = xo + v.

Now we show that

(2.5) xo ∈ Ec.

For this, since p ∈ Rn \ E]
δ, we have that there exists a sequence qj ∈ Rn \E]

δ such that qj → p as j → +∞.
Notice that

(2.6) Bδ(qj) ∩ E = ∅.

Indeed, if not, we would have that there exists zj ∈ Bδ(qj) ∩ E. So we can define wj := qj − zj. We see

that |wj| 6 δ and therefore qj = zj + wj ∈ E + wj ⊆ E]
δ, which is a contradiction.

Having established (2.6), we use it to deduce that qj − vj ∈ Ec. Thus passing to the limit

xo = p− v = lim
j→+∞

qj − vj ∈ Ec.

This proves (2.5).
From (2.3) and (2.5), we conclude that

(2.7) xo ∈ ∂E.
Now we show that

(2.8) |v| = δ.

To prove it, suppose not. Then, by (2.1), we have that |v| < δ. That is, there exists a ∈ (0, δ) such
that |v| < δ − a. Then, by (2.2),

|xj − p| 6 |xj − xo|+ |xo − p| = |xj − xo|+ |v| < δ − a

2
,

if j is large enough. Hence Ba/2(p) ⊆ Bδ(xj) ⊆ E]
δ, that says that p lies in the interior of E]

δ. This is in
contradiction with the assumptions of Corollary 2.2, and so (2.8) is proved.

Now we claim that

(2.9) Bδ(xo) ⊆ E]
δ.

To prove this, let z ∈ Bδ(xo). Then, |z − xo| 6 δ − b, for some b ∈ (0, δ). Accordingly, by (2.2), we have

that |z − xj| 6 δ − b
2

if j is large enough. Hence z ∈ Bδ(xj) ⊆ E]
δ. This proves (2.9).

Thanks to (2.4), (2.7), (2.8) and (2.9), we have completed the proof of the first claim in the statement
of Corollary 2.2.

Now, to prove the second claim in the statement of Corollary 2.2, let us consider a ball B such that B ⊆
Rn \ E]

δ and p ∈ ∂B. Then xo = p− v ∈ (∂B)− v = ∂(B − v). Moreover,

B − v ⊆ (Rn \ E]
δ)− v = Rn \ (E]

δ − v).

Since E ⊆ E]
δ, we have that

Rn \ (E]
δ − v) ⊆ Rn \ (E − v).

Consequently, we obtain that B − v ⊆ Rn \ (E − v), which completes the proof of the second claim of
Corollary 2.2. �

The supconvolution has an important property with respect to the fractional mean curvature, as stated
in the next result:
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Lemma 2.3. Let p ∈ ∂E]
δ, v ∈ Rn with |v| 6 δ and xo ∈ ∂E such that p = xo + v. Then
∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy >

∫

Rn

χE(y)− χRn\E(y)

|xo − y|n+2s
dy.

Proof. The claim follows simply by the fact that E]
δ ⊇ E+v and the translation invariance of the fractional

mean curvature. �
Corollary 2.4. Let E be an s-minimal set in Ω. Let p ∈ ∂E]

δ. Assume that Bδ(p) ⊆ Ω and that E]
δ is

touched from the outside at p by a ball. Then
∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy > 0.

Proof. By Corollary 2.2, we know that there exist v ∈ Rn with |v| 6 δ and xo ∈ ∂E such that p = xo + v,
and that E is touched by a ball from the outside at xo.

We remark that xo ∈ Bδ(p) ⊆ Ω. So, we can use the Euler-Lagrange equation in the viscosity sense (see
Theorem 5.1 in [7]) and obtain that

∫

Rn

χE(y)− χRn\E(y)

|p− y|n+2s
dy > 0.

This and Lemma 2.3 give the desired result. �
The counterpart of the notion of supconvolution is given by the notion of subconvolution. That is, we

define
E[
δ := Rn \

(
(Rn \ E)]δ

)
.

In this setting, we have:

Proposition 2.5. Let E be an s-minimal set in Ω. Let p ∈ ∂E]
δ. Assume that Bδ(p) ⊆ Ω.

Assume also that E]
δ is touched from above at p by a translation of E[

δ, i.e. there exists ω ∈ Rn such

that E]
δ ⊆ E[

δ + ω and p ∈ (∂E]
δ) ∩

(
∂(E[

δ + ω)
)
.

Then E]
δ = E[

δ + ω.

Proof. Notice that

p ∈ ∂(E[
δ + ω) = ∂E[

δ + ω = ∂
(
(Rn \ E)]δ

)
+ ω.

Accordingly, by the first claim in Corollary 2.2 (applied to the set Rn\E and to the point p−ω), we see that

there exist ṽ ∈ Rn, with |ṽ| = δ, and x̃o ∈ ∂(Rn\E) = ∂E such that p−ω = x̃o+ ṽ and Bδ(x̃o) ⊆ (Rn\E)]δ.

That is, the set (Rn\E)]δ is touched from the inside at p−ω by a ball of radius δ. Taking the complementary
set and translating by ω, we obtain that E[

δ + ω is touched from the outside at p by a ball of radius δ.

Then, since E[
δ + ω ⊇ E]

δ, we obtain that also E]
δ is touched from the outside at p by a ball of radius δ.

Thus, making use of Corollary 2.4, we deduce that

(2.10)

∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy > 0.

Moreover, by Corollary 2.2, we know that E]
δ is touched from the inside at p by a ball of radius δ. By

inclusion of sets, this gives that E[
δ + ω is touched from the inside at p by a ball of radius δ. Taking

complementary sets, we obtain that (Rn \ E)]δ is touched from the outside at p− ω by a ball of radius δ.

Therefore, we can use Corollary 2.4 (applied here to the set (Rn \ E)]δ), and get that

0 6
∫

Rn

χ(Rn\E)]δ
(y)− χ

Rn\
(

(Rn\E)]δ

)(y)

|p− ω − y|n+2s
dy

=

∫

Rn

χRn\E[δ(y)− χE[δ(y)

|p− ω − y|n+2s
dy = −

∫

Rn

χE[δ+ω(y)− χRn\(E[δ+ω)(y)

|p− y|n+2s
dy.
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By comparing this estimate with the one in (2.10), we obtain that
∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy > 0 >

∫

Rn

χE[δ+ω(y)− χRn\(E[δ+ω)(y)

|p− y|n+2s
dy.

Since E]
δ lies in E[

δ + ω, the inequality above implies that the two sets must coincide. �
A useful variation of Proposition 2.5 consists in taking into account that the inclusion of the sets only

occurs inside a cylinder

(2.11) CR := {x = (x′, xn) ∈ Rn s.t. |x′| < R}.
Indeed, we have:

Proposition 2.6. Let R > 4 and δ ∈ (0, 1). Let E be an s-minimal set in Ω. Let p ∈ (∂E]
δ)∩C1. Assume

that Bδ(p) ⊆ Ω.

Assume also that E]
δ is touched in CR from above at p by a vertical translation of E[

δ, i.e. there exists ω =

(ω′, 0) ∈ Rn such that E]
δ ∩ CR ⊆ (E[

δ + ω) ∩ CR and p ∈ (∂E]
δ) ∩

(
∂(E[

δ + ω)
)
. Then

∫

CR

χ(E[δ+ω)\E]δ
(y)− χE]δ\(E[δ+ω)(y)

|p− y|n+2s
dy 6 CR−2s,

for some C > 0, independent of δ and R.

Proof. The proof is a measure theoretic version of the one in Proposition 2.5. We give the full details for
the convenience of the reader.

Notice that
p ∈ ∂(E[

δ + ω) = ∂E[
δ + ω = ∂

(
(Rn \ E)]δ

)
+ ω.

Accordingly, by the first claim in Corollary 2.2 (applied to the set Rn\E and to the point p−ω), we see that

there exist ṽ ∈ Rn, with |ṽ| = δ, and x̃o ∈ ∂(Rn\E) = ∂E such that p−ω = x̃o+ ṽ and Bδ(x̃o) ⊆ (Rn\E)]δ.

That is, the set (Rn\E)]δ is touched from the inside at p−ω by a ball of radius δ. Taking the complementary
set and translating by ω, we obtain that E[

δ + ω is touched from the outside at p by a ball of radius δ.

Then, since (E[
δ + ω)∩CR ⊇ E]

δ ∩CR, we obtain that also E]
δ is touched from the outside at p by a ball

of radius δ. Thus, making use of Corollary 2.4, we deduce that

(2.12)

∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy > 0.

Moreover, by Corollary 2.2, we know that E]
δ is touched from the inside at p by a ball of radius δ. By

inclusion of sets, this gives that E[
δ + ω is touched from the inside at p by a ball of radius δ. Taking

complementary sets, we obtain that (Rn \ E)]δ is touched from the outside at p− ω by a ball of radius δ.

Therefore, we can use Corollary 2.4 (applied here to the set (Rn \ E)]δ), and get that

0 6
∫

Rn

χ(Rn\E)]δ
(y)− χ

Rn\
(

(Rn\E)]δ

)(y)

|p− ω − y|n+2s
dy

=

∫

Rn

χRn\E[δ(y)− χE[δ(y)

|p− ω − y|n+2s
dy = −

∫

Rn

χE[δ+ω(y)− χRn\(E[δ+ω)(y)

|p− y|n+2s
dy.

By comparing this estimate with the one in (2.12), we obtain that
∫

Rn

χE]δ
(y)− χRn\E]δ

(y)

|p− y|n+2s
dy > 0 >

∫

Rn

χE[δ+ω(y)− χRn\(E[δ+ω)(y)

|p− y|n+2s
dy.

Since E]
δ ∩ CR lies in (E[

δ + ω) ∩ CR, the inequality above implies that
∫

CR

χ(E[δ+ω)\E]δ
(y)− χE]δ\(E[δ+ω)(y)

|p− y|n+2s
dy 6 2

∫

Rn\CR

dy

|p− y|n+2s
.
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Notice now that |p − y| > |p′ − y′| > |y′| − |p′| > R − 1 > R/2. Hence changing variable ζ := p − y, we
have ∫

CR

χ(E[δ+ω)\E]δ
(y)− χE]δ\(E[δ+ω)(y)

|p− y|n+2s
dy 6 2

∫

Rn\BR/2

dζ

|ζ|n+2s
,

which gives the desired result. �

3. Auxiliary integral computations and a pointwise version of the Euler-Lagrange
equation

We collect here some technical results, which are used during the proofs of the main results. First, we
recall an explicit estimate on the weighted measure of a set trapped between two tangent balls.

Lemma 3.1. For any R > 0 and λ ∈ (0, 1], let

PR,λ :=
{
x = (x′, xn) ∈ Rn s.t. |x′| 6 λR and |xn| 6 R−

√
R2 − |x′|2

}
.

Then ∫

PR,λ

dx

|x|n+2s
6 CR−2sλ1−2s

1− 2s
,

for some C > 0 only depending on n.

Proof. By scaling y := x/R, we see that
∫

PR,λ

dx

|x|n+2s
= R−2s

∫

P1,λ

dy

|y|n+2s
,

so it is enough to prove the desired claim for R = 1.
To this goal, we observe that, if ρ ∈ [0, 1] then

1−
√

1− ρ2 6 Cρ2,

for some C > 0 (independent of n and s). Therefore

(3.1)

∫ λ

0

1−
√

1− ρ2

ρ2+2s
dρ 6 Cλ1−2s

1− 2s
,

up to renaming C > 0.
In addition, using polar coordinates in Rn−1 (and possibly renaming constants which only depend on n),

we have
∫

P1,λ

dx

|x|n+2s
6
∫

P1,λ

dx

|x′|n+2s
= C

∫

{|x′|6λ}

(∫ 1−
√

1−|x′|2

0

dxn
|x′|n+2s

)
dx′

= C

∫

{|x′|6λ}

1−
√

1− |x′|2
|x′|n+2s

dx′ = C

∫ λ

0

1−
√

1− ρ2

ρ2+2s
dρ.

This and (3.1) yield the desired result. �
A variation of Lemma 3.1 deals with the case of trapping between two hypersurfaces, as stated in the

following result:

Lemma 3.2. Let Co > 0 and α > 2s. For any L > 0, let

PL :=
{
x = (x′, xn) ∈ Rn s.t. |x′| 6 L and |xn| 6 Co |x′|1+α

}
.

Then ∫

PL

dx

|x|n+2s
6 C Co L

α−2s

α− 2s
,

for some C > 0 only depending on n.
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Proof. Using polar coordinates in Rn−1, we have
∫

PL

dx

|x|n+2s
6
∫

{|x′|6L}

(∫

{|xn|6Co |x′|1+α}

dxn
|x′|n+2s

)
dx′ =

∫

{|x′|6L}

2Co |x′|1+α

|x′|n+2s
dx′ =

C Co L
α−2s

α− 2s
,

for some C > 0. �
Now we show that an s-minimal set does not have spikes going to infinity:

Lemma 3.3. Let Ωo be an open and bounded subset of Rn−1 and let Ω := Ωo ×R. Let E be an s-minimal
set in Ω.

Assume that

(3.2) E \ Ω ⊆ {xn 6 v(x′)},
for some v : Rn−1 → R, and that, for any R > 0,

MR := sup
|x′|6R

v(x′) < +∞.

Then
E ∩ Ω ⊆ {xn 6M}

for some M ∈ R (which may depend on s, n, Ωo and v).

Proof. Assume that Ωo ⊆ {|x′| < Ro}, for some Ro and let R > Ro + 1, to be chosen suitably large. We
show that

(3.3) E ⊆
{
xn 6 2M5R +

3

2
R

}
.

For any t > 2M5R + 2R we slide a ball centered at {xn = t} of radius R/2 “from left to right”. For this,
we observe that

(3.4) BR/2(−2R, 0, . . . , 0, t) ⊆ Ec.

Indeed, if x ∈ BR/2(−2R, 0, . . . , 0, t), then

∣∣|x′| − 2R
∣∣ =

∣∣|x′| − |(−2R, 0, . . . , 0)|
∣∣ 6

∣∣x′ − (−2R, 0, . . . , 0)
∣∣ 6

∣∣x− (−2R, 0, . . . , 0, t)
∣∣ 6 R

2
.

In particular,
|x′| ∈ (R, 3R).

In addition,

xn > t− R

2
> 2M5R + 2R− R

2
> 2M5R > v(x′).

These considerations and (3.2) imply that x ∈ Ec, thus establishing (3.4).
As a consequence of (3.4), we can slide the ball BR/2(−2R, 0, . . . , 0, t) in direction e1 till it touches ∂E.

Notice that if no touching occurs for any t, then (3.3) holds true and we are done. So we assume,
by contradiction, that there exists t > 2M5R + 2R for which a touching occurs, namely there exists a
ball B := BR/2(ρ, 0, . . . , 0, t) for some ρ ∈ [−2R, 2R] such that

(3.5) B ⊂ Ec

and there exists p ∈ (∂B) ∩ (∂E) ∩ Ω.
Let now B′ be the ball symmetric to B with respect to p, and let K be the convex envelope of B ∪B′.
Notice that if x ∈ B′ then xn > t− 3

2
R > 2M5R + R

2
> 2M5R. That is, B ∪ B′ ⊆ {xn > 2M5R} and so,

by convexity

(3.6) K ⊆ {xn > 2M5R}.
Now we claim that

(3.7) K ⊆ {xn > v(x′)}.
Indeed, if x ∈ K then |x′| 6 ρ+ 2R 6 4R, hence (3.7) follows from (3.6).
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From (3.2) and (3.7) we conclude that

(3.8) K \ Ω ⊆ Ec.

Now define B? := B1

(
p+ (2Ro + 2)e1

)
and we observe that

(3.9) B? ⊆ Ωc.

Indeed, if x ∈ B?, then

|x′| >
∣∣(p′ + (2Ro + 2)e1

)∣∣−
∣∣x′ −

(
p′ + (2Ro + 2)e1

)∣∣
> 2Ro + 2− |p′| −

∣∣x−
(
p+ (2Ro + 2)e1

)∣∣ > 2Ro + 2−Ro − 1 > Ro,

which proves (3.9).
Now we check that

(3.10) B? ⊆ K.

Indeed,

(3.11) if x ∈ B?, then |x− p| 6 2Ro + 3,

and so in particular |x− p| < R
4

if R is large enough, and this proves (3.10).
In light of (3.8), (3.9) and (3.10), we have that

(3.12) B? ⊆ K ∩ Ωc = K \ Ω ⊆ Ec.

Also, since we have slided the balls from left to right, we have that B? is on the right of B and hence it
lies outside B. Hence, (3.10) can be precised by saying that B? ⊆ K \B.

Thus, as a consequence of (3.5) and (3.12),
∫

K

χEc(y)− χE(y)

|p− y|n+2s
dy =

∫

K\B?

χEc(y)− χE(y)

|p− y|n+2s
dy +

∫

B?

dy

|p− y|n+2s

>
∫

B

dy

|p− y|n+2s
−
∫

K\(B∪B?)

dy

|p− y|n+2s
+

∫

B?

dy

|p− y|n+2s

>
∫

B

dy

|p− y|n+2s
−
∫

K\B

dy

|p− y|n+2s
+

∫

B?

dy

|p− y|n+2s
,

in the principal value sense. Hence, the contributions in B and B′ cancel out by symmetry and, in virtue
of Lemma 3.1 (used here with λ := 1), we obtain that

∫

K

χEc(y)− χE(y)

|p− y|n+2s
dy > −CR−2s +

∫

B?

dy

|p− y|n+2s
,

up to renaming C > 0. Now if y ∈ B? we have that |p − y| 6 2Ro + 3 6 C, for some C > 0, thanks
to (3.11). Also, if y ∈ Rn \K then |p − y| > R/4. As a consequence, up to renaming C > c > 0 step by
step,

∫

Rn

χEc(y)− χE(y)

|p− y|n+2s
dy >

∫

K

χEc(y)− χE(y)

|p− y|n+2s
dy − CR−2s

> −CR−2s +

∫

B?

dy

|p− y|n+2s
> −CR−2s + c |B?| > −CR−2s + c,

which is strictly positive if R is large enough. This is in contradiction with the Euler-Lagrange equation
in the viscosity sense (see Theorem 5.1 in [7]) and so it proves (3.3). �

Next result gives the continuity of the fractional mean curvature at the smooth points of the boundary:
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Lemma 3.4. Let

(3.13) α ∈ (2s, 1].

Let E ⊆ Rn and xo ∈ ∂E. Assume that (∂E) ∩BR(xo) is of class C1,α, for some R > 0. Then

lim
x→xo
x∈∂E

∫

Rn

χEc(y)− χE(y)

|x− y|n+2s
dy =

∫

Rn

χEc(y)− χE(y)

|xo − y|n+2s
dy.

Proof. Up to a rigid motion, we suppose that xo = 0 and that, in the vicinity of the origin, the set E
is the subgraph of a function u ∈ C1,α(Rn−1) with u(0) = 0 and ∇u(0) = 0. By formulas (49) and (50)
in [2], we can write the fractional mean curvature in terms of u, as long as |x′| is small enough. More
precisely, there exist an odd and smooth functions F , with F (0) = 0, |F | + |F ′| 6 C, for some C > 0, a
function Ψ ∈ C1,α(Rn−1), and a smooth, radial and compactly supported function ζ such that, if |x′| is
small and xn = u(x′),

∫

Rn

χEc(y)− χE(y)

|x− y|n+2s
dy =

∫

Rn−1

F

(
u(x′ + y′)− u(x′)

|y′|

)
ζ(y′)

|y′|n−1+2s
dy′ + Ψ(x′),

in the principal value sense. Since also, by symmetry,
∫

Rn−1

F

(∇u(x′) · y′
|y′|

)
ζ(y′)

|y′|n−1+2s
dy′ = 0

in the principal value sense, we write
(3.14)∫

Rn

χEc(y)− χE(y)

|x− y|n+2s
dy =

∫

Rn−1

[
F

(
u(x′ + y′)− u(x′)

|y′|

)
− F

(∇u(x′) · y′
|y′|

)]
ζ(y′)

|y′|n−1+2s
dy′ + Ψ(x′).

So we define

G(x′, y′) :=

[
F

(
u(x′ + y′)− u(x′)

|y′|

)
− F

(∇u(x′) · y′
|y′|

)]
ζ(y′)

|y′|n−1+2s
.

Notice that

lim
x′→0

G(x′, y′) = G(0, y′).

Also, for any small |x′| and bounded |y′|,
∣∣∣∣F
(
u(x′ + y′)− u(x′)

|y′|

)
− F

(∇u(x′) · y′
|y′|

)∣∣∣∣ 6 C
|u(x′ + y′)− u(x′)−∇u(x′) · y′|

|y′| 6 C |y′|α.

Therefore

|G(x′, y′)| 6 C

|y′|n−1−α+2s
∈ L1

loc(Rn−1),

thanks to (3.13). Accordingly, by the Dominated Convergence Theorem,

lim
x′→0

∫

Rn−1

G(x′, y′) dy′ =

∫

Rn−1

G(0, y′) dy′.

Consequently,

lim
x′→0

∫

Rn−1

[
F

(
u(x′ + y′)− u(x′)

|y′|

)
− F

(∇u(x′) · y′
|y′|

)]
ζ(y′)

|y′|n−1+2s
dy′ + Ψ(x′)

=

∫

Rn−1

[
F

(
u(y′)− u(0)

|y′|

)
− F

(∇u(0) · y′
|y′|

)]
ζ(y′)

|y′|n−1+2s
dy′ + Ψ(x′),

which, combined with (3.14), establishes the desired result. �

The result in Lemma 3.4 can be modified to take into account sets with lower regularity properties.
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Lemma 3.5. Let R > 0, E ⊆ Rn and xo ∈ ∂E. For any k ∈ N, let xk ∈ ∂E, with xk → xo as k → +∞,
be such that E is touched from the inside at xk by a ball of radius R, i.e. there exists pk ∈ Rn such that

(3.15) BR(pk) ⊆ E

and xk ∈ ∂BR(pk).
Suppose that ∫

Rn

χE(y)− χEc(y)

|xk − y|n+2s
dy 6 0.

Then

(3.16)

∫

Rn

χE(y)− χEc(y)

|xo − y|n+2s
dy 6 0.

Proof. Fix λ > 0, to be taken arbitrarily small in the sequel. Let qk := pk + 2(xk − pk). We observe that
the ball BR(qk) is tangent to BR(pk) at xk. Therefore, by Lemma 3.1,

(3.17)

∫

Bλ(xk)\
(
BR(pk)∪BR(qk)

) dy

|xk − y|n+2s
6 CR−2sλ1−2s,

for some C > 0. Also, using (3.15),

(3.18)

∫

Bλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy >

∫

Bλ(xk)

χBR(pk)(y)− χBcR(pk)(y)

|xk − y|n+2s
dy.

Now we define Tk to be the half-space passing through xk with normal parallel to xk − pk and contain-
ing BR(pk). By symmetry, ∫

Bλ(xk)

χTk(y)− χT ck (y)

|xk − y|n+2s
dy = 0.

Using this, (3.18) and (3.17), we obtain that
∫

Bλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy

>
∫

Bλ(xk)

χBR(pk)(y)− χBcR(pk)(y)

|xk − y|n+2s
dy −

∫

Bλ(xk)

χTk(y)− χT ck (y)

|xk − y|n+2s
dy

= −2

∫

Bλ(xk)∩
(
Tk\BR(pk)

) dy

|xk − y|n+2s

> −CR−2sλ1−2s.

(3.19)

Now we define

fk(y) := χBcλ(xk) ·
χE(y)− χEc(y)

|xk − y|n+2s
.

We observe that fk vanishes in Bλ(xk). Also, if y ∈ B2λ(xo) \ Bλ(xk), we have that |fk(y)| 6 1
λn+2s .

Moreover, if y ∈ Rn \B2λ(xo), we have that

|y − xo| 6 |y − xk|+ |xk − xo| 6 |y − xk|+ λ 6 |y − xk|+
|y − xo|

2
,

as long as k is large enough, and so |y − xk| > |y−xo|
2

, which gives that |fk(y)| 6 1
|x−xo|n+2s for any y ∈

Rn \ B2λ(xo). As a consequence of these observations, we can use the Dominated Convergence Theorem
and obtain that

lim
k→+∞

∫

Bcλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy = lim

k→+∞

∫

Rn
fk(y) dy =

∫

Rn
lim

k→+∞
fk(y) dy =

∫

Bcλ(xo)

χE(y)− χEc(y)

|xo − y|n+2s
dy.
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Thus, if k is large enough,
∫

Bcλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy >

∫

Bcλ(xo)

χE(y)− χEc(y)

|xo − y|n+2s
dy −R−2sλ1−2s.

Thus, recalling (3.19),

0 >
∫

Rn

χE(y)− χEc(y)

|xk − y|n+2s
dy

=

∫

Bλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy +

∫

Bcλ(xk)

χE(y)− χEc(y)

|xk − y|n+2s
dy

>
∫

Bcλ(xo)

χE(y)− χEc(y)

|xo − y|n+2s
dy − CR−2sλ1−2s,

up to renaming C > 0 line after line. Then, (3.16), in the principal value sense, follows by sending λ →
0. �

A variation of Lemma 3.5 deals with the touching by sufficiently smooth hypersurfaces, instead of balls.
In this sense, the result needed for our scope is the following:

Lemma 3.6. Let Λ > 0. Let E ⊆ Rn and xo ∈ ∂E. For any k ∈ N, let xk ∈ ∂E, with xk → xo
as k → +∞, be such that E is touched from the inside in BΛ(xk) at xk by a surface of class C1,α, with
C1,α-norm bounded independently of k and α ∈ (2s, 1], Suppose that

∫

Rn

χE(y)− χEc(y)

|xk − y|n+2s
dy 6 0.

Then ∫

Rn

χE(y)− χEc(y)

|xo − y|n+2s
dy 6 0.

Proof. The proof is similar to the one of Lemma 3.5. The only difference is that (3.17) is replaced here by

(3.20)

∫

Bλ(xk)\(P+
k ∪P

−
k )

dy

|xk − y|n+2s
6 C λα−2s,

where λ ∈ (0,Λ) can be taken arbitrarily small and P+
k is a region with C1,α-boundary that is contained

in E and P−k is the even reflection of P+
k with respect to the tangent plane of P+

k at xk. In this framework,
(3.20) is a consequence of Lemma 3.2.

The rest of the proof follows the arguments given in the proof of Lemma 3.5, substituting BR(pk)
and BR(qk) with P+

k and P−k . �

4. Graph properties of s-minimal sets and proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1.

Proof of Theorem 1.1. The idea is to slide E from above till it touches itself. Namely, for any t > 0, we
let Et := E + ten. By Lemma 3.3,

(4.1) Ωo × (−∞,−M) ⊆ E ∩ Ω ⊆ Ωo × (−∞,M),

for some M > 0. Hence, if t > 2M , then Et ⊇ E. So we take the smallest t for which such inclusion holds.
Our goal is to show that t = 0.

Indeed, if we show that t = 0, it means that E + ten ⊇ E for any t > 0, so we could define v(x′) :=
inf{τ s.t. (x′, τ) ∈ Ec} and obtain that E ∩ Ωo is the subgraph of v (up to sets of zero measure).

To prove that t = 0, we argue by contradiction, assuming that

(4.2) t > 0,
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and so there is a contact point between ∂E and ∂Et. We distinguish two cases, according to whether all the
contact points are interior, or there are boundary contacts (no other possibilities occur, thanks to (1.1)).
Namely, we have that either

(4.3) all the contact points lie in Ωo × R
or

(4.4) there exists a contact point in (∂Ωo)× R.

The rest of the proof will take into account these two cases separately.

The case in which (4.3) holds true. Assume first that (4.3) is satisfied. Then we consider the subconvolution
of E and we slide it from above till it touches the supconvolution of E (in the notation of Section 2). More
explicitly, fixed δ > 0, for any τ ∈ R, we consider E[

δ + τen. By (4.1), we have that if τ is large, then

(4.5) (E[
δ + τen) ∩ Ω ⊇ E]

δ ∩ Ω.

So we take the smallest τ = τδ for which such inclusion holds. From (4.2), we have that

(4.6) τ = τδ >
t

2
> 0,

for small δ. Also, by (4.3) (recall also the first statement in Corollary 2.2), if δ is small enough, we obtain

that
(
∂(E[

δ + τδen)
)
∩ Ω and (∂E]

δ) ∩ Ω possess a contact point pδ in Ωo × R. Now we distinguish two
subcases: either this is the first contact point in the whole of the space or not. In the first subcase, we
have that (4.5) may be strengthen to E[

δ + τen ⊇ E]
δ, and therefore we can apply Proposition 2.5, and we

obtain that E]
δ = E[

δ + τδen. By taking δ arbitrarily small and using (4.6), we obtain that E = E + τoen,
with τo > t/2 > 0, which is in contradiction with (1.1).

The second subcase is when the first contact point pδ in Ω does not prevent the sets to overlap outside Ω.
In this case, we will show that this overlap only occurs at infinity and then we provide a contradiction
arising from the contribution in bounded sets. Namely, first of all we recall the notation in (2.11) and we
notice that for any R > 0 there exists δR > 0 such that for any δ ∈ (0, δR] we have that

(4.7) (E[
δ + τen) ∩ CR ⊇ E]

δ ∩ CR.

To prove (4.7), we argue by contradiction. If not, there exists some R > 0 and an infinitesimal se-

quence δ → 0 such that
(
E]
δ \ (E[

δ + τen)
)
∩ CR 6= ∅. Then, let qδ = (q′δ, qδ,n) be a point in such set.

By construction |qδ,n| 6 3M + 1 and |q′δ| 6 R, therefore, up to subsequences, as δ → 0, we may suppose

that τδ → τ? and qδ → q? = (q′?, q?,n) ∈
(
E \ (E + τ?en)

)
∩ CR. Hence, by (4.5), q? ∈ Rn \ Ω and so,

by (1.1), we have that u(q′?)+τ? 6 q?,n 6 u(q′?). This gives that τ? 6 0, which is in contradiction with (4.6)
and thus completes the proof of (4.7).

Thanks to (4.7), we can now use Proposition 2.6 and obtain that

(4.8)

∫

CR

χ(E[δ+τen)\E]δ
(y)

|p− y|n+2s
dy =

∫

CR

χ(E[δ+τen)\E]δ
(y)− χE]δ\(E[δ+τen)(y)

|p− y|n+2s
dy 6 CR−2s,

for some C > 0, provided that δ > 0 is small enough.
Now we fix Ro > 0 such that Ω ⊂ CRo . Since u is continuous in Rn−1, it is uniformly continuous in

compact sets and so we can define

σδ := sup
|x′|, |y′|6Ro+3

|x′−y′|62δ

|u(x′)− u(y′)|,

and we have that σδ → 0 as δ → 0.
We claim that, for small δ > 0,

if x = (x′, xn) ∈ ∂(E[
δ + τen), y = (y′, yn) ∈ ∂E]

δ and x′ = y′,

with |x′| ∈ (Ro + 1, Ro + 2),

then xn > yn + t
4
.

(4.9)
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To prove it, we use the first statement in Corollary 2.2 to find xo ∈ (∂E) + τen and yo ∈ ∂E such that

max{|x− xo|, |y − yo|} 6 δ.

Notice that xo,n = u(x′o) + τ and yo,n = u(y′o). Moreover, |x′ − x′o| 6 δ and |x′ − y′o| = |y′ − y′o| 6 δ,
hence |x′o − y′o| 6 2δ. Therefore

xn − yn = xn − xo,n + u(x′o) + τ − yn + yo,n − u(y′o)

> τ − |x− xo| − |y − yo| − |u(x′o)− u(y′o)| > τ − 2δ − σδ.
This and (4.6) imply (4.9), as desired.

So we use (4.7) and (4.9) to deduce that, fixed R > Ro + 4 and δ > 0 small enough (possibly in
dependence of R),

∫

CR

χ(E[δ+τen)\E]δ
(y)

|p− y|n+2s
dy >

∫

CRo+2\CRo+1

χ(E[δ+τen)\E]δ
(y)

|p− y|n+2s
dy > cot,

for some co > 0 (possibly depending on the fixed Ro and M). From this and (4.8), we obtain that t 6
C̃R−2s, for some C̃ > 0 and so, by taking R as large as we wish, we conclude that t = 0. This is in
contradiction with (4.2), and so we have completed the proof of Theorem 1.1 under assumption (4.3).

The case in which (4.4) holds true. Now we deal with the case in which (4.4) is satisfied. Hence, there
exists a contact point p = (p′, pn) ∩ (∂Et) ∩ (∂E) with p′ ∈ ∂Ωo.

Notice that

(4.10) p ∈
(

(∂Et) ∩ Ω
)
∩
(

(∂E) ∩ Ω
)
.

Indeed, the graph property of E \ Ω and (4.2) imply that if ak ∈ ∂Et and bk ∈ ∂E are such that ak → p
and bk → p as k → +∞, then ak, bk ∈ Ω. This proves (4.10).

Now, we observe that E is a variational subsolution in a neighborhood of p (according to Definition 2.3
in [7]): namely, if A ⊆ E ∩ Ω and p ∈ A, we have that

0 > Pers(E,Ω)− Pers(E \ A,Ω) = L(A,Ec)− L(A,E \ A).

Therefore (see Theorem 5.1 in [7]) we have that

(4.11)

∫

Rn

χE(y)− χRn\E(y)

|p− y|n+2s
dy > 0.

in the viscosity sense (i.e. (4.11) holds true provided that E is touched by a ball from outside at p).
Our goal is now to establish fractional mean curvature estimates in the strong sense. For this, we

define pt := p− ten = (p′, pn − t) = (p′t, pt,n). By (4.2), either

(4.12) pn 6= u(p′)

or

(4.13) pn,t 6= u(p′t).

We focus on the case in which (4.12) holds true (the case in (4.13) can be treated similarly, by exchanging
the roles of p and pt).

Then, either Br(p) \ Ω ⊆ E or Br(p) \ Ω ⊆ Ec, for a small r > 0. In any case, by [6], we have

that (∂E) ∩Br(p) is a C1, 1
2

+s-graph in the direction of the normal of Ω at p.
Let ν(p) = (ν ′(p), νn(p)) be such normal, say, in the interior direction. Since Ω is a cylinder, we have

that νn(p) = 0. Also, up to a rotation we can suppose that ν ′(p) = e1. In this framework, we can

write ∂E in the vicinity of p as a graph G := {x1 = Ψ(x2, . . . , xn)}, for a suitable Ψ ∈ C1, 1
2

+s(Rn−1),
with Ψ(p2, . . . , pn) = p1.

We observe that

(4.14) there exists a sequence of points p(k) ∈ G such that p(k) ∈ Ω and p(k) → p as k → +∞.
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Figure 1. The alternative in (4.17) and (4.18).

Indeed, if not, we would have that ∂E in the vicinity of p lies in Ωc. This is in contradiction with (4.10)
and so it proves (4.14).

From (4.14), we obtain that there exists a sequence of points p(k) → p, such that

(4.15) ∂E near p(k) is a graph of class C1, 1
2

+s

and ∫

Rn

χE(y)− χEc(y)

|p(k) − y|n+2s
dy = 0.

As a consequence of this, (4.15), and Lemma 3.2 we obtain that

∫

Rn

χE(y)− χEc(y)

|p− y|n+2s
dy = 0.

Hence, since Et ⊇ E (and they are not equal, thanks to (4.2)),

(4.16)

∫

Rn

χEt(y)− χEct (y)

|p− y|n+2s
dy > 0.

Also, since Et ⊇ E, we have that (∂Et) ∩B r
4
(p) can only lie on one side of the graph G, i.e.

either Et ∩B r
4
(p) ⊇ {x1 > Ψ(x2, . . . , xn)}(4.17)

or Et ∩B r
4
(p) ⊆ {x1 6 Ψ(x2, . . . , xn)},(4.18)

see Figure 1.
In any case (recall (4.10)), we have that there exists a sequence of points p̃(k) ∈ (∂Et) ∩ Ω that can be

touched by a surface of class class C1, 1
2

+s lying in Et (indeed, for this we can either enlarge balls centered
at G, or slide a translation of G, see Figure 2).

Then ∫

Rn

χEt(y)− χEct (y)

|p̃(k) − y|n+2s
dy 6 0.

Hence, by Lemma 3.2,
∫

Rn

χEt(y)− χEct (y)

|p− y|n+2s
dy 6 0.

This is in contradiction with (4.16) and so the proof of Theorem 1.1 is complete. �
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Figure 2. Touching ∂Et, according to the alternative in (4.17) and (4.18).

5. Smoothness in dimension 3 and proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2:

Proof of Theorem 1.2. By Theorem 1.1, we know that E is an epigraph, i.e. (1.2) holds true for some v :
R2 → R. It remains to show that

(5.1) v ∈ C∞(Ωo).

For this, we take xo ∈ (∂E) ∩ Ω and we show that v is C∞ in a neighborhood of xo. Up to a translation,
we suppose that xo is the origin. Now we consider a blow-up E0 of the set E, i.e., for any r > 0, we
define Er := E

r
:= {x

r
s.t. x ∈ E} and E0 to be a cluster point for Er as r → 0 (see Theorem 9.2 in [7]).

In this way, we have that E0 is an s-minimal set, and it is an epigraph (see e.g. (5.8) in [15]). Thus, by
Corollary 1.3 in [15], we deduce that E0 is a half-space.

Hence, by Theorem 9.4 in [7], we have that ∂E is a graph of class C1,α in the vicinity of the origin –
and, as a matter of fact, of class C∞, thanks to Theorem 1 of [2]. �
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