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Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems
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Recently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain
regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry
results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness.
Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface
Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show
how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence
of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and
its dipole, using finite-slab calculations and surface Green’s function methods. We further establish that apart
from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other
transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.
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I. INTRODUCTION

The Berry curvature (BC) associated with electronic band-
like states is a fundamental quantity that gives rise to an
anomalous electronic velocity and interesting (nonlinear)
electronic, heat, and spin-transport properties [1–10]. Re-
cently it has been shown that electronic states at surface can
have BC properties very different from bulk. For instance
bulk BC-free systems exhibit a finite-surface BC at certain
surfaces, in particular ones of lower symmetry [11] and sur-
face Fermi arcs in Weyl semimetals have been shown to
generically be accompanied by a surface Berry curvature that
may diverge close to a hot-line in the surface Brillouin zone
connecting the projection of Weyl nodes with opposite chi-
rality [12]. In Weyl semimetals such surface Berry curvature
appears whenever a bulk node has a velocity tilt toward the
surface of interest [12,13].

Here we consider such Weyl semimetals and the BC asso-
ciated to their surface Fermi arcs in detail, in particular in the
intrinsically regularized lattice setting with an even number
of Weyl nodes. We first consider analytically a semi-infinite
system—with a single surface—on the lattice and in the con-
tinuum. We compare the lattice results with the continuum
approach taken in Ref. [12]. We show that the BC of the Fermi
arc diverges quadratically along a hot-line in reciprocal space
in both cases. We show how the free parameter that appears
in the boundary condition of the self-adjoint extension in the
continuum setting is regularized and becomes fixed by the lat-
tice. Based on this insight we provide a time-reversal invariant
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lattice Hamiltonian that allows tuning of this parameter, which
strongly affects the Fermi arcs and their connectivity.

Subsequently we consider a finite-size slab of size L with
both a bottom and top surface and show how the hybridization
of the top and bottom Fermi arc and the size dependence of
the BC dipole D ∝ L on the lattice confirm the continuum
expectations of Ref. [12]. Furthermore, we investigate the
surface BC using the surface Green’s function of the lattice
model. Finally we consider Berry curvature mediated trans-
port phenomena and show that the divergent surface BC has
a significant influence on several phenomena like the Magnus
Hall effect, second-order Hall/Nernst effects, and nonlinear
chiral anomaly.

II. BERRY CURVATURE OF SURFACE STATES

To illustrate how the Berry curvature of surface states
generally differs from that of bulk states, it is instructive
to consider first a generic Ansatz for the wave function of
a surface state �(z, k‖) where z < 0 denotes the real-space
coordinate along the surface normal and k‖ the momentum
parallel to the surface [11],

�(z, k‖) = c(k‖) f (z)eλ(k‖ )zψ (k‖). (1)

The surface state decays exponentially into the bulk where
λ(k‖) is complex with Re(λ) > 0 and might be modulated
by a general function f (z). Without loss of generality we
assume that the spinor part of the surface state ψ†ψ = 1 is
normalized, which leads to the normalization constant

c−2 =
∫ 0

−∞
dz | f |2e2Re(λ)z. (2)
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The Berry connection A = −i
∫ 0
−∞ �†∇k‖� of the surface

state becomes

A = Aψ+z̄ Im(∇λ) (3)

where Aψ = −iψ†∇ψ is the expected Berry connection of the
spinor ψ (k‖) and z̄(k‖) the expectation value of z at a given
momentum k‖,

z̄(k‖) = c2
∫ 0

−∞
dz z | f |2e2Re(λ)z. (4)

The second term of the connection A depending on λ does not
vanish in the Berry curvature � = ∇ × A. This means that the
BC � = �ψ + �λ of a surface state does not only depend on
the BC of the spinor ψ but has, in contrast to bulk states of a
two-dimensional system, a contribution �λ originating from
the momentum dependence of the localization of the surface
state. More precisely, we have

�λ = 2Re(∇λ) × Im(∇λ) (z̄2 − z̄2) (5)

where z̄2 is defined analogous to Eq. (4). The BC is pro-
portional to the variance z̄2 − z̄2 and at the transition from a
surface to a bulk state the state will spread through the whole
crystal, i.e. Re(λ) → 0, and the BC diverges. This divergence
can be seen more clearly in the example f (z) = zn where
n ∈ N0. Here the normalization constant is

c = 2n

√
(Re(λ))2n+1

n (2n − 1)!
(6)

and c = √
2Re(λ) for n = 0. From this we can calculate the

Berry connection Aλ = i(2n + 1)∇λ/Re(λ) and the corre-
sponding BC is

�λ =
(

n + 1

2

)
Re(∇λ) × Im(∇λ)

(Re(λ))2 . (7)

From this expression it is clear that the BC associated to the
surface state may diverges at the line for which Re(λ) = 0,
which is therefore called BC hot-line [12]. As we will see
later on, precisely this is case for Fermi arcs in tilted Weyl
semimetals with n = 0 and λ ∝ k‖: the end points of a Fermi
arc always hit the BC hot-line such that the BC diverges
quadratically � ∝ k‖−2.

III. SURFACES OF SEMI-INFINITE WEYL SYSTEMS

The linear dispersion around a Weyl node has the remark-
able consequence that on the surface a topological protected
Fermi arc is induced, which connects the surface projections
of two Weyl nodes of opposite chirality [14,15]. Before in-
vestigating these surface states and their Berry curvature in
a lattice setting, we will first consider the simpler case of a
continuum description for a single tilted Weyl node and its
associated surface Berry curvature.

A. Single tilted Weyl cone in continuum

Even if in condensed matter settings Weyl cones come
in pairs of opposite chirality [16,17], one may consider a
low-energy model of a single general, tilted Weyl cone with

chirality χ = ±1 given by the Hamiltonian

H = −i∇r · (χV σ + uσ0) + μσ0 (8)

where σi are the Pauli matrices, u the tilting vector, μ the
energy of the node, and V = V T a symmetric matrix with
det(V ) > 0 allowing for an anisotropic velocity of the Weyl
cone. We restrict our model to a type-I Weyl cone where
V 2 − uuT is positive definite. Furthermore, it is convenient to
simplify the model by setting V to the identity matrix, μ = 0,
and u = (0, 0, uz ) and restore everything later on. Without
loss of generality we choose the surface to be at z = 0 and
restrict the Hamiltonian in Eq. (8) to the lower-half space
z < 0. Therefore, we split every vector in a parallel and per-
pendicular part with respect to the surface, i.e., u = u‖ + uzẑ.

In this setup one finds

〈�, H�〉 =
∫ 0

−∞
�†(−i∇r) · (σ + uσ0)� dz (9)

=
∫ 0

−∞
�†(k‖ − iẑ∂z ) · (σ + uσ0)� dz (10)

=
∫ 0

−∞
[(k‖ · (σ + uσ0)†�)†� − (−i)∂z�

†

× (σz + uzσ0)�] dz − i�†(σz + uzσ0)�
∣∣∣0

−∞
(11)

=
∫ 0

−∞
[(k‖ − iẑ∂z ) · (σ + uσ0)�]†� dz

− ic2ψ†(σz + uzσ0)ψ (12)

= 〈H�,�〉 − ic2ψ†(σz + uzσ0)ψ (13)

by partial integration. Therefore, Hermiticity 〈�, H�〉 =
〈H�,�〉 requires any surface state � to have ψ†(χσz +
uz )ψ = 0 at the surface z = 0. In other words, the z
component of the pseudospin expectation value sz = −χuz

compensates for the tilt such that there is no net current into
the vacuum. Since there is no further constraint on s‖ besides
|s| = 1 it can be parametrized by a real number α (see also
Sec. III C) as follows:

s = 〈ψα|σ|ψα〉

= (√
1 − u2

z cos(α),
√

1 − u2
z sin(α),−χuz

)
. (14)

With this we are able to make an ansatz for a wave function �

that decays exponentially away from the surface with inverse
decay length λ similar to Eq. (1),

�(k‖, z) = c(k‖)eik‖·r‖+λ(k‖ )zψα. (15)

Here, ψα is the spinor fulfilling Eq. (14) so that the boundary
condition is always satisfied. The normalization constant c is
determined by 1 = ∫ 0

−∞ dz|�|2, which gives c2 = 2Re(λ) and
Re(λ) > 0. Before we can get the actual value of λ we first
have to calculate the energy of the surface state

E (k‖) = 〈�|H |�〉
= (k‖ − iλẑ) · (χs + uzẑ)

= χk‖ · s‖ (16)
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where the part proportional to −iλ vanishes because of the
boundary condition sz = −χuz. For E = 0 this energy disper-
sion gives rise to a Fermi arc perpendicular to s‖, the exact
direction will be fixed by the requirement Re(λ) > 0. In order
to find a solution for λ(k‖) the state has to fulfill Schrödinger’s
equation H |�〉 = E |�〉. Therefore, it is convenient to multi-
ply the Hamiltonian by σz and calculate its expectation value,
i.e., one has 〈�|Hσz|�〉 = E〈�|σz|�〉 = −χuzE on the one
hand and

〈�|Hσz|�〉 = i
(
k‖ · (ẑ × s) − λ

(
1 − u2

z

))
(17)

on the other hand yielding

λ = k‖ · ẑ × s − iχuzs
1 − u2

z

. (18)

Now we have the full wave function and can calculate the BC
�z(k‖) = ∇k‖ × A‖ of the surface state with Berry connection

A‖(k‖) = −i
∫ 0

−∞
dz �†(k‖, z)∇k‖�(k‖, z) (19)

to be

�z(k‖) = Im(∇λ) × Re(∇λ)

2Re2(λ)
(20)

= − χuz
(
1 − u2

z

)
2(k‖ · (ẑ × s))2

ẑ. (21)

The resulting BC is proportional to the tilt towards the surface
and diverges at the BC hot-line where k‖ ∝ s‖.

Having the results of the simplified model, we can add
the terms we skipped. The terms depending on u‖ and μ

are proportional to σ0 and thus do not affect � and λ but
directly add to the energy E (k‖). The easiest way to include
the velocity matrix is to shift V in the Hamiltonian in Eq. (8)
to the derivative, which is basically done by substituting
(k‖, ẑ) → (V k‖,V ẑ) and u → V −1u. The boundary condition
then becomes s · (V ẑ) = −χuz and

E = χ (V k‖) · s‖ + k‖ · u‖ + μ, (22)

λ = (V k‖) · s × V ẑ − i(V ẑ + χuzs)

|V ẑ|2 − u2
z

, (23)

yielding

� = −χ

(|V ẑ|2 − u2
z

)
(V −1s · ẑ)

2 det(V )(k‖ · (V −1s × ẑ))2
ẑ. (24)

For anisotropic Weyl cones it is possible that no principal axis
of V is pointing along ẑ such that (V k‖) · (V ẑ) is finite. Thus,
we can have Im(∇λ) �= 0 even if uz = 0 and, according to
Eq. (20), find BC without any tilt.

B. Lattice Weyl systems

As states above, according to the Nielsen-Ninomiya the-
orem [16,17] Weyl nodes in crystals always come in pairs
with opposite chirality, which implies that our lattice model
must have at least two nodes. Similar to Ref. [18], we may
define a tilted Weyl cone pair Hamiltonian HL(k) = Hcone +
Htilt + μσ0 on a cubic lattice with lattice constant a = 1

as follows:

Hcone = χ sin(ky)(V σ )y + χ sin(kz )(V σ )z

+
[
χ

(
cot(k0) − cos(kx )

sin(k0)

)
+ 
(2 − cos(ky)

− cos(kz ))

]
(V σ )x, (25)

Htilt =
[

uy sin(ky) + uz sin(kz ) + ux

(
cot(k0) − cos(kx )

sin(k0)

)]
σ0.

(26)

This model has Weyl cones at (±k0, 0, 0) with chirality ±χ

and breaks time-reversal and inversion symmetry. The cone
at kx = +k0 has exactly the dispersion described by the k · p
model in Eq. (8) while the other one is related by a mirror
symmetry Mx. Again, for simplicity we take V = 1, k0 =
π/2, χ = 
 = 1, and ux = uy = 0. It is worth to notice that,
compared to the continuum k · p model, we have an extra term

(2 − cos(ky) − cos(kz ))σx. It vanishes at the Weyl nodes but
is needed to open a gap of size 4
 at ky = π and kz = π

planes. As in the previous section, we construct a surface
by constraining the Hamiltonian to n � 0 where n labels the
lattice sites in z direction. In the vacuum n > 0 no hoppings
are allowed. We can keep the Fourier transform in k‖ space
parallel to the surface but have to use the real space hoppings
perpendicular to it,

H (k‖) =
0∑

n=−∞
c†

nh‖(k‖)cn

+
0∑

n=−∞
(c†

n−1tcn + c†
nt†cn−1) (27)

where

h‖(k‖) = (2 − cos(kx ) − cos(ky)) σx + sin(ky)σy, (28)

t = − 1
2 (σx + i(σz + uzσ0)), (29)

and c†
n is the creation operator for a particle in the nth layer

with momentum k‖.
Now the solution of the surface state �(k‖) in this semi-

infinite slab lattice model can be derived in a similar manner
as of the continuum model. As in Eq. (15) we make an
ansatz for the surface wave function � = (. . . , �−2, �−1,

�0, 0, . . . ), which decays exponentially into the bulk and is
proportional to the spinor ψ of the previous section, i.e.,

�n(k‖) = c(k‖) r−n(k‖) ψ (30)

with n � 0, |r| < 1, and normalization c2 = 1 − |r|2. The
lattice Hamiltonian in Eq. (25) is a bounded operator, i.e.,
there exists an E0 > 0 such that |H�| � E0|�| for all �, and
therefore does not need a self-adjoint extension. As a result,
the previously free parameter α will be fixed in a lattice model.
In order to show this, it is convenient to look at the current
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operator perpendicular to the surface

Iz = i
0∑

n=−∞
(c†

n−1tcn − c†
nt†cn−1). (31)

There should be effectively no current into vacuum, i.e., the
current expectation value for the surface state

〈�|Iz|�〉 = −2Im(r†ψ†tψ ) (32)

has to vanish. Since r(k‖) is a complex number 〈�|Iz|�〉 = 0
is fulfilled for all k‖ if ψ†tψ = −(sx + i(sz + uz ))/2 = 0. The
imaginary part then yields the known boundary condition
sz = −uz while the real part, which is proportional to the
additional 
 term in Eq. (25) results in sx = 0. In this manner,
α = ∓π/2 is fixed depending on the sign of 
.

Furthermore, we find

〈�|H |�〉 = ψ†h‖ψ + 2Re(r†ψ†tψ ) (33)

so that together with the condition ψ†tψ = 0 the energy
E (k‖) is independent of r(k‖) similar to the continuum case
where λ(k‖) does not enter the energy. As in the previ-
ous section we can use Schrödinger’s equation and −uzE =
�†

n Hσz�n to solve for the complex number r(k‖). We get

E (k‖) = ( −
√

1 − u2
z + uy

)
sin(ky) − ux cos(kx ), (34)

r(k‖) = 2 − cos(kx ) − cos(ky) − iuz
sin(ky)√
1 − u2

z

, (35)

where we restored ux and uy. At the Weyl nodes kx = ±π/2
and ky = 0 we obtain r = 1, i.e., the state becomes a surface
state as expected. The Berry curvature is given by

�z = 2
Im(∇r) × Re(∇r)

(1 − |r|2)2 (36)

= 2
uz sin(kx ) cos(ky)√
1 − u2

z (1 − |r|2)2 (37)

and diverges at the hot-line where |r| = 1 as shown in Fig. 1.
If the lattice becomes denser and denser we can connect

the results from the lattice model to the continuum limit.
Therefore, we introduce a small lattice constant a, i.e., using
z = na and sin(aki ) or cos(aki ) where we let a → 0. In this
manner we find on the one hand from Eq. (35) close to the
Weyl point at kx = π/2,

r ≈ 1 − a
kx + iuzky√

1 − u2
z

(38)

and on the other hand exp(λz) ≈ (1 − aλ)−n, which yields
r ≈ 1 − aλ consistently with Eq. (18) where α is fixed to α =
−π/2. This also gives c2 = 1 − |r|2 ≈ 2aRe(λ) and ∇r ≈
−a∇λ. It turns out that we get the same BC as in Eq. (36)
for the lattice model with finite a if we use the continuum BC
in Eq. (20) and these approximations, even though both are
valid close to the Weyl nodes and for a → 0 only.

C. Self-adjoint extensions and parameter α

Symmetric, unbound operators like the differential opera-
tor P = −i∂x in systems with boundaries are in general not
self-adjoint [19–21]. Nevertheless, they can have self-adjoint

FIG. 1. Berry curvature, Fermi arc (red line), and hot-line (black
line) of the tilted Weyl cone pair Hamiltonian HL(k) = Hcone + Htilt

of Eq. (25) on a cubic lattice. The parameters are V = 1, k0 = π/2,
χ = 
 = 1 and the tilt is u = (0.4, 0, 0.5). The gray area denotes
delocalized bulk states.

extensions, which usually come in form of boundary condi-
tions. For example, if we consider wave functions ψ and φ

constraint to the interval [0,1] we find by partial integration

〈φ|Pψ〉 − 〈Pφ|ψ〉 = −i[φ†(1)ψ (1) − φ†(0)ψ (0)]. (39)

Even though P† (acting on φ) formally looks the same as P
(acting on ψ) they do not act on the same space of functions:
For a particle in a box we usually take the boundary conditions
ψ (0) = ψ (1) = 0, which always yield zero for the right-hand
side of Eq. (39) but do not give any restrictions on φ. In
order to make P self-adjoint we have to find a boundary
condition for which the boundary term in Eq. (39) vanishes
and which is the same for both P and P†. The easiest of these
so-called self-adjoint extensions is P0 with periodic boundary
conditions ψ (0) = ψ (1). Indeed, there are infinitely many
possible extensions parametrized by a phase θ as Pθ with
ψ (0) = eiθψ (1). According to von Neumann’s theorem [22],
if an operator has a self-adjoint extension it is either unique or
there are infinitely many extensions parametrized by a unitary
matrix U(n).

As a consequence, we find a U(1) phase eiα for the tilted
Weyl cone model in Eq. (8) at the boundary z = 0. The bound-
ary condition ψ†(σz + uzσ0)ψ = 0 can be rewritten as

ψ
†
↑(1 + uz )ψ↑ = ψ

†
↓(1 − uz )ψ↓, (40)

which is satisfied by any ψ fulfilling

ψ↓ = eiα

√
1 + χuz

1 − χuz
ψ↑. (41)

This is equivalent to the condition 〈ψ |σ|ψ〉 = s(α) in Eq. (14)
yielding

ψ (α) = 1√
2

(
e−iα/2√1 − χuz

e+iα/2√1 + χuz

)
. (42)
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Note that the choice of α has direct physical consequences
since it defines the direction of the Fermi arc in momentum
space.

If a Hermitian Hamiltonian is defined on the whole space
it is naturally self-adjoint since the wave functions vanish at
±∞ and there is no boundary term anymore. This means if we
define the insulating phase at z > 0 it will fix a specific value
of α, which however still depends on k‖. As example, we take
the Hamiltonian in Eq. (8) and substitute ky with

k̃y(z) =
⎧⎨
⎩

+k2
0−k2

y

2k0
, z � 0

−
2−k2
y

2

, z > 0

. (43)

This yields two Weyl cones at k = (0,±k0, 0) with opposite
chirality for z < 0 and an insulator with gap 2
 for z > 0, see
Supplemental Material of Ref. [12]. Again, the wave function
decays exponentially ψ ∝ eλ(k‖ )z away from the surface z = 0,
i.e., Re(λz) < 0. From Eqs. (14) and (18) we find

Re(λ) ∝ − sin(α)kx + cos(α)k̃y(z). (44)

Thus, on the insulating site Re(λz) < 0 is only satisfied for
all k‖ if sin(α) = 0 and cos(α) > 0, i.e., α = 0. For the Weyl
semimetal side the surface state has to be located at |ky| < k0

and the Fermi arc becomes a straight line between the Weyl
nodes. Even though this holds for the perfect vacuum 
 →
∞, too, other conventions for the insulator side will yield
different values for α.

As shown in the previous section, this parameter will be
fixed in a lattice model, too. The model in Eq. (25) only
allows for two different values α = ±π/2 by tuning 
 that
opens a gap on the boundary of the Brillouin zone. However,
introducing the time-reversal invariant [18] lattice model

HTR = − cos(kx )σx − cos(ky)σy + sin(kz )σz

+ 
(1 − cos(kz ))[cos(γ )σx + sin(γ )σy] (45)

with four Weyl nodes at k = (±π
2 ,±π

2 , 0) we only have to
gap the cones at kz = π . Now we have the choice to use the 


term with either σx or σy allowing to interpolate between these
two via γ . On the (001) surface the energy dispersion reads

E = ±(cos(kx ) sin(γ ) − cos(ky) cos(γ )) (46)

and one finds α = γ . As shown in Fig. 2, variation of γ

changes the shape of the Fermi arcs in such a way that
one can have different connectivity between the Weyl nodes.
Furthermore, we can introduce a tilt Htilt = −(ux cos(kx ) +
uy cos(ky))σ0 whereby a tilt in z direction is forbidden if we
want to keep (spinless) time reversal � = σxK . In this case
it is even possible to have different connectivity on top and
bottom surfaces as illustrated in Fig. 2.

IV. FINITE-SIZE WEYL SLABS

In order to study finite-size effects in Weyl semimetals we
take the same Hamiltonian and ansatz as in the semi-infinite
case from Eqs. (8) and (15) but restrict them to a finite interval

FIG. 2. Fermi arcs of the lattice model with four Weyl nodes on
surface (001) for different values of γ and tilt ux . The projections
of the bulk Weyl cones are marked in black. A red (yellow) arc is
located on the top (bottom) surface while for orange both arcs are on
top of each other.

|z| < L/2. This time it is convenient to solve Schrödinger’s
equation for λ first, which results in

λs =
s
√

k2
‖ − ε2 − iuzε√

1 − u2
z

, (47)

ψs = 1√
2

(
ε−is

√
k2
‖−ε2

kx+iky

√
1 − χuz√

1 + χuz

)
, (48)

with ε(k‖) defined via the energy E (k‖) of the surface state as
χ

√
1 − u2

z ε(k‖) = E (k‖) − k‖ · u. Now we have to consider
both solutions with Re(sλ) > 0 where s = +1 (s = −1) la-
bels the wave function localized on the top (bottom) surface.
The full wave function is a superposition of both solutions of
λ,

�(k‖, z) = eik‖·r‖
√

2

∑
s=±1

scse
λszψs. (49)

For the finite case the boundary condition 〈ψ |Hψ〉 −
〈Hψ |ψ〉 = 0 changes to

ψ
†
+(χσz + uz )ψ+ = ψ

†
−(χσz + uz )ψ− (50)

where ψ± = ψ (±L/2) is the wave function at the boundary.
The solution closest to the semifinite case for this equation is
that both sides of Eq. (50) vanish and ψ± is determined by
Eq. (14) where α± can be chosen independently on both sides.
The complete solution can be parametrized by a unitary matrix
U ∈ U(2) as follows:(√

1 − χuzψ+↓√
1 + χuzψ−↑

)
= U

(√
1 + χuzψ+↑√
1 − χuzψ−↓

)
. (51)
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FIG. 3. (a) Fermi arc with Berry curvature of the lattice model
with a single tilted Weyl pair on the (001) surface. The tilt is ux = 1/2
and uz = 1/4, with V = 1 and slab size L = 4. The black dots mark
the projections of the Weyl nodes. (b) Surface Berry curvature dipole
D in dependence of slab size L. The blue line corresponds to Dx/L
while the dashed line shows the behavior for large L.

Even though U can be parametrized by four real numbers
we will concentrate on the above solution given by U =
diag(eiα+ ,−eiα− ) because the off-diagonal terms correspond
to periodic boundary conditions and we will also find this
choice of U in the lattice model. This boundary condition
yields an equation for the energy dispersion ε(k‖)

tanh

⎛
⎝L

√
k2
‖ − ε2

1 − u2
z

⎞
⎠ =

√
k2
‖ − ε2 cos(γ )

ky cos(θ ) − kx sin(θ ) − ε sin(γ )

(52)

where α± = θ ± γ . For θ = 0 normalization yields

c2
s = c0

((k+ sin(γ ) − iε)(iε − s
√

k2
‖ − ε2) − kxk+)

Lεc2
0 − √

1 − u2
z cos(γ )(kyε − k2

‖ sin(γ ))
,

c2
0 = (ε − ky sin(γ ))2 − (kx cos(γ ))2, (53)

where k+ = kx + iky. As shown in Ref. [12], the surface states
are given by the two solutions with ε2 < k2

‖ and result in Fermi
arcs that hybridize before they touch the Weyl node resulting
in a finite BC dipole growing linearly in the slab size L. Note
that the Weyl cone ε = ±k‖ itself formally solves Eq. (52)
and results in a state ψ (k‖) that satisfies the boundary con-
dition Eq. (50). Nevertheless, we find s‖ = ±√

1 − u2k‖/k‖
and therefore it is independent of α±. Thus, in a finite-lattice
model where α and the direction of s‖ is fixed, the solution
ε = ±k‖ will not be found. In a lattice model the values α± are
fixed in the same way as in the semi-infinite case, i.e., by the 


term in Eq. (25) (Eq. (45)), and we find α± = π/2 (α± = γ )
for the model with two (four) Weyl nodes. Therefore, the
Fermi arcs on top and bottom surface have the same shape
if u‖ = 0.

The lattice model with two Weyl nodes in Eq. (25) is well
suited to numerically calculate the slab thickness dependence
of the BC dipole. As illustrated in Fig. 3(a), the Fermi arcs
of opposite sites hybridize before touching the Weyl points
and have most BC closest to them because this is where the
surface states are spread through the whole bulk and have
a large variance. Note that the spinor ψ is, confirmed by a
numerical calculation of the model, independent of k‖ such
that only �λ contributes to the BC. However, in a finite slab

the state switches between top and bottom surface close to the
Weyl node yielding a finite �ψ with opposite sign on both
surface bands if α+ �= α−.

In two dimensions, the BC dipole can be written as a
pseudovector D, which, in the presence of a mirror line, is
perpendicular to it [6] such that Dy = 0 in our model. We can
rewrite the BC dipole at T = 0 as an integral along the Fermi
arc

D = −
∫

d2k

(2π )2
∇ f0 �(k‖) (54)

=
∫

E (k‖ )=0

dk

(2π )2
�(k‖)

v‖
|v‖| (55)

where v‖ = ∇E . As shown in Fig. 3(b), up to a correction of
order O(a/L) due to the finite-lattice constant a this confirms
the linear behavior of the BC dipole with Dx ≈ 0.008L.

Another way to study the BC of Fermi arcs in a lattice
model is to look at surface Green’s functions. Starting from
a Green’s function (GF) G(iω, k) = (iω − Hk)−1 the BC of
all occupied states is given by [23,24]

�c(k) =
∫ ∞

−∞

dω

2π
tr(gc(iω, k)) (56)

with

gc(iω, k) = εμνρc

3!
G(∂μG−1)G(∂νG−1)G(∂ρG−1) (57)

where c ∈ {x, y, z} and μ, ν, ρ ∈ {ω, x, y, z}. Following
Ref. [11], we use the surface GF obtained via the iterative
algorithm in [25] to calculate the surface BC. The algorithm
efficiently provides the GF for the top N layers of a semi-
infinite slab geometry. The BC dipole in terms of GFs is given
by

DS
a (μ) = −

∫
d2k‖
(2π )2

∂a f (μ, k‖) �S
z (k‖)

= −
∫

d2k‖
(2π )2

dS
a (μ, k‖),

dS
a (μ, k‖) =

∫ ∞

−∞

dω

2π
tr
[
∂a(GS (μ, k‖))−1∂μgS

z (iω + μ, k‖)
]
,

(58)

where DS
a is the surface BC dipole and dS

a its density in
momentum space.

Again, we will take the (001) surface of the Weyl pair
model in Eq. (25). Figures 4(a) and 4(d) show the surface BC
associated with the upmost surface layer of thickness N = 1
and N = 4, respectively. The second and third columns in
Fig. 4 exhibit the components of corresponding BC dipole
density, which, in line with the present reflection symmetry,
yield a finite-surface BC dipole only along the mirror line,
i.e., DS

y = 0. Figure 4(g) presents the BC of the surface state
along the Fermi arc parametrized by the distance from the
Weyl node at k0 = (π/2, 0). To obtain this, we notice that
since Eq. (56) gives the surface BC of all occupied bands,
the BC of the Fermi arc is the difference between the BC on
both sides of it. That its BC is significant can be appreciated in
Fig. 4(a) and even more clearly in Fig. 4(d). Most importantly
both BC and BCD are concentrated near the end of the Fermi
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FIG. 4. Surface Berry curvature (SBC) �s
z and SBC dipole den-

sity dS of the tilted Weyl cone pair surface (001) associated with
a surface layer of thickness (a)–(c) N = 1 and (d)–(f) N = 4 of
a semi-infinite slab with L → ∞. The Fermi arcs are marked in
black. The SBC dipole DS

y vanishes due to the dashed green mirror
line Mx . (g) SBC of the Fermi arc for different N using Green’s
functions in dependence of the distance |k − k0| from the Weyl node
at k0 = (π/2, 0). The dashed line is the result for the surface state of
a finite slab with thickness L = 500.

arc where it hits the hot-line [12]. As shown in Fig. 4(g), even
though the surface BC is largest close to the projection of the
Weyl nodes, it is convergent. The reason is that the penetration
depth of the surface state increases close to a Weyl cone, while
we are only calculating the BC of a surface layer of fixed
thickness N . As the surface layer thickness N is increased, the
resulting SBC becomes progressively closer to the analytical
1/k2 asymptotic behavior [12]. Note that, in contrast to the
finite-slab calculation, the obtained BC includes not only the
surface state but also all bulk states in the corresponding N
layers. Since the BC of all bands always is zero the bulk bands
partially compensate the contribution from the Fermi arc state.
Thus, the surface BC obtained from surface GFs is smaller
than the pure surface state for a large slab.

V. BERRY CURVATURE MEDIATED
TRANSPORT PHENOMENA

The Berry curvature of Bloch wave functions has an influ-
ence on the velocity of Bloch electrons similar to a magnetic
field yielding, e.g., the anomalous Hall effect. For a Weyl
semimetal the BC diverges quadratically at the BC hot-line
and might give large responses in experiments. Furthermore,

the BC is concentrated at the Weyl nodes and the k · p model
will give a good approximation for the following results.

If the WSM has broken TR symmetry it is possible to
measure the anomalous Hall effect, which is proportional to
the integral of the BC over the first Brillouin zone. However, if
there is a symmetry like TR or a mirror under which the BC is
odd, this integral and the Hall response vanish. Nevertheless,
we can have a dipole moment of Berry curvature at the Fermi
surface giving rise to a second-order anomalous Hall effect
yielding a dc and an ac current with twice the applied fre-
quency of the applied electric field [6]. In two dimensions this
is allowed if the maximal lattice symmetry is a single mirror
line. The Berry curvature dipole of the Fermi arc reads

D = −
∫

d2k

(2π )2
∇ f0 �(k‖) (59)

= − χuz

8π2kc

√
1 − u2

z

s + χu
1 + χs · u

. (60)

In the limit kc → 0 the BCD diverges due to the diverging
BC and for a finite slab the BCD still increases linear in
system size L. The dipole can not only be measured in the
second-order nonlinear Hall effect j ∝ E2L, but also in the
nonlinear Nernst effect j ∝ (∇T )2L and Kerr-rotations and
circular dichroism using the effective orbital magnetization
M ∝ D · E êz.

Another important effect of the BC is the orbital magnetic
moment m, which leads to a deformation of the Fermi surface
[26] and thus, has an influence on transport measurements. If
we assume a k‖-dependent α this yields for the WSM surface
state,

m = Im(〈∇�| × (E − H )|∇�〉) (61)

= −4uz∇α × s. (62)

The orbital magnetic moment does not diverge like the BCD
and for a constant α as we have in our models it even vanishes
and therefore can be neglected. Regarding the surface state in
Eq. (1), the orbital magnetic moment depends on ψ (k‖) but
not on λ(k‖).

A further widely-known phenomenon is the chiral anomaly
that can be seen if a parallel electric and a magnetic field
E ‖ B is applied to a WSM and is caused by the different
chiralities of the Weyl nodes. For tilted WSMs there is also
a chiral nonlinear current [27]

j =
∫

d2k
(2π )2

∂ε f0 (E × �)((E × �) · (v × B)). (63)

A natural question is if we can observe such a current caused
by the Fermi arc. Since � ⊥ v on the surface there is no
contribution for E ‖ B. Nevertheless, for B = Bn and E ‖ v

this changes and we get

jx = −
√

1 − u2
z u2

z

48π2k3
c

E2B (64)

∝ E2BL3 (65)

where for simplicity we chose n = ẑ, α = π/2, and u‖ = 0.
In contrast to the BCD the BC appears squared and the result-
ing current diverges even faster as L3. Note that it has opposite
signs on top and bottom surface and the bulk current vanishes
in this case.
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If we have a TR symmetric WSM there is still a chance
to find a first-order Hall-like response. The so-called Magnus
Hall conductance [28], which is closely related to the BC
dipole, yields

GMH = e2

h̄

U

∫
vx>0

d2k
(2π )2

∂ε f0 � (66)

= e2χuz

8h̄π2k0

1 − u2
z

(1 + χs · u)2
(67)

for the Fermi arc if the electric field is applied perpendicular to
the mirror line and gives rise to a current in y direction along
the mirror line that is proportional to the slab thickness L.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated that the surface state of a Weyl
semimetal in a lattice model can be derived analytically in a
similar manner as the continuum model. The free phase of the
self-adjoint extension is fixed in the semi-infinite and finite-
lattice model resulting in a fully determined shape of the arc
and the BC hot-line at which the BC diverges quadratically.
We provided a lattice model in which a bulk parameter can
change the phase on the surface. A slab calculation confirmed
that the Fermi arcs on opposite surfaces hybridize and that
the BC dipole grows linearly with the slab thickness L. The

1/k2 behavior of the surface BC is also revealed using surface
Green’s functions with different thicknesses of the surface
layer. Finally, we showed that the diverging BC results in
transport phenomena like the second-order Hall effect and the
Magnus Hall conductance diverge linear with the thickness L.
The second-order nonlinear chiral current is even proportional
to L3 if electric and magnetic field are perpendicular to each
other.

As future direction, the lattice models we have investigated
here are well suited for investigating how disorder influences
the surface BC and the resulting transport phenomena. Fur-
thermore, finite slabs as well as surface Green’s functions may
be used to elaborate on the effect of surface reconstructions,
which are relevant from an experimental point of view and
may quantitatively alter surface Berry curvatures and their
dipoles.
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