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Introduction by the Organisers

Mathematically, the original problem of tomography consisted in reconstructing
a function in R2 from the set of integrals over straight lines. This problem was
essentially solved by Radon in 1917, who gave an explicit formula for a function
in terms of its line integrals, the famous Radon inversion formula. The numerical
implementation of Radon’s inversion formula is in no way obvious. Deep results
from sampling theory are needed. Also, the problem of tomography is ill-posed,
meaning that the result doesn’t depend continuously on the data. Besides, in
many cases of practical interest the solution is not uniquely determined. Problems
like this were on the agenda of the first Oberwolfach conference in 1980, and they
still played a role in the present conference.

In recent years, imaging must be seen in a much broader sense. The original
straight line paradigm still plays a role, but other imaging techniques based on
completely different principles are nowadays at the center of interest. In particular
imaging techniques based on partial differential equations play an important role.
This tendency is clearly reflected by the participants and the speakers of the
present conference.

One of the promising recent developments is thermoacoustic tomography. This
is a combination of microwave and acoustic imaging. The object is illuminated by
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microwaves. In this way tumors and other abnormalities are heated and generate
pressure waves that are measured by acoustic transducers. Various mathematical,
physical, numerical and applied aspects of thermoacoustic tomography are dis-
cussed in the talks of Kuchment, Agranovsky, Finch, Kunyansky, Palamodov and
Patch.

Ritman’s talk is dedicated to one of the classical problems in imaging: the
trade off between exposure and resolution. Grünbaum’s talk is an example of the
application of techniques originally developed for medical imaging to completely
different fields, namely the imaging on directed graphs, the underlying mathemat-
ics being Markov chains. Candès and Ramlau put sampling in tomography into
the framework of wavelets, in particular the theory of sparseness. This makes it
possible to reconstruct piecewise constant functions with a fraction of the data
needed for general functions. Noo’s and Clackdoyle’s talks deal with an old prob-
lem in tomography, namely with incomplete data. Using elegant mathematics they
are able so solve truncated projections and region of interest problems that were
inaccessible to previous methods. Maaß applies methods of the modern theory of
mathematical imaging, in particular non-convex optimization, to emission tomog-
raphy. Nolan’s talk is an example for imaging with the wave equation and the
application of microlocal analysis to imaging. Katsevich’s talk is on a problem in
present day’s clinical tomography, namely on true 3D reconstruction from cone
beam projections. This topic is also covered in the talk of Louis, who presents a
general theory of approximate inverses for problems of this type. Oeckl applies the
highly successful technique of multi-resolution analysis to imaging problems from
nondestructive testing. Sabatier applies a general inverse scattering transform
to derive global solutions of linear pde’s, and he analyzes the resolving power of
electrical impedance tomography. The talks of Rieder, Faridani, Desbat and Izen
are concerned with details of sampling and discretization for the filtered backpro-
jection algorithm, which is the most important algorithm in clinical tomography.
Mair’s talk deals with the parameter choice in iterative algorithms for emission
tomography. Another new and promising medical imaging technique is optical
tomography, often referred to as molecular imaging. This topic is dealt with in
the talks of Dorn, Schotland and Jiang, providing examples for imaging with the
diffusion and the transport equation. The vectorial extension of tomography, with
exciting applications in industry, is covered by Schuster.

Summing up, tomography is a lively branch of science with an inexhaustable
supply of mathematical problems. Every new imaging modality poses new math-
ematical problems. The conference can be viewed as a snapshot of this lively
development.
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Abstracts

Medical X-ray CT-Resolution/Radiation Exposure Trade-offs

Erik L. Ritman

Background
X-ray imaging is a common and powerful technique for noninvasive evaluation of
internal damage or disease. It is, however, a technique that has been perfected
to the point where potential for radiation damage constrains its breadth of clini-
cal utility beyond current applications. Currently x-ray images are generated by
virtue of a proportion of the x-rays being stopped from passing through tissues
[1]. This results in the signal being actually the absence of photons. Hence, many
(may be a million) photons are needed to “illuminate” a selected location (i.e.,
pixel) in the body (e.g., 1 mm2) in order to be sure that there is a certain frac-
tional reduction in the number of transmitted photons [2]. The dilemma of current
attenuation-based x-ray imaging is that the more contrast (i.e., detail) we want to
have in the image the more we need to stop the x-rays, and it is the stopped x-rays
that do the damage! Hence, there is tight coupling between the image quality and
the radiation damage.
To put the effects of radiation into perspective, the following statistics are pro-
vided. The Gray (Gy) is the measure of absorbed dose in tissue and the Sievert
(Sv) is the effective dose to the subject. The Sv takes into account radio-sensitivity
of different tissues. An 0.1 Gy (10 Rad) absorbed dose [3,4] increases cancer inci-
dence from 20 to 20.01%, and an 18 Gy dose results in tissue necrosis. Patient size,
age and anatomic region, the scan protocol used, and quality of the x-ray beam,
all affect the dose. Dose decreases with increased kVp and filtration, but increases
with mA and number of slices (or duration of helical scan). A 64 channel helical
CT scan results in 14.4 mGy for head, 23.7 mGy for coronary calcium and 58.9
mGy for coronary angiogram [5]. The effective dose in children is greater than in
adults (6 mSv in the head of new-born and 1.5 mSv in the head of an adult). In
2000, 93 million CT exams were performed world wide [6].
Methods for reducing radiation exposure by attenuation-based
x-ray imaging
Unfortunately, methods used for reduction of radiation exposure by current x-ray
imaging have proven to be of limited impact. Methods include use of modulation
of x-ray mA with angle around the patient [7], use of monochromatic, rather than
bremsstrahlung radiation [8], K-edge subtraction imaging [9,10] and photon count-
ing methods [11]. Monochromatic x-ray reduces chest effective dose by 18.7%, dose
to the head by 1.2%, but intra-abdominal organs by 35-47% [12]. Imaging of dif-
ferent tissue components by virtue of how they scatter x-ray would increase the
contrast between those tissue components [13], but it is less likely that this allows
for reducing the patients’ absorbed dose.
Based on increasing experience (especially with synchrotron x-ray-based imaging),
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x-ray imaging based on differences in refractive index (i.e., consequences of differ-
ent velocity of x-ray in different tissues) rather than attenuation, has potential
for greatly decreasing the x-ray exposure needed to make useful images. There
are three potential advantages of use of tissue refractive index to generate images.
Foremost is that each transmitted photon is the signal (as compared to its absence
in attenuation x-ray imaging), which is the basis for potential reduction of x-ray
exposure. The second reason is that the greater differences in refractive index
(than differences of attenuation) by the different tissues at clinical x-ray photon
energies would generate images with soft tissue discrimination comparable to MRI.
Finally, because of the increased inherent contrast, the need for administered con-
trast agents to provide useful images might also be reduced.
The x-ray photon velocity-based imaging approach, however, presents formidable
technological problems. One approach is to scale up the refraction and phase con-
trast imaging methods, developed for small-specimen imaging, so as to be suitable
for whole-body imaging. These approaches are faced, however, with the problem
of “unraveling” the many changes in refraction (as expressed as a phase shift which
results in a Moiré pattern) that would occur as the photon passes through some 30
cm of tissue. At 17.5 keV, 50 µm of water causes a 180◦ phase shift, hence for a 30
cm abdomen we would expect 6000 phase shifts! The Bonse Hart interferometer
[14] has been used effectively for phase imaging of small specimens. The method
involves use of a reference beam against which the beam transmitted through the
object is compared. The optic path length of that beam should be stable to within
0.1 nm, another major technological problem.
Another approach involves use of an x-ray Talbot interferometer [15]. An object
is imaged using coherent illumination passing through a phase grating. This ap-
proach is probably more practical in a clinical setting compared to the Bonse Hart
approach. Momose et al. [16] used this method to show that 10−9g/cm3 sensi-
tivity can be achieved in small specimens. Use of a small x-ray source instead of
parallel radiation has been explored [17,18], hence this approach appears to also
have potential for clinical application.
A third method is called “Diffraction Enhanced Imaging” (DEI) [19]. It generates
a transmission image with edge enhancement effect caused by the slight refraction
of the x-ray in regions with rapid change of refractive index, such as occurs at
the surface of collagen fibers and blood vessels. Use of a “rocking curve” analysis
of that signal can separate out several components of the x-ray information by
virtue of the shape of the “rocking curve.” This method may have potential for
application to imaging the breast or limbs.
Conclusion
Clinical x-ray tomographic imaging based on tissues’ x-ray refractive indices will
require major technological developments and implementation of reconstruction
algorithms similar to those developed for ultrasound [20]. However, the potential
for increased contrast and reduced radiation may favor this option.
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An inverse problem for multiterminal networks

F. Alberto Grünbaum

1. The inverse problem

All the networks that we consider are instances of directed graphs. Let G =
(V,E) be a directed graph with node set V and directed-edge setE. Let I be the set
of sources of D, O its set of sinks, and Ht = E\(I ∪O), the set of “intermediate”
or “hidden” nodes. We think of each node of G as a state in a Markov chain,
and call the elements of I input terminals, the elements of O output terminals,
and the elements of H intermediate terminals. To each directed edge (a, b) of G,
we associate an indeterminate p(a,b). This indeterminate represents the one-step
transition probability of going from terminal a to terminal b. We refer to these
graphs as “multi-terminal networks”.

We consider four matrices PIO, PIH , PHH and PHO. The rows of PIO are
indexed by the input terminals, its columns are indexed by the output terminals,
and the a, b entry of PIO is p(a,b) if (a, b) is a directed edge in G. All other entries
are zero. The other matrices are defined analogously and either rows or columns
(or both) are indexed by the hidden terminals. These matrices are the blocks in
the one-step transition probability matrix of our Markov chain. We allow for all
input and hidden terminals to be absorbing states, that is, we do not insist that
the sum

∑
b p(a,b) be unity when a is either an input or an intermediate terminal.

We consider the problem of recovering the matrices PIO, PIH , PHH and PHO
from the distribution of a random variable called “travel time” for any pair made
up of an input and an output terminal. If we had access to the complete distribu-
tion of this collection of random variables we would have access to the matrices
δ1 = PIO, δ2 = PIHPHO, δ3 = PIHPHHPHO , . . . δj = PIHP

j−2
HH PHO , . . . . These

matrices give the probability of making a transition in one, two, three,.. units of
time from an arbitrary input terminal to an arbitrary output terminal. Notice
that, under appropriate conditions, this information is mathematically equivalent
to the knowledge of the moments of “travel time”, which are given by the matrices

Q
(j)
IO = PIO +

∑∞
m=0(m + 2)jPIHP

m
HHPHO . From a practical standpoint, a few

of the moments Q
(j)
IO can be measured, but measuring the matrices δj may not be

practical.
In view of this we will take the position that the only available information are

the zero-th and first order moments of “travel time”. We compute now these two
moments in terms of our unknowns

PIO, PIH , PHH , PHO .

From the definition of the zero-th moment of travel time we obtain (after an appro-
priate summation of the corresponding geometric series) the following expression

for QIO ≡ Q
(0)
IO:

(1) QIO = PIO + PIH(I − PHH)−1PHO ,
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where I is the identity matrix.
If we denote the expression

PIH(I − PHH)−2PHO

by R, then one can see that the first moment of the “travel time” can be expressed
as

QIO +R.

Proof. Recall that the j-th moment of the travel time is given by

Q
(j)
IO = PIO +

∞∑

k=0

PIHP
k
HHPHO(k + 2)j .

For j = 1 we get

Q
(1)
IO = PIO + 2PIH(I − PHH)−1PHO + PIHPHH(I − PHH)−2PHO

= Q
(0)
IO + PIH(I − PHH )−2[I − PHH + PHH ]PHO

= Q
(0)
IO +R.

�

Since QIO is taken as data we can consider R as the extra information provided
by the expected value of travel time.

In a number of papers mentioned below we have explored the general program
outlined above.
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[3] F.A. Grünbaum, Tomography with diffusion, in “Inverse Problems in Action”, P. C. Sabatier
(ed.), Springer-Verlag, Berlin, pp. 16–21.
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[7] J. Singer, F.A. Grünbaum, P. Kohn and J. Zubelli, Image reconstruction of the interior of
bodies that diffuse radiation, Science 248 (1990), 990–993.
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[11] F.A. Grünbaum and L.F. Matusevich, A nonlinear inverse problem inspired by 3-
dimensional diffuse tomography, Int. J. Imaging Technology, 12 (2002), 198–203.



2068 Oberwolfach Report 34/2006
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This abstract gives a summary of some of my recent joint work with Laura Matusevich.

We consider the general problem of determining the unknown characteristics of a random
routing strategy from end-to-end measurements. More specifically, we construct a Markov
chain that models the traffic of messages in a multiterminal network consisting of input, inter-
mediate and output terminals. The topology of the network is assumed to be known, but the
Markovian routing strategy is not known. We solve the problem of determining the unknown
one-step transition probability matrix of our random walk from input-output measurements of
“travel time”. In several cases we give explicit inversion formulas (up to a natural gauge). This
kind of result holds for a large (but not arbitrary) class of multiterminal networks.

A large open problem is to characterize those networks that allow for this ”ideal” situation,
where one can solve explicitly a complicated set of nonlinear equations by first reducing them
analyically to an equivalent set of linear equations and them solving them up to a natural
gauge.

Compressive Sampling

Emmanuel J. Candès

(joint work with Justin Romberg and Terence Tao)

Conventional wisdom and common practice in acquisition and reconstruction of
images from frequency data follows the basic principle of the Nyquist density
sampling theory. This principle states that to reconstruct an image, the number
of Fourier samples we need to acquire must match the desired resolution of the
image, i.e. the number of pixels in the image.

This talk introduces a newly emerged sampling theory which shows that this
conventional wisdom is inaccurate. Perhaps surprisingly, images or signals of sci-
entific interest can be recovered accurately and sometimes even exactly from a
limited number of nonadaptive random measurements. For example, we prove
that one can recover a k-sparse signal in dimension n (an n-dimensional real or
complex valued vector with at most k nonzero entries) from just about k logn of its
Fourier coefficients. If one uses a random projection in which the plane is sampled
uniformly at random, then one only needs about k log(n/k) pieces of information
(the dimension of the plane needs only be about k log(n/k)). Such results extend
to signals that are not sparse but compressible. In a nutshell, compressible signals
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are those signals which are well-approximated by sparse signals. This is interesting
because signals and images of scientific interest are usually highly compressible,
i.e. approximately sparse in a convenient basis; for example, a wavelet basis. The
consequence is that we need far fewer measurements than the number of pixels,
say, to reconstruct these signals accurately.

The key element here is that the reconstruction algorithms are very concrete; in
fact, they only involve solving convenient convex optimization programs. A typical
result is as follows: suppose we measure y = Φx where x ∈ Rm and y ∈ Rm so
that Φ is a “long” m by n matrix. We assume we have undersampled data, i.e.
m ≪ n. Then we prove that if Φ is a suitable sensing matrix—i.e. obeys a so
called restricted isometry property [5]—and the unknown vector x ∈ Rn we wish to
recover is sufficiently sparse, then x is the unique solution of the ℓ1-minimization
problem

(P1) min
x̃∈Rn

‖x̃‖ℓ1 subject to y = Φx̃.

There exist variations of the algorithm (P1) to deal with undersampled and noisy
data, which again miminize an ℓ1 norm subject to convex inequality constraints.
A somewhat unexpected feature is that these algorithms are also very stable. For
example, the accuracy of the reconstruction degrades smoothly as the noise level
increases. This is surprising in the sense that the inversion of Φ is stable even
though the large majority of the singular values vanish.

In effect, the talk introduces a theory suggesting ”the possibility of compressed
data acquisition protocols which perform as if it were possible to directly acquire
just the important information about the image of interest.” In other words, by
collecting a comparably small number of measurements rather than pixel values,
one could in principle reconstruct an image with essentially the same resolution as
that one would obtain by measuring all the pixels, a phenomenon with perhaps far
reaching implications. I will try to explain why this theory gives us a new vantage
point for a diverse set of applications including accelerated tomographic imaging,
analog-to-digital conversion, and digital photography.

There are significant interactions between compressive sampling and other fields
such as coding theory, and statistics.
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Two-Dimensional Region-of-Interest Tomography

Rolf Clackdoyle

(joint work with Michel Defrise, Frédéric Noo, Hiroyuki Kudo)

1. Problem Definition

In this presentation we describe, at least in broad terms, what is currently
known about the region-of-interest (ROI) problem in two-dimensional (i.e. classi-
cal) tomography. To define this problem we first introduce some notation.

The 2D Radon transform of a smooth function f with known compact support
Ω is defined as Rf(φ, s) =

∫
f(rα + sα⊥)dr where α = (cosφ, sinφ) and α⊥ =

(− sinφ, cosφ). We use L to denote a line in the plane, and more specifically
L(φ,s) = {x|x · α⊥ = s}. We let Ω+ be a fixed neighborhood of the support
of the unknown function f , and we consider the set of all lines intersecting Ω+:
L = {L|L ∩ Ω+ 6= ∅}, and let N ⊂ L be an open set of unavailable lines and
M = L\N be the set of measured (or available) lines. The 2D ROI problem is:
given Rf(φ, s) for all L(φ,s) ∈ M, what is the maximal region R ⊂ Ω such that
f(x) can be (stably) reconstructed for all x ∈ R?

The region R is considered to be the ROI. In practical terms it would be more
logical to begin with the ROI and to ask which sets M need to be measured in
order to recover the ROI. However, the formulation above is more conveniently
analyzed.

By “stable reconstruction” we mean that between suitable function spaces there
is a continuous inverse that maps Rf |M to f |R.

2. Regions A and B

It will be useful to split Ω+ into two regions; we define region A to be Ω+\B,
and region B to be B = {x ∈ Ω+|x ∈ L for some L ∈ N}. Region A therefore
consists precisely of that part of Ω+ that is completely illuminated by rays from
all directions. Region B consists of points that each have a missing range of lines,
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and therefore cannot be stably reconstructed, so B ∩ R = ∅. Thus we only need
consider region A when looking for ROIs that can be reconstructed.

Henceforth we assume that both Ω and Ω+ are convex. We now observe that
each connected component of region A is also convex. For a proof, let x lie in the
convex hull of some connected component Ac of A and let L̄ be a line segment
containing x with endpoints y1 and y2 lying in Ac. Note that by convexity of Ω+,
the line segment L̄ lies entirely in Ω+. Now since Ac is connected there is a path
lying entirely in Ac and joining y1 to y2. Every line that passes through x must
intersect this path, and since the path lies in region A, these lines are all measured
(are all in the set M). Thus x lies in region A, and since the argument can be
repeated for all points lying on L̄, the point x must lie in the component Ac which
is therefore convex.

Knowledge of Ω+ and regions A and B is not enough to determine the measured
and non-measured sets M and N , because there is considerable freedom as to
which lines pass through region B. We say that region B is minimally illuminated
if the only measured lines passing through region B also intersect region A, i.e.
if {L ∈ M|L ∩ B 6= ∅ and L ∩ A = ∅} = ∅. If B is minimally illuminated, then
regions A and B do determine M and N .

By the frontier of Ω we mean the open set ΩF = Ω+\Ω. We say that region
A is internal if it does not intersect the frontier of the support of f , (i.e. if
A ∩ ΩF = ∅). Note that if A is internal and B is minimally illuminated, then
we are in the situation of the classical interior problem [1], and we know that no
unique solution exists for any R ⊂ A. With B not minimally illuminated, an
example has been published of R = A with A internal, for which an explicit stable
inversion formula was given [2].

3. Differentiated Backprojection and Finite Hilbert Transforms

Almost all that is currently known about the 2D ROI problem is based on the
machinery of differentiated backprojection (DBP), which effectively converts the
2D problem into a collection of one-dimensional (1D) problems involving inversion
of the Hilbert transform.

Differentiated backprojection D, refers to the operation of taking a deriva-
tive of the Radon transform data, followed the backprojection, so DRf(x) =∫ π
0

∂
∂sRf(φ, s)|s=x·α⊥dφ. It is important to note that DRf(x) can only be evalu-

ated for those values of x for which all lines that pass through a neighborhood of
x lie in M, equivalently, for just those x lying in the interior of region A.

A straightforward calculation shows that DRf(x) = 2πH0f(x) where H0f(x) =∫
1/(πr) f(x1 − r, x2) dr is the Hilbert transform of f(x) = f(x1, x2) with re-

spect to the first variable. To achieve a similar Hilbert transform Hθf(x) =∫
1/(πr) f(x − rβ) dr along a direction at an angle of θ to the x1-axis (here

β = (cos θ, sin θ)), the integration limits of the DBP are simply shifted: DθRf(x) =∫ θ+π
θ

∂
∂sRf(φ, s)|s=x·α⊥dφ to yield DθRf(x) = 2πHθf(x). See [3], [4] for more.

We digress to discuss the finite Hilbert transform. Suppose g(r) is a function of
a scalar variable with known support [P1, P2], and suppose the Hilbert transform
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Hg of g is known on the interval (Q1, Q2). If (Q1, Q2) = (−∞,∞) then g can easily
be recovered from complete information of its Hilbert transform. The question is,
to what extent can g be recovered from Hg for various finite intervals (Q1, Q2)?
An explicit formula for g has long been known (for example [5]) for the case
[P1, P2] ⊂ (Q1, Q2), and this result has applications for the 2D ROI problem. An
even more significant result, recently published in [4], established stable recovery
of g(r) for r ∈ (Q1, P2] provided Q1 < P2 < Q2, and similarly for r ∈ [P1, Q2)
provided Q1 < P1 < Q2.

4. Partial Solution to the 2D ROI Tomography Problem

We are now ready to apply this machinery to establish the following partial
result on the 2D ROI problem. Stable reconstruction of f can be achieved on the
interior of each non-internal connected component of region A (i.e. on the interior
of each connected component Ac that satisfies Ac ∩ ΩF 6= ∅).

Consider a non-internal connected component Ac of region A, and denote the
interior of Ac by A◦

c . We take A◦
c to be non-empty. Noting that we only need

concern ourselves with A◦
c ∩ Ω because f is known to be zero outside Ω, we let y

be any point in A◦
c ∩ Ω. Now let L be a line passing through y and any point in

Ac∩ΩF . This line lies at say, angle θ to the x1-axis so L = L(θ,s) where s = y ·β⊥

(with β⊥ = (− sin θ, cos θ)). We know that L(θ,s)∩Ω is a single closed line segment
in Ω because Ω is convex and compact, and we label the endpoints of this segment
u1 and u2, ordered such that u1 · β ≤ u2 · β. Similarly, L(θ,s) ∩A◦

c is a single open
line segment in A◦

c bounded by endpoints v1 and v2 satisfying v1 · β < v2 · β. The
definition of L ensures that at least one of v1, v2 lies in ΩF (because for Ac convex,
every line segment joining a point in Ac to a point in A◦

c has at most one point
outside A◦

c ; see for example theorem 3 of [6]).
We now convert to the 1D problem by letting g = f |L(θ,s) , specifically g(r) =

f(rβ + sβ⊥), and defining Pi = ui · β and Qi = vi · β for i = 1, 2. The point
Y = y ·β lies in the support [P1, P2] of g, and we also have Y ∈ (Q1, Q2) since this
interval corresponds to region A◦

c . We note that Hg(r) = Hθf(rβ+sβ⊥) is known
for r ∈ (Q1, Q2) because this interval corresponds to those x along the line L(θ,s)

that lie in A◦
c , and so Hθf(x) is known. Now either v1 ∈ ΩF in which case Q1 < P1

and Y ∈ [P1, Q2), or v2 ∈ ΩF which would force P2 < Q2 and Y ∈ (Q1, P2] (or
both v1, v2 ∈ ΩF forcing Y ∈ [P1, P2] ⊂ (Q1, Q2)). In any event, we are assured by
[4] that g(Y ) can be stably reconstructed, as discussed in section 3 above. Thus
f(y) can be stably reconstructed for all such y ∈ A◦

c in the interior of a general
non-internal component of region A.

5. Remarks

For the case of internal components of region A, no corresponding general state-
ment can yet be made. Any such statement will need to at least distinguish the
case of a minimally illuminated region B, so something more will be needed than
the DBP and finite Hilbert machinery described here.
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On the other hand, for non-internal components in the presence of a non-convex
support Ω, it appears reasonable that small extensions of the approach described
here will provide a similar result.

As a practical application of the results presented here, we consider a single-
slice medical CT scanner which would illuminate a circular field-of-view (FOV)
with rays which after suitable processing would be good estimates of the Radon
transform of the unknown linear attenuation coefficient. A fair approximation of
the support Ω would be an ellipse or similar convex shape. In this example, region
A is the intersection of the FOV with Ω and region B is minimally illuminated.
The results presented here show that either no stable reconstruction is possible
anywhere because region A is internal, or reconstruction is possible everywhere in
region A because it is intersects the frontier of the support. The second part of
this statement was unknown prior to the publication of [4].

In three dimensions, the Radon transform has a local inverse in the sense
described in [1]), which means that the straightforward generalizations of sets
M, N , and regions A, B would immediately yield the ROI solution R = A◦

in all circumstances. For the x-ray transform (the line-integral transform), the
three-dimensional (3D) case differs from two-dimensions in several aspects, which
we summarize here (without providing demonstrations). Here, we consider the
general fully 3D case, not just cone-beam geometries. We let Lx,γ = {y | y =
x + tγ, t ∈ (−∞,∞)} be the line in the direction γ ∈ S2 passing through the
point x. Now define Γx to be the directions of all measured lines passing through
x: Γx = {γ ∈ S2 |Lx,γ ∈ M}. Loosely speaking, region A would be defined in
three-dimensions by x ∈ A if Γx satisfies Orlov’s condition [7], that every great
circle on S2 intersects Γx. (Equivalently, in the language of Tuy [8], x ∈ A if for
every plane Π containing x, there exists a measured line in Π passing through x )
We note that in the 3D case, connected components of region A are not necessarily
convex. Now, for x in the interior of region A, a 3D DBP process can be applied
to yield Hγf(x) only if Γx contains a path on the unit sphere connecting −γ to γ.
The collection of directions for which Hγf(x) is available could be empty (if no
such path exists), could be 1D (because the central symmetry of Γx allows γ to be
any element along the path), could be a 2D subset of S2, or even could be the set
of all directions S2 if x were fully illuminated from all directions (i.e. if Γx = S2).
Note that in the 2D case treated here, we are always in this latter situation of
all possible Hilbert directions Hθf(x). So in three-dimensions it is not enough to
simply consider a line Ly,γ passing through the interior of region A, because we
would also need some assurance that the Hilbert transform of f could be found
in the γ-direction for all points on the line Ly,γ. Therefore, more structure needs
to be placed on the measurement set M before attempting to apply the DBP and
finite-Hilbert method to 3D ROI tomography. One example where the necessary
structure is present involves a single-turn helical path lying outside the (extended)
support Ω+, and where M is some subset of all lines intersecting this helix. In
this case, non-internal convex components of region A can be stably reconstructed
according to the DBP and finite-Hilbert method.
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Image reconstruction from truncated data in SPECT

Frédéric Noo

(joint work with Michel Defrise, Jed D. Pack, Rolf Clackdoyle)

Recently, several works (see [1], [2], [3], [4]) have shown that classical two-
dimensional (2D) tomography is not “all or nothing” contrary to long-standing
folklore. That is, the measured data need not cover the whole object for accurate
reconstruction to be possible in some regions-of-interest (ROIs). This statement
holds for any finite-size object, and this work investigates how they may be ex-
tended to single-photon emission computed tomography (SPECT).

The attenuation map is assumed to be known and a constant µo within a
bounded convex region Ω that includes the support of the unkown tracer-activity
function p. Under this assumption, the data from which p must be reconstructed
may be viewed as the exponential Radon transform of p:

(1) (Eµop)(φ, s) =

∫ ∞

−∞

p(s θ + t θ⊥) eµot dt .

where θ = (cosφ, sin φ) and θ⊥ = (− sinφ, cosφ). For a fixed φ, the values of
(Eµop)(φ, s) obtained by varying s define an exponential parallel-beam projection
of p. If these values are only known for a limited range of s, the projection is said
to be truncated. For example, if Ω is the centered disk of radius R, the projection
is truncated as long as (Eµop)(φ, s) is not known for all s ∈ [−R,R].

We investigate image reconstruction from exponential parallel-beam projections
that are only known over 180 degrees and may each be truncated. We build
this investigation on results by Rullg

◦
ard [5]. The angular range over which the



Mathematical Methods in Tomography 2075

projections are known is seen as a single interval, not a union of disjoint intervals,
and, for convenience, this interval is chosen as φ ∈ [0, π]. Given a truncation
pattern, we examine where accurate (exact and stable) reconstruction is possible
inside Ω. We note that remarkable findings have been published recently on the
more general problem of inverting the attenuated Radon transform. However, they
assume the projections are non-truncated.

To achieve reconstruction with truncation, we introduce a differentiated back-
projection (DBP) operation and show that this DBP yields a one-dimensional (1D)
integral equation for the unknown p. Then, we investigate the inversion of this
integral equation. We define the DBP for the exponential Radon transform as

(2) b(x) =

∫ π

0

e−µo x·θ
⊥ ( ∂

∂s
(Eµop)

)
(φ, x · θ) dφ

Assuming that p is continuously differentiable, this DBP is well-defined, and fol-
lowing steps by Rullg

◦
ard [5] we find that

b(x, y) = −2π

∫ ∞

−∞

coshµo(y − y′)

π(y − y′)
p(x, y′) dy′(3)

where the singularity is handled as a Cauchy principal value. In practice, (3) is
only of interest for (x, y) ∈ Ω, the bounded and convex region outside which p is
known to be zero. Let (x, Lx) and (x, Ux) be the end points of the intersection of
Ω with the line parallel to the y-axis through a point (x, y) ∈ Ω. Then,

b(x, y) = −2π

∫ Ux

Lx

coshµo(y − y′)

π(y − y′)
p(x, y′) dy′ for (x, y) ∈ Ω .(4)

This expression explicitly shows that the integral in y′ has finite bounds.
Equation (4) reduces the reconstruction problem to a 1D integral equation with

convolution kernel. Rullg
◦
ard showed there exists a distribution ρ such that

(5) p(x, y) =

∫ y+Dx

y−Dx

ρ(y − y′) b(x, y′) dy′ for (x, y) ∈ Ω ,

where Dx = Ux−Lx. Although not pointed out by Rullg
◦
ard, (5) represents a first

proof that reconstruction of a ROI in SPECT with uniform attenuation does not
require knowing Eµop on all lines passing through the region Ω where the activity
lies. To obtain p at a given location (x, y) ∈ Ω according to (5), only the values
of Eµop required to compute b(x, y′) with |y′ − y| < Dx are needed. These values
correspond to the lines that meet a neighbourhood of the line segment connecting
(x, y −Dx) to (x, y +Dx), hence Eµop need not be available for all lines passing
through the activity region. See figure 1a for an illustration of this assertion and
figure 1b for its extension to an ROI.

We improve on Rullg
◦
ard’s result, equation (5), by discarding the convolution

and relaxing the measurement requirement. Specifically, we show that

A function p that is continuously differentiable on Ω can be accu-
rately reconstructed at a given location (x, y) ∈ Ω, if for each φ ∈
[0, π] the values of Eµop are known (measured) for just those lines
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that intersect a neighbourhood of the line segment from (x, Lx) to
(x, Ux).

This statement holds for any value of µo that satisfies a specific condition. Nu-
merical evaluation of this condition reveals that it is satisfied for a fine sampling
of a wide range of values of µo that effectively covers all medical applications of
SPECT. See figure 1c for a visual illustration of the statement in comparison with
truncation allowed by Rullg

◦
ard’s formula. More details on the condition and a

proof of the statement may be found in [6].
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On the minimization of non-convex, non-differentiable functionals
with an application to SPECT

Peter Maaß

(joint work with T. Bonesky, K. Bredies, D. Lorenz)

This exposition is concerned with analyzing the convergence properties of a gen-
eralized conditional gradient method for solving

minF (u) + Φ(u),(1)

where F is non-convex but differentiable and Φ is non-differentiable but convex.
The interest in such functionals arises from two different points of view: First
of all, Tikhonov-regularization techniques for non-linear operator equations with
Besov penalty terms, where

F (u) = ‖K(u)− gδ‖2 , Φ(u) = ‖u‖pBs
pp
.

Such functionals have recently investigated intensively in the context of image
processing (in particular K = I or K a convolution operator, see e.g. [ChL]),
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(a)
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Ω
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(b)

Ω

L1 L2

L2(c)
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Figure 1. Illustration of allowed data truncation. The activity
sources are within the ellipse Ω. (a) According to Rullg

◦
ard’s re-

sults, accurate reconstruction at (x, y) only requires the data on
the lines that cross a neighborhood of the vertical line segment
through (x, y). Line L2 is thus needed but not line L1. (b) Ac-
cording to Rullg

◦
ard’s results, accurate reconstruction within the

depicted ROI requires the data on all lines passing through the
shaded vertical strip. (c) According to our results, accurate re-
construction within the depicted ROI only requires the data on
all lines passing through the intersection of the shaded vertical
strip with Ω. In particular, line L2 is not needed.

which also was the starting point for analyzing surrogate techniques (K a linear
compact operator, see [DDD]). This second paper has triggered some follow up
papers, which also included non-linearK, see [BLM], [RaT]. Finally, a full chapter
in [ChS] is devoted to ’Besov images’ and the minimization of related functionals.
Secondly, such functionals are a natural generalization of a particular type of
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constrained minimization problems

min
u∈Uad

F (u)

which can be equivalently reformulated with the help of the indicator function

IUad
(u) =

{
0 : u ∈ Uad
∞ : u /∈ Uad

as minF (u) + IUad
(u).

Because of the non-differentiability of the functional in problem (1) usual gradi-
ent methods can not be applied. For minimizing F + Φ in [BLM] a generalized
conditional gradient method is introduced. It proceeds as follows:

(1) Choose u0 ∈ H , such that Φ(u0) <∞ and set n=0.
(2) Determine a descent direction vn as a solution of

min
v∈H

〈F ′(un), v〉 + Φ(un).

(3) Determine a stepsize sn as a solution of

min
s∈[0,1]

F (un + s(vn − un)) + Φ(un + s(vn − un)).

(4) Put un+1 = un + sn(vn − un) and n = n+ 1, return to step 2.

In [Bon] problem (1) is treated with

F (u) =
1

2
‖K(u) − gδ‖2 − λΘ(u) , Φ(u) = λΘ(u) + αΨ(u).(2)

It is shown, that under mild assumptions on K and with

Θ(u) =
1

2
‖u‖2 , αΨ(u) =

∑

k

wk|〈u, ϕk〉|p(3)

where {ϕk} is an orthonormal basis of the Hilbertspace H , wk > 0 for all k,
wk → ∞ for k → ∞ and 1 ≤ p ≤ 2, there exists a convergent subsequence of the
iterates {un} and that every subsequence of {un} converges to a stationary point
of the functional F+Φ. Furthermore it is shown that if the set of stationary points
consists of only one point the sequence of iterates {un} converges to the unique
minimizer of F + Φ.
The minimization problem in the second step of the generalized conditional gradi-
ent method can be reformulated and solved with the help of results from the theory
of convex analysis. One can show that the minimizer is obtained by a shrinkage
procedure (see [BLM]):

vn =
∑

k

Swk,p(〈un − λ−1K ′(un)
∗(K(un) − gδ), ϕk〉)ϕk,

where Swk,p : R → R is a shrinkage function given by

Swk,p(y) =





sign(y)[|y| − wk

λ ]+ : p = 1
G−1
k,λ,p(y) : 1 < p < 2

(1 + 2wk

λ )−1y : p = 2
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with

Gk,λ,p(x) = x+
wkp

λ
sign(x)|x|p−1.

In applications it turns out that under special assumptions on λ the stepsize can
be chosen as s = 1 during the whole iteration. This gives a simple algorithm for
solving problem (1).
This algorithm can be applied to the functional F + Φ as defined in (2) and (3)
where K = R is the SPECT operator

R(f, µ)(s, ω) =

∫

R

f(sω⊥ + tω)e−
∫

∞
t
µ(sω⊥+τω)dτdt,

with s ∈ R, ω ∈ S1 and u = (f, µ).
For extended numerical results see [Bon]. If the algorithm is applied to data which
were generated with the help of the so called MCAT-phantom and degraded with
Gaussian noise and assumed optimal weights wk one gets for example the following
results:

data error δ wk number of iterations relative error Erel

5% 2−
1
2 ∗ 2 ∗ 10−6 3481 8.6%

10% 2 ∗ 10−6 1727 15.5%

20% 2
1
2 ∗ 2 ∗ 10−6 437 24.7%

This tabular shows that for decreasing data error the relative error

Erel =

∥∥∥∥
ftrue

‖ftrue‖
− frec

‖frec‖

∥∥∥∥ ∗ 100%

of the optimal reconstruction frec of the activity function ftrue decreases as well.
The observed convergence rate in this case is about O(δ0.75).
Figure 1 shows an example of a reconstructed activity function f .

Figure 1. True activity function (left) and optimal reconstruc-
tion from degraded data with 10% Gaussian noise.
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Enhanced angular resolution from multiple scattered waves

Clifford Nolan

(joint work with M. Cheney, T. Dowling, R. Gaburro)

This talk concerns the incorporation of a-priori known environmental scatterers
into a linear scattering model for reflected radar waves. The waves reflect from
the known environmental scatterer(s) as well as the unknown scatterers. The
idea is to use the multiple scattering between the environmental scatterer and the
unknown scatterer to obtain different views of the latter. In this way, we show
how one can improve the angular resolution of unknown scatterers with the aid of
the environmental scatterers.

The specific application presented in this talk concerns a known wall (envi-
ronmental scatterer) in an urban setting and we wish to use this wall to obtain
different views of nearby scatterers (vehicles, etc), thereby obtaining a better image
than if we had only incorporated direct scattering from the nearby scatterers.

The linear scattering modelling operator consists of a sum of four Fourier inte-
gral operators F = F1, F2, F3, F4 which maps the reflectivity function (which we
wish to recover) V (x1, x2)δ(x3) to the data d(s, t).

In order to recover the reflectivity function, we investigate the possibility of
applying a weighted-adjoint linear operator of the same type as F ∗ (where the
asterisk denotes the formal L2-adjoint). It turns out that in order to successfully
achieve this that we must carefully beam form with the radar. We have to avoid
certain bad points on the ground, otherwise, we cannot effect inversion with the
weighted-adjoint.

If we are not careful about beam-forming, or it is not practical to beamform,
then we demonstrate the various kinds of artifacts that will be obtained along with
true scatteres using a straight backprojection scheme.
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A sub-problem in our analysis is related to the ‘common-midpoint’ seismology
imaging problem. In particular, the operators F2, F3 are closely related. We show
that there artifacts associated with such geometries that are not (to the authors’
knowledge) (well-) known in the seismics community.
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A survey on mathematical problems of thermoacoustic tomography

Peter Kuchment

An introduction
Tomographic medical imaging methods strive to satisfy several requirements: safe-
ty, low cost, high contrast, high resolution. However, these conditions are rather
contradictory. For instance, some cheap and safe methods with good contrast (like
electrical impedance tomography) suffer from low resolution. Novel methods have
been emerging recently that combine different physical types of signals to try to
overcome this hurdle. One of the best developed examples is the Thermoacoustic
Tomography (TAT) [14]. Here a wide short radiofrequency (RF) pulse is sent
through a biological object. The resulting thermoelastic expansion creates an
ultrasound signal that can be measured by transducers located around the object.
The transducers essentially measure the integrals of the RF energy absorption
function f(x) over spheres centered at transducers’ locations. In mammography,
cancerous cells absorb 3 to 5 times more RF energy than the healthy ones, thus
high contrast. Also, ultrasound measurements provide good resolution.
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Mathematics of TAT - spherical mean Radon transform
Thus, one needs to study the spherical Radon transform of functions f(x) on Rd:

Rf(p, r) =

∫

|y−p|=r

f(y)dσ(y),

or its spherical mean version ω−1
r Rf , where ω is the volume of the sphere of radius

r in Rd.
The mapping f → Rf is overdetermined, since it maps functions f of d variables

into functions Rf(p, r) of d+1 variables. Thus, it is natural (both from theoretical,
as well as tomographic prospective) to restrict the set of centers p (transducer
locations) to a hypersurface S ⊂ Rd, which leads to the transform RSf = Rf |p∈S .

Here is the standard set of questions one would want to ask: For what sets S is
RS injective (i.e., can f be uniquely reconstructed from RSf)? If RS is injective,
what are inversion formulas? How stable is inversion? What happens if the data
is incomplete? What is the range description for the operator RS?
Uniqueness of reconstruction
Let f be compactly supported. Does RSf = 0 imply that f = 0? If the answer is
“yes,” we call S - a uniqueness set, otherwise a non-uniqueness set.

Lemma [17, 18, 3, 34] Any non-uniqueness set is a set of zeros of a harmonic
polynomial. In particular, any uniqueness set for harmonic polynomials is unique-
ness set for the spherical mean Radon transform.

Corollary [3, 15] Any closed hypersurface is uniqueness set for the spherical
mean Radon transform.

This corollary resolves the uniqueness problems for most practically used ge-
ometries. It fails if f does not decay sufficiently fast [1].

Non-uniqueness sets in R2 [3, 17, 18]. It is clear that any line S (hyperplane
in higher dimensions) is a non-uniqueness set, examples provided by functions odd
with respect to S. Analogously, a Coxeter system ΣN of N lines passing through
a point and forming equal angles is also a non-uniqueness set. Less obviously, one
can add any finite set Φ of points preserving non-uniqueness.

Theorem ([3], conjectured in [17, 18]). S ⊂ R2 is a non-uniqueness set iff
S ⊂ ωΣN ∪Φ, where ΣN is a Coxeter system of lines, ω is a rigid motion, and Φ
is finite.
Proof uses microlocal analysis and geometry of zeros of harmonic polynomials.

Conjecture. S ⊂ Rd is a non-uniqueness set iff S ⊂ ωΣ ∪ Φ, where Σ is the
surface of zeros of a homogeneous harmonic polynomial, ω is a rigid motion, and
Φ is an algebraic surface of codimension at least 2.

The problem of injectivity of RS has relations to a wide variety of areas of
analysis [3]. In particular, the following interpretation is important:

Theorem [3, 15] The following statements are equivalent:
1. S ⊂ Rd is a non-uniqueness set.
2. S is a nodal set for the wave equation, i.e. there exists a compactly supported

f such that the solution of the wave propagation problem ∂2u
∂t2 = ∆u, u(0, x) =

0, ut(0, x) = f(x) vanishes on S for any moment of time.



Mathematical Methods in Tomography 2083

3. S is a nodal set for the heat equation, i.e. there exists a compactly supported f
such that the solution of the problem ∂u

∂t = ∆u, u(0, x) = f(x) vanishes on S for
any moment of time.

This interpretation provides important PDE tools and insights. In particular,
it has lead to a recent progress based on the wave equation reformulation. It has
also helped to understand why curves are uniqueness sets [11, 4].
Partial data: “visible” and “invisible” singularities
Uniqueness of reconstruction does not imply practical recoverability, since the
reconstruction might be severely unstable. This is the case, for instance, in incom-
plete data situations in X-ray tomography, and even for complete data problems
in electrical impedance tomography.

Theorem [19, 28, 33] A wavefront set point (x, ξ) of f is “stably recoverable”
from RSf iff there is a circle centered on S, passing through x, and normal to ξ
at this point.
This result needs to include some precise conditions (see [19]).
Reconstruction: formulas and examples
One of the most popular inversion formulas for the standard Radon transform is the
so called filtered backprojection [20, 21]. Approximate inversions for the circular
Radon RS mimic this formula for the Radon transform [29]–[33]. The results
are usually good and can be improved by iterations. Exact inversion formulas are
known for S being a sphere, cylinder, or a plane. When S is a sphere, inversions via
special function expansions have been discovered [23, 24]. Backprojection formulas
have been found when S ⊂ Rd is a sphere (for odd d in [11, 29] and results for
arbitrary d were presented at this workshop by D. Finch and L. Kunyansky). In
the cases of cylinders and planes see [7, 9, 21, 22, 25, 29].
Here is one of the 3D formulas for S being the unit sphere [11]:

f(x) =
1

16π3
∆x

∫

|p|=1

Rf(p, |x− p|)
|x− p| dp.

It was implemented numerically in [6].
One of L. Kunyansky’s inversion formulas [16] reads in 2D:

f(x) =
1

8π
Im∇ ·

2π∫

0

S(~ω(ϕ), |~ω(ϕ) − x)|)~ω(ϕ)dϕ,

where ~ω(ϕ) = (cosϕ, sinϕ) and

S(z, t) =

∫ ∞

0




2∫

0

H
(1)
0 (kr)g(z, r)dr


H(1)

0 (kt)kdk.

HereH
(1)
0 (t) = J0(t)+iY0(t) is the zero-order Hankel function of the 1st kind, J0(t),

Y0(t) are zero-order Bessel functions. Similar formulas hold in any dimension.
Range conditions
The range of Radon type transforms is usually of infinite co-dimension. Knowing
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the range is useful for many theoretical and practical purposes (error corrections,
incomplete data, etc.
For the standard Radon transform the range conditions are: for any integer k ≥ 0,

Gk(ω) =
∞∫

−∞

skg(ω, s)ds extends to a homogeneous polynomial of ω of degree k.

Complete range descriptions for RS when S is a sphere were discovered very re-
cently [2, 5, 10]. Moment conditions [3, 17, 18, 27] on data g(p, r) = RSf(p, r)

look as follows: for any integer k ≥ 0, Gk(ω) =
∞∫
0

r2kg(p, r)dr can be extended

to a (non-homogeneous) polynomial of degree at most 2k. These conditions are
incomplete. Complete conditions were found in 2D [5], odd dimensions [10], and
finally in all dimensions [2]. Relations to PDEs and spectral theory are revealed.
Let B = unit ball, S = unit sphere, C = cylinder B× [0, 2]. Spherical mean opera-
tor is, as before RSf(x, t) = G(x, t) = ω−1

∫
|x−y|=t f(y)dS(y), |x| = 1. Notice that

if G(x, t) is defined by the same formula for all x ∈ Rd, then it satisfies Darboux
equation Gtt + (d − 1)t−1Gt = ∆xG. Moreover, inside C, G(x, t) vanishes when
t ≥ 2.
Theorem [2]The following four statements are equivalent:

(1) The function g ∈ C∞
0 (S × [0, 2]) is representable as Rf for some f ∈

C∞
0 (B).

(2) (a) The moment conditions are satisfied.
(b) The solution G(x, t) of the interior Darboux problem satisfies the con-

dition

lim
t→0

∫

B

∂G

∂t
(x, t)φ(x)dx = 0

for any eigenfunction φ(x) of the Dirichlet Laplacian in B.
(3) (a) The moment conditions are satisfied.

(b) Let −λ2 be an eigenvalue of Dirichlet Laplacian in B and ψλ the cor-
responding eigenfunction. Then the following orthogonality condition
is satisfied:

(1)

∫

S×[0,2]

g(x, t)∂νψλ(x)jn/2−1(λt)t
n−1dxdt = 0.

(4) (a) The moment conditions are satisfied.
(b) Let ĝ(x, λ) =

∫
g(x, t)jn/2−1(λt)t

n−1dt. Then, for any m ∈ Z, the

mth spherical harmonic term ĝm(x, λ) of ĝ(x, λ) vanishes at non-zero
zeros of Bessel function Jm+n/2−1(λ).

Theorem [2]

(1) In odd dimensions, moment conditions are not necessary. (A similar ear-
lier result was established for a related transform in [10].)

(2) The range descriptions work in Sobolev scale Hs 7→ Hs+(d−1)/2 (uses a
recent result by Palamodov [26]).
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(3) The range conditions (except the ones using Bessel functions) are neces-
sary in arbitrary domain.

Some open problems
1. Describe uniqueness sets S for non-compactly supported functions. The only
known result is of [1].
2. Describe uniqueness sets in dimensions > 2 (prove the Conjecture formulated
above). Recent limited progress is available in [4].
3. Prove an analog of the result of [3] for the hyperbolic plane.
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[21] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, Mono-

graphs on Mathematical Modeling and Computation v. 5, SIAM, Philadelphia, PA 2001.



2086 Oberwolfach Report 34/2006

[22] S. Nilsson, Application of fast backprojection techniques for some inverse problems of in-
tegral geometry, Linkoeping studies in science and technology, Dissertation 499, Dept. of
Mathematics, Linkoeping university, Linkoeping, Sweden 1997.

[23] S. J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular domain:
exact solution, J. Acoust. Soc. Am. 67 (1980), 1266-1273.

[24] S. J. Norton and M. Linzer, Ultrasonic reflectivity imaging in three dimensions: exact inverse
scattering solutions for plane, cylindrical, and spherical apertures, IEEE Transactions on
Biomedical Engineering, 28(1981), 200-202.

[25] V. P. Palamodov, Reconstruction from limited data of arc means, J. Fourier Anal. Appl. 6
(2000), no. 1, 25–42.

[26] V. Palamodov, Remarks on the general Funk transform, preprint, Tel Aviv University,
August 2006.

[27] S. K. Patch, Thermoacoustic tomography - consistency conditions and the partial scan prob-
lem, Phys. Med. Biol. 49 (2004), 1–11.

[28] E. T. Quinto, Singularities of the X-ray transform and limited data tomography in R2 and
R3, SIAM J. Math. Anal. 24(1993), 1215–1225.

[29] M. Xu and L.-H. V. Wang, Time-domain reconstruction for thermoacoustic tomography in
a spherical geometry, IEEE Trans. Med. Imag. 21 (2002), 814–822.

[30] M. Xu and L.-H. V. Wang, Universal back-projection algorithm for photoacoustic computed
tomography, Phys. Rev. E 71 (2005), 016706.

[31] Y. Xu, D. Feng, and L.-H. V. Wang, Exact frequency-domain reconstruction for thermoa-
coustic tomography: I. Planar geometry, IEEE Trans. Med. Imag. 21 (2002), 823–828.

[32] Y. Xu, M. Xu, and L.-H. V. Wang, Exact frequency-domain reconstruction for thermoa-
coustic tomography: II. Cylindrical geometry, IEEE Trans. Med. Imag. 21 (2002), 829–833.

[33] Y. Xu, L. Wang, G. Ambartsoumian, and P. Kuchment, Reconstructions in limited view
thermoacoustic tomography, Medical Physics 31(4) April 2004, 724-733.

[34] N. Zobin, unpublished, 1993.

Range description for the spherical mean Radon transform

Mark Agranovsky

(joint work with P. Kuchment, E. T. Quinto)

The transform considered in the talk averages a function supported in a ball in Rn

over all spheres centered at the boundary of the ball. This Radon type transform
arises in several contemporary applications, e.g. in thermoacoustic tomography
and sonar and radar imaging. Range descriptions for such transforms are im-
portant in all such applications, for instance when dealing with incomplete data,
error correction, and other issues [16]. Several different types of complete range
descriptions are provided, some of which also suggest inversion procedures.

We obtain range descriptions in arbitrary dimension for the case of centers on
a sphere. Moreover, we obtain several different range descriptions that shed new
light on the meaning of the range conditions (in particular, onto the appearance
of two seemingly different subsets of conditions). Our approach rests on study the
spherical mean transform from the point of view Darboux equation

(∂2
t +

n− 1

t
∂t)G(x, t) = ∆xG(x, t),
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which according to the well known Asgeirsson’s Theorem [5, 6, 13] describes all
functions G that can be represented as the spherical mean transforms of functions
f :

Rf(x, t) := G(x, t) =

∫

|θ|=1

f(x+ tθ)dA(θ).

We consider the transform RS that is applied to functions f(y) supported in
the unit ball B = {y ∈ Rn| |y| ≤ 1} and provides the values of G(x, t) for points x
on the unit sphere S = {x ∈ Rn| |x| = 1} only.

The range of this transform in the planar case n = 2 was described in [4] and
range description in the case of odd dimension n, although for a somewhat different
transform, was obtained in [7].

The following conditions [2, 14, 15, 18] are analogous to the moment conditions
for the standard Radon transform [9, 10, 11, 12, 16]:

Moment conditions: For any k = 0, 1, · · · , the function

(1)

Mk(x) =
∞∫
0

g(x, t)t2k+n−1dt

extends from the unit sphere |x| = 1 to Rn

as a polynomial of degree at most 2k.

Theorem 1 The following four statements are equivalent:

(1) The function g(x, t) ∈ C∞
0 (S × [0, 2]) is representable as RSf for some

f ∈ C∞
0 (B).

(2) (a) The moment conditions (1) are satisfied.
(b) The solution G(x, t) of the interior backward initial-boundary value

problem for Darboux equation in the cylinder C = {|x| ≤ 1} × (0, 2]
with the conditions G(x, 2) = Gt(x, 2) = 0 and G(x, t) = g(x, t), |x| =
1 satisfies the condition

lim
t→0

∫

B

∂G

∂t
(x, t)φ(x)dx = 0

for any eigenfunction φ(x) of the Dirichlet Laplacian in B.
(3) (a) The moment conditions (1) are satisfied.

(b) Let −λ2 be an eigenvalue of Dirichlet Laplacian in B and ψλ be the
corresponding eigenfunction. Then the following orthogonality condi-
tion is satisfied:

(2)

∫

S×[0,2]

g(x, t)∂νψλ(x)jn/2−1(λt)t
n−1dxdt = 0.

Here ∂ν is the exterior normal derivative at the boundary of C and
jν(t) = t−νJν(t).

(4) (a) The moment conditions (1) are satisfied.
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(b) Let ĝ(x, λ) =
∫
g(x, t)jn/2−1(λt)t

n−1dt. Then, for any integer l, the
lth order spherical harmonic term ĝl(x, λ) of ĝ(x, λ) vanishes at non-
zero zeros of the Bessel function Jl+n/2−1(λ).

We prove that when the dimension n is odd, the moment conditions (1) follow
from any of the orthogonality conditions (2b) – (4b), which agrees with the result
of [7], where the moment conditions do not appear. Thus, in odd dimensions one
obtains

Theorem 2 Let n ≥ 3 be an odd integer. Then, in the notations of Theorem 1,
g = RSf , if and only if the orthogonality condition (b) in Theorem 1 is satisfied
in any of its equivalent forms (2b) – (4b).

It is also proven that the range conditions 2 and 3 of Theorem 1 are necessary
for arbitrary domain B, not necessarily a ball, however their sufficiency does not
always hold.

A Sobolev space (instead of C∞
0 ) version of the theorems is also available, which

employs the recent result of V. Palamodov [17], which was also reported at this
workshop.

A preprint of this work is available in arXiv [1].
A related discussion of injectivity and inversion of the transform RS can be

found in [2, 3, 8], as well as in the reports by D. Finch and L. Kunyansky at this
workshop.
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Differentialgleichungen zweiter Ordnung mit konstanten Koeffizienten, Ann. Math., 113
(1937), 321–346.

[6] R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume II Partial Differential
Equations, Interscience, New York, 1962.

[7] D. Finch and Rakesh, The range of the spherical mean value operator for functions supported
in a ball, Inverse Problems 22 (2006), 923-938.

[8] D. Finch, Rakesh, and S. Patch, Determining a function from its mean values over a family
of spheres, SIAM J. Math. Anal. 35 (2004), no. 5, 1213–1240.

[9] I. Gelfand, S. Gindikin, and M. Graev, Selected Topics in Integral Geometry, Transl. Math.
Monogr. v. 220, Amer. Math. Soc., Providence RI, 2003.

[10] I. Gelfand, M. Graev, and N. Vilenkin, Generalized Functions, v. 5: Integral Geometry and
Representation Theory, Acad. Press 1965.

[11] S. Helgason, The Radon Transform, Birkhäuser, Basel 1980.
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Equations Governing Waves Attenuated According to a Power Law

Sarah Patch

(joint work with Allan Greenleaf)

1. Introduction

Attenuation typically comes hand-in hand with dispersion. Causality imposes
consistency conditions upon attenuation and dispersion, which were first derived
for xray radiation by Kramers and Krönig [1, 2]. See [4] for an excellent intro-
duction to causality where different strengths are defined. We study attenuation
according to a power law

(1) e−α|τ |
bd

where [α] = MHz−bcm−1, d is distance traveled, and the frequency τ is dual to
t [7]. For most fluids, thermoviscous dissipation corresponds to b ≡ 2 [3] and the
Kramers-Krönig relations predict zero dispersion [6]. The governing equation is a
partial differential equation (PDE). Not only is the PDE consistent with primitive
causality, it can be directly related to the standard heat equation. Furthermore,
the impulse response function is closely related to the standard heat kernel, high-
lighting the fact that this theory allows signals to propagate faster than the speed
of light and is inconsistent with relativistic causality. We derive the governing
PDE’s in three spatial dimensions starting with the unattenuated acoustic wave
equation and assuming nothing other than attenuation according to (1). Working
from the Fourier domain lossy wave equation we derive the governing equations,
without frequency range restrictions needed in [5].

Forgetting for a moment the frequency restrictions on the attenuation model (1)
we apply it to the fundamental solution to the standard wave equation to derive
a smoothed impulse response function

pδatten(x, t) =
1

|x − xo|

∫

R

e−ατ
2|x−xo|e−2πi|x−xo|/cτe2πitτdτ

=

√
π

α |x − xo|3
e−

π2(|x−xo|/c−t)2

α|x−xo|(2)
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This is the 1D heat kernel with variables reinterpreted. Time in the standard
heat kernel is replaced by the attenuation parameter times distance and distance
is replaced by “retarded time,” defined in [5] as time delay from the unattenuated
wave front. As α |x − xo| → 0, h approaches a delta function centered on the
unattenuated wave front. Notice also that h > 0 for α > 0 and all finite distances
|x − xo| − ct. This agrees with primitive causality as discussed by Nussenzveig [4].
Like the fundamental solution to the standard heat equation, h is relativistically
acausal, permitting infinite propagation speed. An impulse at the origin at time to
generates positive signal for all finite distances, |x− xo|, at arbitrarily small time
t.

This is the 3D version of impulse response functions derived in [3, 6]. Assuming
no dispersion, attenuated pressure is equal to the convolution of f against the
fundamental solution

pfatt(x, t) =

∫

R3

f(y)

|x− y|

(∫

R

e−β(τ)|x−y|e2πitτdτ

)
dy(3)

where we have defined

β(τ) = −
(
ατ2 + 2πiτ/co

)
↔
(

α

4π2

∂

∂t
− 1

co

)
∂

∂t
(4)

Multiplication by β(τ) in the Fourier domain corresponds to taking derivatives

with respect to time. We formally compute ∆xp
f
att, first noting that

∆x

(
eβ(τ)|x−y|

|x − y|

)
= β(τ)2

(
eβ(τ)|x−y|

|x − y|

)
+ δ (x − y) eβ(τ)|x−y|(5)

The Laplacian of pressure is given by

∆xp
f
att(x, t) =

∫

R3

f(y)

∫

R

β(τ)2
(
eβ(τ)|x−y|

|x − y|

)
e2πitτdτdy + f(x)δ (t)(6)

Combining equations (4) and (6) yields a partial differential equation for b = 2
that is fourth order with respect to time

(7) ∆xp
f
att(x, t) −

[(
α

4π2

∂

∂t
− 1

co

)
∂

∂t

]2
pfatt(x, t) = f (x) δ(t)

Taking spherical means of each term reduces the number of spatial dimensions
to one and permits factorization of the differential operator into the product of
two parabolic operators:

(8) L+L− (r Mpatt(x, t, r)) = (r Mf)(x, r) δ(t)

where

(9) L± =
∂

∂r
±
[(

α

4π2

∂

∂t
− 1

co

)
∂

∂t

]
=

(
∂

∂r
∓ 1

co

∂

∂t

)
± α

4π2

∂2

∂t2
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Topics in Thermoacoustic Tomography

David Finch

(joint work with Markus Haltmeier, Rakesh)

I have been interested for several years in mathematical problems associated
with thermoacoustic tomography. One formulation of the problem is that it is the
recovery of initial data of the form (f, 0) supported in a domain D from the trace
of the solution of the wave equation on (a subset of) the boundary of D for some
interval of time. As witness several of the presentations for this meeting, it is an
area enjoying much attention at the moment.

The results discussed in this presentation concern the recovery of initial data
from the trace on the boundary in even dimensions. Since the body is three dimen-
sional and sound propagating in the body will be governed by a three dimensional
wave equation, we must ask whether the results are of mathematical interest only.
In fact no. While the original formulation of thermoacoustic tomography modelled
the measurement process as omnidirectional point detectors on the boundary of
the domain, there have been other measurement techniques investigated. The
Austrian group of Burgholzer, Haltmeier, Nusler, Paltauf, and Scherzer [1, 3] have
been working with integrating detectors. An integrating line detector, realized by
interferometry, in effect computes the x-ray transform of a solution of the three
dimensional wave equation. This is then a solution of the two dimensional wave
equation, whose intial data is the x-ray transform of the initial data of the original
initial data. This is done for all directions parallel to a plane by rotating the ob-
ject. By this means, they reduce the three dimensional problem to many inversions
of the two-dimensional wave equation, and inversion of the x-ray transform in the
family of planes perpendicular to the rotation axis.

We have found an inversion formulas when D is a ball in even dimensions. An
ingredient of the proof are the following inversion formulas for the circular mean
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transform, f →Mf, with centers on a circle S of radius ρ :

f(y) =
1

2πρ
∆

∫

S

∫ 2ρ

0

rMf(x, r) log |r2 − |x− y|2| dr ds(x)

or with the Laplacian inside

f(y) =
1

2πρ

∫

S

∫ 2ρ

0

∂

∂r

(
r
∂

∂r
Mf(x, r)

)
log |r2 − |x− y|2| dr ds(x).

We observe that the latter expression can be also be written as

f(y) =
1

2πρ

∫

S

|x− y|
∫ 2ρ

−2ρ

∂

∂r
Mf(x, r)

1

|x − y| − r
dr ds(x),

if we consider Mf as an odd function in r. The inner filtering step is exactly that
of the two-dimensional Radon transform, and so many good numerical implemen-
tations are known.

Let P denote the operator which takes initial data of the form (0, f) supported
in the ball B to the trace of the wave equation on the boundary of the ball (and
positive time). Then T = ∂tP is the operator taking initial data of the form (g, 0)
to the trace of the solution of the initial value problem.

Theorem 1. Let f be smooth and supported in the ball B of radius R in R2m,
and let Pf and T f be as above. Then in B

f = − 2

R
P∗t∂2

tPf

f =
2

R
T ∗ tT f = − 2

R
P∗∂tt∂tPf.

Theorem 2. Let f, g be smooth and supported in BR in R2m (m ≥ 1), let S ≡
∂BR, and let u = Pf , v = Pg.

∫

B

f(x)g(x) dx = − 2

R

∫ ∞

0

∫

S

tutt(p, t)v(p, t) dSp dt,

∫

B

f(x)g(x) dx =
2

R

∫ ∞

0

∫

S

tut(p, t)vt(p, t) dSp dt.

The inversion formulas and weighted integral identities above were already
proved in [2] for odd dimensions, and so they hold in general. In fact, the outline
of proof is very similar to that used in [2]. First, an inversion formula is proved
when n = 2. It is then used to prove the energy identity in dimension two, and
it is then seen by harmonic decomposition that it holds in all even dimensions.
Finally, the energy identity implies the inversion formula completing the proof. It
is in the proof of the inversion formula in dimension two that the inversion formula
for the spherical means comes into play.

We should also remark that combining the standard inversion formula for an
Abel type integral equation with the formula above for inversion of spherical means
in dimension two gives another expression to recover the initial data from the
boundary trace of the solution of the wave equation.
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The relation of these formulae to the formula announced by Kunyansky at this
meeting has not yet been pursued.

There are other questions of practical or of mathematical interest which arise in
thermoacoustic tomography. We have not addressed range results here, but there
has been recent progress in that area: the talks by Kuchment and by Agranovsky
gave a good survey. In our opinion, the leading questions currently open are:

• Solve the inverse problem for non-constant wave speed.
• Find a better analysis of the situation with incomplete data.
• Incorporate a better model of transducer response.

References

[1] P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, Thermoacoustic to-
mography with integrating area and line detectors, IEEE Trans. Ultrasonics, Ferroelectrics,
Freq. Control, 52 (2005) 1577–1583.

[2] D. Finch, S.K. Patch, and Rakesh Determining a function from its mean values over a
family of spheres, SIAM J. Math. Anal. 35 (2004), 1213–1240.

[3] G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer Thermoacoustic computed tomog-
raphy usng a Mach-Zehnder interferometer as acoustic line detector,(2006), submitted

Improved cone beam local tomography

Alexander Katsevich

In computed tomography (CT) the goal is to reconstruct the distribution of the
x-ray attenuation coefficient f inside the object being scanned. Local tomography
(LT) computes not f , but Bf , where B is some operator that enhances singularities
of f . In two dimensions (2D), B is an elliptic pseudo-differential operator (PDO)
of order one (cf. e.g. [1, 2, 3, 4, 5, 6, 13] and references therein). In the cone beam
setting (three dimensions) a LT function, which we denote here gΛ, was introduced
in [7]. It turned out that the corresponding operator B : f → gΛ is much more
complicated than in 2D. It preserves the so-called visible (or, useful) singularities
[8], but creates also non-local artifacts [9, 10]. Unfortunately, the strength of these
artifacts is the same as that of the useful singularities of gΛ [9, 10].

In this talk we describe a new cone beam LT function g, proposed recently in
[12]. We show that, similarly to the LT function gΛ, g recovers visible singularities
of f . More precisely, the operator f → g is just a PDO of order one microlocally
near the visible singularities of f . The principal symbol of the operator is found.
As follows from [11, 10], non-local artifacts are inherent in cone beam LT. The
main advantage of the new LT function is that it produces artifacts, which are one
order smoother in the scale of Sobolev spaces than the artifacts produced by the
previously known function gΛ.

Next we investigate how LT works when f changes with time. We assume that
f is a conormal distribution, which depends smoothly on time. The notion of
visible singularities is suitably generalized, and a relationship between the wave
fronts of f and g is established. Interestingly, even the visible singularities of f no
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longer coincide with the corresponding singularities of g. There is a shift between
them, and its size depends on the rate of change of f . We also investigate non-local
artifacts in g, and they turn out to be of the same strength as in the static case
(i.e., weaker than in gΛ).

Finally, we discuss how to implement the LT function when the source trajectory
is a helix and present some numerical experiments both in the static and dynamic
cases. These results confirm our main theoretical conclusions.
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Multiresolution Analysis in Computerized Tomography and its
Application to Non-Destructive Testing

Steven Oeckl

(joint work with Tobias Schön, Andreas Knauf, Alfred K. Louis)

Since wavelet analysis has become a powerful tool for signal and image processing,
the multiresolution approach provides a solution for many practical applications.
In X-ray computerized tomography algorithms for multiresolution two dimensional
(2D) parallel beam, 2D fan-beam, and three dimensional cone-beam (Feldkamp-
type) reconstruction using tensor or quincunx wavelets were introduced in [1, 2, 3].
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These reconstruction formulas are based on the strong relationship between the
continuous wavelet transform and the Radon transform as mentioned in [4]. In
this contribution we use a different approach to achieve an algorithm for recon-
structing an object at different resolutions: The approximate inverse, introduced
in [5], is a method for solving first kind operator equations Af = g in a stable
way. Instead of determining the exact solution f , an inversion operator for fe is
calculated, where fe is associated to f via the inner product 〈f, e〉 using a mollifier
e. Applying the approximate inverse to computerized tomography yields a recon-
struction algorithm of filtered backprojection type [6]. If we choose the mollifier
as a wavelet, fe represents the wavelet coefficients of f [7]. In this contribution we
show a new derivation of a nonseparable multiresolution reconstruction formula
using the approximate inverse. For the sake of simplicity we introduce a nonsepa-
rable multiresolution inversion formula only for the 2D parallel scanning geometry.
The resulting inversion formula using the approximate inverse is equal to the for-
mula in [1]. In case of narrow cone-beam angles we make use of the Feldkamp
algorithm [8]. We replace the standard ramp filter by the proposed ramp-wavelet
filter, where the 2D multiresolution acts slice by slice.

We start with a short introduction to the concept of the approximate inverse,
for details see [5]. Let U, V be Hilbert spaces, where U consists of functions
f : X → Y , and let A : U → V be a linear, continuous Operator. Consider
the problem of solving Af = g. For x ∈ X we define a mollifier ex ∈ U and an
associated approximation of f

f̃(x) := 〈f, ex〉U .

Let A∗ denote the adjoint operator of A. If vx ∈ V solves A∗vx = ex, we have

f̃(x) = 〈f, ex〉U = 〈f,A∗υx〉U = 〈Af, vx〉V = 〈g, vx〉V =: A‡g(x) .

A‡ : V → U is called the approximate inverse of A, υ is called the reconstruction
kernel.

The following definitions and properties related to the Radon transform can be
found in [9]. For f ∈ S(Rn), θ ∈ Sn−1, and s ∈ R the Radon transform is defined
Rθf(s) := Rf(θ, s) :=

∫
θ⊥ f(sθ + t) dt. The Fourier transform of f is defined

f̂ := (2π)−n/2
∫

Rn f(x)e−iωx dx. For σ ∈ R we have R̂θf(σ) = (2π)(n−1)/2f̂(σθ),

and for g = Rf the adjoint operator of R has the form R∗g(x) =
∫
Sn−1 g(θ, x·θ) dθ.

To derive an inversion formula for the Radon transform we define for α < n the
Riesz potential Iα via Îαf(ω) := |ω|−αf̂(ω). For g = Rf we have

(1) f =
1

2
(2π)1−nI−αR∗Iα−n+1g ,

where the Riesz potential acts on the second variable.
Consider the problem Rf = g in the 2D case. Choose for each x ∈ R2 a mollifier

ex ∈ S(R2), and define vx := 1
2 (2π)−1I−1Rex . Due to the inversion formula (1),

vx solves the equation R∗vx = ex and is therefore the reconstruction kernel of the
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approximate inverse of the Radon transform. We conclude

(2) f̃(x) = R‡g(x) = 〈g, vx〉S(S1×R) =
1

2
(2π)−1

∫

S1

∫

R

g(θ, s)I−1Rθex(s) ds dθ .

Since we want to make use of the approximate inverse to reconstruct the wavelet
coefficients of f directly from the projection data, we introduce some results from
multiresolution analysis (MRA), for details see [10, 7]. Let D ∈ Z2x2 be a dilation

matrix and define M := |detD|. Let {φ, φ̃} be a pair of dual scaling functions of a

2D MRA, and let {ψi, ψ̃i}, i = 1, . . . ,M , be M − 1 pairs of dual mother wavelets.
For a fixed J ∈ Z and f ∈ L2(R2) we have the wavelet expansion

f =
∑

k∈Z2

〈f, φJ,k〉φ̃J,k +
M−1∑

i=1

∑

j<J

∑

k∈Z2

〈f, ψij,k〉ψ̃ij,k ,

where φj,k := |detD|−(j/2) φ(D−j · −k) .
If we define ex := ψj,x for the problem Rf = g, then we have R‡(x)g = f̃(x) =

〈f, ψj,x〉 . Calculating the approximate inverse at k ∈ Z2 is equal to calculating the
wavelet coefficients of f , i.e. R‡g(k) = 〈f, ψj,k〉 . Starting with (2), we conclude

〈f, ψj,k〉 =
1

2
(2π)−1

∫

S1

∫

R

I−1g(θ, s)Rθψj,k(s) ds dθ

=
1

2
(2π)−1

∫

S1

∫

R

I−1g(θ, s)R−θψj,0
(
〈Djk, θ〉 − s

)
ds dθ

=
1

2
(2π)−1

∫

S1

(
I−1g(θ, ·) ∗ R−θψj,0

) (
〈Djk, θ〉

)
dθ .

This inversion formula is of filtered backprojection type and therefore allows for a
fast implementation. We are able to formulate an inversion formula to reconstruct
the approximation coefficients 〈f, φj,k〉 in the same way.

For practical applications the possibility to perform a progressive reconstruc-
tion is the main advantage of multiresolution tomographic reconstruction. Re-
constructing the approximation coefficients at a high decomposition level yields a
first impression of the specimen. After selecting a region of interest within the ap-
proximation only the detail coefficients of the selected region plus a certain border
must be reconstructed to achieve high resolution inside the region of interest. In
non-destructive testing progressive reconstruction can be used to incorporate pre-
vious knowledge about the specimen, the scanning geometry, and the inspection
task efficiently into the reconstruction method.
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Two side topics in Inverse Theory

P.C. Sabatier

(joint work with C. Sebu)

The talk contains two parts. The first one presents results already published by
PCS [1] It is shown how a Generalised Inverse Scattering Transform yields global
solutions of linear partial differential equations whose coefficients are solutions
of IST integrable nonlinear partial differential equations, in this sense that the
solution corresponding to a boundary condition either on the full x or t axis or
on the two half axes limiting the quarter-plane can be constructed. . Two simple
examples are:

(1)
∂a

∂t
+

1

4
a′′′ − 3

4
(aV ′ + a′V ) = 0

and:

(2)
∂a

∂t
+

1

4
a′′′ − 3

2
(aV )′ = 0

where V is a solution of the Korteveg de Vries equation, (which is that obtained
if V is relaced by a in Eq. (1)). Analogous results can be derived for equations
asssociated to the Nonlinear Schrödinger Equation. and for inhomogeneous forms
of these linear p.d.e.

The second part presents a simple way to estimate the resolving power of data
in Electrical Impedance Tomography, where the current Φ or ∂Φ

∂ν , (either one being
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externally driven), and the conductivity σ are measured on the surface ∂Ω of a
closed domain Ω, and an estimated value of σ is proposed inside Ω to fit these data.
the EIT problem has been thoroughly studied and many reviews exist, including
recent ones [2].There also exists a very refined analysis [3] of the information which
can be extracted by EIT, using Gabor Analysis, and concluding that ”a very
limited amount of information can be extracted from any real measurements”.
We give here an elementary approach. Following Ciulli et al. [4], we introduce the
Green functions GD, resp. GN , defined by:

(3) ∆yGN,D(x, y) = −δ(x− y)

and by a condition cancelling respectively GD and ∂
∂νGN on ∂Ω. Using them

in the Potential equation:

(4) ∆Φ(x) = −σ−1gradσ • gradΦ(x) =: −Y (x)

we can relate to Y the following functions, that can be ”measured” on ∂Ω

(5) χD(x) = −
∫

∂Ω

ds(z)
∂GD
∂ν

(x, z)Φ(z)

(6) χN (x) =

∫

∂Ω

ds(z)GN (x, z)
∂Φ

∂νz
(x, z) +

∫
∂Ω ds(z)Φ(z)∫

Ω
ds(z)

(7) χN (x) − χD(x) =

∫

Ω

dy [GD(x, y) −GN (x, y)] Y (y)

Hence Y is determined by the measurements thanks to a compact operator
whose kernel, say G, is symmetric (and harmonic). For a given ratio noise over
signal (say, η ), the singular value decomposition, taking also care of the null space,
shows the relevant eigenfunctions wn(x), the only ones to be kept: the projector
constructed out of them gives a range of estimates of Y , and transfering them in
the equation:

(8) Φ(x) = χN,D(x) +

∫

Ω

dy GN,D(x, y)Y (y)

where the indices N,D, correspond to each other, we get a similar information on
Φ. In [4], it is shown how σ can be determined (in C1 cases) from its boundary
value and that of Φ inside the domain. Hence we could proceed but it is simpler
to linearise the conductivity equation in the neighborhood of an estimate of Φ
and the corresponding calculated estimate of σ, then derive the variations of σ
from those of Φ and of the boundary value by means of the following equations,
obtained from Eq. (4), and by using the projector made out of all the wn; (we
assumed for simplicity that there is no error on the boundary values of σ ):



Mathematical Methods in Tomography 2099

(9) div(σ grad δΦ) = −div(δσ gradΦ)

(10) = −
N∑

1

wn(y)

∫ ∫ ∫

Ω

wn(x)divx [σ(x)grad δΦ(x)] =: [δ1Φ]

(11) [δ1Φ] (y) =

∫

Ω

dzδσ(z)

N∑

p=1

N∑

n=1

wn(y)wp(z)Φnp

this relation can be itself analysed by the singular value decomposition. The
resolving power of data is the width of the projector on relevant eigenfunctions
(Backus-Gilbert style) or equivalently the half wave length of the first discarded
eigenfunction. The results are of same order and show that at a given point
one can only determine the integral of σ along each i coordinate on intervals of
finite length, the ”resolving length’, centered at this point. Hence this length
depends on the order of the first discarded eigenvalue, which depends itselt on
η. Calculations on the example of the unit disc, with a two bumps conductity
(bumps of width .2) and η as .02, show a resolving length of the order of .5 radian
in the azimuthal coordinate, .1 in the radial one. The decreasing of eigenvalues
of G in this particular example is as a negative power, which predicts that the
resolving length decreases at most as a fractional power of η. This is consistent
with the estimate of reference [3] concerning the limitations of information that
can be extracted.
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Remarks on the general Funk transform

Victor Palamodov

1. Let X and Σ be n-dimensional manifolds and F is a closed hypersurface in
X × Σ that satisfies the conditions

(i) the projections p : F → X and π : F → Σ have rank n. The sets F (σ) =
π−1 (σ) , σ ∈ Σ and F (x) = p−1 (x) , x ∈ X are hypersurfaces in X, respectively,
in Σ;
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(ii) the mapping q : F → Gn−1T (X) is a local diffeomorphism, where q (x, σ) =
(x, θ) and θ denotes the tangent hyperplane to F (σ) and Gn−1T (X) denotes the
bundle of n− 1-subspaces in the tangent bundle T (X) of X.

The manifold F can be considered as a n-parameter family of hypersurfaces
F (σ) , σ ∈ Σ in X as well as the (dual) n-parameter family of hypersurfaces
F (x) , x ∈ X in Σ. The dual family also fulfils (ii).

The family F can be defined locally by the equation I (x, σ) = 0, where I is
a smooth function in X × Σ such that dI 6= 0. If the manifold F is cooriented,
a function I can be chosen globally; we call it incidence function. If F is not
cooriented, one can choose local functions Iα, α ∈ A such that Iβ = ±Iα in the
domain, where both functions Iα, Iβ are defined.

Proposition. The conditions (i) and (ii) are equivalent to the relation detΦ 6=
0 in F,where

Φ́ =

{
∂2I

∂xi∂σj

}n

i,j=0

where x1, ..., xn and σ1, ..., σn are local coordinates in X and in Σ, respectively
and ∂/∂x0, ∂/∂σ0 stand for identity operators.

2. The (generalized) Funk transform is defined for densities f inX with compact
support:

M f (σ)
.
= lim
ε→0

1

2ε

∫

|I(·,σ)|≤ε

f, σ ∈ Σ

It has compact support, if the following condition is fulfilled:
Example 1. LetX and Σ be unit spheres in Euclidean 3-spaces and F is defined

by the global incidence function I (x, σ) = x1σ1 +x2σ2 +x3σ3. The operator M is
the classical Minkowski-Funk transform for even densities. The dual operator M◦

is equivalent to M through the natural isomorphism X ∼= Σ.
The scale of Sobolev L2-norms ‖·‖α , α ∈ R is defined for functions with sup-

ported in a compact setK ⊂ X or in a set Λ ⊂⊂ Σ.Denote byHα
K (X,Ω) , Hα

K (X)
the space of distributions, respectively, of generalized functions supported in K
with finite norm ‖·‖α.

Proposition. For any locally complete family F an arbitrary compact set
K ⊂ X and any real α and any function φ ∈ D (Σ) the inequality holds

‖φM f‖α+(n−1)/2 ≤ Cα ‖f‖α
for f ∈ Hα

K (X,Ω).
3. The dual Funk transform M◦ is defined as the Funk transform for the dual

family of hypersurfaces. The operator −M◦ is dual to M. Fix some volume forms
dX in X and dΣ in Σ. The back projection operator

M∗ : g 7→M◦ (gdΣ) dX

transforms functions g defined in Σ to densities in X.
We say that points x, y ∈ X are conjugate with respect to a family F, if x 6= y

and the form dσI (x, σ) ∧ dσI (y, σ) defined in Σ vanishes.
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Theorem. Suppose that the family F has no conjugate points, then for any
α > β and an arbitrary set K ⊂⊂ X the below estimate holds for the Funk
transform

‖f‖α ≤ Cα ‖M f‖α+(n−1)/2 + Cβ ‖f‖β
of densities f supported in K.

Corollary. The eigenvalues λk of the operator M∗M numbered in descreasing
order satisfies the estimate

ck(1−n)/2 ≤ λk ≤ Ck(1−n)/2.

Corollary. Suppose that for some β < α the equation M f = 0, f ∈ Hβ
K (X,Ω)

implies f = 0. Then the last term can be dropped out and the two-side estimate
holds:

cα ‖f‖α ≤ ‖M f‖α+(n−1)/2 ≤ Cα ‖f‖α .
4. Let Hα (X,Ω) be the spaces of distributions in X that belong to Hα

K (X,Ω)
for any compact set K. The notation Hα (X) is used for the similar space of
functions.

Suppose that a locally complete family F satisfies the condition (iii) the map-
ping p : F → X is proper. If a density f is supported in a compact set K ⊂ X,
then M f is supported in the compact set Λ

.
= π

(
p−1 (K)

)
⊂ Σ. Then the dual

transform M◦ is well defined for all continuous densities in Σ and can be extended
to a continuous operator Hα (X,Ω) → Hα+1/2 (Σ) for any α.

We say that points x, y ∈ X,x 6= y are conjugate in the family F, if the form
dσI (x, σ) ∧ dσI (y, σ) vanishes.

Theorem. Suppose that the family F satisfies (iii) and has no conjugate points.
Then for arbitrary set K ⊂⊂ X and any α the image of the Funk operator

M : Hα
K (X,Ω) → H

α+(n−1)/2
Λ (Σ)

is closed and coincides with the annihilator of the space of densities ϕ that belong
to H−α−(n−1)/2 (Σ,Ω) and satisfy the equation

M◦ϕ (x) = 0, x ∈ X\K
Example 2. The Radon transform in the Schwartz space is equivalent to the

Funk transform as above for the class S0

(
P 2
)

of smooth densities f that are flat

on the infinite projective line P 1 ⊂ P 2. The orthogonality condition as above leads
to another proof of Helgason-Ludwig range conditions.

Example 3. The above results hold for the thermoacoustic acquisition geom-
etry. The family F of circles centered on a circular arc S in the plane is locally
complete in a compact set K, provided the angular length of S is ≥ π.

5. The Kaczmarz method can be adopted for inversion of the Funk transform.
Let F be a family of hypersurfaces in X × Σ that fulfils (iii) and K is a compact
set in X. We want to find a solution f ∈ L2 (K) of the equation M f = ϕ where
ϕ ∈ L2(Λ). Fix an volume form dX in X and consider the operator MM∗ :
L2 (Λ) → L2 (Λ) . It is non-positive; take any invertible operator R that fulfils
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R ≥ −MM∗. The operator R is positive and invertible. Take an arbitrary density
f0 and the sequence fk, k = 1, 2, ... defined by the recurrent formula

fk+1 = fk + ωM∗R−1
(
M fk − ϕ

)
.

Theorem. If M is injective and ϕ fulfils the consistency conditions, we have
fk → f, where f is a solution.
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Optimality of the fully discrete filtered backprojection algorithm in 2D

Andreas Rieder

(joint work with Arne Schneck)

Although the filtered backprojection algorithm (FBA) is the standard reconstruc-
tion algorithm in 2D computerized tomography for over 30 years its convergence
behavior is not completely settled so far. We study the convergence of the fully
discrete FBA and show its optimality.

Let R : L2(Ω) → L2(Z), Z = [−1, 1] × [0, 2π], be the Radon transform where
Ω is the unit disk in R2 centered about the origin:

Rf(s, ϑ) :=

∫

L(s,ϑ)∩Ω

f(x) dσ(x).

Thus, R maps functions to its integrals over the lines L(s, ϑ) = {τ ω⊥(ϑ) +
s ω(ϑ) | τ ∈ R} where ω(ϑ) = (cos ϑ, sin ϑ)t and ω⊥(ϑ) = (− sin ϑ, cos ϑ)t.

The FBA may be derived from the inversion formula

f =
1

4π
R∗(Λ ⊗ I)Rf
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which holds true for f ∈ L2(Ω) [3, Sec. 3.2]. Here, the backprojection operator

R∗g(x) =

∫ 2π

0

g(xtω(ϑ), ϑ) dϑ

is the adjoint of R and Λ is defined by

Λ̂u(ξ) = |ξ|û(ξ)

mapping Hα(Rd) boundedly to Hα−1(Rd). As usual, ŵ denotes the Fourier trans-
form of w ∈ L2(Rd) and Hα(Rd), α ∈ R, is the L2-Sobolev space with norm
‖w‖2

α =
∫

Rd(1 + |ξ|2)α|ŵ(ξ)|2dξ.
Assume we have observed discrete Radon data under the lateral and angular

sampling rates h = 1/q and hϑ = π/p, respectively. Due to Rieder and Faridani [3]
the FBA can then be expressed by

fFBA(x) := R∗
hϑ

(IhΛEh ⊗ I)Rf(x)

where

R∗
hϑ
g(x) := hϑ

2p−1∑

j=0

g(xtω(ϑj), ϑj), ϑj = jhϑ.

The operators Eh and Ih are generalized interpolation operators: For u ∈ Hα(R)
define

Ehu(s) := h−1
∑

k∈Z

〈
u, ǫh(· − sk)

〉
Bh(s− sk),

where ǫh(s) = ǫ(s/h) and Bh(s) = B(s/h). Further, B ∈ L2(R) is the ’interpola-

tion function’ and ǫ ∈ H−α(R) is assumed to be even with ǫ̂(0) = 1/
√

2π. Further,
〈·, ·〉 denotes the duality pairing in Hα(R) ×H−α(R). For u ∈ Hα(R), α > 1/2,
we may choose ǫ = δ (Dirac distribution). Thus, h−1〈u, ǫh(· − sk)〉 = u(sk).
Analogously,

Ihu(s) := h−1
∑

k∈Z

〈
u, ηh(· − sk)

〉
Ah(s− sk),

where η and A play the roles of ǫ and B, respectively. For more details on Eh and
Ih we refer to [3, Sec. 3.2]. Observe that

(1) (IhΛEh ⊗ I)Rf(s, ϑ) =
∑

ℓ∈Z

(∑

k∈Z

wℓ−k
〈
Rf(·, ϑ), ǫh(· − sk)

〉)
Ah(s− sℓ)

with wr = υ(r)/h2 where

υ(s) :=
1

π

∫ ∞

0

σ B̂(σ) η̂(σ) cos(sσ)dσ

is the reconstruction filter. Thus, the evaluation of fFBA(x) can be implemented
exactly as in [2, Chap. V.1.1]. The sum over k in (1) represents filtering.
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We require the following approximation properties of Eh and Ih, respectively:
There are non-negative constants τmax and βmin ≤ βmax such that1

(2) ‖Ehu− u‖τ ≤ Chβ−τ‖u‖β
for βmin ≤ β ≤ βmax, 1/2 ≤ τ ≤ τmax, τ ≤ β and any u ∈ Hβ(R) having a compact
support in [−1, 1].

There is a constant αI > 0 such that

(3) ‖Ih − I‖Hα−1/2(R)→H−1/2(R) ≤ Chα

for 0 ≤ α ≤ αI.
Now we can formulate our asymptotic error estimate, for a proof see Rieder and

Schneck [4].

Theorem Under (2) and (3) with βmax, τmax ≥ 3/2 we have that

∥∥f − 1

4π
R∗
hϑ

(IhΛEh ⊗ I)Rf
∥∥
L2(Ω)

≤ C(hα + hαϑ)‖f‖α, αmin ≤ α ≤ αmax,

where αmin = max{1, βmin − 1/2}, αmax = min{αI, βmax − 1/2, τmax − 1/2}, and
f ∈ Hα(R2) compactly supported in Ω.

Applying the theorem to concrete settings we find that

‖f − fFBA‖L2(Ω) ≤ C
(
hmin{αmax,α} + h

min{αmax,α}
ϑ

)
‖f‖α, α ≥ 1,

where

αmax =





3/2 Shepp-Logan filter with piecewise constant interpolation,

2 Shepp-Logan filter with piecewise linear interpolation,

5/2 mod. Shepp-Logan filter with piecewise linear interpolation.

The modified Shepp-Logan filter was introduced in [3] where also numerical ex-
periments illustrating the convergence orders can be found.

In view our asymptotic error estimate the choice h = hϑ is most efficient imply-
ing the optimal sampling rate p = πq, see, e.g., Natterer [2, Table III.1]. Further,
under the optimal sampling rate the convergence rate hα as h → 0 is optimal for
density distributions in Hα, see Natterer [1].
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Theoretical and Numerical Studies on Sampling in
Fan Beam Tomography

Steven H. Izen

1. Introduction

An analysis[3] of the integral kernels for two well-known fan beam CT reconstruc-
tion algorithms[6] was performed. It was found theoretically that the kernel for the
standard O(Ω4) fan beam tomography reconstruction has an essential bandregion
larger than prior numerical analyses had revealed. Here, Ω denotes the essential
bandwidth in the reconstructed image. It was also shown that the approximate
kernel used in the O(Ω3) convolution-backprojection reconstruction algorithm has
an essential bandregion which is significantly different from that of the fan beam
data. Those calculations imply that properly sampled implementations of the re-
construction algorithms require the fan beam projection data to be available at
higher sampling densities than is needed for the recovery of the fan beam data
itself.

The results of numerical experiments on the sampling requirements for both
algorithms were presented. It was demonstrated that to avoid aliasing artifacts
with the O(Ω3) algorithm, the operational sampling density must be greater than
that needed to recover the fan beam data.

2. Theoretical Analysis

For fixed scan and source radii ρ and r, with ρ < r, and f ∈ C∞
c (Bρ), the fan

beam transform is defined by

Df(β, α) =

∫ ∞

0

f(b+ tc)dt,

where b = (r cosβ, r sinβ)T , c = (cos(π + α+ β), sin(π + α+ β))T . Let θ = ρ/r.
Let vΩ be the classic ramp filter used for Radon inversion and VΩ be the corre-

sponding an Ω-bandlimited approximate delta function. The bandwidth Ω in the
reconstructed image determines resolution.

The exact reconstruction formula is of complexity O(Ω4):

(VΩ ∗ f)(x) = r

∫ 2π

0

∫ π/2

−π/2

v|b−x|Ω(sin (γ(β;x) − α))

|b− x|2 cosαDf(β, α)dαdβ

=

∫ 2π

0

∫ π/2

−π/2

hE(β, α;x)Df(β, α)dαdβ.
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To obtain a reconstruction of complexity O(Ω3), the kernel bandwidth is fixed at
rΩ. This gives the approximate reconstruction formula:

(VΩ ∗ f)(x) ≈ r

∫ 2π

0

|b− x|−2

∫ π/2

−π/2

vrΩ(sin (γ(β;x) − α)) cosαDf(β, α)dαdβ

=

∫ 2π

0

∫ π/2

−π/2

hA(β, α;x)Df(β, α)dαdβ,

where γ(β, x) is the fan angle to the reconstruction point x from a source at
angle β.

To study the sampling requirements for the exact or approximate reconstruction

formulas, the essential supports of the Fourier transforms D̂f(k, 2a), ĥA(k, 2a;x),

and ĥE(k, 2a;x) are needed.
For an essentially Ω-bandlimited f ∈ C∞

c (Bρ) and large Ω it has been deter-
mined that the essential bandregions of KΩ of Df [5, 7], KE

Ω [3], and KA
Ω [3] are

slightly larger than the regions

KΩ =
{
(k, 2a) ∈ Z × 2Z

∣∣ |2a− k| ≤ Ωr, |k|r ≤ |k − 2a|ρ
}
,

KA
Ω =

{
(k, 2a) ∈ Z × 2Z

∣∣ |2a| ≤ Ωr, |k|r ≤ |k − 2a|ρ
}
,

KE
Ω ⊆

{
(k, 2a) ∈ Z × 2Z

∣∣ |2a− k| ≤ Ωr, |k| ≤ ρΩ
}
.

In order to choose a sampling lattice LW sufficient to recover Df , it is necessary
to ensure that shifts of KΩ by elements of the dual lattice L⊥

W do not overlap

KΩ[8]. This can be accomplished by choosing ∆β ≤ π
rΩ

r+ρ
ρ , ∆α ≤ π

rΩ . L⊥
W is

generated by the matrix W⊥ =

(
ξ1 0
0 ξ2

)
, where ξ1 >

2rρΩ
r+ρ , ξ2 > 2rΩ. The

essential bandregionKA
Ω is not the same asKΩ. Hence, to compute an approximate

reconstruction without sampling error, one of two approaches must be taken.

• Work with an essential bandregion of K = KΩ ∪ KA
Ω . In this case, one

must select ξ1 >
2r2ρΩ
r2−ρ2 , ξ2 > (2r + ρ)Ω. This requires a denser sampling

by a factor of 2r2ρ
r2−ρ2 /

2ρr
r+ρ = (1 − θ)−1 finer in the β direction and a factor

of (2r + ρ)/(2r) = 1 + θ/2 in the α direction. For θ = 1/3, these factors
are 3/2 and 7/6, respectively.

• Df must be interpolated, or resampled[1, 2], to a sampling lattice suitable

for KA
Ω . The requirements are ξ1 >

2r2ρΩ
r2−ρ2 , ξ2 > 2rΩ.

3. Numerical Results

For brevity, only a small illustrative selection of the results of some numerical
experiments are shown.

The Fourier transform of the approximate kernel, ĥA(k, 2a;x) for Ω = 390,
with sampling distance at Nyquist for Ω = 400, and |x| = 0.95 is shown next to

|D̂f |(k, 2a) and the reconstructed image.
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The absolute value of the Fourier transform of the approximate kernel,

ĥA(k, 2a;x) for Ω = 390, with two times oversampling in both β and α for Ω = 400,

and |x| = 0.95 is shown next to |D̂f |(k, 2a) and the reconstructed image.

This shows | ̂(hE − hA)(k, 2a;x)| for Ω =
390, at ideal sampling for Ω = 400 and
|x| = 0.95. This demonstrates that the
approximate kernel differs from the exact
kernel primarily in high frequency con-
tent. Indeed, there is remarkable agree-
ment in the region of KE

Ω ∩KA
Ω , partially

explaining the good performance of the
approximate reconstruction.
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Shape reconstruction and structural inversion for medical, geophysical
and industrial tomography

Oliver Dorn

(joint work with Rossmary Villegas)

There exist many important tomography problems in medical, geophysical and
industrial applications where only few data are available and where no explicit
inversion formula is available in order to reconstruct the quantities of interest from
these data. One classical example is the history matching problem in petroleum
engineering where the task is to recover the permeability structure of a petroleum
reservoir from production data. Other examples are the detection of land mines
or the monitoring of pollutant plumes in the Earth from electromagnetic data, the
imaging of marker distributions in fluorescence tomography, or the early detection
of breast cancer using near-infrared light or microwaves, to mention only a few.

In these very ill-posed inverse problems it is essential to be able to use addi-
tional prior information for the inversion in order to reduce non-uniqueness and
to stabilize the reconstruction of the quantities of interest. Often, this prior in-
formation indicates that sharp discontinuities (e.g., between regions of different
materials) are to be expected in the domain of interest. For example, when ex-
ploring a petroleum reservoir, the field engineer knows fairly well which rock or
soil types are present in the reservoir (e.g., sand and shale as in our numerical
examples,) such that the task can be reduced to finding the exact distributions
of these different materials, as well as certain smooth variations of permeability
properties inside each of these different regions (satisfying some region-dependent
characteristics and limits) from the data.

In the talk, we present a novel structural inversion technique which uses a
level set representation for describing the different regions and their topologies
during the reconstruction. The level set technique is well known to be able to
model topological changes in a completely automatic fashion. This is an important
feature in our inversion scheme since the topologies of the different regions are
unknown a priori and need to be recovered from the data. We refer for a detailed
overview of different level-set based strategies for solving such structural inverse
problems to the recent review articles [1, 2]. Our example will be the already
mentioned history matching problem in reservoir engineering, which is outlined
briefly in the following. More details regarding this example can be found in [3, 4].

In secondary oil recovery, water is injected under high pressure into so-called
injection wells in order to enhance oil production at the production wells. Our
simplified model for the resulting two-phase flow of oil and water in the Earth
(modeled as a porous medium) is

−∇ ·
[
T∇p

]
= Q in Ω × [0, tf ](1)

φ
∂Sw
∂t

−∇ ·
[
Tw∇p

]
= Qw in Ω × [0, tf ](2)
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for the two unknowns p (pressure) and Sw (water saturation). In the following,
the subindices w and o will always indicate ’water’ and ’oil’, respectively. Ω ⊂ Rn

(n = 2, 3) is the modeling domain with boundary ∂Ω, and [0, tf ] is the time interval
for which production data is available. We denote by φ(x) the porosity, and by
To, Tw and T the transmissibilities, which are known functions of the permeability
K and the water saturation Sw:

(3) Tw = K(x)
Krw(Sw)

µw
; To = K(x)

Kro(Sw)

µo
; T = Tw + To .

Here, the relative permeabilities Krw(Sw) and Kro(Sw) are typically available as
tabulated functions, and µw and µo denote the viscosities of each phase. The
quantities Qo, Qw and Q = Qo + Qw represent the flows (oil, water, and total,
resp.) at the few injection and production well locations in the reservoir. They
define the measured data of our inverse problem. Equations (1)-(3) are solved
with appropriate initial conditions, and a no-flux boundary condition on ∂Ω.

In the shape inverse problem we assume now that the parameter K has the
following specific form

K(x) =

{
Ki(x), where ψ(x) ≤ 0
Ke(x), where ψ(x) > 0 .

(4)

In this representation, ψ(x) is the describing level set function. The two regions
D (shale) and Ω\D (sand) are accordingly given as D = {x ∈ Ω : ψ(x) ≤ 0} and
Ω\D = {x ∈ Ω : ψ(x) > 0}. The boundary of D (denoted as Γ = ∂D) is defined
by the zero level set of the level set function ψ, i.e., ∂D = {x : ψ(x) = 0}.

To solve this problem, we will adopt here a time evolution approach. We write
(and identify in the notation) ψ(x) = ψ(x, τ) (and we will use similar expressions
for Ki and Ke), where τ is the artificial evolution time. The inverse problem
can be stated as follows: find a level set function ψ(x) and internal permeability
profiles Ki(x) and Ke(x) in (4) for which a suitably chosen cost functional (here
defined in (7)) is minimized. We consider the general evolution laws

(5)
dψ

dτ
= f(x, τ, ψ, . . .),

dKi

dτ
= hi(x, τ, ψ, . . .),

dKe

dτ
= he(x, τ, ψ, . . .)

for the level set function ψ and for the corresponding internal permeability profiles
Ki and Ke. The goal is to find forcing terms f , hi, and he such that the evolution
converges to the desired solution of the inverse problem. We can write (4) in the
form

(6) K(ψ) = KeH(ψ) + Ki(1 −H(ψ)),

where H denotes the Heaviside function. We denote the mapping from the un-
known permeability K to the corresponding data by A, and the physically mea-
sured data by g. Then, we consider the least squares cost functional

(7) J(Ke,Ki, ψ) =
1

2
‖R(K(Ke,Ki, ψ))‖2

2
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with R(K) = A(K) − g being the classical residual operator. Formally differenti-
ating by the chain rule yields

(8)
dJ

dτ
=

∫

Ω

R′(K)∗R(K)

(
∂K

∂ψ

dψ

dτ
+

∂K

∂Ke

dKe

dτ
+

∂K

∂Ki

dKi

dτ

)
dx

where R′(K)∗ is the formal adjoint of the linearized residual operator R′(K). The

expresssions ∂K
∂ψ , ∂K

∂Ke
and ∂K

∂Ki
can be calculated from (6), and the expressions dψ

dτ ,
dKe

dτ and dKi

dτ are given by (5). Plugging this into (8) yields the descent directions

f
d

= −C1(Ke −Ki)R
′(K)∗R(K)χΓ(ψ)

hid = −C2(1 −H(ψ))R′(K)∗R(K)

hed
= −C3H(ψ)R′(K)∗R(K),

for the cost (7), where C1, C2 and C3 are arbitrary positive constants and χΓ(ψ)
is a positive valued approximation to the Dirac delta distribution δ(ψ) = H ′(ψ).
We will use as χΓ(ψ) a narrowband function which is one in a small neighborhood
of Γ = {x : ψ(x) = 0} and zero elsewhere. Plugging these expressions into (5),
applying some additional smoothing (regularization, see [1, 2, 3, 4]) to the right
hand sides and discretizing the time derivatives d

dτ by a straightforward finite
difference scheme gives us an update rule for each step in the artificial evolution
of shape and parameter values. The expressions R′(K)∗R(K) are evaluated by
a so-called adjoint scheme which only requires us to run one forward simulation
(1)-(3) on the latest parameter distribution and one additional adjoint simulation
which corresponds to the formal adjoint of the linearized forward problem. For
more details regarding these simulations we refer to [3, 4], where also various
numerical results for realistic situations in reservoir characterization (as presented
in the talk) can be found.
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Advances and challenges in vector field tomography

Thomas Schuster

Tensor field tomography means to recover a tensor field, or part of it, from given
observations which usually are line integrals over projections of the field in di-
rection of the line. Vector field tomography particularly deals with the problem
of reconstructing a vector field, e.g. a velocity field of an incompressible moving
fluid. Here, the integral data can be measured using ultrasound signals and as-
suming that the Doppler shift of the frequency is approximately proportional to
the velocity of the particle in the fluid which causes the shift. This is a reasonable
assumption when the particle velocity is significantly smaller than the speed of
sound within the medium under consideration. A lot of theoretical and numerical
results have been achieved over the last years for the parallel gemetry. Juhlin
[4] suggested a measurement setup which is suited to get full reconstruction of
solenoidal fields. Mathematical properties of this model can be found in Sparr
et al. [14]. The singular value decomposition has been presented in a paper by
Kazantsev and Bukgheim [5]. Desbat and Wernsdörfer [1] developed an iterative
method. The author established an inversion scheme of filtered backprojection
type [11, 12] relying on the method of approximate inverse and together with
Rieder [10] obtained convergence with rates and stability with respect to noisy
data for this method.
As in scalar 3D computerized tomography, the cone beam transform is of special
interest from a practical point of view. It is defined for a tensor field of rank m by

(1) Df(α, ω) =

∞∫

0

〈f(α + tω), ωm〉dt =

∞∫

0

fi1···im(α+ tω)ωi1 · · ·ωim dt ,

where α ∈ Γ is a source point of the scanning curve Γ ⊂ Rn\Ω which surrounds
the object Ω, ω ∈ S2 is the unit vector of direction of the line and f is a tensor
field of rank m with compact support in the open domain Ω. In (1) we use
Einstein’s summation convention, that means we sum up over equal indices ij ,
where 1 ≤ ij ≤ n. For m = 1 (1) is the cone beam transform for vector fields. It
reads

(2) Df(α, ω) =

∞∫

0

〈f(α + tω), ω〉dt .

The space of square integrable, symmetric covariant tensor fields of rank m in
Ω ⊂ Rn is denoted by

L2(Ω,Sm) := {f ∈ Sm : ‖f‖L2 = 〈f , f〉1/2L2 <∞} ,
where the L2-inner product of two tensor fields is given as

〈f ,g〉L2 =

∫

Ωn

fi1···im(x) gi1···im(x) dx .
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Fundamental properties of (1) are summarized in the following theorem, which is
the result of straightforward calculations.

Theorem 1
Let Ωn := {x ∈ Rn : |x| < 1} with ∂Ωn = Sn−1. The mapping D : L2(Ωn,Sm) →
L2(Γ × Sn−1) is linear and bounded, if

∫

Γ

(|α| − 1)1−n dα <∞ .

The adjoint (backprojection) D∗ : L2(Γ × Sn−1) → L2(Ωn,Sm) is given by

D∗g(x) =

∫

Γ

{
|x− α|1−n−m g

( x− α

|x− α|
)

(x− α)m
}

dα ,

where (x− α)m = (x− α) ⊗ · · · ⊗ (x − α) ∈ Sm.

For m = 0, n = 3 we obtain the well-known cone beam transform with the corre-
sponding backprojection operator of scalar fields which is thoroughly investigated
in 3D computerized tomography. For m = 1, n = 3 we have the mathematical
model of 3D cone beam vector tomography and the backprojection reads

D∗g(x) =

∫

Γ

|x− α|−2 g
( x− α

|x− α|
) x− α

|x− α| dα

One of the crucial tools when computing reconstruction kernels in scalar cone
beam tomography is represented by the formula of Grangeat [2]. We proved a
generalization of that formula which is valid for any tensor field of rank m in n
dimensions.

Theorem 2 (Sch. 2005 based on Hamaker et al. [3])

Assume n ≥ 2 and f ∈ C(n−2)
0 (Ωn,Sm). Then,

∂(n−2)

∂s(n−2)
Rfα(ω, 〈α, ω〉) = (−1)(n−2)

∫

Sn−1

Df(α, θ) δ(n−2)(〈ω, θ〉) dS(θ) ,

where α ∈ Γ, ω ∈ Sn−1, R is the n-dimensional Radon transform and

fα(x) = 〈f(x), |x − α|−m(x − α)m〉
= fi1···im(x)|x − α|−m(x− α)i1 · · · (x− α)im .

Proof. The proof is outlined in [13] and is based on a more general identity by
Hamaker et al. [3]. Let ψ(s) be defined on [−1, 1] and h(θ) be defined on Sn−1.
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Then, by duality

∫ 1

−1

Rfα(ω, s)ψ(s) ds =

∫

Ωn

fα(x)ψ(〈x, ω〉) dx

=

∫

Ωn

〈f(x), |x − α|−m(x− α)m〉ψ(〈x, ω〉) dx

=

∫

Ωn

〈f(x), |x − α|1−n−m(x− α)m〉h
( x− α

|x− α|
)

dx

=

∫

Sn−1

Df(α, θ)h(θ) dS(θ)

is fulfilled, if

h(θ) = δ(n−2)(〈θ, ω〉) , ψ(s) = δ(n−2)(s− 〈α, ω〉) ,

where δ denotes Dirac’s delta distribution. Of course, to be mathematically exact
we have to replace δ by a sequence which smoothly converges to δ in L2. �

For m = 0, n = 3 this gives the classical formula of Grangeat from which an
inversion method can be deduced immediately if only Tuy’s condition is satisfied,
see e.g. Natterer, Wübbeling [9]. For m = 1, n = 3 we obtain the extension to the
important case of cone beam vector tomography

(3)
∂

∂s
Rfα(ω, 〈α, ω〉) =

∫

S2∩{〈θ,ω〉=0}

〈∇yDf(α, y = θ), ω〉dS(θ)

Unfortunately, (3) does not lead to an inversion scheme since here the function fα
depends on the source α. The construction of numerical inversion techniques for
cone beam vector tomography is subject of current research. First ideas consist
of using the method of approximate inverse, established by Louis, Maaß [8], Louis
[6, 7], using the formula of Grangeat (3) or techniques known from the scalar case
e.g. by approximating

Df(α, ω)ω ≈
∞∫

0

f(α + tω) dt .

The method of approximate inverse consists of choosing a mollifier ejγ(x, ·) =

γ−3e((x − ·)/γ) · ej ≈ δx · ej , j = 1, 2, 3, which must be seen as a smooth ap-
proximation to δx and aims to calculate fγj (x) = 〈f , ejγ(x, ·)〉L2 . This is done by
computing reconstruction kernels as solutions of

D∗vjγ(x) = ejγ(x, ·)

followed by evaluations fγj (x) = 〈Df , vjγ(x)〉L2 . The computation of the singular
value decomposition or projection methods could also be useful tools for the de-
velopment of inversion approaches.
The pictures below show reconstruction results of a solenoidal field and its curl for
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Figure 1. Reconstruction of f(x) = (1−x2

1
−x2

2
)·e3 and its curl ∇×f(x) =

2(−x2, x1, 0)⊤ by the method of approximate inverse. The pictures were
generated by the software package Vetolab created by A. Domma and the

author.

the parallel geometry based on the measurement setup suggested by Juhlin. The
data are given as

Pf(x, ω) =

∞∫

0

〈f(x + tω), ω〉dt ,

where ω ∈ S2∩{e⊥j }, x ∈ {ω⊥}. The mollifier has been chosen as e(x) = (1−|x|2)2+.

References

[1] L. Desbat and A. Wernsdörfer, IEEE Trans. Trans. Signal Process. 43:8 (1995), 1798.
[2] P. Grangeat, Mathematical framework of cone-beam reconstruction via the first derivative

of the Radon transform, in G.T. Herman, A.K. Louis, and F. Natterer (eds.): Lecture Notes
in Math. (Springer, New York) 1497 (1991), 66-97.

[3] C. Hamaker, K.T. Smith, D.C. Solmon, and S.L. Wagner, The divergent bean X-ray trans-
form, Rocky Mountain J. Math. 10 (1980), 253–283.

[4] P. Juhlin, Principles of Doppler Tomography, technical report, Center for Mathematical
Sciences, Lund Institute of technology, SE-221 00 Lund, Sweden (1992).

[5] S.G. Kazantsev and A.A. Bukgheim, Singular value decomposition for the 2D fan-beam
Radon transform of tensor fields, J. Inv. Ill-Posed Prob. 12:3 (2004), 245–278.

[6] A.K. Louis, Approximate inverse for linear and some nonlinear problems, Inverse Problems
12 (1996), 175–190.

[7] A.K. Louis, A unified approach to regularization methods for Linear ill-posed problems,
Inverse Problems 15 (1999), 489–498.

[8] A.K. Louis and P. Maaß, A mollifier method for linear operator equations of the first kind,
Inverse Problems 6 (1990), 427–440.
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On inversion of the spherical mean Radon transform

Leonid A. Kunyansky

Reconstruction of a function from its integrals over spheres (or circles in 2-D)
is equivalent to inverting the so-called spherical mean (circular) Radon transform.
Solution of this problem is required, in particular, in the thermoacoustic and pho-
toacoustic tomography. In this case centers of the integration spheres (circles) lie
on a closed surface surrounding the support of the function to be reconstructed.
Several explicit inversion formulas are currently known for the case when the cen-
ters lie on a sphere in an odd-dimensional space [1, 2]. In the 2-D case, however,
only a series solution for the circular domain is known [3]. The numerical imple-
mentation of this approach is complicated by the zeros of the Bessels functions in
the denominator of the formula. We thus present a closed form exact inversion
formula of the filtration/backprojection type for the circular geometry.

Given a C1
0 function f(x) compactly supported within the disk B let us denote

by g(z, r) the known value of the integral from f(x) along a circle of radius r
centered at the point z:

g(z, r) =

∫

B

f(x)δ(r − |x − z|)dx, z ∈ ∂B.

Our goal is to reconstruct f(x) from values g(z, r) known for all z ∈ ∂B, 0 ≤ r ≤
2R.

Consider functions GJ (y, k) and GY (y, k) defined for an arbitrary non-negative
k as the following convolutions

GJ (y, k) =

∫

B

f(x)J0(k|y − x|)dx,(1)

GY (y, k) =

∫

B

f(x)Y0(k|y − x|)dx.

If values of GJ (y, k) were known for all k ≥ 0 then it would be easy to compute
f(y) using the formula

(2) f(y) =
1

2π

∫ ∞

0

GJ(y, k)kdk.

In turn, in order to reconstruc GJ(y, k) we observe that for a fixed k this function
is a solution of Helmholtz equation in B, and that the boundary values of GJ (y, k)
and GY (y, k) can be obtained from the known function g(z, r), namely
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(3) GJ(z, k) =

2R∫

0

g(z, r)J0(kr)dr, GY (z, k) =

2R∫

0

g(z, r)Y0(kr)dr, z ∈ ∂B.

Our derivation is based on the Helmholtz representation for J0(k|x − y|)

(4)

J0(k|x−y|) = −1

4

∫

∂B

[Y0(k|z−x|) ∂

∂nz

J0(k|z−y|)−J0(k|z−y|) ∂

∂nz

Y0(k|z−x|)]dlz

modified as follows

(5)

J0(k|x−y|) = −1

4

∫

∂B

[Y0(k|z−x|) ∂

∂nz

J0(k|z−y|)−J0(k|z−x|) ∂

∂nz

Y0(k|z−y|)]dlz.

Unlike the standard representation (4) equation (5) is not valid for general do-
mains. However, by harmonic decomposition one can verify that the latter formula
holds in the particular case of the circulad domain B. For convinience we re-write
equation (5) in the divergence form:
(6)

J0(k|x−y|) =
1

4
div y

∫

∂B

[Y0(k|z−x|)J0(k|z−y|)−J0(k|z−x|)Y0(k|z−y|)]nzdlz.

Now the reconstruction formula we seek results from combining equtions (1), (2),
and (6):

f(y) =
1

2π

∫ ∞

0

GJ(y, k)kdk =
1

2π

∫ ∞

0

∫

B

f(x)J0(k|y − x|)dxkdk

=
1

8π
div

∫ ∞

0

∫

B

f(x)

∫

∂B

(7)

[Y0(k|z − x|)J0(k|z − y|) − J0(k|z − x|)Y0(k|z − y|)]nzdlzdxkdk

=
1

8π
div

∫

∂B

(∫ ∞

0

[GY (z, k)J0(k|z − y|) −GJ (z, k)Y0(k|z − y|)]kdk
)

nzdlz,(8)

where GY (z, k) and GJ(z, k) are computed from g(z, r) using equations (3).
Alternatively, inversion formula (8) can be re-written in a more compact form

by utilizing the Hankels function H
(1)
0 (t) = J0(t) + iY0(t):

f(y) =
1

8π
div Im

∫

∂B



∫ ∞

0




2R∫

0

g(z, r)H
(1)
0 (kr)dr


H(1)

0 (k|z − y|)kdk


nzdlz.
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The above derivation of the reconstruction formula can be easily extended to
higher dimensions. In the odd-dimensional case the so-obtained formulas can
be further simplified. In particular, in R3 this approach results in the inversion
formula equivalent to the one obtained in [2].

In addition to the problems with spherical data acquisition surface described
above we also present a series solution for the inversion of the spherical mean
Radon transform with the centers of the integration spheres supported on certain
non-spherical surfaces.
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Filter Construction in Cone Beam Tomography

Alfred K. Louis

We consider the X-ray reconstruction problem in three dimensions when the data
is measured by firing an X-ray tube emitting rays to a 2D detector. We first derive
an exact inversion formula, then, based on this, we derive an approximation which
allows both to control the discretization error and to establish fast implementa-
tions.
The movement of the combination source - detector determines the different scan-
ning geometries. In many real - world applications the source is moved on a circle
around the object. From a mathematical point of view this has the disadvantage
that the data are incomplete, the condition of Tuy-Kirillov is not fulfilled. This
condition says, that essentially the data are complete for the three - dimensional
Radon transform: all planes through a point x have to cut the scanning curve Γ.
We base our considerations on the assumptions that this condition is fulfilled, the
method also works if the data are at the end from real data given for the above
described circular scanning geometry, see [Lou06].

A first theoretical presentation of the reconstruction kernel was given by Finch
[Fin87], invariances were then used in the group of the author to speed-up the
computation time considerably, so that real data could be handled, see [Lou03].
See also the often used algorithm from Feldkamp et al. [FDK84] and the contribu-
tion of Defrise and Clack [DC94]. The approach of Katsevich [Kat02] differs from
our approach that he avoids the Crofton symbol by restricting the backprojection
to a range dependent on the reconstruction point x. An overview of reconstruction
formulas based on a general projection theorem is given in Zhao, Yu and Wang,
[ZYW05].
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The mathematical model here is the so-called X-ray transform, where we denote
with a ∈ Γ the source position, where Γ ⊂ R3 is a curve, θ ∈ S2 is the direction of
the ray:

Df(a, θ) =

∫ ∞

0

f(a+ tθ)dt

The adjoint operator of D as mapping from L2(R
3) −→ L2(Γ × S2) is given as

D∗g(x) =

∫

Γ

|x− a|−2g

(
a,

x− a

|x− a|

)
da

Most attempts to find inversion formulae are based on a relation between X-ray
transform and the 3D Radon transform, the so-called Formula of Grangeat, first
published in Grangeat’s PhD thesis [Gr87], see also [Gr91] :

∂

∂s
Rf(ω, a⊤ω) = −

∫

S2

Df(a, θ)δ′(θ⊤ω)dθ.

Starting point is now the inversion formula for the 3D Radon transform

(1) f(x) = − 1

8π2

∫

S2

∂2

∂s2
Rf(ω, x⊤ω)dω

rewritten as

f(x) =
1

8π2

∫

S2

∫

R

∂

∂s
Rf(ω, s)δ′(s− x⊤ω)dsdω

We assume in the following that the Tuy-Kirillov condition is fulfilled. Then we
can change the variables as: s = a⊤ω, n is the Crofton symbol; i.e., the number
of source points a ∈ Γ such that a⊤ω = x⊤ω, m = 1/n and get

f(x) =
1

8π2

∫

S2

∫

Γ

(Rf)′(ω, a⊤ω)δ′((a− x)⊤ω)|a′⊤ω|m(ω, a⊤ω)dadω

= − 1

8π2

∫

S2

∫

Γ

∫

S2

Df(a, θ)δ′(θ⊤ω)dθδ′((a− x)⊤ω)|a′⊤ω|m(ω, a⊤ω)dadω

= − 1

8π2

∫

Γ

|x− a|−2

∫

S2

∫

S2

Df(a, θ)δ′(θ⊤ω)dθδ′(
(x− a)

|x− a|
⊤

ω)

×|a′⊤ω|m(ω, a⊤ω)dadω

where we used that δ′ is homogeneous of degree −2. We now introduce the fol-
lowing operators

(2) T1g(ω) =

∫

S2

g(θ)δ′(θ⊤ω)dθ

and we use T1 acting on the second variable as

T1,ag(ω) = T1g(a, ω) .

We also use the multiplication operator

(3) MΓ,ah(ω) = |a′⊤ω|m(ω, a⊤ω)h(ω) .

and state the following result.
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Theorem 3. Let the condition of Tuy-Kirillov be fulfilled. Then the inversion
formula for the cone beam transform is given as

(4) f = − 1

8π2
D∗T1MΓ,aT1Df

with the adjoint operator D∗ of the cone beam transform and T1 and MΓ,a as
defined above.

Note that the operators D∗ and M depend on the scanning curve Γ.

This form allows for computing reconstruction kernels. To this end we have to
solve the equation

D∗ψγ = eγ

in order to write the solution of Df = g as

f(x) =< g, ψγ(x, · ) > .

In the case of exact inversion formula eγ is the delta distribution, in the case of
the approximate inversion formula it is an approximation of this distribution, see
the method of approximate inverse [Lou96]. Using that D−1 = − 1

8π2 D
∗T1MΓ,aT1

we get

D∗ψ = δ = − 1

8π2
D∗T1MΓ,aT1Dδ

and hence

(5) ψ = − 1

8π2
T1MΓ,aT1Dδ

Depending on the scanning curve Γ invariances have to be used. For the circular
scanning geometry this leads to similar results as mentioned in [Lou03]. Recon-
structions from real data are given in [Lou06].
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Télécommunications (1987)

[Gr91] P. Grangeat, Mathematical framework of cone beam 3-D reconstruction via the first de-
rivative of the Radon transform in Herman, G. T., Louis, A.K. and Natterer, F., editors,
Mathematical Methods in Tomography. Springer, Berlin (1991) 66–97.

[Kat02] A. Katsevich, Analysis of an exact inversion algorithm for spiral-cone beam CT. Phys.
Med. Biol. 47 (2002), 2583–2597.

[Lou89] A.K. Louis, Inverse und schlecht gestellte Probleme Teubner, Stuttgart (1989).
[Lou96] A.K. Louis, The approximate inverse for linear and some nonlinear problems. Inverse

Problems 12 (1996), 175–190.



2120 Oberwolfach Report 34/2006

[Lou03] A.K. Louis, Filter design in three-dimensional cone beam tomography: circular scanning
geometry. Inverse Problems 19 (2003), S31–S40.

[Lou06] A.K. Louis. Development of algorithms in computerized tomography. PSAPM ( AMS
Proceedings of Symposia in Applied Mathematics ) 63 25-42, 2006

[LMR97] A.K. Louis, P. Maass, A. Rieder Wavelets : Theory and Applications. Wiley, Chichester
(1997).

[Nat86] F. Natterer The mathematics of computerized tomography Teubner-Wiley, Stuttgart
(1986).
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Tikhonov regularization with non - standard constraints for
tomography

Ronny Ramlau

(joint work with Gerd Teschke, Wolfgang Ring)

1. Introduction

In Inverse and Ill - posed problems, Tikhonov regularization has frequently been
used to compute a stable approximation to the solution of linear as well as non-
linear operator equations F (x) = y. The solution is approximated by a global
minimizer of the Tikhonov functional,

(1) xδα = argmin
x
Jα(x) = arg min

x

{
‖yδ − F (x)‖2 + αΩ(x, x̄)

}
,

where Ω denotes the chosen penalty term, yδ the noisy data and x̄ is an a pri-
ori guess to the solution. The regularization parameter α has to be chosen in
dependence of the noise level such that xδα(δ) converges to a solution of the equa-

tion as δ → 0. The penalty term has a vital influence on the features of the
reconstruction. In most cases, in particular for nonlinear operators, the penalty
Ω(x, x̄) = ‖x − x̄‖2

X , with X a Hilbert space, is chosen. In the following, we
will propose two different types of penalties for tomographic applications: sparsity
constraints and a penalty on the perimeter of the singularity set of a function.
The resulting schemes were applied to SPECT and CT data.

2. Sparsity constraints

Sparsity constraints are used to enforce a computed reconstruction to have a
sparse representation with respect to some given bases or frames, but they can
also be used to create Besov norm penalties. In some tomographic applications,
e.g. SPECT, the function that has to be reconstructed has a sparse representation
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with respect to compactly supported Wavelet bases, thus it seems useful to obtain
sparse reconstructions also. For numerical illustrations, we refer to [1].

Let {Φλ}λ∈Λ ⊂ X be a Frame. Then we can define the following operator and
its adjoint:

T :X → ℓ2 Tx = x = {〈x,Φλ〉}λ∈Λ(2)

T ∗ :ℓ2 → X T ∗
x =

∑

λ∈Λ

xλΦλ(3)

Denoting xλ = 〈x,Φλ〉, we introduce the functional

Ψp,β(x) =

(∑

λ

βλ|xλ|p
)1/p

with some positive weights βλ ≥ 1, and investigate Tikhonov regularization with
penalties Ψp,β and Ψp

p,β. First, we will present a regularization result:

Theorem 1:Let F be a strongly continuous operator and yδ ∈ Y with ‖yδ − y‖ ≤
δ. Assume that the solution x

† as well as x̄ have finite value of Ψp,β. Let the
regularization parameter be chosen by the following rule:

α(δ) → 0
δ2

α(δ) → 0

}
as δ → 0 .

Then every sequence {xδk

αk
} of minimizers of the functional Jα(x), where δk → 0

and αk = α(δk) has a convergent subsequence. The limit of every convergent
subsequence is a solution of F (T ∗

x) = y with minimal value of Ψp,β(x − x̄). If,
in additition, the solution x

† with minimal Ψp,β(x − x̄) is unique, then we have
with respect to Ψp,β

(4) lim
δ→0

x
δ
α(δ) = x

† .

We wish to remark that this result holds for both penalty terms. To use the
method, we have to provide a minimization algorithm for the functional. We
propose the so called Surrogate functionals, i.e. we introduce Jsα(x,a) = Jα(x) +
C‖x − a‖2 − ‖F (T ∗

x) − F (T ∗
a)‖2, and compute the sequence

xk+1 = argmin
x
Jsα(x,xk).

It turns out that the surrogate functional can be minimized easily, and the se-
quence {xk} converges towards a critical point of the Tikhonov functional. For
more details, we refer to [1, 2]. A different minimization approach would be to
use the generalized conditional gradient method [4]. The test computations for
SPECT show that artifacts and the influence of noise is reduced by using sparsity
constraints.
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3. Simultaneous Segmentation and Reconstruction from

Tomography Data

Some applications require a segmentation of an image obtained as a reconstruc-
tion from tomography data. This is usually done as an image postprocessing task,
i.e. the segmentation process works on the reconstructed image only, the direct
connection to the measured data is lost. We propose a segmentation and recon-
struction algorithm that works directly on the CT data. We restrict ourself to the
reconstruction of piecewise constant functions in R2, that is, we are looking for a
solution in the space

PCm(D \ Γ) :=

{
f =

m∑

i=1

fiχΩi : fi ∈ R, Ωi open sets ,Ωi ∩ Ωj = ∅ for i 6= j

}
.

We define the singularity set Γ where f has jumps by Γ =
⋃

(i,j)∈I Γij , with Γij
being a closed curve separating the sets Ωi and Ωj . The task is now to recover the
singularity set as well as the coefficients fi from its Radon transform data. We
use a Tikhonov functional with a perimeter constraint on Γ ( also well known as
Mumford Shah functional),

JMS
α (f,Γ) = ‖yδ −R(f)‖2 + α|Γ| ,

|Γ| =

∫

Γ

1 dS ,

(µδα,Γ
δ
α) = arg min

Γ
f∈P Cm(D\Γ)

JMS
α (µ,Γ) .

The minimization of the functional is carried out by a shape optimization ap-
proach: First the functional variable is eliminated. Representing the shapes by
a level set function, the remaining shape functional is minimized by a gradient
method. For more details on the numerical realization as well as on reconstruction
results, we refer to [3]. If we want to prove a regularization result, we have to
define a convergence that ensures not only functional convergence but also con-
vergence of the shapes. Using the L1-metric for characteristic functions, defined
by dL1(Ω, Ω̃) = ‖χΩ − χΩ̃‖L1 , we can define convergence on PCm(D \ Γ) by

(fn,Γn)
PCm(D\Γ)−→ (f,Γ)

⇐⇒fn =

m∑

j=1

fj,nχΩj,n , f =

m∑

j=1

fjχΩj with fj,n → fj and Ωj,n
dL1−→ Ωj

for j = 1, · · · ,m and n→ ∞

(modulo reordering of the sums for fn). Based on this definition, we can prove
that the functional JMS

α has a minimizer in PCm, and that the minimizer depends
stable on the data. Moreover, the following regularization result holds:
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Theorem 2 Let f † ∈ PCm(D \ Γ) with singularity set Γ†, and Rf † = y. For
noisy data yδ with ‖yδ−y‖ ≤ δ, choose the regularization parameter α(δ) fulfilling

α(δ) → 0 and
δ2

α(δ)
→ 0 for δ → 0 .

If (f δα(δ),Γ
δ
α(δ)) denote the minimizer of the functional JMS

α(δ) with data yδ, then

(f δα(δ),Γ
δ
α(δ))

PCm(D\Γ)−→ (f †,Γ†) for δ → 0.

More details will be presented in a forthcoming paper.
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Penalized image reconstruction and cardiac motion

B. A. Mair

(joint work with J. A. Zahnen)

Green’s one-step-late (OSL) algorithm, and a modification by Lange, is often ap-
plied to the reconstruction of images based on the penalized maximum likelihood
approach. However, these algorithms only converge under certain restrictive con-
ditions which often do not hold in applications. In this paper we discuss a method
of modifying the line search procedure in Lange’s version of the OSL algorithm
which maintains the positivity of the iterates and is convergent, without any re-
strictive conditions on the penalty or choice of parameter. The paper examines two
methods for choosing the step size for the line search, one based on the bisection
algorithm, and the other on Armijo’s rule. Simulations in this paper show that
the Armijo line search algorithm is significantly faster than the bisection method.
An application to the problem of estimating both image frames and motion vector
fields in gated cardiac emission tomography is also discussed.

1. Introduction

In 1990, Green [1, 2] proposed the iterative one-step-late (OSL) algorithm to
reconstruct images in emission tomography from a general penalized maximum
likelihood objective (PML) function. Later that same year, Lange [3] added a
line search and proved, under certain conditions, that the modified algorithm
was convergent and produced iterates that were non-negative, and monotonically
decreased the objective function. However, the conditions restrict the choice of the
penalty parameter and are not valid for the simple quadratic penalty term, since
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one condition in [3] requires the penalty term to have a bounded derivative on
the entire real line. As a result, many alternative algorithms have been developed
for PML estimation of PET images. However, the OSL algorithm has recently
been applied to recontructing images in gated emission tomography [4, 5, 6, 7].
This is due to the very general form of the penalty term, which often includes pre-
estimated motion information. Since the conditions of Lange’s OSL algorithm are
not satisfied by the penalty term in these applications, the algorithm was further
modified in [5, 6, 7] to ensure positivity of the estimates, and convergence of the
objective function.

The update in Green’s OSL algorithm can be expressed as the product of the
current iterate with a ratio of two terms. In [5], it was observed that if the penalty
parameter was too large, the term in the denominator became negative or even
too large, resulting in negative iterates and a divergent algorithm. The algorithm
was improved by applying a threshold to the denominator term at each iteration
to ensure positivity and boundedness. In [7, 8], the performance of Green’s OSL
algorithm was improved by inserting a line search after each iteration. This line
search was performed by using the bisection method.

In this work we investigate the effects of two numerical line search procedures,
one based on the usual bisection algorithm, and another based on Armijo’s rule.

2. Theory

Let the detector data be denoted by d = [d1, d2, . . . , dI ]
T . Then for each i =

1, 2, . . . , J , di is a random sample from a Poisson distribution with mean [Hxtrue]i
where xtrue = [xtrue1 , xtrue2 , . . . , xtrueJ ]T is the vector of true image intensity, H is
the system matrix, and [Hx]i is the ith entry in the vector Hx. . The (i, j)th entry
of H , denoted hij is the probability that an emission in the jth voxel is detected
in the ith detector tube. Let U(x) be a user–defined penalty term (or potential

function in a Gibbs prior), and E(x) =

I∑

i=1

([Hx]i − di log[Hx]i) + αU(x). Then,

a PML estimate x̂ of xtrue is obtained by minimizing the objective function E.
That is

(1) x̂ = argminx>0 E(x).

Proposed Algorithm: Given x(n) > 0, determine the update x(n+1) as follows.

Define λ
(n)
j =

∑I
i=1 hijdi/[Hx(n)]i∑I
i=1 hij + α ∂U

∂xj
(x(n))

. Then, Green’s OSL update of x(n) is the

vector with jth entry x
(n)
j λ

(n)
j . Then, in the ideal case, the objective function

should decrease in the direction of the vector v
(n)
j = x

(n)
j λ

(n)
j − x

(n)
j . As in [3],

we propose an update of the form x(n+1)(t) = x(n) + tv(n) where t is a scalar to
be chosen. In [3] it is assumed that the parameter α is chosen such that the OSL
update is positive, which leads to a positive value for t. However, in our case, we
make no such assumption, and as a result, tmay be negative. To determine the step



Mathematical Methods in Tomography 2125

size, first, let an = [maxj |λ(n)
j − 1|]−1. Then, x(n+1)(t) > 0 when |t| < an. Next,

to ensure that the objective function decreases, let ψ(t) = E(x(n+1)) < E(x(n)).
Then, if ψ′(0) < 0, we choose 0 < t < an, and if ψ′(0) > 0, we choose −an < t < 0.
To apply the bisection rule to determine the optimal value, topt, we choose topt
such that ψ′(t) does not change sign for all values of t between 0 and topt, as was
suggested in [3]. In applying Armijo’s rule [9] to determine topt, we only require
ψ(topt) < 0.

In [4, 7, 8], the RM algorithm was developed for the simultaneous estima-
tion of image frames and motion in gated cardiac emission tomography. If we
denote the images f1, f2, . . . , fJ and the displacement vectors between frames,
m1,m2, . . . ,mJ , by f and m respectively, this algorithm is based on minmizing
an objective function of the form

E(f ,m) = αL(f) + EI(f ,m) + βES(m)

where L(f) is the negative log likelihood of the gated data, EI(f ,m) is the total
image matching term, and ES(m) is the total strain energy. The RM algorithm is
an iterative algorithm, in which each iterate consists of two iterative algorithms,
the R step, and the M step. Given the current estimates f (n) and m(n), the updates
are obtained by first minimizing αL(f) + EI(f ,m

(n)) subject to the constraint
f ≥ 0 (R step), and then minmizing EI(f

(n+1),m) + βES(m) (M step). Clearly
the R step is a penalized ML problem, so we can apply the proposed algorithms to
determine f (n+1). In the previous work, the bisection method was used in [4, 8].

3. Experiments

The reconstruction algorithm was applied to simulated data with Poisson noise
from a 128 × 128 thorax phantom with 2 million total counts. The penalty func-

tion in the objective function was U(x) =
∑J
j=1

∑
k∈N(j) ωjk log cosh((xj −xk)/δ)

where δ = 50. The alorithm was applied with the bisection and Armijo’s line
search options for 150 iterations, for a range of values of the penalty parameter
α. The main aim of the experiments was to determine which method converged
faster. Convergence was evaluated by observing how the objective function and
projected gradient decreased relative to the CPU time. The projected gradient of
the iterate x(n) is a measure of how close x(n) is to satisfying the Kuhn–Tucker

optimality conditions for the PML estimate, and is defined as maxj |max{(x(n)
j −

∂E
∂xj

(x(n))), 0}−x(n)
j |. Tests were also performed for the quadratic penalty function,

using Green’s algorithm.
For the quadratic function, our tests showed that the denominator in the update

for Green’s OSL algorithm became negative for α = 0.04. For both the quadratic
and logcosh penalties, our tests indicated that the Armijo method achieved the
same or better accuracy for both the objective function and projected gradient in
less than 25% of the CPU time required by the bisection method.
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Image Reconstruction for Bioluminescence Tomography

Ming Jiang

(joint work with Tie Zhou, Jiantao Cheng, Wenxiang Cong, Ge Wang)

Gene therapy is a breakthrough in the modern medicine, which promises to cure
diseases by modifying gene expression. A key for development of gene therapy is to
monitor the in vivo gene transfer and its efficacy in the mouse model. Traditional
biopsy methods are invasive, insensitive, inaccurate, inefficient, and limited in the
extent. To map the distribution of the administered gene, reporter genes such as
those producing luciferase are used to generate light signals within a living mouse,
which can be externally measured.

Bioluminescent imaging (BLI) is an optical technique for sensing gene expres-
sion, protein functions and other biological processes in mouse models by reporters
such as luciferases that generate internal biological light sources [1, 2]. The light
emitted within the mouse can be captured externally using a highly sensitive CCD
camera [3]. BLI has great potentials in various biomedical applications, including
regenerative medicine, developmental therapeutics, treatment of residual minimal
disease, and studies on cancer stem cells. BLI could be applied to study almost
all diseases in small animal models [1, 2].

Although BLI is useful, it does not explore the full potential of this approach. In
particular, this 2D bioluminescence imaging mode, like the traditional radiography,
is incapable of 3D image reconstruction of internal source features of interest [2].
Since its first introduction in 2003 [4], the bioluminescence tomography (BLT) has
been undergone a rapid development [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16].
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BLT is being actively developed to address the needs for 3D localization and
quantification of a bioluminescent source distribution in a small animal. With
BLT, optimal analysis on a bioluminescent source distribution becomes feasible
inside a living mouse.

Traditionally, optical tomography sends visible or near infra-red light to probe
a scattering object, and reconstructs the distribution of internal optical proper-
ties, such as absorption and scattering coefficients [17, 18, 19]. In contrast to this
active imaging mode, BLT reconstructs an internal bioluminescent source distri-
bution, generated by luciferase induced by reporter genes, from external optical
measures. Currently, in BLT the complete knowledge on the optical properties
of involved anatomical structures is assumed to be available from an independent
tomographic scan, such as a CT/micro-CT, MRI scan and/or diffuse optical to-
mography (DOT), by image segmentation and optical property mapping. That is,
we can segment the image volume into a number of anatomical structures, and as-
sign optical properties to each structure using a database of the optical properties
compiled for this purpose or using a DOT-type technique.

Mathematically, BLT is a source inversion problem based on optical measure-
ment on the domain boundary, utilizing detailed knowledge on the optical proper-
ties. BLT is a highly ill-posed inverse problem per se. The tomographic feasibility
and the solution uniqueness were theoretically studied [5]. It was proved that
the uniqueness does not hold in general. For the BLT algorithms to produce sat-
isfactory results, a priori knowledge must be utilized to regularize the problem.
In our previous studies, we utilized constraints such as the non-negativity and
source support. Other constraints such as the range of the source intensity may
be very effective as well. Another approach is to utilize spectral resolved measure-
ment such as the hyper-spectral or multi-spectral measurement [12, 13, 15, 20] and
multi-spectral source information [21] to improve the BLT reconstruction.

In previous studies, the forward imaging model is described by the diffusion
approximation assuming the complete data being measured on the object bound-
ary to reconstruct an internal bioluminescent source distribution. In practice, the
measured data is often incomplete due to physical limitations as in X-ray CT
[22, 18]. The available data for BLT in this situation is similar to CT image re-
construction from angle-limited data. In [16], we proposed an approach for BLT
from partial boundary measurement and two iterative reconstruction algorithms
based on the diffusion approximation. Moreover, We generalized the results on
the solution uniqueness [5] to this partial data case. It was proved that similar
results still hold given partical optical signals on the mouse body surface, although
the solution characterization is more complicated. Furthermore, we extended the
BLT methods in [6] to the partial data case. The first algorithm is a variant of
the well-known expectation-maximization (EM) algorithm [23]. The second one is
based on the projected Landweber scheme [24, 25, 26]. Either of the methods can
easily incorporate knowledge-based constraints .

This work is supported in part by NKBRSF (2003CB716101) and NSFC
(60325101, 60272018), Ministry of Education (306017), China, and Engineering
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Research Institute of Peking University, an NIH/NIBIB grant (EB001685), a spe-
cial grant for bioluminescent imaging from Department of Radiology, College of
Medicine, University of Iowa.
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Exploiting Symmetry in Fan-Beam Tomography and Some Remarks
on the Filtered Backprojection Algorithm

Adel Faridani

Exploiting symmetry in fan-beam tomography. The integral transforms of
x-ray tomography have a inherent symmetry stemming from the fact that inter-
changing the positions of x-ray source and detector will lead to the same measured
value. Taking a measurement at some point thus gives also knowledge of the trans-
form at a ’reflected’ point. For the parallel-beam geometry this symmetry is readily
exploited, for example by restricting the directions of irradiation to a 180 degree
range. On the other hand it has not been obvious how to conveniently exploit the
symmetry when using the fan-beam geometry. Recently, Izen, Rohler, and Sastry
[7] showed that if fan-beam measurements are taken at the points of the so-called
standard sampling lattice (cf. [10, 4]) then the union of measured and reflected
points is a so-called periodic sampling set, that is a union of shifted copies of a
smaller lattice. While Izen et al. proceeded to develop a special reconstruction
algorithm for such data, in this talk we report results obtained by using the theory
and algorithms for periodic sampling developed in [3]. Using this sampling theory
the data are first interpolated onto a denser lattice and then the reconstruction
is performed using the standard filtered backprojection algorithm. Some of this
work has been done jointly with Mitchell [9]. The results show that resolution can
clearly be increased in this way. The method used here is more widely applicable
than that of [7] but it also has its limitations as the number of cosets of the smaller
lattice can become very large in some cases, rendering the method ineffective. For
these cases one can consider using the sampling theory for unions of shifted lat-
tices developed in [1, 2]. In this talk we present some key ideas underlying the
new sampling theorems of [2]. Gratton [5] found an ingenious way to apply this
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theory to fan-beam tomography, the advantage being that now the sampling set
for the union of measured and reflected data can be treated as the union of just
two shifted subgroups, albeit different ones.

When working with real data, increasing the resolution by exploiting the sym-
metry also leads to an increase in noise. This calls for post-processing with ap-
propriate denoising methods. We present numerical results obtained jointly with
Hass [6] that demonstrate that the now classical Rudin-Osher-Fatemi [12] denois-
ing method already improves matters, and indicate that further exploration of the
interaction of image reconstruction and post-processing is promising.

A contemporary introduction to the application of sampling theory to fan-beam
tomography can be found in [4].

Some remarks on the filtered backprojection algorithm.

(1) The filtered backprojection algorithm has become somewhat of a com-
modity, as evidenced for example by its inclusion in MATLAB. For the
research community this may raise the question if such widely distributed
implementations are also the best ones. This remark concerns the imple-
mentation of the convolution step. The convolution

∫
v(〈x, θ〉 − s)Rf(ϕ, s)ds(1)

=

∫
v̂(σ) R̂f(ϕ, σ)eiσ〈x,θ〉 dσ(2)

(v as in [11, §5.1]) can be implemented by discretizing either integral.
Which may be better? Discretizing (2) is convenient for implementing
a variety of convolution kernels whose Fourier transform is known, and
MATLAB’s iradon does this. However, we present numerical experiments
showing that for achieving high accuracy discretizing (1) appears superior.
A heuristic explanation is as follows. It can be shown that discretizing (1)
gives

v ∗Rf(ϕ, 〈x, θ〉) ≃
∫
v̂(σ)

∑

k

R̂f(ϕ, σ + 2πk/h)eiσ〈x,θ〉 dσ

while discretizing (2) yields

v ∗Rf(ϕ, 〈x, θ〉) ≃ π
∑

j

v̂(πj)
∑

k

R̂f(ϕ, πj + 2πk/h)eiπj〈x,θ〉

The second formula gives a trapezoidal rule, the first the corresponding
integral. Heuristic interpretation: Since v̂(0) = 0 the lowest frequencies
contributing to the second formula correspond to |σ| = π. The first for-
mula picks up more information about the very low frequencies (σ close
to 0) and thus avoids the small nearly constant error that reconstructions
based on discretizing (2) exhibit.

(2) For the fan-beam filtered backprojection algorithm we find two popular
implementations in the literature which differ in the following aspect. The
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first implementation as for example in [11, Formula (5.29)] has a sine in
the argument of the convolution kernel v, while the implementation given
in [8, p. 82] does not. The mathematical derivation for kernels other than
the straight ramp filter appears more elegant in the first case, while our
numerical results indicate that the second implementation may be more
favorable with regard to ringing artifacts.
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Sampling in helical fan beam CT using the reflected lattice

Laurent Desbat

(joint work with Larry Gratton)

Sampling conditions in helical parallel and fan beam tomography are known [7,
2]. This study concerns single sclice helical fan-beam CT or equivalently dynamic
CT with a single row detector [8]. The fan beam geometry symmetry yields a
reflected lattice associated to each sampling lattice. However, in fan beam CT,
the union of the direct and the reflected lattices does not generally build a lattice.
Thus, the classical sampling theory based on the Poisson formula does not apply.
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In a recent work [5], Izen, Rohler and Sastry showed that the union of a standard
fan beam lattice and its reflected lattice builds a union of shifted large standard
lattices. Thus, generalized sampling theorems (see [3] or [6]) can be applied to
exploit the reflected lattice for doubling the 2D resolution in fan beam CT with
essentially only doubling the number of projections (the Quater Detector Offset
[QDO] allows for the improvement of the sampling along the detector). However,
this approach can lead to the resolution of a huge number of linear systems.

The recent work [1] is probably a better way to address this problem. In its
PhD [4], Larry Gratton proposed adaptations of [1] to 2D fan-beam CT and further
developments. In the present work (performed during this week at Oberwolfach)
we propose a first simple generalization to helical fan-beam CT.

Notations and definitions: G denotes a LCA group, Ĝ the dual group of G. In

classical applications: G = Rn and Ĝ = Rn or G = Tn (T = R/Z) and Ĝ = Zn

or G = Tm × Rn and Ĝ = Zm × Rn, then x ∈ G, ξ ∈ Ĝ, 〈x, ξ〉 = [x · ξ], where
[a] = mod(a, 1) is the fractional part of a ∈ R. The Fourier transform of f ∈ L1(G)
is defined by:

f̂(ξ)
def
=

∫

G

f(x)e−2iπ〈x,ξ〉dmG(x) and f(x) =

∫

Ĝ

f̂(ξ)e2iπ〈x,ξ〉dmĜ(ξ)
(
=

˜̂
f(x)

)

holds for f ∈ L1(G) continuous and f̂ ∈ L1(Ĝ). Let H a closed subgroup of G

then the annihilator of H is H⊥ =
{
η ∈ Ĝ, 〈y, η〉 = 0 for all y ∈ H

}
. Examples:

G = Rn and H = WZn = {Wk, k ∈ Zn} where W is a non singular matrix then
H⊥ = W−tZn (indeed 〈Wk,W−tl〉 = [Wk · (W−tl)] = [k · l] = 0). A closed

discrete subgroup of G such that H⊥ is a closed discrete subgroup of Ĝ is called

a lattice. The (bounded) set R ⊂ Ĝ is a fundamental domain of the lattice H⊥ if⋃
η∈H⊥(R + η) is a partition of Ĝ.
The classical sampling conditions of a function f can be read in the Poisson

formula: let H be a lattice and R a fondamental domain of H⊥ ; let f ∈ L1(G),
such that y → f(x0 + y) belongs to L1(G) and

∑
y∈H f(x0 + y) is a continuous

function on G/H and its Fourier transform is in L1(H⊥) then

∑

y∈H

f(x0 + y)e−2iπ〈x0+y,ξ〉 = mĜ(R)


f̂(ξ) +

∑

η∈H⊥\{0}

f̂(ξ + η)e2iπ〈x0,η〉


 .

If f̂ vanishes outside of a set K ⊂ R then f̂(ξ) can be recovered by the multipli-
cation by the indicator of K (or R).

In its PhD [4], Larry Gratton proposed the following adaptation to sampling
on two shifted lattices of the results obtained in [1]. Let G be a LCA group ;
let H2 be a lattice and R a fundamental domain of its reciprocal lattice H⊥

2 ;
let K = R ∪ (η′ +K ′), with K ′ ⊂ R and η′ ∈ H⊥

2 , η
′ 6= 0 ; let f ∈ L2(G) be

a continuous function, f̂(ξ) = 0 a.e. outside of K ; let H1 be a lattice such

that continuous functions h ∈ L2(G) with ĥ(ξ) = 0 a.e. outside of K ′ can be
reconstructed from their sample on h(x1 + z′), z′ ∈ H1. Assume that η′ ∈ H⊥

2 ∩
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H⊥
1 , η

′ 6= 0 and 〈x1 − x2, η
′〉 6= 0. Then f can be reconstructed from its samples

f(z), z ∈ (x2 +H2) ∪ (x1 +H1) with

Sf(x) = Sx2+H2f(x) +
1 − e2iπ〈x−x2,η

′〉

1 − e2iπ〈x1−x2,η′〉
Sx1+H1(f − Sx2+H2f)(x)

with

Sxj+Hjf(x) =
∑

y∈Hj

f(xj + y)χ̃Rj (x− xj − y), j ∈ {1, 2}

and the following interpolation error bound holds:

|Sf(x) − f(x)| ≤
(

2 +
4

1 − e2iπ〈x1−x2,η′〉

)∫

Ĝ\K

|f̂(ξ)|dmĜ(ξ)

This results has been applied succesfully in fan-beam CT in order to enhance the
resolution of the data (and of the reconstruction) by using the reflected lattice. We
generelized this results to the 3D fan beam transform and helical fan-beam CT. The
3D fan beam transform is defined by Df(β, α, t) =

∫
Lβ,α,t

f(x)dx,, where x ∈ R3,

Lβ,α,t is the line in the plane perpendicular to e3 = (0, 0, 1)T at abscissa t (t ∈ R),
intersecting the source located at r(cos β, sin β, 0)T + te3, with β ∈ [0, 2π[ and the
detector at angular position α ∈ [−π/2, π/2[, see [2]. As in [4] we parametrize Df
by

g(u, v, t) = Df
(

2πu, π(v − 1

2
), t

)

so that g ∈ L1(T2 × R) (G = T2 × R , and Ĝ = Z2 × R).
Assume from now that f is essentially b-band limited, b > 0. The essential

support of Df and associated sampling conditions have been given in [2]. The
essential support K3 of ĝ(k,m, t), the Fourier transform of g, can be easily derived

K3 =
{
(k,m, τ) ∈ Z × Z × R; |k − 2m|2 + r2τ2 < r2b2, |k|r < |k − 2m|ρ

}

where r and ρ are respectively the radius of the source trajectory and the radius
of the cylindric reconstruction region.

Helical FB sampling is just samplingthe 3D fan-beam transform under the he-
lical constraint t = T

P u, where T ∈ R+ is the helical pitch and P the number of

projection each turn. The standard lattice HS and its reciprocalH⊥
S are generated

by

WS =




1
P 0 0
0 1

N 0
T
P 0 T


 ,W−T

S =



P 0 −1
0 N 0
0 0 1/T


 .

where N ∈ N is the number of fan angles at each projection. The symmetry
relation reads now g(u, v, t) = g(u + v, 1 − v, t). This yields the reflected lattice
HR and H⊥

R generated by

WR =




1
P − 1

N 0
0 1

N 0
T
P 0 T


 ,W−T

R =



P 0 −1
P N −1
0 0 1/T


 .
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Let η′ = (0,−P/2, 0)t, then η′ ∈ H⊥
S ∩ H⊥

R . Just as in 2D FB CT, if x2

corresponds to the QDO, 〈x1 − x2, η
′〉 6= 0. Let us call R2FB, resp. R1FB, be the

corresponding 2D constructed region in 2D FB, see [4], can be generalized to

R2 = R2FB × [− b

2π
;
b

2π
], R1 = R1FB × [− b

2π
;
b

2π
]

Thus, the interpolation formulas Sx2+H2f(x) =
∑

y∈H2
f(x2 + y)χ̃R2(x − x2 − y)

reads with x2 = (u2, v2, t2)
t

Sx2+H2f(u, v, t) =

∑

z∈H2F B


∑

y∈π
b Z

f(x2 + (z, y))sincb(t− t2 − y)


 χ̃R2F B ((u− u2, v − v2)

t − z)

and the same for Sx1+H1 . This reduces essentially the use of the reflected lattice
in helical CT to 2D CT through the so called “2π” interpolation along the t-axis,
followed by the 2D fan-beam CT interpolation using the reflected lattice.
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Inverse Problems for the Radiative Transport Equation and Optical
Tomography

John C. Schotland

(joint work with Vadim Markel)

Optical tomography (OT) is an emerging biomedical imaging modality which uses
scattered light to probe tissue structure and function. The usual approach to
the inverse problem of OT makes use of the diffusion approximation (DA) to the
radiative transport equation (RTE). Using the DA, it is possible to formulate the
linearized inverse problem in terms of the inversion of a suitably defined Fourier-
Laplace transform which relates the optical absorption of a random medium to the
intensity of light transmitted through the medium. Here we describe analogous
results which hold beyond the diffusion approximation. In particular, it is shown
that by making use of the plane-wave expansion for the Green’s function of the
RTE, a generalized Fourier-Laplace structure arises in the inverse medium problem
for the RTE.

The steady-state RTE

(1) ŝ · ∇I(r, ŝ) + (µa + µs)I(r, ŝ) = µs

∫
d2s′p(̂s, ŝ′)I(r, ŝ′) ,

is a conservation law for the specific intensity I(r, ŝ) at the point r propagating in
the direction ŝ. Here µa is the absorption coefficient, µs is the scattering coefficient,
and the phase function p is normalized so that

∫
pd2s = 1. Consider an experiment

in which light from a point source at r1 in the direction ŝ1 is incident on an infinite
inhomogeneous medium with absorption µa(r) = µ0

a+δµa(r), where µ0
a is constant.

Within the accuracy of the weak scattering approximation, the intensity of light
φ(r1, ŝ1; r2, ŝ2) measured by a point detector at r2 in the direction ŝ2, relative to
a reference medium with absorption µ0

a, obeys the integral equation

(2) φ(r1, ŝ1; r2, ŝ2) =

∫
d3rd2sG(r1, ŝ1; r, ŝ)G(r, ŝ; r2, ŝ2)δµa(r) ,

where G is the Green’s function for the RTE in the reference medium [1]. It has
recently been shown that G is representable as a decomposition into plane waves
and spherical functions of the form

G(r, ŝ; r′, ŝ′) =

∫
d2q

∑

µ

∑

lm,l′m′

ei(q·ρ+q′·ρ′)Ylm (̂s)Y ∗
l′m′ (̂s′)(3)

×〈lm|Ψµ(q)|l′m′〉 e−Qµ(q)|z−z′| ,

where Ψµ and Qµ are obtained from the solution to an eigenproblem and we use
the notation r = (ρ, z) [2]. This expansion can be obtained for any rotationally
invariant phase function of the form p(̂s·̂s′). Suppose that the sources and detectors
are located on the planes z = z1 and z = z2, respectively. Then it can be seen that
the Fourier transform of φ with respect to the source and detector coordinates is
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given by the expression

φ̃(q1, z1;q2, z2) =
∑

µ,µ′

Mµµ′(q1,q2)

∫
d3r exp [i(q1 − q2) · ρ](4)

× exp [−(Qµ(q1) +Qµ′(q2))z] δµa(r) ,

where ŝ1, ŝ2 are chosen to be in the normal directions to the source and detector
planes, M can be computed in term of Ψµ, and q1,q2 are conjugate to the source
and detector coordinates. The inverse problem in OT consists of reconstructing
δµa from φ. The Fourier-Laplace transform (4) can be inverted following the
methods described in [1]. In the DA, only the lowest order mode contributes and
the results presented in [3] are recovered.
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