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A modeling framework for efficient reduced order simulations of
parametrized lithium-ion battery cells

Manuel Landstorfer, Mario Ohlberger, Stephan Rave, Marie Tacke

Abstract

In this contribution we present a new modeling and simulation framework for parametrized
Lithium-ion battery cells. We first derive a new continuum model for a rather general intercalation
battery cell on the basis of non-equilibrium thermodynamics. In order to efficiently evaluate the
resulting parameterized non-linear system of partial differential equations the reduced basis method
is employed. The reduced basis method is a model order reduction technique on the basis of an
incremental hierarchical approximate proper orthogonal decomposition approach and empirical
operator interpolation. The modeling framework is particularly well suited to investigate and quantify
degradation effects of battery cells. Several numerical experiments are given to demonstrate the
scope and efficiency of the modeling framework.

1 Introduction

Lithium-ion batteries (LIBs) are a key component of our modern society, with applications ranging
from medical devices via consumer electronics to electric vehicles and aerospace industry. The
further development of LIBs is based on various aspects, namely safety, cost, storage capacity and
degradation stability. This research and development is assisted by mathematical models, which
are capable of simulating the complex behavior of LIBs on various degrees of spatial and temporal
resolution [17, 44, 50]. Mathematical models based on continuum thermodynamics allow, for example,
the simulation of charging and discharging processes (cycling), yielding the cell voltageE as function of
the capacity Q (or status of charge y) and the cycling rate Ch. This quantities are typically determined
in galvanostatic electrochemical measurements, enabling a comparison between theoretical predictions
and experimental data [44].

Such models can then be used to investigate and quantify degradation effects of LIBs [28], which are
experimentally studied with periodic charging and discharging over N cycles. Experimental measure-
ments seek to determine the dependency of the cell voltage E as function of cycling rate Ch, cycle
number n, and status of charge, i.e. E = E(y;Ch, n), to systematically quantify different ageing
aspects. This requires in general a huge batch of cells and massive amounts of measuring times,
e.g. cycling a cell at Ch = 1 for 1000 cycles requires at least 80 days of continuous electrochemical
measurements. Variations of materials or material combinations subsequently increase measuring
times exponentially.

Model based simulations can help to reduce this lab time by reducing the number of batch cells, cycle
numbers and material combinations. Aging effects can be represented in a continuum model with
different approaches [60, 36, 5], either by full spatial and temporal resolution of a specific effect, e.g.
cracking due to intercalation stress, or by cycle number dependent parameters. The latter approach
requires an evolution equation for parameter variations with respect to the cycle number n, which can
itself either be upscaled from some microscopic model or determined from experimental snapshots.

DOI 10.20347/WIAS.PREPRINT.2882 Berlin 2021



M. Tacke et al. 2

Once parametrized, such a model can in principle predict the cycling behavior for various cycle rates
and cycle numbers, i.e. E = E(y;Ch, n), on the basis of numerical simulations.

Quite similar as the experimental time expenditure increases for multiple simultaneous parameter
variations, so does computation time for numerical simulations. Modern mathematical tools, however,
allow to reduce this computational time significantly by setting up a reduced basis (RB) method.
Hence the combination of a (continuum) mathematical modeling, parametrized degradation functions,
numerical simulations and reduced basis methods yield a versatile toolbox for the investigation of
battery aging on the basis of electrochemical data.

In this work we derive a mathematical model framework for a rather general intercalation battery cell
on the basis of non-equilibrium thermodynamics [15]. It considers three porous phases, namely a
porous intercalation anode, a porous separator phase, and a porous intercalation cathode. Each porous
phase consists of an electrolyte phase, which is based on a rigorously validated material model [46],
accounting for solvation effects [21], incompressibility constraints, diffusion and conductivity. The active
intercalation phase of the electrodes accounts for intercalation lithium in terms of a specific chemical
potential function, and solid state diffusion with a concentration dependent diffusion coefficient [44].
Furthermore, the conductive additive phase is considered, where electron transport is modeled as
a simple Ohmic law. All three phases are coupled through a reaction boundary condition, where a
special emphasis is put on thermodynamic consistency [42, 23]. Subsequent spatial homogenization
techniques [3] for the porous structure yield an effective, non-linear coupled partial differential equation
(PDE) system for the lithium concentration in each phase, the Lithium-ion concentration in the electrolyte,
and the electrostatic potential in each phase. Building on this, we present a RB method for recurring
numerical simulations of the parameterized PDE model, equipped with various degradation models
expressed in terms of cycle number dependent parameters.

We discretize the resulting nonlinear system of PDEs by the finite element method in space and the
backward Euler method in time. The computational studies to identify critical parameters for estimating
the aging process of batteries require many evaluations of the finite element system with different
parameter settings and thus involve a large amount of time and experimental effort. Therefore, we
employ the RB method in order to further reduce the parameterized discretized battery model to obtain
a reduced order model (ROM) that is cheap to evaluate. For an introduction and overview on recent
developments in model order reduction we refer to the monographs and collections [37, 61, 7, 8].
For time-dependent problems, the POD-Greedy method [35] defines the Gold-Standard for systems,
where rigorous and cheap to evaluate a posteriori error estimates are available. As this is not the case
for the non-linear battery model at hand, we employ the hierarchical approximate proper orthogonal
decomposition (HAPOD) [9] in this contribution.

As RB methods rely on so called efficient offline/online splitting, they need to be combined with
supplementary interpolation methods in case of non-affine parameter dependence or non-linear
differential equations. The empirical interpolation method (EIM) [4] and its various generalizations are
key technologies with this respect. In this contribution we employ the empirical operator interpolation as
introduced in [26, 51].

Several related model order reduction approaches have already been applied for battery simulation, as
e.g. in [12, 49, 38], where the authors apply model reduction techniques for Newman-type Lithium-ion
battery models [17]. Further results on model order reduction in the context of battery models, includ-
ing resolved electrode geometry and Butler-Volmer kinetics can be found in [67, 59, 58, 57, 29] and [68].

The article is outlined as follows. In Section 2 we derive the entire mathematical model for a porous
battery cell. The approximation and model order reduction of the resulting electrochemical battery
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Model framework for parametrized lithium-ion batteries 3

model is presented in Section 3. In Section 4 we give further details on the implementation of the
modeling framework and demonstrate the scope and efficiency of the approach in several numerical
experiments (Subsection 4.2–4.4). Finally, in Section 5 we summarize the results of this contribution.

2 Derivation of the porous electrode model

In this section we derive the a new continuum mathematical model for a porous battery cell. After
setting up domains and proper definitions in 2.1, we state the chemical potential functions for all phases
in 2.1.3 and briefly discuss their derivation as well as some consequence of the electro-neutrality
condition. In 2.1.2 we state then the corresponding transport equations for each phase in the porous
electrode, where 2.1.3 puts a special emphasis on the intercalation reaction boundary condition and its
formulation on basis of non-equilibrium surface thermodynamics. Section 2.1.4 covers then the full PDE
system of an un-homogenized porous electrode, setting the basis for spatial homogenization in section
2.2. Introducing proper scalings in 2.2.2 yields a general homogenized equation framework in 2.2.3 for
a porous multi-phase electrode. Section 2.2.4 then covers the full homogenized battery model, where
proper scalings are introduced on the basis of the 1−C current density. An overview of all parameters
is given in 2.3.1.

2.1 Domains, definitions and initial scaling

We seek to model a porous electrochemical unit cell, consisting of a porous anode ΩAn ⊂ R3, a
porous separator ΩSep ⊂ R3, and a porous cathode ΩCat ⊂ R3 (see Fig 1.). The intercalation
electrodes Ωj, j = An,Cat consist themself of three phases, namely the active particle phase Ωj

A,
the conductive additive phase Ωj

C, and the electrolyte phase Ωj
E, with Ωj =

⋃
i∈{A,C,E}Ωj

i . The union

of the active phase and the conductive additive is frequently called solid phase Ωj
S =

⋃
Ωj
A ∪ Ωj

C.
The porous separator consists of an electrolyte phase ΩSep

E and an polymeric additive ΩSep
P , with

ΩSep = ΩSep
E ∪ ΩSep

P . The whole electrolyte phase is further denoted by ΩE =
⋃
j∈{An,Sep,Cat}Ωj

E,

the active phase as ΩA =
⋃
j∈{An,Cat}Ωj

E, and the solid phase ΩS =
⋃
j∈{An,Cat}Ωj

S. The interface
ΣA,E = ΩA ∩ ΩE captures the actual surface ΣA of the active particle as well as the electrochemical
double layer forming at the interface, i.e. ΣA,E = ΩSCL

A ∪ ΣA ∪ ΩSCL
E . The domains ΩE and ΩA are thus

electro-neutral, and we refer to [54, 42, 23] for details on the derivation. A similar argument holds for
the interface ΣCE = ΩC ∩ ΩE.

In each phase of each domain, we have balance equations, which are coupled through respective
boundary conditions modeling the intercalation reaction. We seek to employ periodic homogenization
to derive a homogenized PDE model for the electrochemical unit cell Ω = ΩCat ∪ ΩSep ∪ ΩAn. In order
to do so, we require a specific scaling with respect to the two essential length scales arising in the
problem, (i) the length scale L of the macroscopic width W of the unit cell, i.e. Ω = Σ× [0,W ] with
Σ ⊂ R2 being the area of the deflectors, and (ii) the length scale ` of the intercalation particle radii rA.
This yields a small parameter ε = L

`
with respect to which we can perform a multi-scale asymptotic

expansion and thus a periodic homogenization.

2.1.1 Variables, chemical potentials and parameter (equilibrium)

The active particle ΩA is a mixture of electrons e– , intercalated cations C and lattice ions M+, and
the electrolyte a mixture of solvated cations C+, solvated anions A– and solvent molecules S. The
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Figure 1: Sketch of the porous electrochemical unit cell. During discharge, lithium ions flow from the
anode to the cathode, while electrons drive an external electrical consumer.

s

respective species densities are denoted with nα(x, t),x ∈ Ωi. Further, we denote with

µα =
∂ψ

∂nα
, i = A, E, α = EA, EC , ES, AC , Ae, AM , (1)

the chemical potential of the constituents, which are derived from a free energy density [53, 15]
ψ = ψA + ψE with ψA = ψ̂A(nAe , nAC , nAM ) of the active particle and ψE = ψ̂(nES , nEA , nEC ) of the
electrolyte phase [53, 25, 42, 46].

Electrolyte For the electrolyte we consider exclusively the material model [21, 46, 22] of an incom-
pressible liquid electrolyte accounting for solvation effects, i.e.

µα = gα,ref + kBT ln (yα) + vα(p− pref) α = ES, EA, EC , (2)

with mole fraction

yα =
nα
nE,tot

, (3)

molar concentration nα, and total molar concentration of the mixture (with respect to the number of
mixing particles [46])

nE,tot = nES + nEA + nEC . (4)

Note that nES denotes the number of free solvent molecules, whereas nEA and nEC are the densities of
the solvated ions. This is crucial for various aspects of the thermodynamic model, and we refer to [21,
46, 43, 19] for details. Overall, the material model for the electrolyte corresponds to an incompressible
mixture with solvation effects and we assume further

vEC
vES ,ref

=
mEC

mES

and
vEA
vES

=
mEA

mES

(5)
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Model framework for parametrized lithium-ion batteries 5

whereby the incompressibility constraint [21, 46, 22] implies also a conservation of mass, i.e.∑
α

vαnα = 1 ⇔
∑
α

mαnα = ρ =
mES

vES ,ref

= const.. (6)

The molar volume of the solvent is related to the mole density nES ,ref of the pure solvent as

vES = (nES ,ref)
−1 . (7)

Note further that the partial molar volumes vα and the molar masses mα of the cation and anion are
related to the solvation number κEC and κAC , respectively. We assume that partial molar volume of the
ionic species is mainly determined by the solvation shell, which seems reasonable for large solvents
like DMC in comparison to the small ions like Li+. We proceed thus with the assumption

vEC = κE · vES and vEA = κE · vES . (8)

The electrostatic potential in the electrolyte phase is denoted as ϕE(x, t).

Active Phase We discuss exemplarily one electrode active phase, which is in section 2.1.4 applied
to the anode and cathode phase. For the active particle phase ΩA, we consider exemplarily a classical
lattice mixture model [11, 10, 32, 18, 20, 45, 47, 6], which we term in the following ideal electrode
material. Note that the whole modeling as well as the numerical procedure can directly be adapted to
other chemical potential functions µAC = µAC (yA). The chemical potential of intercalated lithium is
stated as

µAC = gAC + kBT fA(yA) , with fA(yA) := ln

(
yA

1+yA

)
+ γA · (2yA−1) , (9)

with mole fraction

yA =
nAC
nA,lat

(10)

of intercalated cations in the active phase. The number density nA` of lattice sites is constant, which
corresponds to an incompressible lattice, and the enthalpy parameter γA > −2, 5. Note that γA <
−2, 5 entails a phase separation [47]. The electrostatic potential in the solid phase is denoted as
ϕS(x, t).

Electro-neutrality The electro-neutrality condition of ΩA, ΩE and ΩC can be obtained by an asymp-
totic expansion of the balance equations in the electrochemical double layer at the respective surface
Σ. We only briefly recapture the central conclusions and refer to [54, 46, 42, 24, 23, 44] for details on
the modeling, validation and the asymptotic derivation. Most importantly, electro-neutrality implies (i)
that the double layer is in thermodynamic equilibrium, (ii) that there exists a potential jump through the
interface ΣAE and (iii) that for monovalent electrolytes the cation mole fraction (or number density) is
equal to the anion mole fraction, i.e.

yEC = yEA =: yE . (11)

Hence total number density nE,tot = nES + nEC + nEA electrolyte concentration nEC in terms of yE
write with eq. (6) as

nE,tot = nES ·
1

1 + 2(κE − 1)yE
= nE,tot(yE) (12)

nEC = nES
yE

1 + 2(κE − 1)yE
= nEC (yE). (13)
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2.1.2 Transport equation relations

In the electrolyte ΩE we have two balance equations determining the concentration nEC (x, t) (or mole
fraction yE(x, t)) and the electrostatic potential ϕE(x, t) in the electrolyte [56, 39, 30, 31, 41, 55], i.e.

∂nEC
∂t

= −divJEC with JEC = −DE · nE,tot Γ
tf
E · ∇yE +

tEC
e0

JEq (14)

0 = −divJEq with JEq = −SE · nE,tot Γ
tf∇yE − ΛEnE∇ϕE (15)

with (dimensionless) thermodynamic factor [22]

Γtf
E = yE

∂fE
∂yE

= 1 + 2κE
yE

1− 2yE
= Γtf

E(yE). (16)

For simple Nernst–Planck-flux relation for the cation and anion fluxes [22, 62], i.e.

Jα = DNP
α

nα
kBT

(∇µα −
mα

m0

∇µES + e0zαnα∇ϕE) α = EA, EC , (17)

with constant diffusion coefficients DNP
EA

for the anion and DNP
EC

for the cation, we obtain (in the electro-
neutral electrolyte)

DE =
2DNP

EC
·DNP

EA

DNP
EA

+DNP
EC

tEC =
DNP

EC

DNP
EA

+DNP
EC

(18)

ΛE =
e2

0

kBT
(DNP

EA
+DNP

EC
) S = e0(DNP

EC
−DNP

EA
) . (19)

However, for general Maxwell-Stefan type diffusion [31, 30, 55, 41, 40] or cross-diffusion coefficients[50,
15] in the cation and anion fluxes, more complex representations of the transport parameters (tEC , SE, DE,ΛE)
are obtained. In general, three of the transport parameters are independent, and SE, tEC and ΛE are
connected via

kBT

e0

(2tC − 1) =
SE

ΛE

. (20)

Further, (tEC , SE, DE,ΛE) depend in general non-linearly on the electrolyte concentration nEC . How-
ever, it is sufficient for the sake of this work to assume constant values for the transport parameters
(tEC , SE, DE,ΛE), together with relation (20).

In the active particle ΩA we have two balance equations determining the concentration nAC (x, t) (or
mole fraction yA) and the electrostatic potential ϕS(x, t) in the solid phase ΩS, i.e.

∂nAC
∂t

= −divJAC with JAC = −DA · nA` Γtf
A · ∇yA (21)

0 = −divJSq with JAq = −σS(x)∇ϕS (22)

and (dimensionless) thermodynamic factor

Γtf
A = yA

∂fA
∂yA

= 1 +
yA

1− yA
+ 2γAyA = Γtf

A(yA) . (23)

The (solid state) diffusion coefficient DA is further assumed to be

DA = DA,ref · (1− yA) , DA,ref = const., (24)
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where the term (1− yA) accounts for a reduced (solid state) diffusivity due to crowding[44]. Note that
the electrical conductivity σS is different in the active phase ΩA and the conductive phase ΩC, which
form ΩS = ΩA ∪ ΩC. We account for this as

σS(x) =

{
σA, if x ∈ ΩA

σC, if x ∈ ΩC

, (25)

In principle σA can be dependent on the amount of intercalated ions, i.e. σA = σA(yA), but for the sake
of this work we assume σA = const. and σC = const..

The charge flux of electrons in the solid phase ΩS is described via

0 = −divJSq with JSq = −σS(x)∇ϕS . (26)

2.1.3 Reaction Rate and affinity

At the the interface ΣAE the intercalation reaction

Li+
∣∣
E

+ e−
∣∣
A

 Li

∣∣
A

+ κE · S
∣∣
E

(27)

occurs, which is modeled on the basis of (surface) non-equilibrium thermodynamics[44]. Hence, the
(surface) reaction rate R

s
can in general be written with α ∈ [0, 1] as [42, 63, 16, 23, 19]

R
s

= L
s
· g
(

1

kBT
λ
s

)
with g(z) :=

(
eα·z − e−(1−α)·z ) , (28)

where

λ
s
AE = e0ϕ̂S|AE − e0ϕ̂E|AE + kBT · (f jA (yA|AE)− fE(yE|AE)) (29)

denotes the surface affinity of the reaction (27), which is pulled back through the double layer to the
respective points (in an asymptotic sense) outside of the double layer. The quantity ϕ̂E := ϕE−ELi+,E

denotes the electrolyte potential vs. metallic Li and ϕ̂jS := ϕjS − E
j

Li+,A
the electrode j potential vs.

metallic Li[44]. Note again that yA|AE denotes the evaluation of yA at the interface ΣA,E and that the
surface affinity (29) is dependent on the chemical potential (or the mole fraction) evaluated at the
interface.

Note that the non-negative function L
s

in (28) ensures a non-negative entropy production r
s
σ,R due to

reactions on the surface, i.e. r
s
σ,R = λ

s
·R
s
> 0. For the sake of this work we assume L

s
= const. and

refer to [44] for a detailed discussion on concentration dependency.

2.1.4 Balance equations

Applying the above modeling procedure for j = An,Cat yields the following equation system,

∂njAC
∂t

= −divJjAC with JjAC = −Dj
A · n

j
A,lat Γ

j
A · ∇y

j
A x ∈ Ωj

A , (30)

0 = −divJjSq with JjSq = −σjS(x)∇ϕjS x ∈ Ωj
S , (31)

∂nEC
∂t

= −divJEC with JEC = −DE · nE,tot ΓE · ∇yE +
tEC
e0

JEq x ∈ ΩE , (32)

0 = −divJEq with JEq = −SE · nE,tot ΓE∇yE − ΛEnEC∇ϕE x ∈ ΩE (33)
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where (30) is the balance of intercalated lithium within the active phase, (31) the charge balance in the
solid phase and (31)2 the electron flux, (32) the balance of lithium ions in the electrolyte phase and
(33) the charge balance in the electrolyte, where (33)2 is the flux of the charge qE in the electrolyte.
Note that σjS(x) incorporates the fact that the conductivity is far larger in the conductive additive phase
Ωj
C then in the active particle phase Ωj

A. The index j is necessary because anode and cathode are in
general different materials, hence having different parameters and material functions, but (30) yields a
compact typeface.

The boundary conditions at the interface Σj
AE = Ωj

A ∩ Ωj
E, where the intercalation reaction Li+ +

e– −−⇀↽−− Li occurs, read

JjAC · n = −L
s

j · g
( 1

kBT
λ
s

j
AE

)
on Σj

AE (34)

JjSq · n = −e0L
s

j · g
( 1

kBT
λ
s

j
AE

)
on Σj

AE (35)

JEC · n = L
s

j · g
( 1

kBT
λ
s

j
AE

)
on Σj

AE , (36)

JEq · n = e0L
s

j · g
( 1

kBT
λ
s

j
AE

)
on Σj

AE (37)

where by convention n is pointing from Ωj
A into Ωj

E. At the interface Σj
CE = Ωj

C ∩ Ωj
E we have

homogenous Neumann boundary conditions, i.e.

JjAC · n = JjSq · n = JEC · n = JEq · n = 0 on Σj
CE . (38)

Further we have global boundary conditions for the electric current density i leaving the anode
(discharge, i > 0) or entering the anode (charge, i < 0), i.e.

JCat
Sq
· n = −i on ΣCat

CD (39)

as well as a reference value for the electrostatic potential, which reads

ϕAn
S = 0 on ΣAn

CD . (40)

2.2 Homogenization

2.2.1 Introduction

An important feature of the coupled transport equation system (30) - (33) is the circumstance that the
solid state diffusion Dj

A is far smaller than the electrolyte diffusivity DE. This accompanies, however,
with smaller diffusion pathways on the length scale ` of the intercalation particles. The diffusivity of Li
in LiCoO2 is, for instance, about DA ≈ 10−12 / cm

s , while the diffusivity of Li+ in DMC is in the order of
DE ≈≈ 10−5 / cm

s . The macro-length scale is L ≈ 1 / µm while the micro-scale is ` ≈ 1 / nm (see

Fig. 2). Hence the length scale ration `
L

= ε ≈ 10−3 and Dj
A ≈ ε2DE. This motivates the re-scaling

Dj
A = ε2 ·Dj,ε

A j = An,Cat, (41)

which is subsequently exploited in the homogenization procedure.
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Model framework for parametrized lithium-ion batteries 9

Figure 2: Sketch of the homogenization procedure. The porous electrode is simplified as a network of
interconnected active phase spheres, yielding a unit cell ω containing one electrode particle.

2.2.2 Non-dimensionalization

For the sake of the homogenization as well as parameter studies and numerical implementations, it
is necessary to non-dimensionalize the overall equation system. This is performed in several steps,
starting from an initial non-dimensionalization for the homogenization, briefly sketched here. Consider
the dimensional equation system

∂w

∂t
= divD∇w x ∈ ΩE (42)

D∇w · n = R x ∈ ΣAE (43)

For the sake of the homogenization, it is convenient to introduce the scaling

w = u · n D̃ =
T

L 2
·D (44)

t = τ · T R̃ =
T

n

1

`
·R (45)

x = ξ ·L ε =
`

L
(46)

which yields

∂u

∂τ
= divξD∇ξu ξ ∈ Ω̃E (47)

D̃∇ξu · n = εR̃ ξ ∈ Σ̃AE. (48)
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2.2.3 General Homogenization Framework

For a single electrode, dropping the super-index j and denoting in this subsection x as non-dimensional
space variable, we have essentially a coupled equation system of the form1

∂uE
∂τ

= div
(
D̃EhE(uE)∇uE

)
∈ ΩE (49)

∂uA
∂τ

= div
(
ε2D̃AhA(uA)∇uA

)
∈ ΩA (50)

∂uS
∂τ

= div
(
D̃ε

ShS(uS)∇uS
)

∈ ΩS (51)

hE(uE)D̃E∇uE · n = εR̃E(uE
∣∣+
ΣAE
, uA
∣∣−
ΣAE
, uS
∣∣−
ΣAE

) on ΣAE (52)

hA(uA)ε
2D̃A∇uA · n = εR̃A(uE

∣∣+
ΣAE
, uA
∣∣−
ΣAE
, uS
∣∣−
ΣAE

) on ΣAE (53)

hS(uA)D̃S∇uS · n = εR̃S(uE
∣∣+
ΣAE
, uA
∣∣−
ΣAE
, uS
∣∣−
ΣAE

) on ΣAE (54)

hE(uE)D̃E∇uE · n = hA(uA)ε
2D̃A∇uA · n = hS(uA)D̃S∇uS · n = 0 on ΣCE (55)

where ui, i = A, E, S, denotes the respective phase variable, (D̃ε
i , R̃

ε
i ) the ε-dependent non-equilibrium

parameter, and hi,k captures non-linearities. Note that we abbreviate

ui
∣∣+
ΣAE

=: uE|+ and ui
∣∣−
ΣAE

=: ui|− . (56)

We consider a multi-scale expansion (i = A, E, S)

ui(x, t) =
∞∑
k=0

εkuki (x, y, t) with y =
x

ε
(57)

whereby

∇ = ∇x + ε−1∇y (58)

div = divx + ε−1divy . (59)

For non-linear functions h = h(u), we consider the ε−Taylor expansion

h(u) =
∞∑
k=0

1

k!

dkh

duk
(u− u0) = h(u0) + εu1h′(u0) +O(ε2) (60)

and for g = g(u+
E , u

−
A , u

−
S ) a multi-dimensional Taylor expansions, i.e.

g(uE|+, uA|−, u−S ) = g(u0
E|+, u0

A|−, u0
S|−) +

∑
i=E,A,S

ε · ∂uig
∣∣
u0E |+,u0A |−,u0S |−

· u1
i |± +O(ε2) . (61)

We abbreviate

h0 := h(u0) , h1 := u1 · h′(u0) , and g0 := g(u0
E|+, u0

A|−, u0
S|−) (62)

g1 := u1
E∂uEg(u0

E|+, u0
A|−, u0

S|−) + u1
A∂uAg(u0

E|+, u0
A|−, u0

S|−) + u1
S∂uSg(u0

E|+, u0
A|−, u0

S|−) (63)

and expand thus

hi = h0
i + εh1

i g = g0 + εg1 . (64)

Insertion of the multi scale expansion yields essentially a sequence of PDEs in the orders of ε.

1Actually in the electrolyte phase we have two coupled equations, but for simplicity we sketch in the derivation here only
a single (non-linear) equation.
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Order ε−2: For i = E, S we have

divyD̃ih
0
i∇yu

0
i (65)

with

D̃ih
0
i∇yu

0
i = 0 (66)

This yields u0
i = u0

i (x, t) by the maximum principle.

Order ε−1: For i = E, S we have due to u0
i = u0

i (x, t) we have

divyD̃ih
0
i∇yu

1
i = 0 (67)

with

(D̃ih
0
i∇xu

0
i + D̃ih

0
i∇yu

1
i ) · n = 0 . (68)

This yields essentially

u1
i (x, y, t) = −∇xu

0
i · χi(y) (69)

where χE = (χ1
E, χ

2
E, χ

3
E) satisfies the cell problem (k = 1, 2, 3)

(CPE)


divy∇yχ

k
E = 0 y ∈ ωE, i = E, S

∇χkE · n = nk onσAE
χkE is periodic

(70)

and χS = (χ1
S, χ

2
S, χ

3
S) satisfies the cell problem (k = 1, 2, 3)

(CPS)


divy

(
h3,S(y) ·

(
ek −∇yχ

k
S

))
= 0 y ∈ ωS,

h3,S(y) ·
(
ek −∇yχ

k
S

)
· n = 0 onσAE

χkS is periodic

(71)

Order ε0 Since u0
E = u0

E(x, t) we have for i = E, S

divxD̃ih
0
i∇xu

0
i + divxD̃ih

0
i∇yu

1
i + divyD̃ih

0
i∇xu

1
i + divyD̃ih

1
i∇yu

1
i =

∂u0
i

∂τ
(72)

and

divyD̃Ah
0
A∇yu

0
A =

∂u0
A

∂τ
(73)

with (
D̃Eh

0
E∇xu

1
E + D̃Eh

1
E∇xu

0
E + D̃Eh

1
E∇yu

1
E

)
· n = R̃0

E (74)(
D̃Sh

0
S∇xu

1
S + D̃Sh

1
S∇xu

0
S + D̃Sh

1
S∇yu

1
S

)
· n = R̃0

S (75)(
D̃Ah

0
A∇yu

0
A

)
· n = R̃0

A (76)
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Eq. (72) leads (by an integration over ωE and integration by parts) for i = E to

∂u0
E

∂τ
= divx

(
D̃Eh

0
EπE · ∇xu

0
E

)
+
aAE
ψE

· 1

area{σAE}

ˆ
σAE

R̃0
E(u

0
E, u

0
S, u

0
A|∂ωA)dA(y) (77)

with

πE :=
1

vol{ωE}

ˆ
ωE

( Id−∇yχE)dV (y) = Id− 1

vol{ωE}

ˆ
ωE

∇yχEdV (y) (78)

ψE =

´
ωE

1 dV´
ω

1 dV
=

vol{ωE}
vol{ω}

(79)

aAE =

´
σAE

1 dA´
ω

1 dV
=

area{σAE}
vol{ω}

(80)

Note that u0
A = u0

A(x,y, t) and that u0
A|∂ωA denotes an evaluation of u0

A at the boundary of the
micro-domain ωA. Eq. (72) leads (by an integration over ωS) for i = S to

∂u0
S

∂τ
= divx

(
D̃0

Sh
0
SπS · ∇xu

0
S

)
+
aAE
ψS

1

area{σAE}

ˆ
σAE

R̃0
S(u

0
E, u

0
S, u

0
A|∂ωA)dA(y) (81)

with

πS :=
1

vol{ωS}

ˆ
ωS

hS,3(y)( Id−∇yχS)dV (y) (82)

ψS =

´
ωS

1 dV

´
ω

1 dV
=

vol{ωS}
vol{ω}

(83)

Hence we obtain for the equation system (49) – (55) via periodic homogenization the coupled micro-
macro balance equation system

∂u0
E(x, t)

∂τ
= divx

(
D̃Eh

0
EπE · ∇xu

0
E

)
+
aAE
ψE

1

area{σAE}

ˆ
σAE

R̃0
E(u

0
E, u

0
S, u

0
A|∂ωA)dA(y) (84)

∂u0
S(x, t)

∂τ
= divx

(
D̃0

Sh
0
SπS · ∇xu

0
S

)
+
aAE
ψS

1

area{σAE}

ˆ
σAE

R̃0
S(u

0
E, u

0
S, uA|∂ωA)dA(y) (85)

∂u0
A(x, y, t)

∂τ
= divyD̃Ah

0
A∇yu

0
A (86)

with (
D̃Ah

0
A∇yu

0
A

)
· n = R̃0

A . (87)

Spherical particles In the following, we assume on the macro-scale a 1-D approximation x ∈ [0, 1]
as well as spherical particles ωA, i.e. ω = [−0.5, 0.5]3 (vol{ω} = 1), ωA = Br̃A(0), r̃A < 0.5,
ωE = ω\ωA, yielding

ψE

∂u0
E(x, t)

∂τ
= ∂x

(
ψED̃Eh

0
EπE · ∂xu0

E

)
+θAER̃

0
E

(
u0
E, u

0
S, u

0
A(x, r̃A, t)

)
, x ∈ [0, 1] (88)

ψS

∂u0
S(x, t)

∂τ
= ∂x

(
ψSD̃

0
Sh

0
SπS · ∂xu0

S

)
+θAER̃

0
S

(
u0
E, u

0
S, u

0
A(x, r̃A, t)

)
, x ∈ [0, 1] (89)

∂u0
A(x, r, t)

∂τ
=

1

r2
∂r
(
r2D̃Ah

0
A∂ru

0
A

)
, x ∈ [0, 1] , r ∈ (0, r̃A) (90)
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with

(
D̃Ah

0
A∂ru

0
A

)∣∣∣
r=rA

= R̃0
A

(
u0
E(x, t), u

0
S(x, t), u

0
A(x, r̃A, t)

)
(91)

and

θAE =
area{σAE}

vol{ω}
= 4πr̃2

A − area{σA,C} . (92)
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Figure 3: Porous media parameters for simple cubic, body centered cubic and face centered cubic
micro-structures (Fig. 15 of [48], reprinted with permission of Elsevier).

For spherical particles, various possibilities regarding their micro-structural packing arise, most promi-
nent (i) simple cubic, (ii) body centered cubic and (iii) face centered cubic, see Fig. 3. For a given
micro-structure (or periodic unit cell ω), the porous media parameters (ψE,πE, θAE) and (πS, ψS) can
(numerically) be computed by solving the cell problems (70) and (71), respectively. Note that for equally
sized spherical particles the actual micro-structure is exclusively encoded in the porous media parame-
ters (ψE,πE, θAE,πS, ψS) of the homogenized equation system (88)-(90). Note that, quite commonly,
the (scalar) tortuosity corrector τE is introduced via an effective diffusion coefficient[14, 66, 39, 27],
which simply yields in our notation τE = (πE)

−1 [48].

We refer to [48] for more complex micro-structure geometries as well as their meshing and numerical
solution of (70), and proceed for the sake of this work with a simple cubic micro-structure.

2.2.4 Homogenized Battery Model

Applying this homogenization scheme to the equation system (30) - (33) and its boundary conditions
(34) – (38), dropping the leading order index 0, and reinserting the scalings of section 2.2.1 and 2.2.2
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yields the following equation system (j = An,Cat):

∂njAC
∂t

= − 1

r2
∂rJ

j
AC

(r, x) ∈ [0, rjA]× Ij

with J jAC = −Dj
A · n

j
A,lat Γ

j
A · r2 ∂ry

j
A (93)

0 = −∂xJ jSq − e0θAE
1

`
L
s

j · g x ∈ Ij ,

with J jSq = −ψSπ
σ
Sσ

j
C∂xϕ

j
S (94)

ψE

∂nEC
∂t

= −∂xJE + θAE
1

`
L
s
E · g x ∈ I ,

with JEC = −ψEπEDE · nE,tot ΓE · ∂xyE +
tEC
e0

JEq (95)

0 = −∂xJEq + e0θAE
1

`
L
s

j · g x ∈ I

with JEq = −ψEπESE · nE,tot ΓE∇yE − ψEπEΛEnEC∇ϕE (96)

where

IAn = [0,W An], ISep = [W An,W An+W Sep], ICat = [W An+W Sep,W ] (97)

W = W An +W Sep +W Cat, I = IAn ∪ ISep ∪ ICat = [0,W ], (98)

g = g
(
yE(x, t), ϕE(x, t), ϕS(x, t), yA(x, r

j
A, t)
)
, (99)

and boundary conditions

J jA

∣∣∣
r=rA

= −r2
AL
s

j · g , J jA

∣∣∣
r=0

= 0 , JCat
Sq

∣∣∣
x=W

= −i , ϕAn
S

∣∣∣
x=0

= 0 . (100)

Note that tEC = const. allows us to rewrite (95) with (96) as

ψE

∂nEC
∂t

= −∂xJE + θAE
1

`
(1− tEC )L

s
E · g x ∈ I ,

with JEC = −ψEπEDE · nE,tot ΓE · ∂xyE , (101)

which is further used.

Cell Voltage, Capacity, C-Rate To introduce proper scalings an non-dimensionalizations, some
definitions of important (global) quantities are required. For a lithium ion battery, the following quantities
are of most importance:

1 the cell voltage

E := ϕAn
S |x=0 − ϕCat

S |x=W [V] , (102)

2 the basic (electrode) capacity (j = An,Cat)

Qi,0 :=

ˆ
Ij

4π

`3

ˆ rjA

0

e0n
j
A,latr

2 drdx = W iψjAq
j
A = const.

[
Ah m2

]
, (103)

3 the present (electrode) capacity (j = An,Cat)

Qi(t) :=

ˆ
Ij

4π

`3

ˆ rjA

0

e0n
j
AC
r2 drdx

[
Ah m2

]
, (104)
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4 the (electrode) status of charge

ȳjA(t) :=
Qi(t)

Qi,0
=

1

W j

ˆ
Ij

3

r3
A

ˆ rjA

0

yjA · r2 drdx [1] , (105)

5 and the 1-C current density

iC :=
QCat,0

1 [h]

[
Am2

]
, (106)

which yields for the current density the scaling

i = Ch · iC , (107)

where Ch ∈ R is the C-Rate.

Note that

QCat(t)−QCat,0 =

ˆ
ICat

e04π

(`Cat)3

ˆ rCat
A

0

ˆ t

0

r2∂tn
Cat
AC
dt dr dx =

ˆ t

0

i dt . (108)

For a constant current discharge (i = const.) we obtain thus

ȳCat
A (t)− ȳCat

A (t = 0) =
Ch
1 [h]
· t , (109)

which introduces the time re-scaling τ = Ch
1[h]
· t.

Scalings Summarized, we use the scalings

t =
1 [h]

Ch
τ , τ ∈ [0, 1] iC =

QCat,0

1 [h]
=
W CatψCat

A qCat
A

1 [h]
(110)

nE,tot = ñE,totnE,ref x = ξW , ξ ∈ [0, 1] (111)

njAC = njA,laty
j
A , y

j
A ∈ [0, 1] ϕ =

kBT

e0

ϕ̃ (112)

r = rAν , ν ∈ [0, 1] cE =
∂nEC (yE)

∂yE

1

nE,ref

(113)

nEC = ñE,tot nE,ref yE , yE ∈ [0, 1] ηE,jn :=
njA,lat

njE,ref

(114)

ηjx =
W j

W
(115)

r̃jA :=
`j

rjA
ηCat
W :=

ψCat
A ·W Cat

W
(116)

σ̃jS :=
1 [h]

W 2

kBT
(e0)2

njA,lat

· σjS Λ̃E =:
1 [h]

W 2

kBT

e2
0

ΛE (117)

D̃E :=
1 [h]

W 2
DE S̃E := (2tC − 1)Λ̃E (118)

L̃
s

j :=
1

njA,lat

(
1 [h]

) 1

`j
L
s

j D̃j
A,ref :=

1 [h]

(`j)2
·Dj

A,ref (119)
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and definitions

ΩCat = [0, ηCat
x ],ΩSep = [ηCat

x , ηCat
x +ηSep

x ] , ΩAn = [ηCat
x +ηSep

x , 1],ΩEl = ΩCat ∪ ΩAn (120)

ΩCat
A = [0, ηCat

x ]× [0, 1] ,ΩAn
A = [ηCat

x + ηSep
x , 1]× [0, 1] ΩA = ΩCat

A ∪ ΩAn
A (121)

as well as

yA :=

{
yCat
A (ξ, r) ∈ ΩCat

A

yAn
A (ξ, r) ∈ ΩAn

A

σ̂S :=

{
ψCat
S πCat

S,σσ̃
Cat
C ξ ∈ ΩCat

ψAn
S πAn

S,σσ̃
An
C ξ ∈ ΩAn

(122)

ϕS :=

{
ϕCat
S ξ ∈ ΩCat

ϕAn
S ξ ∈ ΩAn

D̂A :=

{
D̃Cat

A,ref (1− yA)ΓCat
A (yA) · ν2 (ξ, r) ∈ ΩCat

A

D̃An
A,ref (1− yA)ΓAn

A (yA) · ν2 (ξ, r) ∈ ΩAn
A

(123)

ψE :=


ψCat
E ξ ∈ ΩCat

ψSep
E ξ ∈ ΩSep

ψAn
E ξ ∈ ΩAn

D̂E :=


ψCat
E πCat

E D̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩCat

ψSep
E πSep

E D̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩSep

ψAn
E πAn

E D̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩAn

(124)

ψS :=

{
ψCat
S ξ ∈ ΩCat

ψAn
S ξ ∈ ΩAn

ŜE :=


ψCat
E πCat

E · S̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩCat

ψSep
E πSep

E · S̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩSep

ψAn
E πAn

E · S̃E · ñE,tot(yE) ΓE(yE) ξ ∈ ΩAn

(125)

ηEn :=


ηE,Cat
n ξ ∈ ΩCat

0 ξ ∈ ΩSep

ηE,An
n ξ ∈ ΩAn

σ̂E :=


ψCat
E πCat

E Λ̃E · ñE,tot(yE) yE ξ ∈ ΩCat

ψSep
E πSep

E Λ̃E · ñE,tot(yE) yE ξ ∈ ΩSep

ψAn
E πAn

E Λ̃E · ñE,tot(yE) yE ξ ∈ ΩAn

(126)

θ :=


θCat
AE ξ ∈ ΩCat

0 ξ ∈ ΩSep

θAn
AE ξ ∈ ΩAn

R :=


L̃
s

Catg(λ̃
s

Cat) ξ ∈ ΩCat

0 ξ ∈ ΩSep

L̃Ang(λ̃
s

An) ξ ∈ ΩAn

(127)

r̃A :=

{
r̃Cat
A ξ ∈ ΩCat

r̃An
A ξ ∈ ΩAn

(128)

which yields

ν2r̃2
ACh

∂yA
∂τ

= −∂ν J̃AC with J̃AC =−D̂A ∂νyA (ν, ξ) ∈ ΩA

(129)

0 = −∂ξJ̃Sq − θ ·R with J̃Sq =−σ̂S∂ξϕ̃S ξ ∈ ΩEl ,
(130)

ψEChcE
∂yE
∂τ

= −∂ξJ̃EC + ηEn(1−tEC )θ ·R with J̃EC =−D̂E(yE)∂ξyE ξ ∈ [0, 1] ,

(131)

0 = −∂ξJ̃Eq + ηEnθ ·R with J̃Eq =−ŜE(yE)∂ξyE − σ̂E∂ξϕ̃E ξ ∈ [0, 1] .
(132)
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The boundary conditions read

J̃AC

∣∣∣
ν=1

= −r̃AR , J̃AC

∣∣∣
ν=0

= 0 (133)

σ̂Cat
C ∂ξϕ̃

Cat
S

∣∣∣
ξ=1

= Chη
Cat
W , ϕ̃An

S

∣∣∣
ξ=0

= 0 , (134)

with additional homogenous Neumann boundary conditions for all unspecified boundaries.

Sign convention for the current density For the reaction Li+ + e− −−⇀↽−− Li + κS we have λ :=
µLi|A + κµS|E − µLi+ |E − µe− |A whereby λ > 0 entails r = L · g(λ) > 0. Since JA = −D̂A∇yA
we have at the boundary

JA · n = (+1)r (135)

where (+1) is the stoichiometric coefficient of the product Li.

2.3 Initial values and potential

The initial values, also used for the Newton solver, write with

y0
A :=

{
yCat,0
A (ξ, r) ∈ ΩCat

A

yAn,0
A (ξ, r) ∈ ΩAn

A

, y0
E :=

nEC
nES − 2 · κE · nEC

(136)

ϕ̃0
S :=

{
fAn
A (yAn,0

A )− fCat
A (yCat,0

A )) ξ ∈ ΩCat

0 ξ ∈ ΩAn
, ϕ̃0

E := fAn
A (yAn,0

A )− fE(y0
E) (137)

simply as

yA(ξ, r, τ = 0) = y0
A yE(ξ, τ = 0) = y0

E (138)

ϕ̃E(ξ, τ = 0) = ϕ̃0
E ϕ̃S(ξ, τ = 0) = ϕ̃0

S . (139)

2.3.1 Parameters

All parameters and their values for the subsequent numerical calculations are summarized in appendix
A.

3 Discretization and Model Order Reduction of the Battery Model

The modeling approach discussed in the previous section neglects the details of the electrodes
microstructure and describes it as a homogeneous medium in which electrolyte and the solid electrode
materials exist at every point. This homogenized model is called macroscopic model in the following. In
this macroscopic model, the intercalation of Li-ions in the electrode particles is incorporated through a
coupled diffusion equation in radial direction of the particles in each macroscopic quadrature point. In
this way we get a pseudo-2D model (i.e. 1D+1D model) for the full battery cell. The model is given by a
system of nonlinear PDEs for the homogenized electric potentials (ϕ̃E, ϕ̃S) and the mole fraction of
Li+-ions (yE, yA) in the electrolyte and in the positive and negative electrode materials, respectively.
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The equation for the mole fraction in the electrode materials is calculated in the additional pseudo
dimension, namely in the particle radius ν. The overall PDE system can be written in the following
abstract form:

−α(·, yA)
∂yA
∂τ
−∇ν · [−β(·, yA)∇νyA] = 0,

−∇ξ · [−γ(·)∇ξϕ̃S] −R1(·, ϕ̃E, ϕ̃S, yE, yA|ν=1) = 0,

−δ(·, yE)
∂yE
∂τ
−∇ξ · [−κ(·, yE)∇ξyE] +R2(·, ϕ̃E, ϕ̃S, yE, yA|ν=1) = 0,

−∇ξ · [−ω(·, yE)∇ξyE − ρ(·, yE)∇ξϕ̃E]+R3(·, ϕ̃E, ϕ̃S, yE, yA|ν=1) = 0.

The linear and nonlinear coefficient functions α, β, γ, δ, κ, ω and ρ correspond to the representation
from the equations (2.129)-(2.132) and depend on the domain for which the system is defined (an-
ode, cathode and separator). Ri, i = {1, 2, 3, 4} represents the reaction rate functions (2.127) in
addition to the previous constants. The system is completed by the boundary conditions as well as
interface conditions (2.133)-(2.134). Note that there are corresponding Neumann boundary conditions
β(·, yA)∇νyA · n = −R4(·, ϕ̃E, ϕ̃S, yE, yA) at the boundary of the electrode particles, i.e. at ν = 1,
which couples the microscopic equation with the macroscopic equations.

3.1 Discretization

For the battery model in the abstract form above, let Ω1D denote a computational one-dimensional
domain in the macroscopic direction and Ων = Ωx

ν the transverse/radial directions in the electrode
particles associated with each x ∈ Ω1D. Let P ⊂ RP , P ≥ 1 denote the parameter space. We
define the solution space V = V1 ⊕ V2 with V1 = H1(Ων), V2 = (H1(Ω1D))3 and V ′, the dual
space of V . For a corresponding variational weak formulation, we obtain, after a semi-discretization in
time t by the implicit Euler method, that the battery model can be formulated as the following nonlinear
system:

Find ut+1 = [ut+1
1 , ut+1

2 , ut+1
3 , ut+1

4 ]> ∈ V : Gµ(ut+1, ψ) = fµ(ut, ψ) ∀ ψ ∈ V, (140)

where the operator Gµ(·, ·) : V × V → R represents the non-linear time-discrete PDE system. The
index µ ∈ P indicates the dependence of the problem on certain parameters, such as the charge
rate, the diffusion coefficient or the reaction rate. fµ(ut, ·) ∈ V ′ contains the solid potential Neumann
boundary conditions.
For the discretization in space, the finite element method is used [65], i.e. we project (140) to a finite
dimensional, continuous and piecewise polynomial space Vh ⊂ V . We hence obtain for each time step
a fully-discrete non-linear system of the form:

Find ut+1
h = [ut+1

1h
, ut+1

2h
, ut+1

3h
, ut+1

4h
]T ∈ Vh : Gµ(ut+1

h , ψi) = fµ(uth, ψi) ∀ i = 1, . . . n,

(141)

where ψi, i = 1, . . . , n denotes the standard Lagrange basis of the finite element space Vh =⊕4
i=1 Vih . Henceforth, the operator Gµ can be called the finite element operator which operates on

Vh × Vh. The developed discretization does not depend on the specific choice of the parameters to be
varied.
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3.2 Reduced Basis Method

As e.g. detailed in [61], the reduced basis method is based on the idea of performing a Galerkin
projection of the discrete equations onto low-dimensional subspaces Ṽ ⊂ Vh in order to accelerate
the repeated solution of (141) for varying parameters µ. Under this projection, the reduced problem is
given by:

Find ũt+1 = [ũt+1
1 , ũt+1

2 , ũt+1
3 , ũt+1

4 ]T ∈ Ṽ : Gµ(ũt+1, ψ̃i) = fµ(ũt, ψ̃i) ∀ i = 1, . . .m, (142)

where m� n and ψ̃i, i = 1, . . . ,m, represents the basis of the reduced space Ṽ . The basic idea of
the reduced basis method is to perform a so-called offline/online decomposition. In the preceding offline
phase, the reduced space is constructed, and after projecting onto this reduced space, the resulting low-
dimensional problem can be solved for any suitable parameter value in a following online phase. Various
methods for constructing the reduced space for time-dependend problems have been considered in the
literature, such as the POD-Greedy [35]. The POD-Greedy method produces approximation spaces
with quasi-optimal l∞ -in-µ, l2 -in-time reduction error [33].
As the POD-Greedy method relies on the usage of rigorous and efficient to evaluate a posteriori
error estimators, which are not available for the non-linear battery model at hand, in our numerical
experiments, the reduced space is generated by the PODs of pre-selected set of solutions trajectories
of the problem (141), called snapshots. Let P = {µ1, . . . , µns} be a set of ns parameter samples and
{uh(µ1), . . . , uh(µ

ns)} the corresponding snapshot set. At each time step the snapshot of the set is
calculated using the following prescription of Newton’s method:

DuFµ(ut+1,k
h , ψi) δuh = −Fµ(ut+1,k

h , ψi) ∀ i = 1, . . . , n,

ut+1,k+1
h (µ) = ut+1,k

h (µ) + δuh,

where DuFµ(z, ψi) is the Fréchet derivative of Fµ(u, ·) = Gµ(u, ·)− fµ(uth, ·) with respect to u at
z ∈ Vh.
We separate the snapshots into the respective components, u1h , . . . , u4h and generate the reduced
basis separately, cf. [58]. We define the corresponding snapshot matrices Si ∈ RN ι

h·|t|×ns with
i = 1, 2, 3, 4 and ι ∈ {Ω1D,Ων} as:

Si =
[
u1
i , . . . , u

ns
i

]
,

where the vectors uji ∈ RN ι
h·|t|, 1 ≤ j ≤ ns, denote the degrees of freedom of the functions

uih(µj)|t ∈ Vih . The singular value decomposition of Si is given through Si = UiΣiZ
T
i , where

Ui ∈ RN ι
h·|t|×N

ι
h·|t| and Zi ∈ Rns×ns represent orthogonal matrices, and Σi = diag(σ1

i , . . . , σ
zi
i ) ∈

RN ι
h·|t|×ns with σ1

i ≥ σ2
i ≥ · · · ≥ σzii , zi ≤ min(N ι

h · |t|, ns) contain the singular values. The left
singular vectors

Ui =
[
ζ1
i | . . . |ζ

N ι
h

i

]
span the reduced space Ṽi using only the singular vectors whose singular values are above a fixed
threshold value. Due to the fundamental properties of POD, the projection error consist of the l2-sum
of the corresponding truncated singular values, and Ṽi, i = 1, 2, 3, 4, are l2 -in-space, l2 -in-time
best-approximation spaces for the considered training set of snapshots. The overall reduced space is

defined as Ṽ :=
4⊕
i=1

Ṽi.
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3.3 Empirical Interpolation and Hierarchical Approximate POD

The model reduction approach described in Subsection 3.2 still suffers from a huge offline cost, due to
the global POD construction of the reduced basis and from an inefficient online computational cost, as
the reduced model (142) cannot be decomposed efficiently into high- and low-dimensional computations
due to the presence of non-linearities in the system. In order to obtain a more efficient ROM with
reduced computational cost in the offline phase and a full so called offline-online decomposition we
replace the global POD reduced basis construction by an incremental hierarchical approximate POD
(HAPOD) [9] and construct an affine approximation of the non-linear differential operator by an empirical
operator interpolation [13, 26].

In detail, the offline-online decomposition consists of precomputing parameter- and solution-independent
terms, a so called collateral basis that allows to interpolate evaluations of the operator Gµ. The
construction of the collateral basis and associated interpolation functionals is done once in the offline
phase to allow a fast evaluation of the interpolated operator IM(Gµ) during the online phase. in detail,
the empirical operator interpolation generates a separable approximation by interpolating atM selected
degrees of freedom of Vh. The approximation of the operator is of the following form:

Gµ(ũ, ·) ≈ IM(Gµ(ũ, ·)) =
M∑
q=1

θqµ(ũ)Gq, (143)

where {Gq}Mq=1 is the collateral basis, i.e. a basis for a subspace of

MG = {Gµ(uh, ·)|µ ∈P},

and θqµ are interpolation coefficients recalculated for each µ and ũ during the online phase. The
collateral basis is obtained by applying the POD method to the set of snapshots obtained as images
under the operator, i.e. Gµ(uh, ·). The set of snapshots thereby includes the Newton stages in addition
to the corresponding solution trajectory of Gµ(uh, ·). Moreover, in analogy to the construction of the
reduced basis described above, also the collateral basis is constructed separately for each solution
component. Hence, we define for i = 1, 2, 3, 4:[

G1
i , . . . , G

Mi
i

]
= POD

(
[G1

µ1
(ui), . . . , G

s1
µ1

(ui), G
1
µ2

(ui), . . . , G
sns
µns

(ui)], εPOD
)
,

where the vectors Gk
µj

(ui) ∈ RN ι
h , 1 ≤ j ≤ ns, 1 ≤ k ≤ sj, represent the degrees of freedom of

the functions Gµj(u
k
ih

(µj)) and εPOD the error tolerance for the POD. We define
[
G1, . . . , GM

]
=[

G1
1, . . . , G

M4
4

]
with M =

∑4
i=1Mi.

To calculate the interpolation coefficients θqµ(ũ), q = 1, . . . ,M for given µ and ũ, the interpolation
constraints are imposed at M interpolation points. The interpolation points are selected iteratively
from the indices of basis {Gq}Mq=1 using a greedy procedure. This procedure determines each new
interpolation point by the minimization of the interpolation error over the snapshots set measured in the
maximum norm. For more details we refer to [13, 4].
By replacing the operator Gµ in (142) by the fast to evaluate interpolated operator IM(Gµ), we obtain
the completely offline-online decomposable reduced problem

Find ũt+1 ∈ Ṽ : IM(Gµ(ũt+1, ψ̃i)) = fµ(ũt, ψ̃i) ∀ i = 1, . . .m, (144)

which can be solved efficiently for varying parameters µ.

For large-scale time dependent applications such as our battery model, computing the POD algorithm
can be expensive. Especially if we include the evaluations of Gµ at all Newton levels of the selected
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solution trajectories in the operator snapshot set. The hierarchical approximate POD (HAPOD) algorithm
is an efficient approach, which approximates the standard POD algorithm based on tree hierarchies,
where the task of computing a POD for a given large snapshot set S is replaced by multiple small PODs
[9]. More specifically, we use the special case of incremental HAPOD. In this case, the tree structure
is such that each node of this tree represents either a leaf or has exactly one leaf and one non-leaf
as children. In detail, first the vectors of the given snapshot set are assigned to the leaves of the tree
β1, · · · , βB . Starting with two leaves β1, β2, a POD of each local snapshot data is computed. The
resulting modes scaled by their singular values are the input to the parent node α1, which is again used
to calculate a POD. This newly generated input and the local snapshot data assigned to leaf β3 are the
input of the parent node α2. The final HAPOD modes are reached, when the last leaf βB has entered.
For the calculation of the collateral basis, we e.g. define for i = 1, 2, 3, 4:[

G1
i , . . . , G

Mi
i

]
= HAPOD

(
[G1

µ1
(ui), . . . , G

s1
µ1

(ui), G
1
µ2

(ui), . . . , G
sns
µns

(ui)], εPOD, ω
)
,

where εPOD is the desired approximation error tolerance for the resulting HAPOD space. Depending
on omega, one might get more modes than needed for a POD with the same tolerance. The local
tolerances in the HAPOD algorithm are computed from εPOD and ω ∈ (0, 1). More details can be
found in [9].

4 Numerical Results

In order to create a test environment for our modeling framework, we developed an experimental
implementation of the aging effects of the battery model from Section 2. We will investigate the
efficiency of the reduced order simulations by evaluating electrochemical characteristics over the
cyclization n = 1, . . . , 1000 for different aging models. The electrochemical characteristics are the
voltage-capacity spectrum E(ȳA, n;Ch) and the status of charge ȳCatA at a specific voltage value
Emin (see eq. (2.102)-(2.109)). We assume that the aging effects are modeled by given functions
in dependence of the cycle number n for the reaction rate L̂(n) and diffusion coefficient D̂A(n).
These functions are used to investigate the qualitative behavior of the aging effects. The parameter
dependence of the reaction rate L̂ examines the degradation of the solid electrolyte interphase. This
illustrates the increase in reaction resistance due to cyclization. Furthermore, the degradation of the
porous electrodes is investigated and represented by a decrease in the diffusion coefficient D̂A. This
effect is caused by micro-cracks within a particle.
To efficiently analyze this forward modeling of aging effects, we consider three scenarios. In the first
scenario, we consider the unaged battery and calculate the voltage against the state of charge for
varying charge rates Ch. In the next case, we set Ch = 1 and examine the aging effects of D̂A and L̂
by alternately choosing one of the parameters fixed. In the last case we vary all parameters D̂A, L̂ and
Ch.

4.1 Implementation Aspects

Let us first introduce the settings used in the numerical experiments. We implemented a (pseudo) 2D
grid, where the bottom of the grid corresponds to the 1D grid on which the macroscopic equations are
computed. The length of the bottom Lcat +Lsep +Lano is divided into NΩ1D

h = 300 grid points. Here,
each of the cathode, separator and anode is discretized into 100 grid points. The pseudo-dimension
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Figure 4: Sketch of the pseudo 2D grid. The blue line shows the computational domain of the macro-
scopic equations, while the red lines illustrate the computational domain for the microscopic equation.

for the microscopic equation, which goes vertically at each bottom grid point, consists of NΩν
h grid

points. In the simulations NΩν
h = 100 was chosen. All in all, this results in 30900 degrees of freedom

(dofs) for the overall system. Thereby, we assume that the high-dimensional discretization adopts a
resolution of ||un−um||2 ≤ 10−5 with 30900 dofs for un and 31512 dofs (NΩ1D

h = 303, NΩν
h = 101)

for um. The Neumann boundary condition of the microscopic equation couples the equation to the
macroscopic equations and is defined for ν = 1. To ensure that the bottom grid corresponds to ν = 1
a transformation of the microscopic equation with ν̃ = (1−ν) is performed. In addition, as an essential
step for the stability of the model, a variable transformation of the microscopic variable yA of the
following form is applied:

yA(g) =
eg

1 + eg
, g(yA) = ln

(
yA

1− yA

)
.

The time discretization is performed by an implicit Euler method on a T = 1 time interval with a time
step size of ∆t = 10−2. The nonlinear battery system is solved by a Newton method to a relative error
accuracy of 10−5 and a termination condition of minx∈ΩCat ϕ̃S(x) ≤ Emin with the voltage value
Emin = −0.2.
To generate the reduced space Ṽ , we compute a snapshot set Strain on training sets of equidistant
parameters. For the experiments 1 and 3 we choose |Ptrain| = 15 and for experiment 2 we choose
|Ptrain| = 10. As a measure for the model reduction error we determine the relative l2 -in-space, l2 -
in-time error averaged over a set of random test parameters Ptest given by:

1

|Ptest|
∑

µ∈Ptest

||uh(µ)− ũ(µ)||2
||ũ(µ)||2

. (145)

The programming language is Python. All simulations of the high-dimensional model are computed
with the finite element sofware NGSolve [1]. NGSolve provides the ability to construct the complex grid
structure and define the battery model for each subdomain. For the implementation of the reduced
basis method, the NGSolve code has integrated into the model order reduction library pyMOR [2]. We
include the evaluations of Gµ on all Newton stages of the selected solution trajectories in the operator
snapshot set to compute the collateral basis. This leads to a stabilization of the reduced model. In order
to speed up the computation of the collateral basis for the empirical interpolation data via POD, the
HAPOD algorithm is used instead of the standard POD algorithm. For the generation of the reduced
basis, we use the HAPOD algorithm as well. We choose ε = 4e− 8 and ω = 0.9 in both cases. For
illustration purposes, the reduced space and empirical interpolation are calculated for a training set
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Table 1: Relative model reduction error (145) and reduced simulation times for a battery simulation
trajectory with L̂ = 0.5, D̂A = 0.5 and Ptest = 10 . The number of the reduced basis consists of the
four variables, e.g. 11 = #u1 + #u2 + #u3 + #u4 = 2 + 2 + 4 + 3. When the reduced basis is
increased, each variable is added one basis. The number of interpolation point is 102. The average
time for the solution trajectory of the high-dimensional model is 363.48 s.

reduced basis size 11 15 19 23
relative error 2.39 · 10−4 3.23 · 10−5 1.62 · 10−5 1.19 · 10−5

time (s) 25.85 26.51 26.94 27.38
speed up 14.11 13.66 13.55 13.06

|Ptrain| = 5 for the variation of Ch. In this case, the calculation without using HAPOD takes 107.32
min, while only 7.31 min CPU-time were needed using HAPOD. This corresponds to a speedup of
14.68 in the offline phase. All tests were performed on the same computer and software basis.

4.2 Experiment 1

In this subsection, we consider the variation of the charge rate Ch with Ch ∈ [0.01, 4] for an unaged
battery. In this case, we choose L̂ = 0.5 and D̂A = 0.5. For the reduced order model the number
of basis functions for the four variables are set to #u1 = 3,#u2 = 3,#u3 = 5 and #u4 = 4. For
the empirical operator interpolation, the number of interpolation points are #G(u1) = 19,#G(u2) =
15,#G(u3) = 60 and #G(u4) = 8. These numbers are obtained by calculating the relative model
reduction error (145) with successive increase of the basis size up to an accuracy of order 10−5 (see
Table 1). To ensure the stability of the reduced model for empirical operator interpolation, the number
of interpolation points must be chosen large enough. Especially the number of interpolation points for
G(u3) are crucial here.
The voltage-capacity spectrum is shown in Fig. 5a), where we achieve a model reduction error of less
than 10−4 for a simulation time of 2.58 minutes. Therefore, we obtain a speed up of 15.41. Two solution
plots at a fixed time t = 0.2 for the charge rate Ch ∈ {0.1, 4} are illustrated in Fig. 5b)-e). At a low
charge rate, we almost reach the open circuit potential (OCP), which can be observed by the fact
that nearly constant functions are obtained. For larger charge rates, we observe higher gradients in
macroscopic and microscopic directions due to transport limitations.

4.3 Experiment 2

In the following the evaluation of the degradation simulations of the solid electrolyte interphase and
the porous electrodes are presented. To investigate the qualitative behavior of these aging effects, we
consider the decrease in value of the parameters L̂ and D̂A equally in anode and cathode over n
with n = 0, . . . , N cycles and set Ch = 1. A cycle consists of a discharge process, assuming that
the battery is charged in such a way that the chosen initial conditions apply at the beginning of each
cycle. In addition, we assume that the evolution of the parameters L̂(n) and D̂A(n) as a function of
the number of cycles n satisfies an ordinary differential equation

dF (n)

dn
= aF F (n), (146)
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(a)

(b) (c)

(d) (e)

Figure 5: a) Voltage-capacity spectrum compared to the open circuit potential. Solution plots of the four
components, b)-c) with Ch = 0.1 and d)-e) with Ch = 4 for t = 0.2.

with the unknown parameter aF (β) such that:

F (0) = F0, (147)

F (N) = βF0, β < 1.

It follows that F (n) = F0 e
log(β)n/N and aF (β) = log(β)

N
. F0 is the corresponding initial parameter

value. In our case, D̂A,0 = L̂0 = 0.5. Under this assumption, we impose that the aging mechanism in
one cycle depends on the value of the degradation of the previous cycle. (This assumption is based on
the fact that under laboratory conditions, the cell is always discharged in the same way.)
The characteristic spectrum of cell voltage E for the degradation of reaction rate L̂ for D̂A = 0.5 is
shown in Fig. 7a),c) for two different choices of β. Furthermore, the capacity ȳCatA at the specific voltage
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Table 2: Relative model reduction error (145) and reduced simulation times for a battery simulation
trajectory with Ch = 1 and Ptest = 10. The number of the reduced basis consists of the four variables,
e.g. 10 = #u1 + #u2 + #u3 + #u4 = 2 + 2 + 4 + 2. In each column, a basis is added to each
variable. The number ob interpolation points amounts to 42. The average time for the solution trajectory
of the high-dimensional model is 356.49 s.

reduced basis size 10 14 18 22
relative error 1.65 · 10−5 6.43 · 10−6 3.89 · 10−6 1.30 · 10−6

time (s) 8.63 8.42 8.66 8.83
speed up 41.27 42.38 41.07 40.26

value Emin = −0.2 over the number of cycles N = 1000 with a variation of β is illustrated in Fig.
7e). The same scenario is shown for the degradation of the diffusion coefficient D̂A for L̂ = 0.5 in Fig.
7b),d),f). As expected, the graphs show when the parameters degrade faster and more severely, the
cell voltage and capacity decrease more rapidly.
For the implementation of the reduced order model with dependence on the parameters µ = [D̂A,L̂]
the number of basis functions for the four variables are set to #u1 = 3,#u2 = 3,#u3 = 5 and
#u4 = 3. For the empirical operator interpolation, the number of interpolation points are #G(u1) =
9,#G(u2) = 9,#G(u3) = 15 and #G(u4) = 9. As in Experiment 1, these numbers are obtained
by calculating the relative model reduction error (145), taking into account an accuracy of order 10−6

with successive increase of the basis size. To ensure the stability of the reduced model for empirical
operator interpolation, the number of interpolation points must be increased for larger reduced basis
space dimensions.
In Table 2 we observe a rapid decay of the model reduction error, which stagnates already for relatively
small reduced basis space dimensions. In this manner, we obtain relative reduction errors as small as
10−5 with simulation times of less than 10 seconds. When calculating the voltage spectra, we achieve
an average relative reduction error of about 10−3 and an average speed up of 24.37. Calculating the
capacity at the voltage value Emin over the number of cycles requires about 118.92 hours for the full
model. By using the reduced model, we obtain approximations in about 2.53 hours with a relative error
of 10−5. It is a speed up of 46.83.

Figure 6: Various evolutions of the parameter functions satisfying the partial differential equation 146
with F0 = 0.5 and N = 1000.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: a)-d) Evolution of the capacity-dependent voltage E of D̂A(n) and L̂(n) compared to the
open circuit potential for β = 0.1 or β = 0.4. e)-f) Effect of the different degradation models of D̂A(n)
and L̂(n) on the capacity at voltage Emin over the number of cycles n at Ch = 1.

4.4 Experiment 3

In the previous section, degradation simulations of the solid electrolyte interphase and the porous
electrodes were considered by decreasing the value of the parameters L̂ and D̂A over N cycles. We
assumed that the value of the parameter depends on the value of the parameter in the previous cycle.
Thereby, the charge rate Ch was set constant to 1 for each simulation. In this experiment, a variation of
the charge rate is a matter of interest as well. This implies that the reduced order model depends on
the following parameter vector µ = [Ch, D̂A, L̂]. Furthermore, as in Experiment 2, we assume that the
evolution of the parameters D̂A and L̂ as a function of the number of cycles n satisfies the ordinary
differential equation that additionally depends on the charge rate Ch

dF (n)

dn
= aF F (n)Ch, (148)
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Table 3: Relative model reduction error (145) and reduced simulation times for a battery simulation
trajectory with Ptest = 10 . The number of the reduced basis consists of the four variables, e.g.
13 = #u1 + #u2 + #u3 + #u4 = 3 + 3 + 4 + 3. When the reduced basis is increased, each
variable is added one basis. The number ob interpolation points amounts is 160. The average time for
the solution trajectory of the high-dimensional model is 357.31 s.

reduced basis size 13 17 21 25
relative error 2.25 · 10−5 1.40 · 10−5 1.31 · 10−5 1.20 · 10−5

time (s) 37.34 37.68 39.51 39.49
speed up 9.82 9.36 9.05 8.92

with the unknown parameter aF (β) such that:

F (0) = F0, (149)

F (N) = βF0, for β < 1 at Ch = 1.

It follows that F (n) = F0 e
Ch log(β)n/N and aF (β) = log(β)

N
. Here we set β = 0.6 and F0 again

represents the corresponding initial parameter value. Note that for Ch = 1 the situation is the same as
in Experiment 2.
In this experiment, we set the number of the basis functions for the four variables to #u1 = 4,#u2 =
4,#u3 = 5,#u4 = 5 and the number of interpolation points to #G(u1) = 22,#G(u2) =
20,#G(u3) = 110,#G(u4) = 20, compare Table 3, taking into account an accuracy of order
10−5. Note, as in the first experiment, that the number of interpolation points, in particular the number
of interpolation points for G(u3), must be chosen large enough to ensure the stability of the reduced
model.
Comparing the run times from the calculation of the spectrum of the cell voltage (see Fig. 9 a)-b)) for
the full and reduced models, we obtain a speed up of about 7.97 with a relative reduction error of about
10−5. In addition, the degradation of the capacity at the voltage Emin over N cycles is shown in Fig. 9
c)-d). This resulted in a speed up of about 23.43 with a relative reduction error of order 10−3.

Figure 8: Various degradation models that satisfy the partial differential equation 148 with F0 =
0.5, β = 0.6 and N = 1000.
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(a) (b)

(c) (d)

Figure 9: a)-b) shows the spectrum of cell voltage E for the degradation of D̂A(n) and L̂(n) compared
to the open circuit potential for Ch = 2 . c)-d) illustrate the effect of the different degradation models of
D̂A(n) and L̂(n) on the capacity at voltage Emin over the number of cycles n with β = 0.6.

5 Conclusion

We developed a mathematical model framework for an intercalation battery, consisting of multi-phase
porous electrodes, on the basis of non-equilibrium thermodynamics. The framework is very flexible
and applicable to a wide range of materials, either for the active intercalation phases or the (liquid)
electrolyte, by a stringent formulation of the entire PDE problem in terms of general chemical potential
functions. Special emphasis is put on thermodynamic consistency of the transport equations and their
respective reaction boundary conditions by employing the very same chemical potential function entirely
throughout the model. Periodic homogenization theory is applied to derive a general set of PDEs for the
porous battery cell, where a special scaling of the micro-scale diffusion coefficient leads to a coupled
micro-macro scale problem. Spherical symmetry of the intercalation particles is further employed, as
well as a 1-D approximation of the macro-scale yields an effective 1D+1D non-linear PDE system. The
(dis-)charge current, effectively characterized by the C-rate Ch, enters the PDE system as boundary
condition for the electron flux. This allows, on the basis of numerical simulations, the computation of
the time and space dependent thermodynamic state variables, i.e. the electrolyte potential ϕE(x, t),
solid potential ϕS(x, t), electrolyte concentration yE(x, t), and active phase concentration yA(x, r, t).
Subsequently, this yields important characteristics of an intercalation battery, i.e. the cell voltage E
as function of the status of charge ȳA, parametrically dependent on the C-rate Ch. Further, battery
degradation is considered in terms of cycle number n dependent parameters, where exemplarily some
degradation models in terms of simple evolution equations were stated. In order to simulate degradation
effects, repeated numerical computations of the PDE system are required. For efficient numerical
simulations, model reduction techniques were applied to the electrochemical battery model, i.e. the
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reduced basis method combined with an empirical operator interpolation. We demonstrated the efficient
applicability of these method with numerical studies on several aging scenarios. For degradation effects
that impact the diffusion coefficient in the active phase or the intercalation reaction rate, we obtained
capacity curves over the number of cycles with a speedup of about 46, compared to to full numerical
simulations of the same implementation. A speedup factor of about 23 was achieved by additionally
investigating the effect of different choices of the charge rate. Numerical relative accuracy of order 10−3

(at least) was ensured within our simulations.
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A Parameters

The following table summarizes all parameters and their values of the model in section 2.

Description Symbol and Value Units

Electrolyte
pure solvent molar concentration nES ,ref = 11.9103 [mol L−1]

reference electrolyte concentration nEC ,ref = 1 [mol L−1]

solvent molar volume vES = 1
nES,ref

[mol−1 L]

solvation number κEA = κEC = 4 [1]

ion molar volume vEA = vEC = κEC · vES [1]

molar conductivity Λ̃E = 10 [1] )

transference number tE = 0.5 [1]

chemical diffusion coefficient D̃E = 5 [1]

Cathode (ideal electrode)
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molar lattice concentration nCat
A,` = 37.3114 [mol L−1]

initial value yCat,0
A = 0.01 [1]

enthalpy parameter γCat
A = 1 [1]

electronic conductivity σ̃Cat
S = 10 [1]

Li diffusion coefficient D̃Cat
A,ref1 [1]

Anode (ideal electrode)
molar lattice concentration nAn

A,` = 37.3114 [mol L−1]

initial value yAn,0
A = 0.99 [1]

enthalpy parameter γAn
A = 1 [1]

electronic conductivity σ̃An
S = 10 [1]

Li diffusion coefficient D̃An
A,ref = 1 [1]

Cathode Intercalation Reaction
Half-Cell Reaction energy vs. metallic Li ECat

A,Li+
= 3.95 [V]

Exchange current density L̃Cat = 1 [1]

Anode Intercalation Reaction
Half-Cell Reaction energy vs. metallic Li EAn

A,Li+
= 0.2 [V]

Exchange current density L̃An = 1 [1]

Geometry
cathode thickness W Cat = 100 [µm]
separator thickness W Sep = 100 [µm]
anode thickness W An = 100 [µm]
Micro-geometry
micro-unit cell width `Cat = 10 [nm]
cathode particle radius r̃Cat

A = 0.4 [1]
cathode electrolyte phase fraction ψCat

E = 0.72713951 [1]

cathode electrolyte porosity tensor πCat
E = 0.86842790 [1]

cathode solid phase fraction ψCat
S = 0.27286022 [1]

cathode solid porosity tensor πCat
S = 0.09819225 [1]

cathode interfacial area factor θCat
AE = 1.96328590 [1]

separator electrolyte phase fraction ψSep
E = 0.72713951 [1]

separator electrolyte porosity tensor πSep
E = 0.86842790 [1]

anode unit cell width `An = 10 ∈ 100 [nm]
anode particle radius r̃Cat

A = 0.4 [1]
anode electrolyte phase fraction ψAn

E = 0.72713951 [1]
anode electrolyte porosity tensor πAn

E = 0.86842790 [1]

anode solid phase fraction ψAn
S = 0.27286022 [1]

anode solid porosity tensor πAn
S = 0.09819225 [1]

anode interfacial area factor θAn
AE = 1.96328590 [1]
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