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Abstract

Migrating cells often encounter a wide variety of topographic features— including the presence
of obstacles— when navigating through crowded biological environments. Unravelling the impact
of topography and crowding on the dynamics of cells is key to better understand many essential
physiological processes such as the immune response. We study how migration and search efficiency
of HL-60 cells differentiated into neutrophils in quasi two-dimensional environments are influenced
by the lateral and vertical confinement and spatial arrangement of obstacles. A microfluidic device
is designed to track the cells in confining geometries between two parallel plates with distance h, in
which identical micropillars are arranged in regular pillar forests. We find that at each cell-pillar
contact event, the cell spends a finite time near the pillar surface, which is independent of the
height h and the interpillar spacing e. At low pillar density regime, the directional persistence of
cells reduces with decreasing h or e, influencing their diffusivity and first-passage properties. The
dynamics is strikingly different at high pillar density regime, where the cells are in simultaneous
contact with more than one pillar; the cell velocity and persistence are distinctly higher compared
to dilute pillar configurations with the same h. Our simulations reveal that the interplay between
cell persistence and cell-pillar interactions can dramatically affect cell diffusivity and, thus, its
first-passage properties.

INTRODUCTION

Cell migration is essential for various physiological pro-
cesses such as wound healing, morphogenesis, and im-
mune responses [1–3]. Cells and other organisms can
adapt their migration in response to different environ-
mental cues such as gradients of chemical, electrical, or
mechanical signals. Recently, the ability of migrating
cells to sense and follow topographic environmental cues
has attracted attention, the so-called topotaxis [4, 5].
Similar to other taxis phenomena, variations in topo-
graphic features of the surrounding environment— such
as the spatial arrangement of obstacles, degree of lateral
confinement, surface topography, etc.— can be exploited
by biological organisms to navigate more efficiently [5–
10]. The idea of topotaxis can be utilized to conduct the
migration of cells, e.g. by tuning spatial confinements
or designing favorable arrangements of obstacles. To
achieve an efficient topotaxis, however, a detailed un-
derstanding of the impact of crowding and confinement
on different cell migration modes is required, which is
currently lacking.
Amoeboid migration is a fast cell migration mode,

which relies on friction instead of adhesion [6, 11,
12]. Various cell types— including immune, stem, and
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metastatic tumor cells— exhibit this mode of migration.
Amoeboid migration of immune cells has been of partic-
ular interest [13–16], since one of their main functions
is to explore the environment to detect pathogens. To
reach this aim, they need to pass through highly con-
fined tissues and extracellular matrices, whereby the de-
gree on confinement depends on the type of tissue and
organ they are migrating in. Cell migration experiments
through arrays of micropillars in vitro [5–7] have revealed
that two regimes of pillar densities can be distinguished:
high density regime— where the cell is often attached
to several pillars simultaneously and experiences a di-
rected pillar-to-pillar type of motion— and low density
regime— where the cell usually contacts only one or two
pillars simultaneously—. The cells are relatively faster
at high density regime, but the velocity is not consider-
ably affected by pillar density within this regime [5, 6].
It has been shown that mesenchymal cells at low adhe-
sion benefit from lateral confinement by switching to an
amoeboid-like migration and move faster [17]; however, it
is unclear how the degree of the imposed lateral confine-
ment influences the migratory behavior in the amoeboid
mode of migration in quasi-2D environments.

Additionally, the role of cell-obstacle interactions on
cell dynamics, navigation, and search efficiency at low
obstacle densities has not been well understood yet. The
nature of the interactions with obstacles is expected to
crucially affect the dynamics of the moving objects. It
can occasionally lead to an increased diffusivity or search
efficiency. For instance, the presence of bystander cells
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accelerates the migration of natural killer cells [18]. Also,
bacteria can increase their diffusivity by sliding along the
surface of micropillars [19–21]. Nevertheless, obstacles
often slow down the dynamics of moving objects due to
steric, hydrodynamic, or frictional effects. Microalgae
scatter of surfaces by pushing against them with their
flagella [22–24]. Scattering from obstacles— e.g. through
classical specular reflection as in the Lorentz gas model—
randomizes the trajectory; the asymptotic diffusion con-
stant decreases monotonically with increasing the volume
fraction occupied by the obstacles [25–33]. Moreover,
moving objects such as swimming bacteria can be hy-
drodynamically captured near the surface of sufficiently
large micropillars [21]. The critical trapping distance
δc— below which the swimmer is captured near the pil-
lar surface— and the trapping time τc increase with the
size of micropillars [20]. Consistently, the contact times
of same-sized bystander cells or polystyrene beads with
migrating natural killer cells have been comparable [18].
However, less is known about the trapping by obstacles
for amoeboid migration in confined geometries, where the
cells form frictional contacts with surfaces.
To understand how the combined effects of scattering

from and trapping by obstacles govern the dynamics of
migrating cells, random-walk models can be a powerful
tool to untangle complex cell migratory behavior from
the experimental data. Stochastic two-state models con-
sisting of altering phases of fast and slow motions, such
as run-and-tumble or run-and-pause dynamics, have been
widely employed to describe locomotive patterns in bio-
logical systems [34–39]. A proper numerical model, how-
ever, needs to be capable of capturing the topographical
features of the problem.
In this work, we study the topographical influence

of the environment on in vitro amoeboid cell migration
in regular arrays of micropillars. The cells move in
quasi-2D environments confined between two parallel
plates. By varying the plate-plate distance (vertical con-
finement), the interpillar spacing (lateral confinement),
and the spatial arrangement of pillars, we track the
trajectories of the cells to demonstrate their dynamics
and to determine the characteristics of their interactions
with pillars— including the thickness δ of the cell-pillar
contact zone and the contact time τc—. The influence
of such cell-pillar interactions on search efficiency of the
cells is nontrivial: although spending time in the vicinity
of pillars slows the spreading and enhances the search
time, the extent of the contact zone around the pillars
reduces the effective search area which has an opposite
effect. Using numerical simulations, we clarify how the
interplay between the vertical confinement, spatial pillar
distribution, and cell-pillar interaction governs the dy-
namics and first-passage properties of the migrating cells.

MATERIALS AND METHODS

Cells

HL-60 acute promyelocytic cell line was cultured in
Roswell Park Memorial Institute medium (RPMI-1640,

Gibco) supplemented with 10% fetal bovin serum (Fisher
Scientific), 1% Glutamax (Fisher Scientific) and 1% peni-
cillin/streptomycin (Gibco). HL-60 cells were differenti-
ated into neutrophils with 1.3% DMSO for 3 days before
performing the experiments.

Pillar forest geometries

The pillar forest chambers were designed with Autodesk
Inventor [40]. The device consisted of a cell loading inlet
and a tracking area (see Fig. 1 for details). The tracking
area consisted of six vertically stacked chambers, each
with a dimension of 500×500µm2. The plate-plate dis-
tance was determined by the pillar height h. The cham-
bers were filled with pillars with a diameter d and an
inter-pillar spacing distance e, organized either in a tri-
angular (T) or square (S) lattice. The resulting chambers
had different pillar densities, named as dense, interme-

diate and sparse. Three sets of devices with increasing
h were named as D1, D2, and D3, respectively. For the
triangular lattice we had an extra dense device D4 with
e=5µm, named as packed device. The chambers alter-
nated from square to triangular lattice with a decreasing
density. The geometrical information of the pillar forests
is summarized in Table I. See also a full list of the pa-
rameters used in the paper in the Suppl. Table S1.

Production of the wafers

The tracking area of the devices D1 and D2 consisted
of six chambers, connected to the cell loading channel of
900µmwidth and 50µm height via twenty small channels
of 10µm width and 3.5µm or 5µm height (see Fig. 1).
They were fabricated using the standard photolithogra-
phy technique, processing guidelines from Microchem, in
two steps. Briefly, a 4-inch silicon wafer was covered with
a first layer (tracking area) of SU8-3005, spin coated at
500 rpm for 15 s followed by 4000 rpm for 40 s or 3000
rpm for 30 s, for getting desirable heights (respectively
3.5µm and 5µm). Then the wafer was soft baked for 2
min at 95◦C, and exposed to UV light (UV-KUB-2, Kloe,
France) through a mask with an illumination of 50% for
7 s and 8 s, respectively. The wafer was then post baked
for 2 min at 95◦C, developed in a developer solution for
1 min and rinsed with isopropanol. The second layer
(cell loading inlets and channels) of the master fabrica-
tion was performed using SU8-3025, spin coated at 500
rpm for 15 s and 1500 rpm for 45 s. Then the wafer was
soft baked for 2 min at 95◦C, and exposed to UV light
through a mask with an illumination of 50% during 32 s.
The wafer was then post baked for 5 min at 95◦C, devel-
oped in a developer solution for 8 min and rinsed with
isopropanol. The tracking area of the devices D3 and
D4 consisted of six chambers and one chamber, respec-
tively, which were connected to the cell loading channel
of 900µmwidth and 100µm height via square channels of
100×100×100µm3 placed at each corner of each chamber
(see Fig. 1). They were printed by two-photon lithogra-
phy with Nanoscribe GT+ (Nanoscribe, Germany) with
IP-S resin (Nanoscribe, Germany) on ITO-coated glass
substrates using a 25× objective. A laser intensity of
150 mW and a writing speed of 100 mm/s was applied.
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FIG. 1. Sketch of the experimental devices. (a) General view of the cell loading channels. (b) Zoom of the tracking area for
each device. (c) Example of the bright field image of device D4 with 3 cell tracks of different colors. (d) Definition of the pillar
diameter d, pillar-pillar spacing e, and plate-plate distance h, for square (S) and triangular (T) lattices (see the summary of
the geometrical parameters in Table I).

TABLE I. Geometrical parameters of the experimental devices. The plate-plate distance h, pillar diameter d, and interpillar
spacing e are given in µm for triangular (T) or square (S) lattices.

Device D1 D2 D3 D4

Method Photolithography Two-photon lithography

Geometry d e h λ d e h λ d e h λ d e h λ

Sparse
T1

11 49 3.5 0.18 13 47 5 0.22 15 45 6 0.25 - - - -
S1

Intermediate
T2

11 29 3.5 0.27 13 28 5 0.31 15 25 6 0.37 - - - -
S2

Dense
T3

12 18 3.5 0.40 13 17 5 0.43 15 15 6 0.50 - - - -
S3

Packed T4 - - - - - - - - - - - - 15 5 4 0.75

First washed with PGMEA, exchanged against isopor-
panol, post cured for 5 minutes under 200 W UV ra-
diation (OmniCure Series 1500, IGB-Tech GmbH). The
samples were carefully dried under nitrogen stream. In
order to reduce printing time the chambers were fully
printed of high accuracy and the cell loading inlet was
printed with shell and scaffold printing mode where a
posting curing process was necessary.

Production of the microfabricated devices

Microfabricated devices were replica molded into sili-
cone rubber (RTV615, Momentive Performance Materi-
als, USA) using soft lithography. Briefly, the silicon rub-
ber was cast onto the wafer, degassed and polymerized
at 75◦C for 2 hours. The resulting devices were peeled
off and sealed in 35 mm glass bottom cell culture dishes
(World Precision Instruments, Sarasota, FL, USA) using
plasma surface activation.

Experimental setup

Prior to experiment, the assembled structure was coated
with 100µg.mL−1 poly-L-lysine (20 kDa) grafted with
polyethylene glycol (2 kDa) (PLL-PEG) (Sigma-Aldrich,
St Louis, MO, USA) for 30 min at room temperature.
Cell nuclei were stained with 200 ng.mL−1 Hoechst 34580
(Sigma Aldrich, St Louis, USA), for 30 min before being

platted at the cell loading channel with a concentration
of 5×103 cells.mL−1. When cells started to fill the cham-
ber, the cell culture dish was filled with RPMI medium
and kept at 37◦C for at least 30 min before starting the
experiment. Fluorescent images of cell nuclei and bright
field images of the pillar chamber were recorded using a
EMCCD camera (Andor Technology, UK) with a physi-
cal pixel size of 0.65µm and a binning 2×2, mounted on
a Nikon Eclipse Ti epifluorescent microscope, at a 10×
magnification and 0.5 NA over 12 h with a frame rate
of 2 min. The cells were kept at constant atmosphere
of 37◦C and 5% CO2 (Okolab, Italy) during the entire
experiment. To minimize bleaching effect, the exposure
times were kept at 100ms for the fluorescent images and
20ms for the bright field images.

Data analysis

Cell trajectories were analyzed using ImageJ plugin
TrackMate. We excluded the trajectories of dying and
dividing cells. The maximum tracking time was 700 min,
however, we excluded the first 100 min of all tracks until
the cells reached the bulk of the chambers. Since the cells
entered the camera field at different times, we shifted the
starting time of all trajectories to have all cells starting
at the same time, which is t=100min in real time in our
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experiments. Each trajectory consisted of a set of (x, y)
positions, recorded after successive time intervals ∆t=2
min. Every two successive recorded positions were used
to calculate the instantaneous velocity and every three
of them to extract the local turning angle φ. A small
φ corresponds to a highly persistent motion, i.e. moving
nearly along the previous direction of motion. On the
other hand, φ approaches π when the direction of mo-
tion is nearly reversed. We quantified the local cell per-
sistence with cosφ, ranging from 1 for forward motion
to −1 for backward turning. The mean local persistence
was then obtained as R= 〈cosφ〉 [41], with R∈ [−1, 1].
All statistical quantities were calculated for each geom-
etry, by adding up all trajectories in the corresponding
experiments. Minimum number of cell trajectories ana-
lyzed in each experiment as well as the number of exper-
iments performed for each geometry are summarized in
Suppl. Table S2. The mean square displacement (MSD)
was calculated as MSD(t)= 〈r(t)2〉−〈r(t)〉2, with 〈···〉 be-
ing the average over all cell trajectories in one chamber.

Simulation method

Monte Carlo simulations were performed to study the
migration of cells through a two-dimensional medium
consisting of circular obstacles. To mimic each experi-
ment, the corresponding experimental distributions of
velocity and persistence, the setup dimensions, and the

FIG. 2. (a) Mean cell velocity v in different devices D. The
results are separately shown for different interpillar distances
in triangular (T) or square (S) lattice configurations. The
error bars indicate the standard errors of the means over all
instantaneous velocities in each chamber. The total number
of cell trajectories and experiments per chamber are given in
Suppl.Table S2. (b) Velocity distribution P (v) in log-lin scale
for all triangular configurations. The characteristics of each
configuration are given in Table I. (c) Turning-angle distribu-
tion P (φ) for all triangular configurations. All line colors are
as in panel (b).

positions and distances between the pillars served as
input for simulations. An ensemble of 104 persistent
random walkers started their motion from a random
position on the left border (as in the experiments) and
with a random shooting angle into the simulation box
with periodic boundary conditions. We also performed
control simulations in a simulation box of 200×200µm
consisting of a lattice of N×N circular obstacles
(N∈[4, 5, 6, 7, 8]) with diameter d=10µm. We used
an ensemble of 106 persistent random walkers, which
started their motion from a random position with a
random direction. Each walker spent a waiting time
τc when reaching a distance δ from the surface of an
obstacle. We systematically varied the persistence R
of the random walker and τc and δ values, beyond the
available range of these parameters in our experiments.

RESULTS

In order to understand the influence of vertical confine-
ment and pillar density on amoeboid cell migration, we
use three devices D1, D2 and D3 with the plate-plate
distance h=3.5, 5 and 6µm, respectively. Each of these
devices contains pillars of diameter d arranged on square
(S) or triangular (T) lattice configurations with different
pillar spacing e (see the “Materials and methods” section,
Table I, and Fig. 1 for details of geometrical properties).
Because of using different techniques to produce our de-
vices, d and e parameters— which determine the fraction
of the occupied space by pillars— vary from chamber to
chamber. Thus, we characterize the pillar density with
the relative pillar size λ= d

d+ e to take the effects of both
parameters d and e into account. λ is a dimensionless
quantity ranging from 0 for point-like pillars (d=0) to
1 for the maximum possible pillar size (e=0), i.e. when
the neighboring pillars are in contact with each other.
The mean diameter of differentiated HL-60 cells in our
experiments is around 10µm, which is smaller than the
interpillar distance in all chambers of devices D1, D2, and
D3. However, we also construct a highly dense device D4
with e=5µm and h=4µm; thus, here the cells can be
vertically and laterally confined from several sides.

Cell dynamics

Cells enter the chambers from one side and move through
pillars. The mean instantaneous velocity v of cells
in devices D1, D2 and D3 does not systematically
depend on the pillar density, lattice type, or plate-
plate distance, as shown in Fig. 2a. However, the cells
are significantly faster in device D4, with a mean ve-
locity v=5.01± 0.02µm/min. The velocity distribu-
tion P (v)— presented in Fig. 2b for triangular and in
Suppl. Fig. S1a for square lattices— similarly shows no
trend in terms of h or λ. The tail of P (v) decays
faster than exponential for all chambers, with a relatively
slower decay for device D4.
The turning-angle distribution P (φ) of the cells is

shown in Fig. 2c for all triangular lattices (see the square
lattice data in Suppl. Fig. S1b). In all cases, P (φ) de-
velops two peaks around φ=0 and π, reflecting that
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FIG. 3. Mean local persistence R of the cells versus the rel-
ative pillar size λ= d /(d+ e) for different chambers with tri-
angular lattices of micropillars. The error bars indicate the
standard errors of the means. For the square lattice data see
Suppl. Fig. S2.

the motion in near forward or backward directions are
more probable. We quantify the mean local persistence
of cells in each chamber by the dimensionless parame-
ter R= 〈cosφ〉 [41], where 〈···〉 denotes averaging over all
cell trajectories in one chamber. R ranges from −1 for
pure localization to 0 for diffusion and 1 for ballistic mo-
tion (see the “Materials and methods” section for data
analysis details).
Figure 3 shows the mean local persistence R versus the

relative pillar size λ for various devices. R reduces with
decreasing h in both lattice types. Also, at the given
vertical confinements h=5µm or 6µm (devices D2 and
D3), R reduces with increasing the density of pillars.
However, this trend is not observed in device D1 with
h=3.5µm, where the cells move nearly diffusively, i.e.
with no effective propulsion, independent of the pillar
density. Cell persistence in device D4 is distinctly high,
despite having a considerably higher pillar density.
In addition to the local persistence parameter R, we

also quantify the cell persistence with a parameter γ(t),
which reflects the overall curvature of cell trajectories un-
til time t. We obtain the path length ℓ(t) and the net
displacement of the cell ℓnet(t) at time t with respect to

the starting time. By averaging ℓnet(t)
ℓ(t) over all cell tra-

jectories, the overall persistence of the trajectories until

time t can be quantified as γ(t)= 〈 ℓnet(t)ℓ(t) 〉. As shown in

Fig. 4a, γ(t) behaves similarly to R versus λ or h; it in-
creases with decreasing λ (from T3 to T1) or increasing
h (from D1 to D3). The time evolution of γ(t) in an ordi-
nary diffusion with constant velocity follows γ(t)∼ t−1/2,
since the path length grows linearly with time while the
net displacement is proportional to the square root of
the MSD, i.e. ℓnet(t)∼

√
t. For comparison, in a persis-

tent random walk with the same constant velocity, γ(t)

FIG. 4. Time evolution of (a) the overall persistence γ(t) of
cell trajectories and (b) the scaled MSD of cells, for triangular
lattices with different chamber thickness and pillar density.
The inset of panel (a) depicts the path length ℓ(t) and the
net displacement ℓnet(t) of a cell trajectory. The dotted lines
in (b) represent normal diffusion and serve as a guide to the
eye. For the square lattice data see Suppl. Fig. S3.

is initially larger than in the ordinary diffusion, but it
similarly decays as t−1/2 at long times.
We compare the MSD of the cells in different devices

in Fig. 4b. The main goal in each panel of this figure is
to understand the role of pillar density on the diffusivity.
Nevertheless, the mean and variance of velocity vary from
experiment to experiment, thus, a direct comparison of
the MSD curves is not informative. It is known that the
MSD of a persistently moving object in a uniform space
depends on the velocity moments as [42]

MSDp(t)∼
(

〈v2〉+ 〈v〉2 2R
1−R

)

t. (1)

To be able to compare the MSD from different exper-
iments, we rescale them by MSDp(t) from Eq. (1) us-
ing the corresponding experimental values. The result-

ing scaled MSD
(

M̃SD(t)=MSD(t)/MSDp(t)
)

, shown in
Fig. 4b, reveals that increasing the pillar density (i.e.
from T1 to T3) leads to a lower diffusivity in all devices.
The relative decay range of the diffusion constant from
T1 to T3 is around 19%, 32%, and 27% for devices D1,
D2, and D3, respectively.

Escape times

Next, we address how the geometrical characteristics of
the pillar forest influence the first-passage properties of
the cells. We estimate the mean first-passage time as the
mean residence time tesc which is spent by the cell in the
area confined between adjacent pillars (see the grey zone
in Fig. 5a and Ref. [[5]]). Indeed, tesc is the time which
takes for a cell to escape a local trap formed by adjacent
pillars and move to the next trap. The area of each trap
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FIG. 5. (a) Schematic drawing of the trap zone (grey region),
i.e. the region confined between adjacent pillars. The corre-
sponding areas are denoted with AT

trap and AS
trap in triangular

and square lattices, respectively. (b) Schematic example of a
cell trajectory which visits the contact zones twice. The cor-
responding contact times τc are tA→B

and t
C→D

, and it spends
τb = t

B→C
in the bulk. The dashed circles indicate the bor-

ders of the contact zones, with the contact distance δ from
the pillar surfaces. (c) Mean escape time tesc versus the rel-
ative pillar size λ for different chambers. (d) Mean escape
time, scaled by the trap zone area Atrap, versus λ for different
chambers.

zone is AS
trap =(e+ d)2 − π d2

4 or AT
trap =

√
3(e+ d)2

4 − π d2

8
for square or triangular lattices, respectively. With in-
creasing λ, Atrap gets smaller, thus, the escape time tesc
expectedly reduces, as shown in Fig. 5c. At the same λ,
tesc is smaller for triangular lattices compared to square
configurations since AS

trap >AT
trap. To correct for this ef-

fect, we divide tesc by Atrap in Fig. 5d. The resulting
escape time per unit area increases with λ, which shows
that the increase of obstacles per unit area strengthens
the trapping effect and enhances the escape time.

Cell-pillar interactions

To characterize the cell-pillar interaction, we measure the
time spent by cells in the vicinity of pillars. We define
a contact zone around each pillar as the region within a
distance δ from the pillar surface (see Fig. 5b), and define
a contact event when a cell surface enters this zone. We
measure the contact time τc as the time spent by a cell in
a contact zone in each contact event (a contact event oc-
curs when the distance between the cell nucleus and the
center position of the pillar falls below the sum of the
cell radius, δ, and the pillar radius). For different choices
of δ, we measure τc for all cell trajectories belonging to
each chamber. The typical result is presented in Fig. 6a
for device D3 with e=45µm. It can be seen that below a
critical distance δc≈ 4µm, the contact time τc is indepen-
dent of the choice of δ, evidencing the formation of the
cell-pillar contact. We choose a contact distance δ=2µm
within the plateau regime (i.e. δ < δc) for all chambers,
and measure the resulting contact time τc in different
experiments. Except for two experiments (D2,T1 and

FIG. 6. (a) Contact time τc versus the thickness δ of the con-
tact zone, for device D3 with e=45µm. (b-d) Mean contact
time τc (b), mean bulk time τb (c), and the fraction of time
spent in the vicinity of pillars τc

τc + τb
(d) versus the relative

pillar size λ, for different chambers. The single error bars
shown in panels (a,b) represent the typical estimated errors
for all data. Panels (c) and (d) are presented in log-log and
log-lin scales, respectively.

D3,T3; see Table I), the resulting mean contact time τc
is around 3.8± 0.2min for all chambers, independent of
h, λ, or lattice type (Fig. 6b). The longer contact time
in two of the experiments originates from the extremely
long stay of some cells in the vicinity of pillars. We spec-
ulate that these rare events are caused by abnormal or
dying cells or local defects on pillar surfaces.
We similarly introduce a bulk time τb as the duration

of time that a cell spends in the bulk of the pillar forest
between two successive contact events. The mean value
of the bulk time τb is presented in Fig. 6c for different
chambers. τb decreases with increasing λ, since the avail-
able bulk area decreases and the cells visit the pillars
more frequently. Also, the larger values of τb in square
lattices compared to triangular ones is due to the larger
available area in the square configuration compared to
the triangular lattice with the same λ (i.e. the same in-
terpillar spacing e; see Fig. 5a). In Fig. 6d, the fraction of
time spent in the vicinity of pillars is shown. This frac-
tion increases with the density of pillars, as the relative
contribution of the contact events increases. It can be
also seen that the relative contact time is the least in the
highly vertically confined device D1.

Numerical results

According to our experimental observations, the direc-
tional persistence R of the cells in amoeboid migration
through the micropillar arrays is relatively weak and de-
pends on the vertical confinement h in a given geome-
try of pillars. Motivated by this, we model the migra-
tion of cells with a persistent random walk (PRW) in a
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FIG. 7. (a) Time evolution of the mean square displacement
in the asymptotic regime. A comparison is made between
the simulation and experimental results in experiment D2,S2
(left) or D3,T2 (right); see Table I for the geometrical param-
eters of each case. The simulation results are presented for a
PRW model with experimental data served as input for sim-
ulations, and an ordinary random walk (ORW) model with a
constant velocity, with or without a constant residence time
near the pillars.

two-dimensional medium, containing circular obstacles.
Thus, the impact of the vertical confinement h is con-
sidered by the persistence R of the persistent random
walker in our model. We first validate our numerical
model by comparing it to the experimental data. For
each experiment, the corresponding geometrical quanti-
ties d, e, and pillar positions are used as input for sim-
ulations. Persistent random walkers with velocity and
turning-angle distributions compatible with each experi-
ment (as presented in Figs. 2b, 2c and Suppl. Fig. S1) are
considered. The random walker halts for a mean contact
time τc = 3.8min in the vicinity of pillars, when it enters
a contact zone with δ=2µm, compatible with the results
of the previous subsection. The details of the simulation
method are presented in the “Materials and methods”
section. Moreover, an ordinary random walk (ORW)
model with and without a constant residence time τc near
the obstacles is considered for comparison. The constant
velocity of the walker in the ORW model is chosen to be
the mean velocity of the cells in each experiment and the
turning-angle distribution is uniform.

Our goal is to understand the navigation and search
abilities of migrating cells in the amoeboid mode. The
mean-first-passage time is conversely related to the dif-
fusion constant D of the searcher [43–45]; thus, we focus
on the asymptotic regime of cell dynamics and compare
the numerically obtained MSD with the experimental re-
sults. As typical examples with different persistence R,
we present in Fig. 7 the results for experiments D3,S2
and D2,S2 (see Table I), which have a finite or nearly
zero persistence, respectively. The results of the PRW
model with empirical input matches very well with the
experimental results in both cases. The ORW model
with constant velocity neglects the cell persistence and
the variance of the velocity distribution, which leads to a
smaller MSD compared to the PRW model [42]. Taking
the waiting time at contact events into account further

FIG. 8. Simulation results for diffusion constant D of persis-
tent random walkers in a 2D obstacle forest. The diffusion
constant for the reference set of parameters (see text) is de-
noted by Dref. The diffusion constant D, scaled by Dref, is
shown in terms of (a) the relative pillar size λ, (b) mean per-
sistence R, (c) cell-pillar contact time τc, and (d) cell-pillar
contact zone size δ. Except for the varied parameter in each
panel, the rest of the parameters are kept fixed at their ref-
erence values, unless specified otherwise. The dashed line in
panel (b) represents the theoretical prediction Eq. (2).

lowers the ORW model curve in Fig. 7. We checked that
the PRW model satisfactory captures the time evolution
of the MSD in other chambers as well.

In order to gain more insight into the role of the key
parameters on the amoeboid cell migration, we perform
extensive Monte Carlo simulations of the PRW model.
The walker moves through a square lattice of circular
obstacles and stays in the contact zones around the ob-
stacles for a finite time. See the “Materials and meth-
ods” section for details. In our control simulations, a
reference set of parameters— λ=0.25, R=0 (pure dif-
fusion), τc =2min, and δ=2µm— is chosen. The ve-
locity in all simulations has a uniform distribution with
the mean velocity of 3µm/min. We systematically vary
each parameter beyond the available range in our exper-
iments, while other parameters are kept fixed at their
reference values. We particularly focus here on how cell
persistence, crowding by obstacles, contact-zone size, and
contact time influence the asymptotic diffusion constant
D of the cell.
The dependence of D on the relative pillar size λ is

shown in Fig. 8a. D expectedly decreases with increasing
pillar density; within the experimental variation range of
λ, the diffusion constant decays by approximately 30% in
simulations, which is comparable with the experimental
observations.

Next we vary the persistence R of the random walker.
For this purpose, the width of a uniform turning-angle
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distribution P (φ) around the forward direction of motion
is varied in simulations. Increasing R results in a larger
diffusion constant D (Fig. 8b). For comparison, D of a
persistent random walker in the absence of pillars grows
with R as [42]

D=D
0

1+R
1−R , (2)

with D
0
being the diffusion constant of a normal diffu-

sion with the same mean velocity as the persistent ran-
dom walker. The presence of obstacles reduces D and
limits its variation range. We also present the results
for a denser system with λ=0.4 in Fig. 8b; the varia-
tion range of D is even further limited. The impact of
obstacles on D is more pronounced at larger values of
R. In the small persistence regime (as for the migrating
cells in our experiments), the influence of obstacles on
D gets relatively weaker. Interestingly, for subdiffusive
dynamics (i.e. R< 0), the presence of obstacles can even
increase D, as the obstacles randomize the path of the
slowly spreading anti-persistent random walker.
Finally, we investigate the role of the characteristics

of cell-pillar contacts, including the contact time τc
and contact-zone size δ in Figs. 8c,d. Within the ex-
perimental range of τc (see Fig. 6b), variation range of
D is small. However, larger values of τc enhance the
contribution of the waiting events and visibly affect
D. By varying the contact-zone size δ at the reference
contact time τc =2min, the walker contacts the obstacles
more frequently. The influence on D is however weak,
as shown in Fig. 8d. The reason is that the reference
contact time is so small that the contribution of the
increased number of contact events is negligible. By
increasing τc to 20min or 30min, variation of δ leads to
stronger changes in D.

DISCUSSION

We have studied the in vitro amoeboid migration of HL-
60 cells differentiated into neutrophils in quasi-2D con-
fined geometries containing regularly arranged cylindri-
cal micropillars. The spacing between identical pillars
and their lattice type of arrangement have been varied
to study their impact on the amoeboid migration in the
dilute regime of obstacles. In this regime, the pillars act
as scatterers and randomize the cell trajectory. More-
over, the cells get locally trapped between adjacent pil-
lars, which slows the cell dynamics. In our experiments,
the interpillar distance is chosen to be larger than the
typical size of HL-60 cells, which is around 10µm. There
is, however, one exceptional chamber (device D4) with a
high pillar density in such a way that the interpillar spac-
ing is in the range of the size of the cell nucleus. The cell
is then in contact with several pillars simultaneously. In
this case, the cell benefits from a directed pillar-to-pillar
type of motion to increase its persistence and velocity
(Figs. 2, 3). Nevertheless, we mainly focus on the dilute
pillar density regime. Here, decreasing the interpillar dis-
tance reduces the persistence and asymptotic diffusion

constant D of migrating cells (Figs. 3, 4). It is known
that increasing the obstacle density in regular arrange-
ments of symmetric obstacles or random configurations
of them slows the particle dynamics due to increasing
effects of reorientations by obstacles and/or trapping in
local cages between them[25–33, 46]. Our numerical sim-
ulations reveal that with doubling the relative pillar size
λ, D can decrease even more than 30% (Fig. 8a). As D
is conversely related to the mean-first-passage time [43–
45], the search time of the cell— e.g. the mean escape
time from the local cages formed by adjacent pillars— is
expected to increase with λ. This is confirmed by our ex-
perimental results; doubling λ increases the escape time
per unit area by a factor of about 2 (Fig. 5d). We note
that the asymptotic diffusion limit can be inaccessible in
experiments, e.g., due to high concentration of obstacles
[27]. While the searcher may not explore the entire space
in such cases, it can still explore the local environment
through an anomalous diffusive dynamics [29].

So far, it has been unclear how vertical confinement
influences amoeboid cell migration. Although contact
with surfaces is required to initiate and maintain the
amoeboid migration, our results reveal that being too
squeezed between parallel plates impairs the migration
in low pillar density regime. The cell size in our experi-
ments has been larger than the chamber height h in all
devices. Upon decreasing the plate-plate distances below
h≈ 4µm, the cells practically lose their migration abil-
ity and just diffuse (Fig. 3). It remains for future studies
how the generation of the biomechanical forces required
for amoeboid migration depends on the vertical confine-
ment of the cell. The simulation results in Fig. 8b reveal
that the variation of cell persistence R (upon changing
the chamber height h) can significantly affect the asymp-
totic diffusion constant. The impact of R (equivalently
h) on the cell dynamics however weakens with increasing
the obstacle density in the environment.

By investigating the cell-pillar interactions in our ex-
periments, we have determined the mean contact-zone
size δ and contact time τc of cells with pillars. The ques-
tion remains how far these contact events influence the
dynamics and first-passage properties of migrating cells.
To gain more insight into the role of τc and δ on cell
migration, we have varied these parameters in numerical
simulations. Importantly, we find that the contact time
of our cells with pillars is too short to be able to affect
the cell dynamics and the asymptotic diffusion constant
D. Because of the short waiting times at contact events,
extending the contact zone area by increasing δ has a
negligible influence on D (black dashed curve in Fig. 8d).
However, by increasing τc beyond the plateau regime at
small times, the decay of D accelerates; additionally, in-
creasing the contact-zone size δ at a longer reference τc
leads to considerable changes in D.

To conclude, we find that the obstacles act as scat-
terers to randomize the dynamics of migrating cells,
when we focus on the dilute regime. We also find that,
the adjacent obstacles create local traps which further
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slow the cell dynamics. Therefore, in this regime,
obstacles impair the amoeboid cell migration rather
than facilitate it. In contrast, simultaneous contacts
with several obstacles in the dense regime help the cells
to move forward from obstacle to obstacle, in agreement
with [7]. Our results highlight the importance of the
vertical confinement on amoeboid cell migration in
the dilute regime; the cells lose their migration ability
when extremely squeezed between parallel plates. In
future, our work can be used to understand the origin of
different migration behavior of immune cells in different
tissues and organs. We are also convinced that our
data will help to mimic and control amoeboid migration
in vitro by choosing appropriate confinement parameters.
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